mkfs.c revision 1.36 1 /* $NetBSD: mkfs.c,v 1.36 1999/05/14 22:36:50 wrstuden Exp $ */
2
3 /*
4 * Copyright (c) 1980, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 #ifndef lint
38 #if 0
39 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
40 #else
41 __RCSID("$NetBSD: mkfs.c,v 1.36 1999/05/14 22:36:50 wrstuden Exp $");
42 #endif
43 #endif /* not lint */
44
45 #include <sys/param.h>
46 #include <sys/time.h>
47 #include <sys/resource.h>
48 #include <ufs/ufs/dinode.h>
49 #include <ufs/ufs/dir.h>
50 #include <ufs/ufs/ufs_bswap.h>
51 #include <ufs/ffs/fs.h>
52 #include <ufs/ffs/ffs_extern.h>
53 #include <sys/disklabel.h>
54
55 #include <string.h>
56 #include <unistd.h>
57 #include <stdlib.h>
58
59 #ifndef STANDALONE
60 #include <a.out.h>
61 #include <stdio.h>
62 #include <time.h>
63 #endif
64 #include <extern.h>
65
66
67 static void initcg __P((int, time_t));
68 static void fsinit __P((time_t));
69 static int makedir __P((struct direct *, int));
70 static daddr_t alloc __P((int, int));
71 static void iput __P((struct dinode *, ino_t));
72 static void rdfs __P((daddr_t, int, void *));
73 static void wtfs __P((daddr_t, int, void *));
74 static int isblock __P((struct fs *, unsigned char *, int));
75 static void clrblock __P((struct fs *, unsigned char *, int));
76 static void setblock __P((struct fs *, unsigned char *, int));
77 static int32_t calcipg __P((int32_t, int32_t, off_t *));
78 static void swap_cg __P((struct cg *, struct cg *));
79
80 static int count_digits __P((int));
81
82 /*
83 * make file system for cylinder-group style file systems
84 */
85
86 /*
87 * We limit the size of the inode map to be no more than a
88 * third of the cylinder group space, since we must leave at
89 * least an equal amount of space for the block map.
90 *
91 * N.B.: MAXIPG must be a multiple of INOPB(fs).
92 */
93 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
94
95 #define UMASK 0755
96 #define MAXINOPB (MAXBSIZE / DINODE_SIZE)
97 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
98
99 /*
100 * variables set up by front end.
101 */
102 extern int mfs; /* run as the memory based filesystem */
103 extern int Nflag; /* run mkfs without writing file system */
104 extern int Oflag; /* format as an 4.3BSD file system */
105 extern int fssize; /* file system size */
106 extern int ntracks; /* # tracks/cylinder */
107 extern int nsectors; /* # sectors/track */
108 extern int nphyssectors; /* # sectors/track including spares */
109 extern int secpercyl; /* sectors per cylinder */
110 extern int sectorsize; /* bytes/sector */
111 extern int rpm; /* revolutions/minute of drive */
112 extern int interleave; /* hardware sector interleave */
113 extern int trackskew; /* sector 0 skew, per track */
114 extern int headswitch; /* head switch time, usec */
115 extern int trackseek; /* track-to-track seek, usec */
116 extern int fsize; /* fragment size */
117 extern int bsize; /* block size */
118 extern int cpg; /* cylinders/cylinder group */
119 extern int cpgflg; /* cylinders/cylinder group flag was given */
120 extern int minfree; /* free space threshold */
121 extern int opt; /* optimization preference (space or time) */
122 extern int density; /* number of bytes per inode */
123 extern int maxcontig; /* max contiguous blocks to allocate */
124 extern int rotdelay; /* rotational delay between blocks */
125 extern int maxbpg; /* maximum blocks per file in a cyl group */
126 extern int nrpos; /* # of distinguished rotational positions */
127 extern int bbsize; /* boot block size */
128 extern int sbsize; /* superblock size */
129 extern u_long memleft; /* virtual memory available */
130 extern caddr_t membase; /* start address of memory based filesystem */
131 extern int needswap; /* Filesystem not in native byte order */
132
133 union {
134 struct fs fs;
135 char pad[SBSIZE];
136 } fsun;
137 #define sblock fsun.fs
138 struct csum *fscs;
139
140 union {
141 struct cg cg;
142 char pad[MAXBSIZE];
143 } cgun;
144 #define acg cgun.cg
145
146 struct dinode zino[MAXBSIZE / DINODE_SIZE];
147
148 char writebuf[MAXBSIZE];
149
150 int fsi, fso;
151
152 void
153 mkfs(pp, fsys, fi, fo)
154 struct partition *pp;
155 char *fsys;
156 int fi, fo;
157 {
158 int32_t i, mincpc, mincpg, inospercg;
159 int32_t cylno, rpos, blk, j, warn = 0;
160 int32_t used, mincpgcnt, bpcg;
161 off_t usedb;
162 int32_t mapcramped, inodecramped;
163 int32_t postblsize, rotblsize, totalsbsize;
164 time_t utime;
165 quad_t sizepb;
166 char *writebuf2; /* dynamic buffer */
167 int nprintcols, printcolwidth;
168
169 #ifndef STANDALONE
170 time(&utime);
171 #endif
172 if (mfs) {
173 (void)malloc(0);
174 if (fssize * sectorsize > memleft)
175 fssize = (memleft - 16384) / sectorsize;
176 if ((membase = malloc(fssize * sectorsize)) == 0)
177 exit(12);
178 }
179 fsi = fi;
180 fso = fo;
181 if (Oflag) {
182 sblock.fs_inodefmt = FS_42INODEFMT;
183 sblock.fs_maxsymlinklen = 0;
184 } else {
185 sblock.fs_inodefmt = FS_44INODEFMT;
186 sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
187 }
188 /*
189 * Validate the given file system size.
190 * Verify that its last block can actually be accessed.
191 */
192 if (fssize <= 0)
193 printf("preposterous size %d\n", fssize), exit(13);
194 wtfs(fssize - 1, sectorsize, (char *)&sblock);
195
196 /*
197 * collect and verify the sector and track info
198 */
199 sblock.fs_nsect = nsectors;
200 sblock.fs_ntrak = ntracks;
201 if (sblock.fs_ntrak <= 0)
202 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
203 if (sblock.fs_nsect <= 0)
204 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
205 /*
206 * collect and verify the block and fragment sizes
207 */
208 sblock.fs_bsize = bsize;
209 sblock.fs_fsize = fsize;
210 if (!POWEROF2(sblock.fs_bsize)) {
211 printf("block size must be a power of 2, not %d\n",
212 sblock.fs_bsize);
213 exit(16);
214 }
215 if (!POWEROF2(sblock.fs_fsize)) {
216 printf("fragment size must be a power of 2, not %d\n",
217 sblock.fs_fsize);
218 exit(17);
219 }
220 if (sblock.fs_fsize < sectorsize) {
221 printf("fragment size %d is too small, minimum is %d\n",
222 sblock.fs_fsize, sectorsize);
223 exit(18);
224 }
225 if (sblock.fs_bsize < MINBSIZE) {
226 printf("block size %d is too small, minimum is %d\n",
227 sblock.fs_bsize, MINBSIZE);
228 exit(19);
229 }
230 if (sblock.fs_bsize < sblock.fs_fsize) {
231 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
232 sblock.fs_bsize, sblock.fs_fsize);
233 exit(20);
234 }
235 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
236 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
237 sblock.fs_qbmask = ~sblock.fs_bmask;
238 sblock.fs_qfmask = ~sblock.fs_fmask;
239 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
240 sblock.fs_bshift++;
241 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
242 sblock.fs_fshift++;
243 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
244 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
245 sblock.fs_fragshift++;
246 if (sblock.fs_frag > MAXFRAG) {
247 printf("fragment size %d is too small, "
248 "minimum with block size %d is %d\n",
249 sblock.fs_fsize, sblock.fs_bsize,
250 sblock.fs_bsize / MAXFRAG);
251 exit(21);
252 }
253 sblock.fs_nrpos = nrpos;
254 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
255 sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
256 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
257 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
258 sblock.fs_fsbtodb++;
259 sblock.fs_sblkno =
260 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
261 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
262 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
263 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
264 sblock.fs_cgoffset = roundup(
265 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
266 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
267 sblock.fs_cgmask <<= 1;
268 if (!POWEROF2(sblock.fs_ntrak))
269 sblock.fs_cgmask <<= 1;
270 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
271 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
272 sizepb *= NINDIR(&sblock);
273 sblock.fs_maxfilesize += sizepb;
274 }
275 /*
276 * Validate specified/determined secpercyl
277 * and calculate minimum cylinders per group.
278 */
279 sblock.fs_spc = secpercyl;
280 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
281 sblock.fs_cpc > 1 && (i & 1) == 0;
282 sblock.fs_cpc >>= 1, i >>= 1)
283 /* void */;
284 mincpc = sblock.fs_cpc;
285 bpcg = sblock.fs_spc * sectorsize;
286 inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
287 if (inospercg > MAXIPG(&sblock))
288 inospercg = MAXIPG(&sblock);
289 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
290 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
291 sblock.fs_spc);
292 mincpg = roundup(mincpgcnt, mincpc);
293 /*
294 * Ensure that cylinder group with mincpg has enough space
295 * for block maps.
296 */
297 sblock.fs_cpg = mincpg;
298 sblock.fs_ipg = inospercg;
299 if (maxcontig > 1)
300 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
301 mapcramped = 0;
302 while (CGSIZE(&sblock) > sblock.fs_bsize) {
303 mapcramped = 1;
304 if (sblock.fs_bsize < MAXBSIZE) {
305 sblock.fs_bsize <<= 1;
306 if ((i & 1) == 0) {
307 i >>= 1;
308 } else {
309 sblock.fs_cpc <<= 1;
310 mincpc <<= 1;
311 mincpg = roundup(mincpgcnt, mincpc);
312 sblock.fs_cpg = mincpg;
313 }
314 sblock.fs_frag <<= 1;
315 sblock.fs_fragshift += 1;
316 if (sblock.fs_frag <= MAXFRAG)
317 continue;
318 }
319 if (sblock.fs_fsize == sblock.fs_bsize) {
320 printf("There is no block size that");
321 printf(" can support this disk\n");
322 exit(22);
323 }
324 sblock.fs_frag >>= 1;
325 sblock.fs_fragshift -= 1;
326 sblock.fs_fsize <<= 1;
327 sblock.fs_nspf <<= 1;
328 }
329 /*
330 * Ensure that cylinder group with mincpg has enough space for inodes.
331 */
332 inodecramped = 0;
333 inospercg = calcipg(mincpg, bpcg, &usedb);
334 sblock.fs_ipg = inospercg;
335 while (inospercg > MAXIPG(&sblock)) {
336 inodecramped = 1;
337 if (mincpc == 1 || sblock.fs_frag == 1 ||
338 sblock.fs_bsize == MINBSIZE)
339 break;
340 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
341 "minimum bytes per inode is",
342 (int)((mincpg * (off_t)bpcg - usedb)
343 / MAXIPG(&sblock) + 1));
344 sblock.fs_bsize >>= 1;
345 sblock.fs_frag >>= 1;
346 sblock.fs_fragshift -= 1;
347 mincpc >>= 1;
348 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
349 if (CGSIZE(&sblock) > sblock.fs_bsize) {
350 sblock.fs_bsize <<= 1;
351 break;
352 }
353 mincpg = sblock.fs_cpg;
354 inospercg = calcipg(mincpg, bpcg, &usedb);
355 sblock.fs_ipg = inospercg;
356 }
357 if (inodecramped) {
358 if (inospercg > MAXIPG(&sblock)) {
359 printf("Minimum bytes per inode is %d\n",
360 (int)((mincpg * (off_t)bpcg - usedb)
361 / MAXIPG(&sblock) + 1));
362 } else if (!mapcramped) {
363 printf("With %d bytes per inode, ", density);
364 printf("minimum cylinders per group is %d\n", mincpg);
365 }
366 }
367 if (mapcramped) {
368 printf("With %d sectors per cylinder, ", sblock.fs_spc);
369 printf("minimum cylinders per group is %d\n", mincpg);
370 }
371 if (inodecramped || mapcramped) {
372 if (sblock.fs_bsize != bsize)
373 printf("%s to be changed from %d to %d\n",
374 "This requires the block size",
375 bsize, sblock.fs_bsize);
376 if (sblock.fs_fsize != fsize)
377 printf("\t%s to be changed from %d to %d\n",
378 "and the fragment size",
379 fsize, sblock.fs_fsize);
380 exit(23);
381 }
382 /*
383 * Calculate the number of cylinders per group
384 */
385 sblock.fs_cpg = cpg;
386 if (sblock.fs_cpg % mincpc != 0) {
387 printf("%s groups must have a multiple of %d cylinders\n",
388 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
389 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
390 if (!cpgflg)
391 cpg = sblock.fs_cpg;
392 }
393 /*
394 * Must ensure there is enough space for inodes.
395 */
396 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
397 while (sblock.fs_ipg > MAXIPG(&sblock)) {
398 inodecramped = 1;
399 sblock.fs_cpg -= mincpc;
400 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
401 }
402 /*
403 * Must ensure there is enough space to hold block map.
404 */
405 while (CGSIZE(&sblock) > sblock.fs_bsize) {
406 mapcramped = 1;
407 sblock.fs_cpg -= mincpc;
408 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
409 }
410 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
411 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
412 printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
413 exit(24);
414 }
415 if (sblock.fs_cpg < mincpg) {
416 printf("cylinder groups must have at least %d cylinders\n",
417 mincpg);
418 exit(25);
419 } else if (sblock.fs_cpg != cpg) {
420 if (!cpgflg)
421 printf("Warning: ");
422 else if (!mapcramped && !inodecramped)
423 exit(26);
424 if (mapcramped && inodecramped)
425 printf("Block size and bytes per inode restrict");
426 else if (mapcramped)
427 printf("Block size restricts");
428 else
429 printf("Bytes per inode restrict");
430 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
431 if (cpgflg)
432 exit(27);
433 }
434 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
435 /*
436 * Now have size for file system and nsect and ntrak.
437 * Determine number of cylinders and blocks in the file system.
438 */
439 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
440 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
441 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
442 sblock.fs_ncyl++;
443 warn = 1;
444 }
445 if (sblock.fs_ncyl < 1) {
446 printf("file systems must have at least one cylinder\n");
447 exit(28);
448 }
449 /*
450 * Determine feasability/values of rotational layout tables.
451 *
452 * The size of the rotational layout tables is limited by the
453 * size of the superblock, SBSIZE. The amount of space available
454 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
455 * The size of these tables is inversely proportional to the block
456 * size of the file system. The size increases if sectors per track
457 * are not powers of two, because more cylinders must be described
458 * by the tables before the rotational pattern repeats (fs_cpc).
459 */
460 sblock.fs_interleave = interleave;
461 sblock.fs_trackskew = trackskew;
462 sblock.fs_npsect = nphyssectors;
463 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
464 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
465 if (sblock.fs_ntrak == 1) {
466 sblock.fs_cpc = 0;
467 goto next;
468 }
469 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
470 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
471 totalsbsize = sizeof(struct fs) + rotblsize;
472 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
473 /* use old static table space */
474 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
475 (char *)(&sblock.fs_firstfield);
476 sblock.fs_rotbloff = &sblock.fs_space[0] -
477 (u_char *)(&sblock.fs_firstfield);
478 } else {
479 /* use dynamic table space */
480 sblock.fs_postbloff = &sblock.fs_space[0] -
481 (u_char *)(&sblock.fs_firstfield);
482 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
483 totalsbsize += postblsize;
484 }
485 if (totalsbsize > SBSIZE ||
486 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
487 printf("%s %s %d %s %d.%s",
488 "Warning: insufficient space in super block for\n",
489 "rotational layout tables with nsect", sblock.fs_nsect,
490 "and ntrak", sblock.fs_ntrak,
491 "\nFile system performance may be impaired.\n");
492 sblock.fs_cpc = 0;
493 goto next;
494 }
495 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
496 /*
497 * calculate the available blocks for each rotational position
498 */
499 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
500 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
501 fs_postbl(&sblock, cylno)[rpos] = -1;
502 for (i = (rotblsize - 1) * sblock.fs_frag;
503 i >= 0; i -= sblock.fs_frag) {
504 cylno = cbtocylno(&sblock, i);
505 rpos = cbtorpos(&sblock, i);
506 blk = fragstoblks(&sblock, i);
507 if (fs_postbl(&sblock, cylno)[rpos] == -1)
508 fs_rotbl(&sblock)[blk] = 0;
509 else
510 fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
511 fs_postbl(&sblock, cylno)[rpos] = blk;
512 }
513 next:
514 /*
515 * Compute/validate number of cylinder groups.
516 */
517 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
518 if (sblock.fs_ncyl % sblock.fs_cpg)
519 sblock.fs_ncg++;
520 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
521 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
522 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
523 printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
524 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
525 sblock.fs_fpg / sblock.fs_frag);
526 printf("number of cylinders per cylinder group (%d) %s.\n",
527 sblock.fs_cpg, "must be increased");
528 exit(29);
529 }
530 j = sblock.fs_ncg - 1;
531 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
532 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
533 if (j == 0) {
534 printf("Filesystem must have at least %d sectors\n",
535 NSPF(&sblock) *
536 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
537 exit(30);
538 }
539 printf("Warning: inode blocks/cyl group (%d) >= "
540 "data blocks (%d) in last\n",
541 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
542 i / sblock.fs_frag);
543 printf(" cylinder group. This implies %d sector(s) "
544 "cannot be allocated.\n",
545 i * NSPF(&sblock));
546 sblock.fs_ncg--;
547 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
548 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
549 NSPF(&sblock);
550 warn = 0;
551 }
552 if (warn && !mfs) {
553 printf("Warning: %d sector(s) in last cylinder unallocated\n",
554 sblock.fs_spc -
555 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
556 * sblock.fs_spc));
557 }
558 /*
559 * fill in remaining fields of the super block
560 */
561 sblock.fs_csaddr = cgdmin(&sblock, 0);
562 sblock.fs_cssize =
563 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
564 i = sblock.fs_bsize / sizeof(struct csum);
565 sblock.fs_csmask = ~(i - 1);
566 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
567 sblock.fs_csshift++;
568 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
569 sblock.fs_magic = FS_MAGIC;
570 sblock.fs_rotdelay = rotdelay;
571 sblock.fs_minfree = minfree;
572 sblock.fs_maxcontig = maxcontig;
573 sblock.fs_headswitch = headswitch;
574 sblock.fs_trkseek = trackseek;
575 sblock.fs_maxbpg = maxbpg;
576 sblock.fs_rps = rpm / 60;
577 sblock.fs_optim = opt;
578 sblock.fs_cgrotor = 0;
579 sblock.fs_cstotal.cs_ndir = 0;
580 sblock.fs_cstotal.cs_nbfree = 0;
581 sblock.fs_cstotal.cs_nifree = 0;
582 sblock.fs_cstotal.cs_nffree = 0;
583 sblock.fs_fmod = 0;
584 sblock.fs_clean = FS_ISCLEAN;
585 sblock.fs_ronly = 0;
586 sblock.fs_clean = 1;
587 /*
588 * Dump out summary information about file system.
589 */
590 if (!mfs) {
591 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
592 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
593 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
594 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
595 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
596 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
597 sblock.fs_ncg, sblock.fs_cpg,
598 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
599 sblock.fs_ipg);
600 #undef B2MBFACTOR
601 }
602 /*
603 * Now determine how wide each column will be, and calculate how
604 * many columns will fit in an 80 char line.
605 */
606 printcolwidth = count_digits(
607 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
608 nprintcols = 80 / (printcolwidth + 2);
609 /*
610 * Now build the cylinders group blocks and
611 * then print out indices of cylinder groups.
612 */
613 if (!mfs)
614 printf("super-block backups (for fsck -b #) at:");
615 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
616 initcg(cylno, utime);
617 if (mfs)
618 continue;
619 if (cylno % nprintcols == 0)
620 printf("\n");
621 printf(" %*d,", printcolwidth,
622 fsbtodb(&sblock, cgsblock(&sblock, cylno)));
623 fflush(stdout);
624 }
625 if (!mfs)
626 printf("\n");
627 if (Nflag && !mfs)
628 exit(0);
629 /*
630 * Now construct the initial file system,
631 * then write out the super-block.
632 */
633 fsinit(utime);
634 sblock.fs_time = utime;
635 memcpy(writebuf, &sblock, sbsize);
636 if (needswap)
637 ffs_sb_swap(&sblock, (struct fs*)writebuf, 1);
638 wtfs((int)SBOFF / sectorsize, sbsize, writebuf);
639 /*
640 * Write out the duplicate super blocks
641 */
642 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
643 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
644 sbsize, writebuf);
645
646 /*
647 * if we need to swap, create a buffer for the cylinder summaries
648 * to get swapped to.
649 */
650 if (needswap) {
651 if ((writebuf2=malloc(sblock.fs_cssize)) == NULL)
652 exit(12);
653 ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize);
654 } else
655 writebuf2 = (char *)fscs;
656
657 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
658 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
659 sblock.fs_cssize - i < sblock.fs_bsize ?
660 sblock.fs_cssize - i : sblock.fs_bsize,
661 ((char *)writebuf2) + i);
662 if (writebuf2 != (char *)fscs)
663 free(writebuf2);
664
665 /*
666 * Update information about this partion in pack
667 * label, to that it may be updated on disk.
668 */
669 pp->p_fstype = FS_BSDFFS;
670 pp->p_fsize = sblock.fs_fsize;
671 pp->p_frag = sblock.fs_frag;
672 pp->p_cpg = sblock.fs_cpg;
673 }
674
675 /*
676 * Initialize a cylinder group.
677 */
678 void
679 initcg(cylno, utime)
680 int cylno;
681 time_t utime;
682 {
683 daddr_t cbase, d, dlower, dupper, dmax, blkno;
684 int32_t i;
685 struct csum *cs;
686
687 /*
688 * Determine block bounds for cylinder group.
689 * Allow space for super block summary information in first
690 * cylinder group.
691 */
692 cbase = cgbase(&sblock, cylno);
693 dmax = cbase + sblock.fs_fpg;
694 if (dmax > sblock.fs_size)
695 dmax = sblock.fs_size;
696 dlower = cgsblock(&sblock, cylno) - cbase;
697 dupper = cgdmin(&sblock, cylno) - cbase;
698 if (cylno == 0)
699 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
700 cs = fscs + cylno;
701 memset(&acg, 0, sblock.fs_cgsize);
702 acg.cg_time = utime;
703 acg.cg_magic = CG_MAGIC;
704 acg.cg_cgx = cylno;
705 if (cylno == sblock.fs_ncg - 1)
706 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
707 else
708 acg.cg_ncyl = sblock.fs_cpg;
709 acg.cg_niblk = sblock.fs_ipg;
710 acg.cg_ndblk = dmax - cbase;
711 if (sblock.fs_contigsumsize > 0)
712 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
713 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
714 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
715 acg.cg_iusedoff = acg.cg_boff +
716 sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
717 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
718 if (sblock.fs_contigsumsize <= 0) {
719 acg.cg_nextfreeoff = acg.cg_freeoff +
720 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
721 } else {
722 acg.cg_clustersumoff = acg.cg_freeoff + howmany
723 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
724 sizeof(int32_t);
725 acg.cg_clustersumoff =
726 roundup(acg.cg_clustersumoff, sizeof(int32_t));
727 acg.cg_clusteroff = acg.cg_clustersumoff +
728 (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
729 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
730 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
731 }
732 if (acg.cg_nextfreeoff -
733 (int32_t)(&acg.cg_firstfield) > sblock.fs_cgsize) {
734 printf("Panic: cylinder group too big\n");
735 exit(37);
736 }
737 acg.cg_cs.cs_nifree += sblock.fs_ipg;
738 if (cylno == 0)
739 for (i = 0; i < ROOTINO; i++) {
740 setbit(cg_inosused(&acg, 0), i);
741 acg.cg_cs.cs_nifree--;
742 }
743 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
744 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
745 sblock.fs_bsize, (char *)zino);
746 if (cylno > 0) {
747 /*
748 * In cylno 0, beginning space is reserved
749 * for boot and super blocks.
750 */
751 for (d = 0; d < dlower; d += sblock.fs_frag) {
752 blkno = d / sblock.fs_frag;
753 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
754 if (sblock.fs_contigsumsize > 0)
755 setbit(cg_clustersfree(&acg, 0), blkno);
756 acg.cg_cs.cs_nbfree++;
757 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
758 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
759 [cbtorpos(&sblock, d)]++;
760 }
761 sblock.fs_dsize += dlower;
762 }
763 sblock.fs_dsize += acg.cg_ndblk - dupper;
764 if ((i = (dupper % sblock.fs_frag)) != 0) {
765 acg.cg_frsum[sblock.fs_frag - i]++;
766 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
767 setbit(cg_blksfree(&acg, 0), dupper);
768 acg.cg_cs.cs_nffree++;
769 }
770 }
771 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
772 blkno = d / sblock.fs_frag;
773 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
774 if (sblock.fs_contigsumsize > 0)
775 setbit(cg_clustersfree(&acg, 0), blkno);
776 acg.cg_cs.cs_nbfree++;
777 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
778 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
779 [cbtorpos(&sblock, d)]++;
780 d += sblock.fs_frag;
781 }
782 if (d < dmax - cbase) {
783 acg.cg_frsum[dmax - cbase - d]++;
784 for (; d < dmax - cbase; d++) {
785 setbit(cg_blksfree(&acg, 0), d);
786 acg.cg_cs.cs_nffree++;
787 }
788 }
789 if (sblock.fs_contigsumsize > 0) {
790 int32_t *sump = cg_clustersum(&acg, 0);
791 u_char *mapp = cg_clustersfree(&acg, 0);
792 int map = *mapp++;
793 int bit = 1;
794 int run = 0;
795
796 for (i = 0; i < acg.cg_nclusterblks; i++) {
797 if ((map & bit) != 0) {
798 run++;
799 } else if (run != 0) {
800 if (run > sblock.fs_contigsumsize)
801 run = sblock.fs_contigsumsize;
802 sump[run]++;
803 run = 0;
804 }
805 if ((i & (NBBY - 1)) != (NBBY - 1)) {
806 bit <<= 1;
807 } else {
808 map = *mapp++;
809 bit = 1;
810 }
811 }
812 if (run != 0) {
813 if (run > sblock.fs_contigsumsize)
814 run = sblock.fs_contigsumsize;
815 sump[run]++;
816 }
817 }
818 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
819 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
820 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
821 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
822 *cs = acg.cg_cs;
823 memcpy(writebuf, &acg, sblock.fs_bsize);
824 if (needswap)
825 swap_cg(&acg, (struct cg*)writebuf);
826 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
827 sblock.fs_bsize, writebuf);
828 }
829
830 /*
831 * initialize the file system
832 */
833 struct dinode node;
834
835 #ifdef LOSTDIR
836 #define PREDEFDIR 3
837 #else
838 #define PREDEFDIR 2
839 #endif
840
841 struct direct root_dir[] = {
842 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
843 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
844 #ifdef LOSTDIR
845 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
846 #endif
847 };
848 struct odirect {
849 u_int32_t d_ino;
850 u_int16_t d_reclen;
851 u_int16_t d_namlen;
852 u_char d_name[MAXNAMLEN + 1];
853 } oroot_dir[] = {
854 { ROOTINO, sizeof(struct direct), 1, "." },
855 { ROOTINO, sizeof(struct direct), 2, ".." },
856 #ifdef LOSTDIR
857 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
858 #endif
859 };
860 #ifdef LOSTDIR
861 struct direct lost_found_dir[] = {
862 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
863 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
864 { 0, DIRBLKSIZ, 0, 0, 0 },
865 };
866 struct odirect olost_found_dir[] = {
867 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
868 { ROOTINO, sizeof(struct direct), 2, ".." },
869 { 0, DIRBLKSIZ, 0, 0 },
870 };
871 #endif
872 char buf[MAXBSIZE];
873 static void copy_dir __P((struct direct *, struct direct *));
874
875 void
876 fsinit(utime)
877 time_t utime;
878 {
879 #ifdef LOSTDIR
880 int i;
881 #endif
882
883 /*
884 * initialize the node
885 */
886 memset(&node, 0, sizeof(node));
887 node.di_atime = utime;
888 node.di_mtime = utime;
889 node.di_ctime = utime;
890
891 #ifdef LOSTDIR
892 /*
893 * create the lost+found directory
894 */
895 if (Oflag) {
896 (void)makedir((struct direct *)olost_found_dir, 2);
897 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
898 copy_dir((struct direct*)&olost_found_dir[2],
899 (struct direct*)&buf[i]);
900 } else {
901 (void)makedir(lost_found_dir, 2);
902 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
903 copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
904 }
905 node.di_mode = IFDIR | UMASK;
906 node.di_nlink = 2;
907 node.di_size = sblock.fs_bsize;
908 node.di_db[0] = alloc(node.di_size, node.di_mode);
909 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
910 node.di_uid = geteuid();
911 node.di_gid = getegid();
912 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
913 iput(&node, LOSTFOUNDINO);
914 #endif
915 /*
916 * create the root directory
917 */
918 if (mfs)
919 node.di_mode = IFDIR | 01777;
920 else
921 node.di_mode = IFDIR | UMASK;
922 node.di_nlink = PREDEFDIR;
923 if (Oflag)
924 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
925 else
926 node.di_size = makedir(root_dir, PREDEFDIR);
927 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
928 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
929 node.di_uid = geteuid();
930 node.di_gid = getegid();
931 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
932 iput(&node, ROOTINO);
933 }
934
935 /*
936 * construct a set of directory entries in "buf".
937 * return size of directory.
938 */
939 int
940 makedir(protodir, entries)
941 struct direct *protodir;
942 int entries;
943 {
944 char *cp;
945 int i, spcleft;
946
947 spcleft = DIRBLKSIZ;
948 for (cp = buf, i = 0; i < entries - 1; i++) {
949 protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0);
950 copy_dir(&protodir[i], (struct direct*)cp);
951 cp += protodir[i].d_reclen;
952 spcleft -= protodir[i].d_reclen;
953 }
954 protodir[i].d_reclen = spcleft;
955 copy_dir(&protodir[i], (struct direct*)cp);
956 return (DIRBLKSIZ);
957 }
958
959 /*
960 * allocate a block or frag
961 */
962 daddr_t
963 alloc(size, mode)
964 int size;
965 int mode;
966 {
967 int i, frag;
968 daddr_t d, blkno;
969
970 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
971 /* fs -> host byte order */
972 if (needswap)
973 swap_cg(&acg, &acg);
974 if (acg.cg_magic != CG_MAGIC) {
975 printf("cg 0: bad magic number\n");
976 return (0);
977 }
978 if (acg.cg_cs.cs_nbfree == 0) {
979 printf("first cylinder group ran out of space\n");
980 return (0);
981 }
982 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
983 if (isblock(&sblock, cg_blksfree(&acg, 0), d / sblock.fs_frag))
984 goto goth;
985 printf("internal error: can't find block in cyl 0\n");
986 return (0);
987 goth:
988 blkno = fragstoblks(&sblock, d);
989 clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
990 if (sblock.fs_contigsumsize > 0)
991 clrbit(cg_clustersfree(&acg, 0), blkno);
992 acg.cg_cs.cs_nbfree--;
993 sblock.fs_cstotal.cs_nbfree--;
994 fscs[0].cs_nbfree--;
995 if (mode & IFDIR) {
996 acg.cg_cs.cs_ndir++;
997 sblock.fs_cstotal.cs_ndir++;
998 fscs[0].cs_ndir++;
999 }
1000 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--;
1001 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--;
1002 if (size != sblock.fs_bsize) {
1003 frag = howmany(size, sblock.fs_fsize);
1004 fscs[0].cs_nffree += sblock.fs_frag - frag;
1005 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1006 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1007 acg.cg_frsum[sblock.fs_frag - frag]++;
1008 for (i = frag; i < sblock.fs_frag; i++)
1009 setbit(cg_blksfree(&acg, 0), d + i);
1010 }
1011 /* host -> fs byte order */
1012 if (needswap)
1013 swap_cg(&acg, &acg);
1014 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1015 (char *)&acg);
1016 return (d);
1017 }
1018
1019 /*
1020 * Calculate number of inodes per group.
1021 */
1022 int32_t
1023 calcipg(cpg, bpcg, usedbp)
1024 int32_t cpg;
1025 int32_t bpcg;
1026 off_t *usedbp;
1027 {
1028 int i;
1029 int32_t ipg, new_ipg, ncg, ncyl;
1030 off_t usedb;
1031 #if __GNUC__ /* XXX work around gcc 2.7.2 initialization bug */
1032 (void)&usedb;
1033 #endif
1034
1035 /*
1036 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1037 * Note that fssize is still in sectors, not filesystem blocks.
1038 */
1039 ncyl = howmany(fssize, secpercyl);
1040 ncg = howmany(ncyl, cpg);
1041 /*
1042 * Iterate a few times to allow for ipg depending on itself.
1043 */
1044 ipg = 0;
1045 for (i = 0; i < 10; i++) {
1046 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1047 * NSPF(&sblock) * (off_t)sectorsize;
1048 new_ipg = (cpg * (quad_t)bpcg - usedb) / density * fssize
1049 / ncg / secpercyl / cpg;
1050 new_ipg = roundup(new_ipg, INOPB(&sblock));
1051 if (new_ipg == ipg)
1052 break;
1053 ipg = new_ipg;
1054 }
1055 *usedbp = usedb;
1056 return (ipg);
1057 }
1058
1059 /*
1060 * Allocate an inode on the disk
1061 */
1062 static void
1063 iput(ip, ino)
1064 struct dinode *ip;
1065 ino_t ino;
1066 {
1067 struct dinode buf[MAXINOPB];
1068 daddr_t d;
1069 int c, i;
1070
1071 c = ino_to_cg(&sblock, ino);
1072 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1073 /* fs -> host byte order */
1074 if (needswap)
1075 swap_cg(&acg, &acg);
1076 if (acg.cg_magic != CG_MAGIC) {
1077 printf("cg 0: bad magic number\n");
1078 exit(31);
1079 }
1080 acg.cg_cs.cs_nifree--;
1081 setbit(cg_inosused(&acg, 0), ino);
1082 /* host -> fs byte order */
1083 if (needswap)
1084 swap_cg(&acg, &acg);
1085 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1086 (char *)&acg);
1087 sblock.fs_cstotal.cs_nifree--;
1088 fscs[0].cs_nifree--;
1089 if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1090 printf("fsinit: inode value out of range (%d).\n", ino);
1091 exit(32);
1092 }
1093 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1094 rdfs(d, sblock.fs_bsize, buf);
1095 if (needswap) {
1096 ffs_dinode_swap(ip, &buf[ino_to_fsbo(&sblock, ino)]);
1097 /* ffs_dinode_swap() doesn't swap blocks addrs */
1098 for (i=0; i<NDADDR + NIADDR; i++)
1099 (&buf[ino_to_fsbo(&sblock, ino)])->di_db[i] =
1100 bswap32(ip->di_db[i]);
1101 } else
1102 buf[ino_to_fsbo(&sblock, ino)] = *ip;
1103 wtfs(d, sblock.fs_bsize, buf);
1104 }
1105
1106 /*
1107 * Replace libc function with one suited to our needs.
1108 */
1109 void *
1110 malloc(size)
1111 size_t size;
1112 {
1113 char *base, *i;
1114 static u_long pgsz;
1115 struct rlimit rlp;
1116
1117 if (pgsz == 0) {
1118 base = sbrk(0);
1119 pgsz = getpagesize() - 1;
1120 i = (char *)((u_long)(base + pgsz) &~ pgsz);
1121 base = sbrk(i - base);
1122 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1123 perror("getrlimit");
1124 rlp.rlim_cur = rlp.rlim_max;
1125 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1126 perror("setrlimit");
1127 memleft = rlp.rlim_max - (u_long)base;
1128 }
1129 size = (size + pgsz) &~ pgsz;
1130 if (size > memleft)
1131 size = memleft;
1132 memleft -= size;
1133 if (size == 0)
1134 return (0);
1135 return ((caddr_t)sbrk(size));
1136 }
1137
1138 /*
1139 * Replace libc function with one suited to our needs.
1140 */
1141 void *
1142 realloc(ptr, size)
1143 void *ptr;
1144 size_t size;
1145 {
1146 void *p;
1147
1148 if ((p = malloc(size)) == NULL)
1149 return (NULL);
1150 memmove(p, ptr, size);
1151 free(ptr);
1152 return (p);
1153 }
1154
1155 /*
1156 * Replace libc function with one suited to our needs.
1157 */
1158 void *
1159 calloc(size, numelm)
1160 size_t size, numelm;
1161 {
1162 void *base;
1163
1164 size *= numelm;
1165 base = malloc(size);
1166 memset(base, 0, size);
1167 return (base);
1168 }
1169
1170 /*
1171 * Replace libc function with one suited to our needs.
1172 */
1173 void
1174 free(ptr)
1175 void *ptr;
1176 {
1177
1178 /* do not worry about it for now */
1179 }
1180
1181 /*
1182 * read a block from the file system
1183 */
1184 void
1185 rdfs(bno, size, bf)
1186 daddr_t bno;
1187 int size;
1188 void *bf;
1189 {
1190 int n;
1191 off_t offset;
1192
1193 if (mfs) {
1194 memmove(bf, membase + bno * sectorsize, size);
1195 return;
1196 }
1197 offset = bno;
1198 offset *= sectorsize;
1199 if (lseek(fsi, offset, SEEK_SET) < 0) {
1200 printf("seek error: %d\n", bno);
1201 perror("rdfs");
1202 exit(33);
1203 }
1204 n = read(fsi, bf, size);
1205 if (n != size) {
1206 printf("read error: %d\n", bno);
1207 perror("rdfs");
1208 exit(34);
1209 }
1210 }
1211
1212 /*
1213 * write a block to the file system
1214 */
1215 void
1216 wtfs(bno, size, bf)
1217 daddr_t bno;
1218 int size;
1219 void *bf;
1220 {
1221 int n;
1222 off_t offset;
1223
1224 if (mfs) {
1225 memmove(membase + bno * sectorsize, bf, size);
1226 return;
1227 }
1228 if (Nflag)
1229 return;
1230 offset = bno;
1231 offset *= sectorsize;
1232 if (lseek(fso, offset, SEEK_SET) < 0) {
1233 printf("seek error: %d\n", bno);
1234 perror("wtfs");
1235 exit(35);
1236 }
1237 n = write(fso, bf, size);
1238 if (n != size) {
1239 printf("write error: %d\n", bno);
1240 perror("wtfs");
1241 exit(36);
1242 }
1243 }
1244
1245 /*
1246 * check if a block is available
1247 */
1248 int
1249 isblock(fs, cp, h)
1250 struct fs *fs;
1251 unsigned char *cp;
1252 int h;
1253 {
1254 unsigned char mask;
1255
1256 switch (fs->fs_frag) {
1257 case 8:
1258 return (cp[h] == 0xff);
1259 case 4:
1260 mask = 0x0f << ((h & 0x1) << 2);
1261 return ((cp[h >> 1] & mask) == mask);
1262 case 2:
1263 mask = 0x03 << ((h & 0x3) << 1);
1264 return ((cp[h >> 2] & mask) == mask);
1265 case 1:
1266 mask = 0x01 << (h & 0x7);
1267 return ((cp[h >> 3] & mask) == mask);
1268 default:
1269 #ifdef STANDALONE
1270 printf("isblock bad fs_frag %d\n", fs->fs_frag);
1271 #else
1272 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1273 #endif
1274 return (0);
1275 }
1276 }
1277
1278 /*
1279 * take a block out of the map
1280 */
1281 void
1282 clrblock(fs, cp, h)
1283 struct fs *fs;
1284 unsigned char *cp;
1285 int h;
1286 {
1287 switch ((fs)->fs_frag) {
1288 case 8:
1289 cp[h] = 0;
1290 return;
1291 case 4:
1292 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1293 return;
1294 case 2:
1295 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1296 return;
1297 case 1:
1298 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1299 return;
1300 default:
1301 #ifdef STANDALONE
1302 printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1303 #else
1304 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1305 #endif
1306 return;
1307 }
1308 }
1309
1310 /*
1311 * put a block into the map
1312 */
1313 void
1314 setblock(fs, cp, h)
1315 struct fs *fs;
1316 unsigned char *cp;
1317 int h;
1318 {
1319 switch (fs->fs_frag) {
1320 case 8:
1321 cp[h] = 0xff;
1322 return;
1323 case 4:
1324 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1325 return;
1326 case 2:
1327 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1328 return;
1329 case 1:
1330 cp[h >> 3] |= (0x01 << (h & 0x7));
1331 return;
1332 default:
1333 #ifdef STANDALONE
1334 printf("setblock bad fs_frag %d\n", fs->fs_frag);
1335 #else
1336 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1337 #endif
1338 return;
1339 }
1340 }
1341
1342 /* swap byte order of cylinder group */
1343 static void
1344 swap_cg(o, n)
1345 struct cg *o, *n;
1346 {
1347 int i, btotsize, fbsize;
1348 u_int32_t *n32, *o32;
1349 u_int16_t *n16, *o16;
1350
1351 n->cg_firstfield = bswap32(o->cg_firstfield);
1352 n->cg_magic = bswap32(o->cg_magic);
1353 n->cg_time = bswap32(o->cg_time);
1354 n->cg_cgx = bswap32(o->cg_cgx);
1355 n->cg_ncyl = bswap16(o->cg_ncyl);
1356 n->cg_niblk = bswap16(o->cg_niblk);
1357 n->cg_ndblk = bswap32(o->cg_ndblk);
1358 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
1359 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
1360 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
1361 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
1362 n->cg_rotor = bswap32(o->cg_rotor);
1363 n->cg_frotor = bswap32(o->cg_frotor);
1364 n->cg_irotor = bswap32(o->cg_irotor);
1365 n->cg_btotoff = bswap32(o->cg_btotoff);
1366 n->cg_boff = bswap32(o->cg_boff);
1367 n->cg_iusedoff = bswap32(o->cg_iusedoff);
1368 n->cg_freeoff = bswap32(o->cg_freeoff);
1369 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
1370 n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
1371 n->cg_clusteroff = bswap32(o->cg_clusteroff);
1372 n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
1373 for (i=0; i < MAXFRAG; i++)
1374 n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
1375
1376 /* alays new format */
1377 if (n->cg_magic == CG_MAGIC) {
1378 btotsize = n->cg_boff - n->cg_btotoff;
1379 fbsize = n->cg_iusedoff - n->cg_boff;
1380 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
1381 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
1382 n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
1383 o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
1384 } else {
1385 btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
1386 fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
1387 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
1388 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
1389 n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
1390 o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
1391 }
1392 for (i=0; i < btotsize / sizeof(u_int32_t); i++)
1393 n32[i] = bswap32(o32[i]);
1394
1395 for (i=0; i < fbsize/sizeof(u_int16_t); i++)
1396 n16[i] = bswap16(o16[i]);
1397
1398 if (n->cg_magic == CG_MAGIC) {
1399 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
1400 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
1401 } else {
1402 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
1403 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
1404 }
1405 for (i = 0; i < sblock.fs_contigsumsize + 1; i++)
1406 n32[i] = bswap32(o32[i]);
1407 }
1408
1409 /* copy a direntry to a buffer, in fs byte order */
1410 static void
1411 copy_dir(dir, dbuf)
1412 struct direct *dir;
1413 struct direct *dbuf;
1414 {
1415 memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0));
1416 if (needswap) {
1417 dbuf->d_ino = bswap32(dir->d_ino);
1418 dbuf->d_reclen = bswap16(dir->d_reclen);
1419 if (Oflag)
1420 ((struct odirect*)dbuf)->d_namlen =
1421 bswap16(((struct odirect*)dir)->d_namlen);
1422 }
1423 }
1424
1425 /* Determine how many digits are needed to print a given integer */
1426 static int
1427 count_digits(num)
1428 int num;
1429 {
1430 int ndig;
1431
1432 for(ndig = 1; num > 9; num /=10, ndig++);
1433
1434 return (ndig);
1435 }
1436