mkfs.c revision 1.37 1 /* $NetBSD: mkfs.c,v 1.37 1999/07/30 17:44:01 wrstuden Exp $ */
2
3 /*
4 * Copyright (c) 1980, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 #ifndef lint
38 #if 0
39 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
40 #else
41 __RCSID("$NetBSD: mkfs.c,v 1.37 1999/07/30 17:44:01 wrstuden Exp $");
42 #endif
43 #endif /* not lint */
44
45 #include <sys/param.h>
46 #include <sys/time.h>
47 #include <sys/resource.h>
48 #include <ufs/ufs/dinode.h>
49 #include <ufs/ufs/dir.h>
50 #include <ufs/ufs/ufs_bswap.h>
51 #include <ufs/ffs/fs.h>
52 #include <ufs/ffs/ffs_extern.h>
53 #include <sys/disklabel.h>
54
55 #include <string.h>
56 #include <unistd.h>
57 #include <stdlib.h>
58
59 #ifndef STANDALONE
60 #include <a.out.h>
61 #include <stdio.h>
62 #include <time.h>
63 #endif
64 #include <extern.h>
65
66
67 static void initcg __P((int, time_t));
68 static void fsinit __P((time_t));
69 static int makedir __P((struct direct *, int));
70 static daddr_t alloc __P((int, int));
71 static void iput __P((struct dinode *, ino_t));
72 static void rdfs __P((daddr_t, int, void *));
73 static void wtfs __P((daddr_t, int, void *));
74 static int isblock __P((struct fs *, unsigned char *, int));
75 static void clrblock __P((struct fs *, unsigned char *, int));
76 static void setblock __P((struct fs *, unsigned char *, int));
77 static int32_t calcipg __P((int32_t, int32_t, off_t *));
78 static void swap_cg __P((struct cg *, struct cg *));
79
80 static int count_digits __P((int));
81
82 /*
83 * make file system for cylinder-group style file systems
84 */
85
86 /*
87 * We limit the size of the inode map to be no more than a
88 * third of the cylinder group space, since we must leave at
89 * least an equal amount of space for the block map.
90 *
91 * N.B.: MAXIPG must be a multiple of INOPB(fs).
92 */
93 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
94
95 #define UMASK 0755
96 #define MAXINOPB (MAXBSIZE / DINODE_SIZE)
97 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
98
99 /*
100 * variables set up by front end.
101 */
102 extern int mfs; /* run as the memory based filesystem */
103 extern int Nflag; /* run mkfs without writing file system */
104 extern int Oflag; /* format as an 4.3BSD file system */
105 extern int fssize; /* file system size */
106 extern int ntracks; /* # tracks/cylinder */
107 extern int nsectors; /* # sectors/track */
108 extern int nphyssectors; /* # sectors/track including spares */
109 extern int secpercyl; /* sectors per cylinder */
110 extern int sectorsize; /* bytes/sector */
111 extern int rpm; /* revolutions/minute of drive */
112 extern int interleave; /* hardware sector interleave */
113 extern int trackskew; /* sector 0 skew, per track */
114 extern int headswitch; /* head switch time, usec */
115 extern int trackseek; /* track-to-track seek, usec */
116 extern int fsize; /* fragment size */
117 extern int bsize; /* block size */
118 extern int cpg; /* cylinders/cylinder group */
119 extern int cpgflg; /* cylinders/cylinder group flag was given */
120 extern int minfree; /* free space threshold */
121 extern int opt; /* optimization preference (space or time) */
122 extern int density; /* number of bytes per inode */
123 extern int maxcontig; /* max contiguous blocks to allocate */
124 extern int rotdelay; /* rotational delay between blocks */
125 extern int maxbpg; /* maximum blocks per file in a cyl group */
126 extern int nrpos; /* # of distinguished rotational positions */
127 extern int bbsize; /* boot block size */
128 extern int sbsize; /* superblock size */
129 extern u_long memleft; /* virtual memory available */
130 extern caddr_t membase; /* start address of memory based filesystem */
131 extern int needswap; /* Filesystem not in native byte order */
132
133 union {
134 struct fs fs;
135 char pad[SBSIZE];
136 } fsun;
137 #define sblock fsun.fs
138 struct csum *fscs;
139
140 union {
141 struct cg cg;
142 char pad[MAXBSIZE];
143 } cgun;
144 #define acg cgun.cg
145
146 struct dinode zino[MAXBSIZE / DINODE_SIZE];
147
148 char writebuf[MAXBSIZE];
149
150 int fsi, fso;
151
152 void
153 mkfs(pp, fsys, fi, fo)
154 struct partition *pp;
155 char *fsys;
156 int fi, fo;
157 {
158 int32_t i, mincpc, mincpg, inospercg;
159 int32_t cylno, rpos, blk, j, warn = 0;
160 int32_t used, mincpgcnt, bpcg;
161 off_t usedb;
162 int32_t mapcramped, inodecramped;
163 int32_t postblsize, rotblsize, totalsbsize;
164 time_t utime;
165 quad_t sizepb;
166 char *writebuf2; /* dynamic buffer */
167 int nprintcols, printcolwidth;
168
169 #ifndef STANDALONE
170 time(&utime);
171 #endif
172 if (mfs) {
173 (void)malloc(0);
174 if (fssize * sectorsize > memleft)
175 fssize = (memleft - 16384) / sectorsize;
176 if ((membase = malloc(fssize * sectorsize)) == 0)
177 exit(12);
178 }
179 fsi = fi;
180 fso = fo;
181 if (Oflag) {
182 sblock.fs_inodefmt = FS_42INODEFMT;
183 sblock.fs_maxsymlinklen = 0;
184 } else {
185 sblock.fs_inodefmt = FS_44INODEFMT;
186 sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
187 }
188 /*
189 * Validate the given file system size.
190 * Verify that its last block can actually be accessed.
191 */
192 if (fssize <= 0)
193 printf("preposterous size %d\n", fssize), exit(13);
194 wtfs(fssize - 1, sectorsize, (char *)&sblock);
195
196 /*
197 * collect and verify the sector and track info
198 */
199 sblock.fs_nsect = nsectors;
200 sblock.fs_ntrak = ntracks;
201 if (sblock.fs_ntrak <= 0)
202 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
203 if (sblock.fs_nsect <= 0)
204 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
205 /*
206 * collect and verify the block and fragment sizes
207 */
208 sblock.fs_bsize = bsize;
209 sblock.fs_fsize = fsize;
210 if (!POWEROF2(sblock.fs_bsize)) {
211 printf("block size must be a power of 2, not %d\n",
212 sblock.fs_bsize);
213 exit(16);
214 }
215 if (!POWEROF2(sblock.fs_fsize)) {
216 printf("fragment size must be a power of 2, not %d\n",
217 sblock.fs_fsize);
218 exit(17);
219 }
220 if (sblock.fs_fsize < sectorsize) {
221 printf("fragment size %d is too small, minimum is %d\n",
222 sblock.fs_fsize, sectorsize);
223 exit(18);
224 }
225 if (sblock.fs_bsize < MINBSIZE) {
226 printf("block size %d is too small, minimum is %d\n",
227 sblock.fs_bsize, MINBSIZE);
228 exit(19);
229 }
230 if (sblock.fs_bsize < sblock.fs_fsize) {
231 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
232 sblock.fs_bsize, sblock.fs_fsize);
233 exit(20);
234 }
235 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
236 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
237 sblock.fs_qbmask = ~sblock.fs_bmask;
238 sblock.fs_qfmask = ~sblock.fs_fmask;
239 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
240 sblock.fs_bshift++;
241 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
242 sblock.fs_fshift++;
243 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
244 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
245 sblock.fs_fragshift++;
246 if (sblock.fs_frag > MAXFRAG) {
247 printf("fragment size %d is too small, "
248 "minimum with block size %d is %d\n",
249 sblock.fs_fsize, sblock.fs_bsize,
250 sblock.fs_bsize / MAXFRAG);
251 exit(21);
252 }
253 sblock.fs_nrpos = nrpos;
254 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
255 sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
256 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
257 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
258 sblock.fs_fsbtodb++;
259 sblock.fs_sblkno =
260 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
261 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
262 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
263 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
264 sblock.fs_cgoffset = roundup(
265 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
266 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
267 sblock.fs_cgmask <<= 1;
268 if (!POWEROF2(sblock.fs_ntrak))
269 sblock.fs_cgmask <<= 1;
270 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
271 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
272 sizepb *= NINDIR(&sblock);
273 sblock.fs_maxfilesize += sizepb;
274 }
275 /*
276 * Validate specified/determined secpercyl
277 * and calculate minimum cylinders per group.
278 */
279 sblock.fs_spc = secpercyl;
280 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
281 sblock.fs_cpc > 1 && (i & 1) == 0;
282 sblock.fs_cpc >>= 1, i >>= 1)
283 /* void */;
284 mincpc = sblock.fs_cpc;
285 bpcg = sblock.fs_spc * sectorsize;
286 inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
287 if (inospercg > MAXIPG(&sblock))
288 inospercg = MAXIPG(&sblock);
289 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
290 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
291 sblock.fs_spc);
292 mincpg = roundup(mincpgcnt, mincpc);
293 /*
294 * Ensure that cylinder group with mincpg has enough space
295 * for block maps.
296 */
297 sblock.fs_cpg = mincpg;
298 sblock.fs_ipg = inospercg;
299 if (maxcontig > 1)
300 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
301 mapcramped = 0;
302 while (CGSIZE(&sblock) > sblock.fs_bsize) {
303 mapcramped = 1;
304 if (sblock.fs_bsize < MAXBSIZE) {
305 sblock.fs_bsize <<= 1;
306 if ((i & 1) == 0) {
307 i >>= 1;
308 } else {
309 sblock.fs_cpc <<= 1;
310 mincpc <<= 1;
311 mincpg = roundup(mincpgcnt, mincpc);
312 sblock.fs_cpg = mincpg;
313 }
314 sblock.fs_frag <<= 1;
315 sblock.fs_fragshift += 1;
316 if (sblock.fs_frag <= MAXFRAG)
317 continue;
318 }
319 if (sblock.fs_fsize == sblock.fs_bsize) {
320 printf("There is no block size that");
321 printf(" can support this disk\n");
322 exit(22);
323 }
324 sblock.fs_frag >>= 1;
325 sblock.fs_fragshift -= 1;
326 sblock.fs_fsize <<= 1;
327 sblock.fs_nspf <<= 1;
328 }
329 /*
330 * Ensure that cylinder group with mincpg has enough space for inodes.
331 */
332 inodecramped = 0;
333 inospercg = calcipg(mincpg, bpcg, &usedb);
334 sblock.fs_ipg = inospercg;
335 while (inospercg > MAXIPG(&sblock)) {
336 inodecramped = 1;
337 if (mincpc == 1 || sblock.fs_frag == 1 ||
338 sblock.fs_bsize == MINBSIZE)
339 break;
340 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
341 "minimum bytes per inode is",
342 (int)((mincpg * (off_t)bpcg - usedb)
343 / MAXIPG(&sblock) + 1));
344 sblock.fs_bsize >>= 1;
345 sblock.fs_frag >>= 1;
346 sblock.fs_fragshift -= 1;
347 mincpc >>= 1;
348 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
349 if (CGSIZE(&sblock) > sblock.fs_bsize) {
350 sblock.fs_bsize <<= 1;
351 break;
352 }
353 mincpg = sblock.fs_cpg;
354 inospercg = calcipg(mincpg, bpcg, &usedb);
355 sblock.fs_ipg = inospercg;
356 }
357 if (inodecramped) {
358 if (inospercg > MAXIPG(&sblock)) {
359 printf("Minimum bytes per inode is %d\n",
360 (int)((mincpg * (off_t)bpcg - usedb)
361 / MAXIPG(&sblock) + 1));
362 } else if (!mapcramped) {
363 printf("With %d bytes per inode, ", density);
364 printf("minimum cylinders per group is %d\n", mincpg);
365 }
366 }
367 if (mapcramped) {
368 printf("With %d sectors per cylinder, ", sblock.fs_spc);
369 printf("minimum cylinders per group is %d\n", mincpg);
370 }
371 if (inodecramped || mapcramped) {
372 if (sblock.fs_bsize != bsize)
373 printf("%s to be changed from %d to %d\n",
374 "This requires the block size",
375 bsize, sblock.fs_bsize);
376 if (sblock.fs_fsize != fsize)
377 printf("\t%s to be changed from %d to %d\n",
378 "and the fragment size",
379 fsize, sblock.fs_fsize);
380 exit(23);
381 }
382 /*
383 * Calculate the number of cylinders per group
384 */
385 sblock.fs_cpg = cpg;
386 if (sblock.fs_cpg % mincpc != 0) {
387 printf("%s groups must have a multiple of %d cylinders\n",
388 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
389 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
390 if (!cpgflg)
391 cpg = sblock.fs_cpg;
392 }
393 /*
394 * Must ensure there is enough space for inodes.
395 */
396 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
397 while (sblock.fs_ipg > MAXIPG(&sblock)) {
398 inodecramped = 1;
399 sblock.fs_cpg -= mincpc;
400 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
401 }
402 /*
403 * Must ensure there is enough space to hold block map.
404 */
405 while (CGSIZE(&sblock) > sblock.fs_bsize) {
406 mapcramped = 1;
407 sblock.fs_cpg -= mincpc;
408 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
409 }
410 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
411 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
412 printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
413 exit(24);
414 }
415 if (sblock.fs_cpg < mincpg) {
416 printf("cylinder groups must have at least %d cylinders\n",
417 mincpg);
418 exit(25);
419 } else if (sblock.fs_cpg != cpg) {
420 if (!cpgflg)
421 printf("Warning: ");
422 else if (!mapcramped && !inodecramped)
423 exit(26);
424 if (mapcramped && inodecramped)
425 printf("Block size and bytes per inode restrict");
426 else if (mapcramped)
427 printf("Block size restricts");
428 else
429 printf("Bytes per inode restrict");
430 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
431 if (cpgflg)
432 exit(27);
433 }
434 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
435 /*
436 * Now have size for file system and nsect and ntrak.
437 * Determine number of cylinders and blocks in the file system.
438 */
439 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
440 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
441 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
442 sblock.fs_ncyl++;
443 warn = 1;
444 }
445 if (sblock.fs_ncyl < 1) {
446 printf("file systems must have at least one cylinder\n");
447 exit(28);
448 }
449 /*
450 * Determine feasability/values of rotational layout tables.
451 *
452 * The size of the rotational layout tables is limited by the
453 * size of the superblock, SBSIZE. The amount of space available
454 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
455 * The size of these tables is inversely proportional to the block
456 * size of the file system. The size increases if sectors per track
457 * are not powers of two, because more cylinders must be described
458 * by the tables before the rotational pattern repeats (fs_cpc).
459 */
460 sblock.fs_interleave = interleave;
461 sblock.fs_trackskew = trackskew;
462 sblock.fs_npsect = nphyssectors;
463 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
464 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
465 if (sblock.fs_ntrak == 1) {
466 sblock.fs_cpc = 0;
467 goto next;
468 }
469 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
470 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
471 totalsbsize = sizeof(struct fs) + rotblsize;
472 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
473 /* use old static table space */
474 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
475 (char *)(&sblock.fs_firstfield);
476 sblock.fs_rotbloff = &sblock.fs_space[0] -
477 (u_char *)(&sblock.fs_firstfield);
478 } else {
479 /* use dynamic table space */
480 sblock.fs_postbloff = &sblock.fs_space[0] -
481 (u_char *)(&sblock.fs_firstfield);
482 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
483 totalsbsize += postblsize;
484 }
485 if (totalsbsize > SBSIZE ||
486 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
487 printf("%s %s %d %s %d.%s",
488 "Warning: insufficient space in super block for\n",
489 "rotational layout tables with nsect", sblock.fs_nsect,
490 "and ntrak", sblock.fs_ntrak,
491 "\nFile system performance may be impaired.\n");
492 sblock.fs_cpc = 0;
493 goto next;
494 }
495 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
496 /*
497 * calculate the available blocks for each rotational position
498 */
499 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
500 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
501 fs_postbl(&sblock, cylno)[rpos] = -1;
502 for (i = (rotblsize - 1) * sblock.fs_frag;
503 i >= 0; i -= sblock.fs_frag) {
504 cylno = cbtocylno(&sblock, i);
505 rpos = cbtorpos(&sblock, i);
506 blk = fragstoblks(&sblock, i);
507 if (fs_postbl(&sblock, cylno)[rpos] == -1)
508 fs_rotbl(&sblock)[blk] = 0;
509 else
510 fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
511 fs_postbl(&sblock, cylno)[rpos] = blk;
512 }
513 next:
514 /*
515 * Compute/validate number of cylinder groups.
516 */
517 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
518 if (sblock.fs_ncyl % sblock.fs_cpg)
519 sblock.fs_ncg++;
520 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
521 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
522 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
523 printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
524 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
525 sblock.fs_fpg / sblock.fs_frag);
526 printf("number of cylinders per cylinder group (%d) %s.\n",
527 sblock.fs_cpg, "must be increased");
528 exit(29);
529 }
530 j = sblock.fs_ncg - 1;
531 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
532 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
533 if (j == 0) {
534 printf("Filesystem must have at least %d sectors\n",
535 NSPF(&sblock) *
536 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
537 exit(30);
538 }
539 printf("Warning: inode blocks/cyl group (%d) >= "
540 "data blocks (%d) in last\n",
541 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
542 i / sblock.fs_frag);
543 printf(" cylinder group. This implies %d sector(s) "
544 "cannot be allocated.\n",
545 i * NSPF(&sblock));
546 sblock.fs_ncg--;
547 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
548 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
549 NSPF(&sblock);
550 warn = 0;
551 }
552 if (warn && !mfs) {
553 printf("Warning: %d sector(s) in last cylinder unallocated\n",
554 sblock.fs_spc -
555 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
556 * sblock.fs_spc));
557 }
558 /*
559 * fill in remaining fields of the super block
560 */
561 sblock.fs_csaddr = cgdmin(&sblock, 0);
562 sblock.fs_cssize =
563 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
564 i = sblock.fs_bsize / sizeof(struct csum);
565 sblock.fs_csmask = ~(i - 1);
566 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
567 sblock.fs_csshift++;
568 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
569 sblock.fs_magic = FS_MAGIC;
570 sblock.fs_rotdelay = rotdelay;
571 sblock.fs_minfree = minfree;
572 sblock.fs_maxcontig = maxcontig;
573 sblock.fs_headswitch = headswitch;
574 sblock.fs_trkseek = trackseek;
575 sblock.fs_maxbpg = maxbpg;
576 sblock.fs_rps = rpm / 60;
577 sblock.fs_optim = opt;
578 sblock.fs_cgrotor = 0;
579 sblock.fs_cstotal.cs_ndir = 0;
580 sblock.fs_cstotal.cs_nbfree = 0;
581 sblock.fs_cstotal.cs_nifree = 0;
582 sblock.fs_cstotal.cs_nffree = 0;
583 sblock.fs_fmod = 0;
584 sblock.fs_clean = FS_ISCLEAN;
585 sblock.fs_ronly = 0;
586 sblock.fs_clean = 1;
587 /*
588 * Dump out summary information about file system.
589 */
590 if (!mfs) {
591 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
592 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
593 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
594 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
595 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
596 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
597 sblock.fs_ncg, sblock.fs_cpg,
598 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
599 sblock.fs_ipg);
600 #undef B2MBFACTOR
601 }
602 /*
603 * Now determine how wide each column will be, and calculate how
604 * many columns will fit in a 76 char line. 76 is the width of the
605 * subwindows in sysinst.
606 */
607 printcolwidth = count_digits(
608 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
609 nprintcols = 76 / (printcolwidth + 2);
610 /*
611 * Now build the cylinders group blocks and
612 * then print out indices of cylinder groups.
613 */
614 if (!mfs)
615 printf("super-block backups (for fsck -b #) at:");
616 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
617 initcg(cylno, utime);
618 if (mfs)
619 continue;
620 if (cylno % nprintcols == 0)
621 printf("\n");
622 printf(" %*d,", printcolwidth,
623 fsbtodb(&sblock, cgsblock(&sblock, cylno)));
624 fflush(stdout);
625 }
626 if (!mfs)
627 printf("\n");
628 if (Nflag && !mfs)
629 exit(0);
630 /*
631 * Now construct the initial file system,
632 * then write out the super-block.
633 */
634 fsinit(utime);
635 sblock.fs_time = utime;
636 memcpy(writebuf, &sblock, sbsize);
637 if (needswap)
638 ffs_sb_swap(&sblock, (struct fs*)writebuf, 1);
639 wtfs((int)SBOFF / sectorsize, sbsize, writebuf);
640 /*
641 * Write out the duplicate super blocks
642 */
643 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
644 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
645 sbsize, writebuf);
646
647 /*
648 * if we need to swap, create a buffer for the cylinder summaries
649 * to get swapped to.
650 */
651 if (needswap) {
652 if ((writebuf2=malloc(sblock.fs_cssize)) == NULL)
653 exit(12);
654 ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize);
655 } else
656 writebuf2 = (char *)fscs;
657
658 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
659 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
660 sblock.fs_cssize - i < sblock.fs_bsize ?
661 sblock.fs_cssize - i : sblock.fs_bsize,
662 ((char *)writebuf2) + i);
663 if (writebuf2 != (char *)fscs)
664 free(writebuf2);
665
666 /*
667 * Update information about this partion in pack
668 * label, to that it may be updated on disk.
669 */
670 pp->p_fstype = FS_BSDFFS;
671 pp->p_fsize = sblock.fs_fsize;
672 pp->p_frag = sblock.fs_frag;
673 pp->p_cpg = sblock.fs_cpg;
674 }
675
676 /*
677 * Initialize a cylinder group.
678 */
679 void
680 initcg(cylno, utime)
681 int cylno;
682 time_t utime;
683 {
684 daddr_t cbase, d, dlower, dupper, dmax, blkno;
685 int32_t i;
686 struct csum *cs;
687
688 /*
689 * Determine block bounds for cylinder group.
690 * Allow space for super block summary information in first
691 * cylinder group.
692 */
693 cbase = cgbase(&sblock, cylno);
694 dmax = cbase + sblock.fs_fpg;
695 if (dmax > sblock.fs_size)
696 dmax = sblock.fs_size;
697 dlower = cgsblock(&sblock, cylno) - cbase;
698 dupper = cgdmin(&sblock, cylno) - cbase;
699 if (cylno == 0)
700 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
701 cs = fscs + cylno;
702 memset(&acg, 0, sblock.fs_cgsize);
703 acg.cg_time = utime;
704 acg.cg_magic = CG_MAGIC;
705 acg.cg_cgx = cylno;
706 if (cylno == sblock.fs_ncg - 1)
707 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
708 else
709 acg.cg_ncyl = sblock.fs_cpg;
710 acg.cg_niblk = sblock.fs_ipg;
711 acg.cg_ndblk = dmax - cbase;
712 if (sblock.fs_contigsumsize > 0)
713 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
714 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
715 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
716 acg.cg_iusedoff = acg.cg_boff +
717 sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
718 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
719 if (sblock.fs_contigsumsize <= 0) {
720 acg.cg_nextfreeoff = acg.cg_freeoff +
721 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
722 } else {
723 acg.cg_clustersumoff = acg.cg_freeoff + howmany
724 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
725 sizeof(int32_t);
726 acg.cg_clustersumoff =
727 roundup(acg.cg_clustersumoff, sizeof(int32_t));
728 acg.cg_clusteroff = acg.cg_clustersumoff +
729 (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
730 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
731 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
732 }
733 if (acg.cg_nextfreeoff -
734 (int32_t)(&acg.cg_firstfield) > sblock.fs_cgsize) {
735 printf("Panic: cylinder group too big\n");
736 exit(37);
737 }
738 acg.cg_cs.cs_nifree += sblock.fs_ipg;
739 if (cylno == 0)
740 for (i = 0; i < ROOTINO; i++) {
741 setbit(cg_inosused(&acg, 0), i);
742 acg.cg_cs.cs_nifree--;
743 }
744 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
745 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
746 sblock.fs_bsize, (char *)zino);
747 if (cylno > 0) {
748 /*
749 * In cylno 0, beginning space is reserved
750 * for boot and super blocks.
751 */
752 for (d = 0; d < dlower; d += sblock.fs_frag) {
753 blkno = d / sblock.fs_frag;
754 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
755 if (sblock.fs_contigsumsize > 0)
756 setbit(cg_clustersfree(&acg, 0), blkno);
757 acg.cg_cs.cs_nbfree++;
758 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
759 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
760 [cbtorpos(&sblock, d)]++;
761 }
762 sblock.fs_dsize += dlower;
763 }
764 sblock.fs_dsize += acg.cg_ndblk - dupper;
765 if ((i = (dupper % sblock.fs_frag)) != 0) {
766 acg.cg_frsum[sblock.fs_frag - i]++;
767 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
768 setbit(cg_blksfree(&acg, 0), dupper);
769 acg.cg_cs.cs_nffree++;
770 }
771 }
772 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
773 blkno = d / sblock.fs_frag;
774 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
775 if (sblock.fs_contigsumsize > 0)
776 setbit(cg_clustersfree(&acg, 0), blkno);
777 acg.cg_cs.cs_nbfree++;
778 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
779 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
780 [cbtorpos(&sblock, d)]++;
781 d += sblock.fs_frag;
782 }
783 if (d < dmax - cbase) {
784 acg.cg_frsum[dmax - cbase - d]++;
785 for (; d < dmax - cbase; d++) {
786 setbit(cg_blksfree(&acg, 0), d);
787 acg.cg_cs.cs_nffree++;
788 }
789 }
790 if (sblock.fs_contigsumsize > 0) {
791 int32_t *sump = cg_clustersum(&acg, 0);
792 u_char *mapp = cg_clustersfree(&acg, 0);
793 int map = *mapp++;
794 int bit = 1;
795 int run = 0;
796
797 for (i = 0; i < acg.cg_nclusterblks; i++) {
798 if ((map & bit) != 0) {
799 run++;
800 } else if (run != 0) {
801 if (run > sblock.fs_contigsumsize)
802 run = sblock.fs_contigsumsize;
803 sump[run]++;
804 run = 0;
805 }
806 if ((i & (NBBY - 1)) != (NBBY - 1)) {
807 bit <<= 1;
808 } else {
809 map = *mapp++;
810 bit = 1;
811 }
812 }
813 if (run != 0) {
814 if (run > sblock.fs_contigsumsize)
815 run = sblock.fs_contigsumsize;
816 sump[run]++;
817 }
818 }
819 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
820 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
821 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
822 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
823 *cs = acg.cg_cs;
824 memcpy(writebuf, &acg, sblock.fs_bsize);
825 if (needswap)
826 swap_cg(&acg, (struct cg*)writebuf);
827 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
828 sblock.fs_bsize, writebuf);
829 }
830
831 /*
832 * initialize the file system
833 */
834 struct dinode node;
835
836 #ifdef LOSTDIR
837 #define PREDEFDIR 3
838 #else
839 #define PREDEFDIR 2
840 #endif
841
842 struct direct root_dir[] = {
843 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
844 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
845 #ifdef LOSTDIR
846 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
847 #endif
848 };
849 struct odirect {
850 u_int32_t d_ino;
851 u_int16_t d_reclen;
852 u_int16_t d_namlen;
853 u_char d_name[MAXNAMLEN + 1];
854 } oroot_dir[] = {
855 { ROOTINO, sizeof(struct direct), 1, "." },
856 { ROOTINO, sizeof(struct direct), 2, ".." },
857 #ifdef LOSTDIR
858 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
859 #endif
860 };
861 #ifdef LOSTDIR
862 struct direct lost_found_dir[] = {
863 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
864 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
865 { 0, DIRBLKSIZ, 0, 0, 0 },
866 };
867 struct odirect olost_found_dir[] = {
868 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
869 { ROOTINO, sizeof(struct direct), 2, ".." },
870 { 0, DIRBLKSIZ, 0, 0 },
871 };
872 #endif
873 char buf[MAXBSIZE];
874 static void copy_dir __P((struct direct *, struct direct *));
875
876 void
877 fsinit(utime)
878 time_t utime;
879 {
880 #ifdef LOSTDIR
881 int i;
882 #endif
883
884 /*
885 * initialize the node
886 */
887 memset(&node, 0, sizeof(node));
888 node.di_atime = utime;
889 node.di_mtime = utime;
890 node.di_ctime = utime;
891
892 #ifdef LOSTDIR
893 /*
894 * create the lost+found directory
895 */
896 if (Oflag) {
897 (void)makedir((struct direct *)olost_found_dir, 2);
898 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
899 copy_dir((struct direct*)&olost_found_dir[2],
900 (struct direct*)&buf[i]);
901 } else {
902 (void)makedir(lost_found_dir, 2);
903 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
904 copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
905 }
906 node.di_mode = IFDIR | UMASK;
907 node.di_nlink = 2;
908 node.di_size = sblock.fs_bsize;
909 node.di_db[0] = alloc(node.di_size, node.di_mode);
910 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
911 node.di_uid = geteuid();
912 node.di_gid = getegid();
913 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
914 iput(&node, LOSTFOUNDINO);
915 #endif
916 /*
917 * create the root directory
918 */
919 if (mfs)
920 node.di_mode = IFDIR | 01777;
921 else
922 node.di_mode = IFDIR | UMASK;
923 node.di_nlink = PREDEFDIR;
924 if (Oflag)
925 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
926 else
927 node.di_size = makedir(root_dir, PREDEFDIR);
928 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
929 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
930 node.di_uid = geteuid();
931 node.di_gid = getegid();
932 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
933 iput(&node, ROOTINO);
934 }
935
936 /*
937 * construct a set of directory entries in "buf".
938 * return size of directory.
939 */
940 int
941 makedir(protodir, entries)
942 struct direct *protodir;
943 int entries;
944 {
945 char *cp;
946 int i, spcleft;
947
948 spcleft = DIRBLKSIZ;
949 for (cp = buf, i = 0; i < entries - 1; i++) {
950 protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0);
951 copy_dir(&protodir[i], (struct direct*)cp);
952 cp += protodir[i].d_reclen;
953 spcleft -= protodir[i].d_reclen;
954 }
955 protodir[i].d_reclen = spcleft;
956 copy_dir(&protodir[i], (struct direct*)cp);
957 return (DIRBLKSIZ);
958 }
959
960 /*
961 * allocate a block or frag
962 */
963 daddr_t
964 alloc(size, mode)
965 int size;
966 int mode;
967 {
968 int i, frag;
969 daddr_t d, blkno;
970
971 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
972 /* fs -> host byte order */
973 if (needswap)
974 swap_cg(&acg, &acg);
975 if (acg.cg_magic != CG_MAGIC) {
976 printf("cg 0: bad magic number\n");
977 return (0);
978 }
979 if (acg.cg_cs.cs_nbfree == 0) {
980 printf("first cylinder group ran out of space\n");
981 return (0);
982 }
983 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
984 if (isblock(&sblock, cg_blksfree(&acg, 0), d / sblock.fs_frag))
985 goto goth;
986 printf("internal error: can't find block in cyl 0\n");
987 return (0);
988 goth:
989 blkno = fragstoblks(&sblock, d);
990 clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
991 if (sblock.fs_contigsumsize > 0)
992 clrbit(cg_clustersfree(&acg, 0), blkno);
993 acg.cg_cs.cs_nbfree--;
994 sblock.fs_cstotal.cs_nbfree--;
995 fscs[0].cs_nbfree--;
996 if (mode & IFDIR) {
997 acg.cg_cs.cs_ndir++;
998 sblock.fs_cstotal.cs_ndir++;
999 fscs[0].cs_ndir++;
1000 }
1001 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--;
1002 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--;
1003 if (size != sblock.fs_bsize) {
1004 frag = howmany(size, sblock.fs_fsize);
1005 fscs[0].cs_nffree += sblock.fs_frag - frag;
1006 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1007 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1008 acg.cg_frsum[sblock.fs_frag - frag]++;
1009 for (i = frag; i < sblock.fs_frag; i++)
1010 setbit(cg_blksfree(&acg, 0), d + i);
1011 }
1012 /* host -> fs byte order */
1013 if (needswap)
1014 swap_cg(&acg, &acg);
1015 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1016 (char *)&acg);
1017 return (d);
1018 }
1019
1020 /*
1021 * Calculate number of inodes per group.
1022 */
1023 int32_t
1024 calcipg(cpg, bpcg, usedbp)
1025 int32_t cpg;
1026 int32_t bpcg;
1027 off_t *usedbp;
1028 {
1029 int i;
1030 int32_t ipg, new_ipg, ncg, ncyl;
1031 off_t usedb;
1032 #if __GNUC__ /* XXX work around gcc 2.7.2 initialization bug */
1033 (void)&usedb;
1034 #endif
1035
1036 /*
1037 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1038 * Note that fssize is still in sectors, not filesystem blocks.
1039 */
1040 ncyl = howmany(fssize, secpercyl);
1041 ncg = howmany(ncyl, cpg);
1042 /*
1043 * Iterate a few times to allow for ipg depending on itself.
1044 */
1045 ipg = 0;
1046 for (i = 0; i < 10; i++) {
1047 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1048 * NSPF(&sblock) * (off_t)sectorsize;
1049 new_ipg = (cpg * (quad_t)bpcg - usedb) / density * fssize
1050 / ncg / secpercyl / cpg;
1051 new_ipg = roundup(new_ipg, INOPB(&sblock));
1052 if (new_ipg == ipg)
1053 break;
1054 ipg = new_ipg;
1055 }
1056 *usedbp = usedb;
1057 return (ipg);
1058 }
1059
1060 /*
1061 * Allocate an inode on the disk
1062 */
1063 static void
1064 iput(ip, ino)
1065 struct dinode *ip;
1066 ino_t ino;
1067 {
1068 struct dinode buf[MAXINOPB];
1069 daddr_t d;
1070 int c, i;
1071
1072 c = ino_to_cg(&sblock, ino);
1073 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1074 /* fs -> host byte order */
1075 if (needswap)
1076 swap_cg(&acg, &acg);
1077 if (acg.cg_magic != CG_MAGIC) {
1078 printf("cg 0: bad magic number\n");
1079 exit(31);
1080 }
1081 acg.cg_cs.cs_nifree--;
1082 setbit(cg_inosused(&acg, 0), ino);
1083 /* host -> fs byte order */
1084 if (needswap)
1085 swap_cg(&acg, &acg);
1086 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1087 (char *)&acg);
1088 sblock.fs_cstotal.cs_nifree--;
1089 fscs[0].cs_nifree--;
1090 if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1091 printf("fsinit: inode value out of range (%d).\n", ino);
1092 exit(32);
1093 }
1094 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1095 rdfs(d, sblock.fs_bsize, buf);
1096 if (needswap) {
1097 ffs_dinode_swap(ip, &buf[ino_to_fsbo(&sblock, ino)]);
1098 /* ffs_dinode_swap() doesn't swap blocks addrs */
1099 for (i=0; i<NDADDR + NIADDR; i++)
1100 (&buf[ino_to_fsbo(&sblock, ino)])->di_db[i] =
1101 bswap32(ip->di_db[i]);
1102 } else
1103 buf[ino_to_fsbo(&sblock, ino)] = *ip;
1104 wtfs(d, sblock.fs_bsize, buf);
1105 }
1106
1107 /*
1108 * Replace libc function with one suited to our needs.
1109 */
1110 void *
1111 malloc(size)
1112 size_t size;
1113 {
1114 char *base, *i;
1115 static u_long pgsz;
1116 struct rlimit rlp;
1117
1118 if (pgsz == 0) {
1119 base = sbrk(0);
1120 pgsz = getpagesize() - 1;
1121 i = (char *)((u_long)(base + pgsz) &~ pgsz);
1122 base = sbrk(i - base);
1123 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1124 perror("getrlimit");
1125 rlp.rlim_cur = rlp.rlim_max;
1126 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1127 perror("setrlimit");
1128 memleft = rlp.rlim_max - (u_long)base;
1129 }
1130 size = (size + pgsz) &~ pgsz;
1131 if (size > memleft)
1132 size = memleft;
1133 memleft -= size;
1134 if (size == 0)
1135 return (0);
1136 return ((caddr_t)sbrk(size));
1137 }
1138
1139 /*
1140 * Replace libc function with one suited to our needs.
1141 */
1142 void *
1143 realloc(ptr, size)
1144 void *ptr;
1145 size_t size;
1146 {
1147 void *p;
1148
1149 if ((p = malloc(size)) == NULL)
1150 return (NULL);
1151 memmove(p, ptr, size);
1152 free(ptr);
1153 return (p);
1154 }
1155
1156 /*
1157 * Replace libc function with one suited to our needs.
1158 */
1159 void *
1160 calloc(size, numelm)
1161 size_t size, numelm;
1162 {
1163 void *base;
1164
1165 size *= numelm;
1166 base = malloc(size);
1167 memset(base, 0, size);
1168 return (base);
1169 }
1170
1171 /*
1172 * Replace libc function with one suited to our needs.
1173 */
1174 void
1175 free(ptr)
1176 void *ptr;
1177 {
1178
1179 /* do not worry about it for now */
1180 }
1181
1182 /*
1183 * read a block from the file system
1184 */
1185 void
1186 rdfs(bno, size, bf)
1187 daddr_t bno;
1188 int size;
1189 void *bf;
1190 {
1191 int n;
1192 off_t offset;
1193
1194 if (mfs) {
1195 memmove(bf, membase + bno * sectorsize, size);
1196 return;
1197 }
1198 offset = bno;
1199 offset *= sectorsize;
1200 if (lseek(fsi, offset, SEEK_SET) < 0) {
1201 printf("seek error: %d\n", bno);
1202 perror("rdfs");
1203 exit(33);
1204 }
1205 n = read(fsi, bf, size);
1206 if (n != size) {
1207 printf("read error: %d\n", bno);
1208 perror("rdfs");
1209 exit(34);
1210 }
1211 }
1212
1213 /*
1214 * write a block to the file system
1215 */
1216 void
1217 wtfs(bno, size, bf)
1218 daddr_t bno;
1219 int size;
1220 void *bf;
1221 {
1222 int n;
1223 off_t offset;
1224
1225 if (mfs) {
1226 memmove(membase + bno * sectorsize, bf, size);
1227 return;
1228 }
1229 if (Nflag)
1230 return;
1231 offset = bno;
1232 offset *= sectorsize;
1233 if (lseek(fso, offset, SEEK_SET) < 0) {
1234 printf("seek error: %d\n", bno);
1235 perror("wtfs");
1236 exit(35);
1237 }
1238 n = write(fso, bf, size);
1239 if (n != size) {
1240 printf("write error: %d\n", bno);
1241 perror("wtfs");
1242 exit(36);
1243 }
1244 }
1245
1246 /*
1247 * check if a block is available
1248 */
1249 int
1250 isblock(fs, cp, h)
1251 struct fs *fs;
1252 unsigned char *cp;
1253 int h;
1254 {
1255 unsigned char mask;
1256
1257 switch (fs->fs_frag) {
1258 case 8:
1259 return (cp[h] == 0xff);
1260 case 4:
1261 mask = 0x0f << ((h & 0x1) << 2);
1262 return ((cp[h >> 1] & mask) == mask);
1263 case 2:
1264 mask = 0x03 << ((h & 0x3) << 1);
1265 return ((cp[h >> 2] & mask) == mask);
1266 case 1:
1267 mask = 0x01 << (h & 0x7);
1268 return ((cp[h >> 3] & mask) == mask);
1269 default:
1270 #ifdef STANDALONE
1271 printf("isblock bad fs_frag %d\n", fs->fs_frag);
1272 #else
1273 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1274 #endif
1275 return (0);
1276 }
1277 }
1278
1279 /*
1280 * take a block out of the map
1281 */
1282 void
1283 clrblock(fs, cp, h)
1284 struct fs *fs;
1285 unsigned char *cp;
1286 int h;
1287 {
1288 switch ((fs)->fs_frag) {
1289 case 8:
1290 cp[h] = 0;
1291 return;
1292 case 4:
1293 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1294 return;
1295 case 2:
1296 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1297 return;
1298 case 1:
1299 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1300 return;
1301 default:
1302 #ifdef STANDALONE
1303 printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1304 #else
1305 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1306 #endif
1307 return;
1308 }
1309 }
1310
1311 /*
1312 * put a block into the map
1313 */
1314 void
1315 setblock(fs, cp, h)
1316 struct fs *fs;
1317 unsigned char *cp;
1318 int h;
1319 {
1320 switch (fs->fs_frag) {
1321 case 8:
1322 cp[h] = 0xff;
1323 return;
1324 case 4:
1325 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1326 return;
1327 case 2:
1328 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1329 return;
1330 case 1:
1331 cp[h >> 3] |= (0x01 << (h & 0x7));
1332 return;
1333 default:
1334 #ifdef STANDALONE
1335 printf("setblock bad fs_frag %d\n", fs->fs_frag);
1336 #else
1337 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1338 #endif
1339 return;
1340 }
1341 }
1342
1343 /* swap byte order of cylinder group */
1344 static void
1345 swap_cg(o, n)
1346 struct cg *o, *n;
1347 {
1348 int i, btotsize, fbsize;
1349 u_int32_t *n32, *o32;
1350 u_int16_t *n16, *o16;
1351
1352 n->cg_firstfield = bswap32(o->cg_firstfield);
1353 n->cg_magic = bswap32(o->cg_magic);
1354 n->cg_time = bswap32(o->cg_time);
1355 n->cg_cgx = bswap32(o->cg_cgx);
1356 n->cg_ncyl = bswap16(o->cg_ncyl);
1357 n->cg_niblk = bswap16(o->cg_niblk);
1358 n->cg_ndblk = bswap32(o->cg_ndblk);
1359 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
1360 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
1361 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
1362 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
1363 n->cg_rotor = bswap32(o->cg_rotor);
1364 n->cg_frotor = bswap32(o->cg_frotor);
1365 n->cg_irotor = bswap32(o->cg_irotor);
1366 n->cg_btotoff = bswap32(o->cg_btotoff);
1367 n->cg_boff = bswap32(o->cg_boff);
1368 n->cg_iusedoff = bswap32(o->cg_iusedoff);
1369 n->cg_freeoff = bswap32(o->cg_freeoff);
1370 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
1371 n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
1372 n->cg_clusteroff = bswap32(o->cg_clusteroff);
1373 n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
1374 for (i=0; i < MAXFRAG; i++)
1375 n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
1376
1377 /* alays new format */
1378 if (n->cg_magic == CG_MAGIC) {
1379 btotsize = n->cg_boff - n->cg_btotoff;
1380 fbsize = n->cg_iusedoff - n->cg_boff;
1381 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
1382 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
1383 n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
1384 o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
1385 } else {
1386 btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
1387 fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
1388 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
1389 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
1390 n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
1391 o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
1392 }
1393 for (i=0; i < btotsize / sizeof(u_int32_t); i++)
1394 n32[i] = bswap32(o32[i]);
1395
1396 for (i=0; i < fbsize/sizeof(u_int16_t); i++)
1397 n16[i] = bswap16(o16[i]);
1398
1399 if (n->cg_magic == CG_MAGIC) {
1400 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
1401 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
1402 } else {
1403 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
1404 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
1405 }
1406 for (i = 0; i < sblock.fs_contigsumsize + 1; i++)
1407 n32[i] = bswap32(o32[i]);
1408 }
1409
1410 /* copy a direntry to a buffer, in fs byte order */
1411 static void
1412 copy_dir(dir, dbuf)
1413 struct direct *dir;
1414 struct direct *dbuf;
1415 {
1416 memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0));
1417 if (needswap) {
1418 dbuf->d_ino = bswap32(dir->d_ino);
1419 dbuf->d_reclen = bswap16(dir->d_reclen);
1420 if (Oflag)
1421 ((struct odirect*)dbuf)->d_namlen =
1422 bswap16(((struct odirect*)dir)->d_namlen);
1423 }
1424 }
1425
1426 /* Determine how many digits are needed to print a given integer */
1427 static int
1428 count_digits(num)
1429 int num;
1430 {
1431 int ndig;
1432
1433 for(ndig = 1; num > 9; num /=10, ndig++);
1434
1435 return (ndig);
1436 }
1437