Home | History | Annotate | Line # | Download | only in newfs
mkfs.c revision 1.27
      1 /*	$NetBSD: mkfs.c,v 1.27 1997/09/16 14:05:39 lukem Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1980, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 #ifndef lint
     38 #if 0
     39 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
     40 #else
     41 __RCSID("$NetBSD: mkfs.c,v 1.27 1997/09/16 14:05:39 lukem Exp $");
     42 #endif
     43 #endif /* not lint */
     44 
     45 #include <sys/param.h>
     46 #include <sys/time.h>
     47 #include <sys/wait.h>
     48 #include <sys/resource.h>
     49 #include <ufs/ufs/dinode.h>
     50 #include <ufs/ufs/dir.h>
     51 #include <ufs/ffs/fs.h>
     52 #include <sys/disklabel.h>
     53 
     54 #include <string.h>
     55 #include <unistd.h>
     56 #include <stdlib.h>
     57 #include <signal.h>
     58 
     59 #ifndef STANDALONE
     60 #include <a.out.h>
     61 #include <stdio.h>
     62 #endif
     63 #include <extern.h>
     64 
     65 
     66 static void initcg __P((int, time_t));
     67 static void fsinit __P((time_t));
     68 static int makedir __P((struct direct *, int));
     69 static daddr_t alloc __P((int, int));
     70 static void iput __P((struct dinode *, ino_t));
     71 static void started __P((int));
     72 static void rdfs __P((daddr_t, int, void *));
     73 static void wtfs __P((daddr_t, int, void *));
     74 static int isblock __P((struct fs *, unsigned char *, int));
     75 static void clrblock __P((struct fs *, unsigned char *, int));
     76 static void setblock __P((struct fs *, unsigned char *, int));
     77 static int32_t calcipg __P((int32_t, int32_t, off_t *));
     78 
     79 /*
     80  * make file system for cylinder-group style file systems
     81  */
     82 
     83 /*
     84  * We limit the size of the inode map to be no more than a
     85  * third of the cylinder group space, since we must leave at
     86  * least an equal amount of space for the block map.
     87  *
     88  * N.B.: MAXIPG must be a multiple of INOPB(fs).
     89  */
     90 #define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
     91 
     92 #define UMASK		0755
     93 #define MAXINOPB	(MAXBSIZE / sizeof(struct dinode))
     94 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
     95 
     96 /*
     97  * variables set up by front end.
     98  */
     99 extern int	mfs;		/* run as the memory based filesystem */
    100 extern int	Nflag;		/* run mkfs without writing file system */
    101 extern int	Oflag;		/* format as an 4.3BSD file system */
    102 extern int	fssize;		/* file system size */
    103 extern int	ntracks;	/* # tracks/cylinder */
    104 extern int	nsectors;	/* # sectors/track */
    105 extern int	nphyssectors;	/* # sectors/track including spares */
    106 extern int	secpercyl;	/* sectors per cylinder */
    107 extern int	sectorsize;	/* bytes/sector */
    108 extern int	rpm;		/* revolutions/minute of drive */
    109 extern int	interleave;	/* hardware sector interleave */
    110 extern int	trackskew;	/* sector 0 skew, per track */
    111 extern int	headswitch;	/* head switch time, usec */
    112 extern int	trackseek;	/* track-to-track seek, usec */
    113 extern int	fsize;		/* fragment size */
    114 extern int	bsize;		/* block size */
    115 extern int	cpg;		/* cylinders/cylinder group */
    116 extern int	cpgflg;		/* cylinders/cylinder group flag was given */
    117 extern int	minfree;	/* free space threshold */
    118 extern int	opt;		/* optimization preference (space or time) */
    119 extern int	density;	/* number of bytes per inode */
    120 extern int	maxcontig;	/* max contiguous blocks to allocate */
    121 extern int	rotdelay;	/* rotational delay between blocks */
    122 extern int	maxbpg;		/* maximum blocks per file in a cyl group */
    123 extern int	nrpos;		/* # of distinguished rotational positions */
    124 extern int	bbsize;		/* boot block size */
    125 extern int	sbsize;		/* superblock size */
    126 extern u_long	memleft;	/* virtual memory available */
    127 extern caddr_t	membase;	/* start address of memory based filesystem */
    128 
    129 union {
    130 	struct fs fs;
    131 	char pad[SBSIZE];
    132 } fsun;
    133 #define	sblock	fsun.fs
    134 struct	csum *fscs;
    135 
    136 union {
    137 	struct cg cg;
    138 	char pad[MAXBSIZE];
    139 } cgun;
    140 #define	acg	cgun.cg
    141 
    142 struct dinode zino[MAXBSIZE / sizeof(struct dinode)];
    143 
    144 int	fsi, fso;
    145 
    146 void
    147 mkfs(pp, fsys, fi, fo)
    148 	struct partition *pp;
    149 	char *fsys;
    150 	int fi, fo;
    151 {
    152 	int32_t i, mincpc, mincpg, inospercg;
    153 	int32_t cylno, rpos, blk, j, warn = 0;
    154 	int32_t used, mincpgcnt, bpcg;
    155 	off_t usedb;
    156 	int32_t mapcramped, inodecramped;
    157 	int32_t postblsize, rotblsize, totalsbsize;
    158 	int ppid = 0, status;
    159 	time_t utime;
    160 	quad_t sizepb;
    161 
    162 #ifndef STANDALONE
    163 	time(&utime);
    164 #endif
    165 	if (mfs) {
    166 		ppid = getpid();
    167 		(void) signal(SIGUSR1, started);
    168 		switch (i = fork()) {
    169 		case -1:
    170 			perror("mfs");
    171 			exit(10);
    172 		case 0:
    173 			break;
    174 		default:
    175 			if (waitpid(i, &status, 0) != -1 && WIFEXITED(status))
    176 				exit(WEXITSTATUS(status));
    177 			exit(11);
    178 			/* NOTREACHED */
    179 		}
    180 		(void)malloc(0);
    181 		if (fssize * sectorsize > memleft)
    182 			fssize = (memleft - 16384) / sectorsize;
    183 		if ((membase = malloc(fssize * sectorsize)) == 0)
    184 			exit(12);
    185 	}
    186 	fsi = fi;
    187 	fso = fo;
    188 	if (Oflag) {
    189 		sblock.fs_inodefmt = FS_42INODEFMT;
    190 		sblock.fs_maxsymlinklen = 0;
    191 	} else {
    192 		sblock.fs_inodefmt = FS_44INODEFMT;
    193 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
    194 	}
    195 	/*
    196 	 * Validate the given file system size.
    197 	 * Verify that its last block can actually be accessed.
    198 	 */
    199 	if (fssize <= 0)
    200 		printf("preposterous size %d\n", fssize), exit(13);
    201 	wtfs(fssize - 1, sectorsize, (char *)&sblock);
    202 	/*
    203 	 * collect and verify the sector and track info
    204 	 */
    205 	sblock.fs_nsect = nsectors;
    206 	sblock.fs_ntrak = ntracks;
    207 	if (sblock.fs_ntrak <= 0)
    208 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
    209 	if (sblock.fs_nsect <= 0)
    210 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
    211 	/*
    212 	 * collect and verify the block and fragment sizes
    213 	 */
    214 	sblock.fs_bsize = bsize;
    215 	sblock.fs_fsize = fsize;
    216 	if (!POWEROF2(sblock.fs_bsize)) {
    217 		printf("block size must be a power of 2, not %d\n",
    218 		    sblock.fs_bsize);
    219 		exit(16);
    220 	}
    221 	if (!POWEROF2(sblock.fs_fsize)) {
    222 		printf("fragment size must be a power of 2, not %d\n",
    223 		    sblock.fs_fsize);
    224 		exit(17);
    225 	}
    226 	if (sblock.fs_fsize < sectorsize) {
    227 		printf("fragment size %d is too small, minimum is %d\n",
    228 		    sblock.fs_fsize, sectorsize);
    229 		exit(18);
    230 	}
    231 	if (sblock.fs_bsize < MINBSIZE) {
    232 		printf("block size %d is too small, minimum is %d\n",
    233 		    sblock.fs_bsize, MINBSIZE);
    234 		exit(19);
    235 	}
    236 	if (sblock.fs_bsize < sblock.fs_fsize) {
    237 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
    238 		    sblock.fs_bsize, sblock.fs_fsize);
    239 		exit(20);
    240 	}
    241 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
    242 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
    243 	sblock.fs_qbmask = ~sblock.fs_bmask;
    244 	sblock.fs_qfmask = ~sblock.fs_fmask;
    245 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
    246 		sblock.fs_bshift++;
    247 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
    248 		sblock.fs_fshift++;
    249 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
    250 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
    251 		sblock.fs_fragshift++;
    252 	if (sblock.fs_frag > MAXFRAG) {
    253 		printf("fragment size %d is too small, minimum with block size %d is %d\n",
    254 		    sblock.fs_fsize, sblock.fs_bsize,
    255 		    sblock.fs_bsize / MAXFRAG);
    256 		exit(21);
    257 	}
    258 	sblock.fs_nrpos = nrpos;
    259 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
    260 	sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode);
    261 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
    262 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
    263 		sblock.fs_fsbtodb++;
    264 	sblock.fs_sblkno =
    265 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
    266 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
    267 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
    268 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
    269 	sblock.fs_cgoffset = roundup(
    270 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
    271 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
    272 		sblock.fs_cgmask <<= 1;
    273 	if (!POWEROF2(sblock.fs_ntrak))
    274 		sblock.fs_cgmask <<= 1;
    275 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
    276 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
    277 		sizepb *= NINDIR(&sblock);
    278 		sblock.fs_maxfilesize += sizepb;
    279 	}
    280 	/*
    281 	 * Validate specified/determined secpercyl
    282 	 * and calculate minimum cylinders per group.
    283 	 */
    284 	sblock.fs_spc = secpercyl;
    285 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
    286 	     sblock.fs_cpc > 1 && (i & 1) == 0;
    287 	     sblock.fs_cpc >>= 1, i >>= 1)
    288 		/* void */;
    289 	mincpc = sblock.fs_cpc;
    290 	bpcg = sblock.fs_spc * sectorsize;
    291 	inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock));
    292 	if (inospercg > MAXIPG(&sblock))
    293 		inospercg = MAXIPG(&sblock);
    294 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
    295 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
    296 	    sblock.fs_spc);
    297 	mincpg = roundup(mincpgcnt, mincpc);
    298 	/*
    299 	 * Ensure that cylinder group with mincpg has enough space
    300 	 * for block maps.
    301 	 */
    302 	sblock.fs_cpg = mincpg;
    303 	sblock.fs_ipg = inospercg;
    304 	if (maxcontig > 1)
    305 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
    306 	mapcramped = 0;
    307 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
    308 		mapcramped = 1;
    309 		if (sblock.fs_bsize < MAXBSIZE) {
    310 			sblock.fs_bsize <<= 1;
    311 			if ((i & 1) == 0) {
    312 				i >>= 1;
    313 			} else {
    314 				sblock.fs_cpc <<= 1;
    315 				mincpc <<= 1;
    316 				mincpg = roundup(mincpgcnt, mincpc);
    317 				sblock.fs_cpg = mincpg;
    318 			}
    319 			sblock.fs_frag <<= 1;
    320 			sblock.fs_fragshift += 1;
    321 			if (sblock.fs_frag <= MAXFRAG)
    322 				continue;
    323 		}
    324 		if (sblock.fs_fsize == sblock.fs_bsize) {
    325 			printf("There is no block size that");
    326 			printf(" can support this disk\n");
    327 			exit(22);
    328 		}
    329 		sblock.fs_frag >>= 1;
    330 		sblock.fs_fragshift -= 1;
    331 		sblock.fs_fsize <<= 1;
    332 		sblock.fs_nspf <<= 1;
    333 	}
    334 	/*
    335 	 * Ensure that cylinder group with mincpg has enough space for inodes.
    336 	 */
    337 	inodecramped = 0;
    338 	inospercg = calcipg(mincpg, bpcg, &usedb);
    339 	sblock.fs_ipg = inospercg;
    340 	while (inospercg > MAXIPG(&sblock)) {
    341 		inodecramped = 1;
    342 		if (mincpc == 1 || sblock.fs_frag == 1 ||
    343 		    sblock.fs_bsize == MINBSIZE)
    344 			break;
    345 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
    346 		       "minimum bytes per inode is",
    347 		       (int)((mincpg * (off_t)bpcg - usedb)
    348 			     / MAXIPG(&sblock) + 1));
    349 		sblock.fs_bsize >>= 1;
    350 		sblock.fs_frag >>= 1;
    351 		sblock.fs_fragshift -= 1;
    352 		mincpc >>= 1;
    353 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
    354 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
    355 			sblock.fs_bsize <<= 1;
    356 			break;
    357 		}
    358 		mincpg = sblock.fs_cpg;
    359 		inospercg = calcipg(mincpg, bpcg, &usedb);
    360 		sblock.fs_ipg = inospercg;
    361 	}
    362 	if (inodecramped) {
    363 		if (inospercg > MAXIPG(&sblock)) {
    364 			printf("Minimum bytes per inode is %d\n",
    365 			       (int)((mincpg * (off_t)bpcg - usedb)
    366 				     / MAXIPG(&sblock) + 1));
    367 		} else if (!mapcramped) {
    368 			printf("With %d bytes per inode, ", density);
    369 			printf("minimum cylinders per group is %d\n", mincpg);
    370 		}
    371 	}
    372 	if (mapcramped) {
    373 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
    374 		printf("minimum cylinders per group is %d\n", mincpg);
    375 	}
    376 	if (inodecramped || mapcramped) {
    377 		if (sblock.fs_bsize != bsize)
    378 			printf("%s to be changed from %d to %d\n",
    379 			    "This requires the block size",
    380 			    bsize, sblock.fs_bsize);
    381 		if (sblock.fs_fsize != fsize)
    382 			printf("\t%s to be changed from %d to %d\n",
    383 			    "and the fragment size",
    384 			    fsize, sblock.fs_fsize);
    385 		exit(23);
    386 	}
    387 	/*
    388 	 * Calculate the number of cylinders per group
    389 	 */
    390 	sblock.fs_cpg = cpg;
    391 	if (sblock.fs_cpg % mincpc != 0) {
    392 		printf("%s groups must have a multiple of %d cylinders\n",
    393 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
    394 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
    395 		if (!cpgflg)
    396 			cpg = sblock.fs_cpg;
    397 	}
    398 	/*
    399 	 * Must ensure there is enough space for inodes.
    400 	 */
    401 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
    402 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
    403 		inodecramped = 1;
    404 		sblock.fs_cpg -= mincpc;
    405 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
    406 	}
    407 	/*
    408 	 * Must ensure there is enough space to hold block map.
    409 	 */
    410 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
    411 		mapcramped = 1;
    412 		sblock.fs_cpg -= mincpc;
    413 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
    414 	}
    415 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
    416 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
    417 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
    418 		exit(24);
    419 	}
    420 	if (sblock.fs_cpg < mincpg) {
    421 		printf("cylinder groups must have at least %d cylinders\n",
    422 			mincpg);
    423 		exit(25);
    424 	} else if (sblock.fs_cpg != cpg) {
    425 		if (!cpgflg)
    426 			printf("Warning: ");
    427 		else if (!mapcramped && !inodecramped)
    428 			exit(26);
    429 		if (mapcramped && inodecramped)
    430 			printf("Block size and bytes per inode restrict");
    431 		else if (mapcramped)
    432 			printf("Block size restricts");
    433 		else
    434 			printf("Bytes per inode restrict");
    435 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
    436 		if (cpgflg)
    437 			exit(27);
    438 	}
    439 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
    440 	/*
    441 	 * Now have size for file system and nsect and ntrak.
    442 	 * Determine number of cylinders and blocks in the file system.
    443 	 */
    444 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
    445 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
    446 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
    447 		sblock.fs_ncyl++;
    448 		warn = 1;
    449 	}
    450 	if (sblock.fs_ncyl < 1) {
    451 		printf("file systems must have at least one cylinder\n");
    452 		exit(28);
    453 	}
    454 	/*
    455 	 * Determine feasability/values of rotational layout tables.
    456 	 *
    457 	 * The size of the rotational layout tables is limited by the
    458 	 * size of the superblock, SBSIZE. The amount of space available
    459 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
    460 	 * The size of these tables is inversely proportional to the block
    461 	 * size of the file system. The size increases if sectors per track
    462 	 * are not powers of two, because more cylinders must be described
    463 	 * by the tables before the rotational pattern repeats (fs_cpc).
    464 	 */
    465 	sblock.fs_interleave = interleave;
    466 	sblock.fs_trackskew = trackskew;
    467 	sblock.fs_npsect = nphyssectors;
    468 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
    469 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
    470 	if (sblock.fs_ntrak == 1) {
    471 		sblock.fs_cpc = 0;
    472 		goto next;
    473 	}
    474 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
    475 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
    476 	totalsbsize = sizeof(struct fs) + rotblsize;
    477 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
    478 		/* use old static table space */
    479 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
    480 		    (char *)(&sblock.fs_firstfield);
    481 		sblock.fs_rotbloff = &sblock.fs_space[0] -
    482 		    (u_char *)(&sblock.fs_firstfield);
    483 	} else {
    484 		/* use dynamic table space */
    485 		sblock.fs_postbloff = &sblock.fs_space[0] -
    486 		    (u_char *)(&sblock.fs_firstfield);
    487 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
    488 		totalsbsize += postblsize;
    489 	}
    490 	if (totalsbsize > SBSIZE ||
    491 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
    492 		printf("%s %s %d %s %d.%s",
    493 		    "Warning: insufficient space in super block for\n",
    494 		    "rotational layout tables with nsect", sblock.fs_nsect,
    495 		    "and ntrak", sblock.fs_ntrak,
    496 		    "\nFile system performance may be impaired.\n");
    497 		sblock.fs_cpc = 0;
    498 		goto next;
    499 	}
    500 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
    501 	/*
    502 	 * calculate the available blocks for each rotational position
    503 	 */
    504 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
    505 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
    506 			fs_postbl(&sblock, cylno)[rpos] = -1;
    507 	for (i = (rotblsize - 1) * sblock.fs_frag;
    508 	     i >= 0; i -= sblock.fs_frag) {
    509 		cylno = cbtocylno(&sblock, i);
    510 		rpos = cbtorpos(&sblock, i);
    511 		blk = fragstoblks(&sblock, i);
    512 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
    513 			fs_rotbl(&sblock)[blk] = 0;
    514 		else
    515 			fs_rotbl(&sblock)[blk] =
    516 			    fs_postbl(&sblock, cylno)[rpos] - blk;
    517 		fs_postbl(&sblock, cylno)[rpos] = blk;
    518 	}
    519 next:
    520 	/*
    521 	 * Compute/validate number of cylinder groups.
    522 	 */
    523 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
    524 	if (sblock.fs_ncyl % sblock.fs_cpg)
    525 		sblock.fs_ncg++;
    526 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
    527 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
    528 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
    529 		printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
    530 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
    531 		    sblock.fs_fpg / sblock.fs_frag);
    532 		printf("number of cylinders per cylinder group (%d) %s.\n",
    533 		    sblock.fs_cpg, "must be increased");
    534 		exit(29);
    535 	}
    536 	j = sblock.fs_ncg - 1;
    537 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
    538 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
    539 		if (j == 0) {
    540 			printf("Filesystem must have at least %d sectors\n",
    541 			    NSPF(&sblock) *
    542 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
    543 			exit(30);
    544 		}
    545 		printf("Warning: inode blocks/cyl group (%d) >= data blocks (%d) in last\n",
    546 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
    547 		    i / sblock.fs_frag);
    548 		printf("    cylinder group. This implies %d sector(s) cannot be allocated.\n",
    549 		    i * NSPF(&sblock));
    550 		sblock.fs_ncg--;
    551 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
    552 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
    553 		    NSPF(&sblock);
    554 		warn = 0;
    555 	}
    556 	if (warn && !mfs) {
    557 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
    558 		    sblock.fs_spc -
    559 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
    560 		    * sblock.fs_spc));
    561 	}
    562 	/*
    563 	 * fill in remaining fields of the super block
    564 	 */
    565 	sblock.fs_csaddr = cgdmin(&sblock, 0);
    566 	sblock.fs_cssize =
    567 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
    568 	i = sblock.fs_bsize / sizeof(struct csum);
    569 	sblock.fs_csmask = ~(i - 1);
    570 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
    571 		sblock.fs_csshift++;
    572 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
    573 	sblock.fs_magic = FS_MAGIC;
    574 	sblock.fs_rotdelay = rotdelay;
    575 	sblock.fs_minfree = minfree;
    576 	sblock.fs_maxcontig = maxcontig;
    577 	sblock.fs_headswitch = headswitch;
    578 	sblock.fs_trkseek = trackseek;
    579 	sblock.fs_maxbpg = maxbpg;
    580 	sblock.fs_rps = rpm / 60;
    581 	sblock.fs_optim = opt;
    582 	sblock.fs_cgrotor = 0;
    583 	sblock.fs_cstotal.cs_ndir = 0;
    584 	sblock.fs_cstotal.cs_nbfree = 0;
    585 	sblock.fs_cstotal.cs_nifree = 0;
    586 	sblock.fs_cstotal.cs_nffree = 0;
    587 	sblock.fs_fmod = 0;
    588 	sblock.fs_clean = FS_ISCLEAN;
    589 	sblock.fs_ronly = 0;
    590 	sblock.fs_clean = 1;
    591 	/*
    592 	 * Dump out summary information about file system.
    593 	 */
    594 	if (!mfs) {
    595 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
    596 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
    597 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
    598 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
    599 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
    600 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
    601 		    sblock.fs_ncg, sblock.fs_cpg,
    602 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
    603 		    sblock.fs_ipg);
    604 #undef B2MBFACTOR
    605 	}
    606 	/*
    607 	 * Now build the cylinders group blocks and
    608 	 * then print out indices of cylinder groups.
    609 	 */
    610 	if (!mfs)
    611 		printf("super-block backups (for fsck -b #) at:");
    612 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
    613 		initcg(cylno, utime);
    614 		if (mfs)
    615 			continue;
    616 		if (cylno % 8 == 0)
    617 			printf("\n");
    618 		printf(" %d,", fsbtodb(&sblock, cgsblock(&sblock, cylno)));
    619 		fflush(stdout);
    620 	}
    621 	if (!mfs)
    622 		printf("\n");
    623 	if (Nflag && !mfs)
    624 		exit(0);
    625 	/*
    626 	 * Now construct the initial file system,
    627 	 * then write out the super-block.
    628 	 */
    629 	fsinit(utime);
    630 	sblock.fs_time = utime;
    631 	wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
    632 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
    633 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
    634 			sblock.fs_cssize - i < sblock.fs_bsize ?
    635 			    sblock.fs_cssize - i : sblock.fs_bsize,
    636 			((char *)fscs) + i);
    637 	/*
    638 	 * Write out the duplicate super blocks
    639 	 */
    640 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
    641 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
    642 		    sbsize, (char *)&sblock);
    643 	/*
    644 	 * Update information about this partion in pack
    645 	 * label, to that it may be updated on disk.
    646 	 */
    647 	pp->p_fstype = FS_BSDFFS;
    648 	pp->p_fsize = sblock.fs_fsize;
    649 	pp->p_frag = sblock.fs_frag;
    650 	pp->p_cpg = sblock.fs_cpg;
    651 	/*
    652 	 * Notify parent process of success.
    653 	 * Dissociate from session and tty.
    654 	 */
    655 	if (mfs) {
    656 		kill(ppid, SIGUSR1);
    657 		(void) setsid();
    658 		(void) close(0);
    659 		(void) close(1);
    660 		(void) close(2);
    661 		(void) chdir("/");
    662 	}
    663 }
    664 
    665 /*
    666  * Initialize a cylinder group.
    667  */
    668 void
    669 initcg(cylno, utime)
    670 	int cylno;
    671 	time_t utime;
    672 {
    673 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
    674 	int32_t i;
    675 	struct csum *cs;
    676 
    677 	/*
    678 	 * Determine block bounds for cylinder group.
    679 	 * Allow space for super block summary information in first
    680 	 * cylinder group.
    681 	 */
    682 	cbase = cgbase(&sblock, cylno);
    683 	dmax = cbase + sblock.fs_fpg;
    684 	if (dmax > sblock.fs_size)
    685 		dmax = sblock.fs_size;
    686 	dlower = cgsblock(&sblock, cylno) - cbase;
    687 	dupper = cgdmin(&sblock, cylno) - cbase;
    688 	if (cylno == 0)
    689 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
    690 	cs = fscs + cylno;
    691 	memset(&acg, 0, sblock.fs_cgsize);
    692 	acg.cg_time = utime;
    693 	acg.cg_magic = CG_MAGIC;
    694 	acg.cg_cgx = cylno;
    695 	if (cylno == sblock.fs_ncg - 1)
    696 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
    697 	else
    698 		acg.cg_ncyl = sblock.fs_cpg;
    699 	acg.cg_niblk = sblock.fs_ipg;
    700 	acg.cg_ndblk = dmax - cbase;
    701 	if (sblock.fs_contigsumsize > 0)
    702 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
    703 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
    704 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
    705 	acg.cg_iusedoff = acg.cg_boff +
    706 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
    707 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
    708 	if (sblock.fs_contigsumsize <= 0) {
    709 		acg.cg_nextfreeoff = acg.cg_freeoff +
    710 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
    711 	} else {
    712 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
    713 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
    714 		    sizeof(int32_t);
    715 		acg.cg_clustersumoff =
    716 		    roundup(acg.cg_clustersumoff, sizeof(int32_t));
    717 		acg.cg_clusteroff = acg.cg_clustersumoff +
    718 		    (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
    719 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
    720 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
    721 	}
    722 	if (acg.cg_nextfreeoff -
    723 	    (int32_t)(&acg.cg_firstfield) > sblock.fs_cgsize) {
    724 		printf("Panic: cylinder group too big\n");
    725 		exit(37);
    726 	}
    727 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
    728 	if (cylno == 0)
    729 		for (i = 0; i < ROOTINO; i++) {
    730 			setbit(cg_inosused(&acg), i);
    731 			acg.cg_cs.cs_nifree--;
    732 		}
    733 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
    734 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
    735 		    sblock.fs_bsize, (char *)zino);
    736 	if (cylno > 0) {
    737 		/*
    738 		 * In cylno 0, beginning space is reserved
    739 		 * for boot and super blocks.
    740 		 */
    741 		for (d = 0; d < dlower; d += sblock.fs_frag) {
    742 			blkno = d / sblock.fs_frag;
    743 			setblock(&sblock, cg_blksfree(&acg), blkno);
    744 			if (sblock.fs_contigsumsize > 0)
    745 				setbit(cg_clustersfree(&acg), blkno);
    746 			acg.cg_cs.cs_nbfree++;
    747 			cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
    748 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
    749 			    [cbtorpos(&sblock, d)]++;
    750 		}
    751 		sblock.fs_dsize += dlower;
    752 	}
    753 	sblock.fs_dsize += acg.cg_ndblk - dupper;
    754 	if ((i = (dupper % sblock.fs_frag)) != 0) {
    755 		acg.cg_frsum[sblock.fs_frag - i]++;
    756 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
    757 			setbit(cg_blksfree(&acg), dupper);
    758 			acg.cg_cs.cs_nffree++;
    759 		}
    760 	}
    761 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
    762 		blkno = d / sblock.fs_frag;
    763 		setblock(&sblock, cg_blksfree(&acg), blkno);
    764 		if (sblock.fs_contigsumsize > 0)
    765 			setbit(cg_clustersfree(&acg), blkno);
    766 		acg.cg_cs.cs_nbfree++;
    767 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
    768 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
    769 		    [cbtorpos(&sblock, d)]++;
    770 		d += sblock.fs_frag;
    771 	}
    772 	if (d < dmax - cbase) {
    773 		acg.cg_frsum[dmax - cbase - d]++;
    774 		for (; d < dmax - cbase; d++) {
    775 			setbit(cg_blksfree(&acg), d);
    776 			acg.cg_cs.cs_nffree++;
    777 		}
    778 	}
    779 	if (sblock.fs_contigsumsize > 0) {
    780 		int32_t *sump = cg_clustersum(&acg);
    781 		u_char *mapp = cg_clustersfree(&acg);
    782 		int map = *mapp++;
    783 		int bit = 1;
    784 		int run = 0;
    785 
    786 		for (i = 0; i < acg.cg_nclusterblks; i++) {
    787 			if ((map & bit) != 0) {
    788 				run++;
    789 			} else if (run != 0) {
    790 				if (run > sblock.fs_contigsumsize)
    791 					run = sblock.fs_contigsumsize;
    792 				sump[run]++;
    793 				run = 0;
    794 			}
    795 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
    796 				bit <<= 1;
    797 			} else {
    798 				map = *mapp++;
    799 				bit = 1;
    800 			}
    801 		}
    802 		if (run != 0) {
    803 			if (run > sblock.fs_contigsumsize)
    804 				run = sblock.fs_contigsumsize;
    805 			sump[run]++;
    806 		}
    807 	}
    808 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
    809 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
    810 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
    811 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
    812 	*cs = acg.cg_cs;
    813 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
    814 		sblock.fs_bsize, (char *)&acg);
    815 }
    816 
    817 /*
    818  * initialize the file system
    819  */
    820 struct dinode node;
    821 
    822 #ifdef LOSTDIR
    823 #define PREDEFDIR 3
    824 #else
    825 #define PREDEFDIR 2
    826 #endif
    827 
    828 struct direct root_dir[] = {
    829 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
    830 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
    831 #ifdef LOSTDIR
    832 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
    833 #endif
    834 };
    835 struct odirect {
    836 	u_int32_t d_ino;
    837 	u_int16_t d_reclen;
    838 	u_int16_t d_namlen;
    839 	u_char	d_name[MAXNAMLEN + 1];
    840 } oroot_dir[] = {
    841 	{ ROOTINO, sizeof(struct direct), 1, "." },
    842 	{ ROOTINO, sizeof(struct direct), 2, ".." },
    843 #ifdef LOSTDIR
    844 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
    845 #endif
    846 };
    847 #ifdef LOSTDIR
    848 struct direct lost_found_dir[] = {
    849 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
    850 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
    851 	{ 0, DIRBLKSIZ, 0, 0, 0 },
    852 };
    853 struct odirect olost_found_dir[] = {
    854 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
    855 	{ ROOTINO, sizeof(struct direct), 2, ".." },
    856 	{ 0, DIRBLKSIZ, 0, 0 },
    857 };
    858 #endif
    859 char buf[MAXBSIZE];
    860 
    861 void
    862 fsinit(utime)
    863 	time_t utime;
    864 {
    865 #ifdef LOSTDIR
    866 	int i;
    867 #endif
    868 
    869 	/*
    870 	 * initialize the node
    871 	 */
    872 	node.di_atime = utime;
    873 	node.di_mtime = utime;
    874 	node.di_ctime = utime;
    875 #ifdef LOSTDIR
    876 	/*
    877 	 * create the lost+found directory
    878 	 */
    879 	if (Oflag) {
    880 		(void)makedir((struct direct *)olost_found_dir, 2);
    881 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
    882 			memmove(&buf[i], &olost_found_dir[2],
    883 			    DIRSIZ(0, &olost_found_dir[2]));
    884 	} else {
    885 		(void)makedir(lost_found_dir, 2);
    886 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
    887 			memmove(&buf[i], &lost_found_dir[2],
    888 			    DIRSIZ(0, &lost_found_dir[2]));
    889 	}
    890 	node.di_mode = IFDIR | UMASK;
    891 	node.di_nlink = 2;
    892 	node.di_size = sblock.fs_bsize;
    893 	node.di_db[0] = alloc(node.di_size, node.di_mode);
    894 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
    895 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
    896 	iput(&node, LOSTFOUNDINO);
    897 #endif
    898 	/*
    899 	 * create the root directory
    900 	 */
    901 	if (mfs)
    902 		node.di_mode = IFDIR | 01777;
    903 	else
    904 		node.di_mode = IFDIR | UMASK;
    905 	node.di_nlink = PREDEFDIR;
    906 	if (Oflag)
    907 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
    908 	else
    909 		node.di_size = makedir(root_dir, PREDEFDIR);
    910 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
    911 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
    912 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
    913 	iput(&node, ROOTINO);
    914 }
    915 
    916 /*
    917  * construct a set of directory entries in "buf".
    918  * return size of directory.
    919  */
    920 int
    921 makedir(protodir, entries)
    922 	struct direct *protodir;
    923 	int entries;
    924 {
    925 	char *cp;
    926 	int i, spcleft;
    927 
    928 	spcleft = DIRBLKSIZ;
    929 	for (cp = buf, i = 0; i < entries - 1; i++) {
    930 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
    931 		memmove(cp, &protodir[i], protodir[i].d_reclen);
    932 		cp += protodir[i].d_reclen;
    933 		spcleft -= protodir[i].d_reclen;
    934 	}
    935 	protodir[i].d_reclen = spcleft;
    936 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
    937 	return (DIRBLKSIZ);
    938 }
    939 
    940 /*
    941  * allocate a block or frag
    942  */
    943 daddr_t
    944 alloc(size, mode)
    945 	int size;
    946 	int mode;
    947 {
    948 	int i, frag;
    949 	daddr_t d, blkno;
    950 
    951 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
    952 	if (acg.cg_magic != CG_MAGIC) {
    953 		printf("cg 0: bad magic number\n");
    954 		return (0);
    955 	}
    956 	if (acg.cg_cs.cs_nbfree == 0) {
    957 		printf("first cylinder group ran out of space\n");
    958 		return (0);
    959 	}
    960 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
    961 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
    962 			goto goth;
    963 	printf("internal error: can't find block in cyl 0\n");
    964 	return (0);
    965 goth:
    966 	blkno = fragstoblks(&sblock, d);
    967 	clrblock(&sblock, cg_blksfree(&acg), blkno);
    968 	if (sblock.fs_contigsumsize > 0)
    969 		clrbit(cg_clustersfree(&acg), blkno);
    970 	acg.cg_cs.cs_nbfree--;
    971 	sblock.fs_cstotal.cs_nbfree--;
    972 	fscs[0].cs_nbfree--;
    973 	if (mode & IFDIR) {
    974 		acg.cg_cs.cs_ndir++;
    975 		sblock.fs_cstotal.cs_ndir++;
    976 		fscs[0].cs_ndir++;
    977 	}
    978 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
    979 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
    980 	if (size != sblock.fs_bsize) {
    981 		frag = howmany(size, sblock.fs_fsize);
    982 		fscs[0].cs_nffree += sblock.fs_frag - frag;
    983 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
    984 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
    985 		acg.cg_frsum[sblock.fs_frag - frag]++;
    986 		for (i = frag; i < sblock.fs_frag; i++)
    987 			setbit(cg_blksfree(&acg), d + i);
    988 	}
    989 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
    990 	    (char *)&acg);
    991 	return (d);
    992 }
    993 
    994 /*
    995  * Calculate number of inodes per group.
    996  */
    997 int32_t
    998 calcipg(cpg, bpcg, usedbp)
    999 	int32_t cpg;
   1000 	int32_t bpcg;
   1001 	off_t *usedbp;
   1002 {
   1003 	int i;
   1004 	int32_t ipg, new_ipg, ncg, ncyl;
   1005 	off_t usedb;
   1006 
   1007 	/*
   1008 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
   1009 	 * Note that fssize is still in sectors, not filesystem blocks.
   1010 	 */
   1011 	ncyl = howmany(fssize, secpercyl);
   1012 	ncg = howmany(ncyl, cpg);
   1013 	/*
   1014 	 * Iterate a few times to allow for ipg depending on itself.
   1015 	 */
   1016 	ipg = 0;
   1017 	for (i = 0; i < 10; i++) {
   1018 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
   1019 			* NSPF(&sblock) * (off_t)sectorsize;
   1020 		new_ipg = (cpg * (quad_t)bpcg - usedb) / density * fssize
   1021 			  / ncg / secpercyl / cpg;
   1022 		new_ipg = roundup(new_ipg, INOPB(&sblock));
   1023 		if (new_ipg == ipg)
   1024 			break;
   1025 		ipg = new_ipg;
   1026 	}
   1027 	*usedbp = usedb;
   1028 	return (ipg);
   1029 }
   1030 
   1031 /*
   1032  * Allocate an inode on the disk
   1033  */
   1034 static void
   1035 iput(ip, ino)
   1036 	struct dinode *ip;
   1037 	ino_t ino;
   1038 {
   1039 	struct dinode buf[MAXINOPB];
   1040 	daddr_t d;
   1041 	int c;
   1042 
   1043 	c = ino_to_cg(&sblock, ino);
   1044 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
   1045 	if (acg.cg_magic != CG_MAGIC) {
   1046 		printf("cg 0: bad magic number\n");
   1047 		exit(31);
   1048 	}
   1049 	acg.cg_cs.cs_nifree--;
   1050 	setbit(cg_inosused(&acg), ino);
   1051 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
   1052 	    (char *)&acg);
   1053 	sblock.fs_cstotal.cs_nifree--;
   1054 	fscs[0].cs_nifree--;
   1055 	if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
   1056 		printf("fsinit: inode value out of range (%d).\n", ino);
   1057 		exit(32);
   1058 	}
   1059 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
   1060 	rdfs(d, sblock.fs_bsize, buf);
   1061 	buf[ino_to_fsbo(&sblock, ino)] = *ip;
   1062 	wtfs(d, sblock.fs_bsize, buf);
   1063 }
   1064 
   1065 /*
   1066  * Notify parent process that the filesystem has created itself successfully.
   1067  */
   1068 void
   1069 started(n)
   1070 	int n;
   1071 {
   1072 
   1073 	exit(0);
   1074 }
   1075 
   1076 /*
   1077  * Replace libc function with one suited to our needs.
   1078  */
   1079 void *
   1080 malloc(size)
   1081 	size_t size;
   1082 {
   1083 	char *base, *i;
   1084 	static u_long pgsz;
   1085 	struct rlimit rlp;
   1086 
   1087 	if (pgsz == 0) {
   1088 		base = sbrk(0);
   1089 		pgsz = getpagesize() - 1;
   1090 		i = (char *)((u_long)(base + pgsz) &~ pgsz);
   1091 		base = sbrk(i - base);
   1092 		if (getrlimit(RLIMIT_DATA, &rlp) < 0)
   1093 			perror("getrlimit");
   1094 		rlp.rlim_cur = rlp.rlim_max;
   1095 		if (setrlimit(RLIMIT_DATA, &rlp) < 0)
   1096 			perror("setrlimit");
   1097 		memleft = rlp.rlim_max - (u_long)base;
   1098 	}
   1099 	size = (size + pgsz) &~ pgsz;
   1100 	if (size > memleft)
   1101 		size = memleft;
   1102 	memleft -= size;
   1103 	if (size == 0)
   1104 		return (0);
   1105 	return ((caddr_t)sbrk(size));
   1106 }
   1107 
   1108 /*
   1109  * Replace libc function with one suited to our needs.
   1110  */
   1111 void *
   1112 realloc(ptr, size)
   1113 	void *ptr;
   1114 	size_t size;
   1115 {
   1116 	void *p;
   1117 
   1118 	if ((p = malloc(size)) == NULL)
   1119 		return (NULL);
   1120 	memmove(p, ptr, size);
   1121 	free(ptr);
   1122 	return (p);
   1123 }
   1124 
   1125 /*
   1126  * Replace libc function with one suited to our needs.
   1127  */
   1128 void *
   1129 calloc(size, numelm)
   1130 	size_t size, numelm;
   1131 {
   1132 	void *base;
   1133 
   1134 	size *= numelm;
   1135 	base = malloc(size);
   1136 	memset(base, 0, size);
   1137 	return (base);
   1138 }
   1139 
   1140 /*
   1141  * Replace libc function with one suited to our needs.
   1142  */
   1143 void
   1144 free(ptr)
   1145 	void *ptr;
   1146 {
   1147 
   1148 	/* do not worry about it for now */
   1149 }
   1150 
   1151 /*
   1152  * read a block from the file system
   1153  */
   1154 void
   1155 rdfs(bno, size, bf)
   1156 	daddr_t bno;
   1157 	int size;
   1158 	void *bf;
   1159 {
   1160 	int n;
   1161 	off_t offset;
   1162 
   1163 	if (mfs) {
   1164 		memmove(bf, membase + bno * sectorsize, size);
   1165 		return;
   1166 	}
   1167 	offset = bno;
   1168 	offset *= sectorsize;
   1169 	if (lseek(fsi, offset, SEEK_SET) < 0) {
   1170 		printf("seek error: %d\n", bno);
   1171 		perror("rdfs");
   1172 		exit(33);
   1173 	}
   1174 	n = read(fsi, bf, size);
   1175 	if (n != size) {
   1176 		printf("read error: %d\n", bno);
   1177 		perror("rdfs");
   1178 		exit(34);
   1179 	}
   1180 }
   1181 
   1182 /*
   1183  * write a block to the file system
   1184  */
   1185 void
   1186 wtfs(bno, size, bf)
   1187 	daddr_t bno;
   1188 	int size;
   1189 	void *bf;
   1190 {
   1191 	int n;
   1192 	off_t offset;
   1193 
   1194 	if (mfs) {
   1195 		memmove(membase + bno * sectorsize, bf, size);
   1196 		return;
   1197 	}
   1198 	if (Nflag)
   1199 		return;
   1200 	offset = bno;
   1201 	offset *= sectorsize;
   1202 	if (lseek(fso, offset, SEEK_SET) < 0) {
   1203 		printf("seek error: %d\n", bno);
   1204 		perror("wtfs");
   1205 		exit(35);
   1206 	}
   1207 	n = write(fso, bf, size);
   1208 	if (n != size) {
   1209 		printf("write error: %d\n", bno);
   1210 		perror("wtfs");
   1211 		exit(36);
   1212 	}
   1213 }
   1214 
   1215 /*
   1216  * check if a block is available
   1217  */
   1218 int
   1219 isblock(fs, cp, h)
   1220 	struct fs *fs;
   1221 	unsigned char *cp;
   1222 	int h;
   1223 {
   1224 	unsigned char mask;
   1225 
   1226 	switch (fs->fs_frag) {
   1227 	case 8:
   1228 		return (cp[h] == 0xff);
   1229 	case 4:
   1230 		mask = 0x0f << ((h & 0x1) << 2);
   1231 		return ((cp[h >> 1] & mask) == mask);
   1232 	case 2:
   1233 		mask = 0x03 << ((h & 0x3) << 1);
   1234 		return ((cp[h >> 2] & mask) == mask);
   1235 	case 1:
   1236 		mask = 0x01 << (h & 0x7);
   1237 		return ((cp[h >> 3] & mask) == mask);
   1238 	default:
   1239 #ifdef STANDALONE
   1240 		printf("isblock bad fs_frag %d\n", fs->fs_frag);
   1241 #else
   1242 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
   1243 #endif
   1244 		return (0);
   1245 	}
   1246 }
   1247 
   1248 /*
   1249  * take a block out of the map
   1250  */
   1251 void
   1252 clrblock(fs, cp, h)
   1253 	struct fs *fs;
   1254 	unsigned char *cp;
   1255 	int h;
   1256 {
   1257 	switch ((fs)->fs_frag) {
   1258 	case 8:
   1259 		cp[h] = 0;
   1260 		return;
   1261 	case 4:
   1262 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
   1263 		return;
   1264 	case 2:
   1265 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
   1266 		return;
   1267 	case 1:
   1268 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
   1269 		return;
   1270 	default:
   1271 #ifdef STANDALONE
   1272 		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
   1273 #else
   1274 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
   1275 #endif
   1276 		return;
   1277 	}
   1278 }
   1279 
   1280 /*
   1281  * put a block into the map
   1282  */
   1283 void
   1284 setblock(fs, cp, h)
   1285 	struct fs *fs;
   1286 	unsigned char *cp;
   1287 	int h;
   1288 {
   1289 	switch (fs->fs_frag) {
   1290 	case 8:
   1291 		cp[h] = 0xff;
   1292 		return;
   1293 	case 4:
   1294 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
   1295 		return;
   1296 	case 2:
   1297 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
   1298 		return;
   1299 	case 1:
   1300 		cp[h >> 3] |= (0x01 << (h & 0x7));
   1301 		return;
   1302 	default:
   1303 #ifdef STANDALONE
   1304 		printf("setblock bad fs_frag %d\n", fs->fs_frag);
   1305 #else
   1306 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
   1307 #endif
   1308 		return;
   1309 	}
   1310 }
   1311