mkfs.c revision 1.5 1 /*
2 * Copyright (c) 1980, 1989 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #ifndef lint
35 /*static char sccsid[] = "from: @(#)mkfs.c 6.18 (Berkeley) 7/3/91";*/
36 static char rcsid[] = "$Id: mkfs.c,v 1.5 1993/08/01 18:26:14 mycroft Exp $";
37 #endif /* not lint */
38
39 #ifndef STANDALONE
40 #include <stdio.h>
41 #include <a.out.h>
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/time.h>
46 #include <sys/wait.h>
47 #include <sys/resource.h>
48 #include <ufs/dinode.h>
49 #include <ufs/fs.h>
50 #include <ufs/dir.h>
51 #include <sys/disklabel.h>
52 #include <machine/endian.h>
53
54 /*
55 * make file system for cylinder-group style file systems
56 */
57
58 /*
59 * The size of a cylinder group is calculated by CGSIZE. The maximum size
60 * is limited by the fact that cylinder groups are at most one block.
61 * Its size is derived from the size of the maps maintained in the
62 * cylinder group and the (struct cg) size.
63 */
64 #define CGSIZE(fs) \
65 /* base cg */ (sizeof(struct cg) + \
66 /* blktot size */ (fs)->fs_cpg * sizeof(long) + \
67 /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof(short) + \
68 /* inode map */ howmany((fs)->fs_ipg, NBBY) + \
69 /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY))
70
71 /*
72 * We limit the size of the inode map to be no more than a
73 * third of the cylinder group space, since we must leave at
74 * least an equal amount of space for the block map.
75 *
76 * N.B.: MAXIPG must be a multiple of INOPB(fs).
77 */
78 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
79
80 #define UMASK 0755
81 #define MAXINOPB (MAXBSIZE / sizeof(struct dinode))
82 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
83
84 /*
85 * variables set up by front end.
86 */
87 extern int mfs; /* run as the memory based filesystem */
88 extern int Nflag; /* run mkfs without writing file system */
89 extern int fssize; /* file system size */
90 extern int ntracks; /* # tracks/cylinder */
91 extern int nsectors; /* # sectors/track */
92 extern int nphyssectors; /* # sectors/track including spares */
93 extern int secpercyl; /* sectors per cylinder */
94 extern int sectorsize; /* bytes/sector */
95 extern int rpm; /* revolutions/minute of drive */
96 extern int interleave; /* hardware sector interleave */
97 extern int trackskew; /* sector 0 skew, per track */
98 extern int headswitch; /* head switch time, usec */
99 extern int trackseek; /* track-to-track seek, usec */
100 extern int fsize; /* fragment size */
101 extern int bsize; /* block size */
102 extern int cpg; /* cylinders/cylinder group */
103 extern int cpgflg; /* cylinders/cylinder group flag was given */
104 extern int minfree; /* free space threshold */
105 extern int opt; /* optimization preference (space or time) */
106 extern int density; /* number of bytes per inode */
107 extern int maxcontig; /* max contiguous blocks to allocate */
108 extern int rotdelay; /* rotational delay between blocks */
109 extern int maxbpg; /* maximum blocks per file in a cyl group */
110 extern int nrpos; /* # of distinguished rotational positions */
111 extern int bbsize; /* boot block size */
112 extern int sbsize; /* superblock size */
113 extern u_long memleft; /* virtual memory available */
114 extern caddr_t membase; /* start address of memory based filesystem */
115 extern caddr_t malloc(), calloc();
116
117 union {
118 struct fs fs;
119 char pad[SBSIZE];
120 } fsun;
121 #define sblock fsun.fs
122 struct csum *fscs;
123
124 union {
125 struct cg cg;
126 char pad[MAXBSIZE];
127 } cgun;
128 #define acg cgun.cg
129
130 struct dinode zino[MAXBSIZE / sizeof(struct dinode)];
131
132 int fsi, fso;
133 daddr_t alloc();
134
135 mkfs(pp, fsys, fi, fo)
136 struct partition *pp;
137 char *fsys;
138 int fi, fo;
139 {
140 register long i, mincpc, mincpg, inospercg;
141 long cylno, rpos, blk, j, warn = 0;
142 long used, mincpgcnt, bpcg;
143 long mapcramped, inodecramped;
144 long postblsize, rotblsize, totalsbsize;
145 int ppid, status;
146 time_t utime;
147 void started();
148
149 #ifndef STANDALONE
150 time(&utime);
151 #endif
152 if (mfs) {
153 ppid = getpid();
154 (void) signal(SIGUSR1, started);
155 if (i = fork()) {
156 if (i == -1) {
157 perror("mount_mfs");
158 exit(10);
159 }
160 if (waitpid(i, &status, 0) != -1 && WIFEXITED(status))
161 exit(WEXITSTATUS(status));
162 exit(11);
163 /* NOTREACHED */
164 }
165 (void)malloc(0);
166 if (fssize * sectorsize > memleft)
167 fssize = (memleft - 16384) / sectorsize;
168 if ((membase = malloc(fssize * sectorsize)) == 0)
169 exit(12);
170 }
171 fsi = fi;
172 fso = fo;
173 /*
174 * Validate the given file system size.
175 * Verify that its last block can actually be accessed.
176 */
177 if (fssize <= 0)
178 printf("preposterous size %d\n", fssize), exit(13);
179 wtfs(fssize - 1, sectorsize, (char *)&sblock);
180 /*
181 * collect and verify the sector and track info
182 */
183 sblock.fs_nsect = nsectors;
184 sblock.fs_ntrak = ntracks;
185 if (sblock.fs_ntrak <= 0)
186 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
187 if (sblock.fs_nsect <= 0)
188 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
189 /*
190 * collect and verify the block and fragment sizes
191 */
192 sblock.fs_bsize = bsize;
193 sblock.fs_fsize = fsize;
194 if (!POWEROF2(sblock.fs_bsize)) {
195 printf("block size must be a power of 2, not %d\n",
196 sblock.fs_bsize);
197 exit(16);
198 }
199 if (!POWEROF2(sblock.fs_fsize)) {
200 printf("fragment size must be a power of 2, not %d\n",
201 sblock.fs_fsize);
202 exit(17);
203 }
204 if (sblock.fs_fsize < sectorsize) {
205 printf("fragment size %d is too small, minimum is %d\n",
206 sblock.fs_fsize, sectorsize);
207 exit(18);
208 }
209 if (sblock.fs_bsize < MINBSIZE) {
210 printf("block size %d is too small, minimum is %d\n",
211 sblock.fs_bsize, MINBSIZE);
212 exit(19);
213 }
214 if (sblock.fs_bsize < sblock.fs_fsize) {
215 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
216 sblock.fs_bsize, sblock.fs_fsize);
217 exit(20);
218 }
219 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
220 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
221 /*
222 * Planning now for future expansion.
223 */
224 # if (BYTE_ORDER == BIG_ENDIAN)
225 sblock.fs_qbmask.val[0] = 0;
226 sblock.fs_qbmask.val[1] = ~sblock.fs_bmask;
227 sblock.fs_qfmask.val[0] = 0;
228 sblock.fs_qfmask.val[1] = ~sblock.fs_fmask;
229 # endif /* BIG_ENDIAN */
230 # if (BYTE_ORDER == LITTLE_ENDIAN)
231 sblock.fs_qbmask.val[0] = ~sblock.fs_bmask;
232 sblock.fs_qbmask.val[1] = 0;
233 sblock.fs_qfmask.val[0] = ~sblock.fs_fmask;
234 sblock.fs_qfmask.val[1] = 0;
235 # endif /* LITTLE_ENDIAN */
236 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
237 sblock.fs_bshift++;
238 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
239 sblock.fs_fshift++;
240 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
241 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
242 sblock.fs_fragshift++;
243 if (sblock.fs_frag > MAXFRAG) {
244 printf("fragment size %d is too small, minimum with block size %d is %d\n",
245 sblock.fs_fsize, sblock.fs_bsize,
246 sblock.fs_bsize / MAXFRAG);
247 exit(21);
248 }
249 sblock.fs_nrpos = nrpos;
250 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
251 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode);
252 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
253 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
254 sblock.fs_fsbtodb++;
255 sblock.fs_sblkno =
256 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
257 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
258 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
259 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
260 sblock.fs_cgoffset = roundup(
261 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
262 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
263 sblock.fs_cgmask <<= 1;
264 if (!POWEROF2(sblock.fs_ntrak))
265 sblock.fs_cgmask <<= 1;
266 /*
267 * Validate specified/determined secpercyl
268 * and calculate minimum cylinders per group.
269 */
270 sblock.fs_spc = secpercyl;
271 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
272 sblock.fs_cpc > 1 && (i & 1) == 0;
273 sblock.fs_cpc >>= 1, i >>= 1)
274 /* void */;
275 mincpc = sblock.fs_cpc;
276 bpcg = sblock.fs_spc * sectorsize;
277 inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock));
278 if (inospercg > MAXIPG(&sblock))
279 inospercg = MAXIPG(&sblock);
280 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
281 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
282 sblock.fs_spc);
283 mincpg = roundup(mincpgcnt, mincpc);
284 /*
285 * Insure that cylinder group with mincpg has enough space
286 * for block maps
287 */
288 sblock.fs_cpg = mincpg;
289 sblock.fs_ipg = inospercg;
290 mapcramped = 0;
291 while (CGSIZE(&sblock) > sblock.fs_bsize) {
292 mapcramped = 1;
293 if (sblock.fs_bsize < MAXBSIZE) {
294 sblock.fs_bsize <<= 1;
295 if ((i & 1) == 0) {
296 i >>= 1;
297 } else {
298 sblock.fs_cpc <<= 1;
299 mincpc <<= 1;
300 mincpg = roundup(mincpgcnt, mincpc);
301 sblock.fs_cpg = mincpg;
302 }
303 sblock.fs_frag <<= 1;
304 sblock.fs_fragshift += 1;
305 if (sblock.fs_frag <= MAXFRAG)
306 continue;
307 }
308 if (sblock.fs_fsize == sblock.fs_bsize) {
309 printf("There is no block size that");
310 printf(" can support this disk\n");
311 exit(22);
312 }
313 sblock.fs_frag >>= 1;
314 sblock.fs_fragshift -= 1;
315 sblock.fs_fsize <<= 1;
316 sblock.fs_nspf <<= 1;
317 }
318 /*
319 * Insure that cylinder group with mincpg has enough space for inodes
320 */
321 inodecramped = 0;
322 used *= sectorsize;
323 inospercg = roundup((mincpg * bpcg - used) / density, INOPB(&sblock));
324 sblock.fs_ipg = inospercg;
325 while (inospercg > MAXIPG(&sblock)) {
326 inodecramped = 1;
327 if (mincpc == 1 || sblock.fs_frag == 1 ||
328 sblock.fs_bsize == MINBSIZE)
329 break;
330 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
331 "minimum bytes per inode is",
332 (mincpg * bpcg - used) / MAXIPG(&sblock) + 1);
333 sblock.fs_bsize >>= 1;
334 sblock.fs_frag >>= 1;
335 sblock.fs_fragshift -= 1;
336 mincpc >>= 1;
337 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
338 if (CGSIZE(&sblock) > sblock.fs_bsize) {
339 sblock.fs_bsize <<= 1;
340 break;
341 }
342 mincpg = sblock.fs_cpg;
343 inospercg =
344 roundup((mincpg * bpcg - used) / density, INOPB(&sblock));
345 sblock.fs_ipg = inospercg;
346 }
347 if (inodecramped) {
348 if (inospercg > MAXIPG(&sblock)) {
349 printf("Minimum bytes per inode is %d\n",
350 (mincpg * bpcg - used) / MAXIPG(&sblock) + 1);
351 } else if (!mapcramped) {
352 printf("With %d bytes per inode, ", density);
353 printf("minimum cylinders per group is %d\n", mincpg);
354 }
355 }
356 if (mapcramped) {
357 printf("With %d sectors per cylinder, ", sblock.fs_spc);
358 printf("minimum cylinders per group is %d\n", mincpg);
359 }
360 if (inodecramped || mapcramped) {
361 if (sblock.fs_bsize != bsize)
362 printf("%s to be changed from %d to %d\n",
363 "This requires the block size",
364 bsize, sblock.fs_bsize);
365 if (sblock.fs_fsize != fsize)
366 printf("\t%s to be changed from %d to %d\n",
367 "and the fragment size",
368 fsize, sblock.fs_fsize);
369 exit(23);
370 }
371 /*
372 * Calculate the number of cylinders per group
373 */
374 sblock.fs_cpg = cpg;
375 if (sblock.fs_cpg % mincpc != 0) {
376 printf("%s groups must have a multiple of %d cylinders\n",
377 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
378 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
379 if (!cpgflg)
380 cpg = sblock.fs_cpg;
381 }
382 /*
383 * Must insure there is enough space for inodes
384 */
385 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
386 INOPB(&sblock));
387 while (sblock.fs_ipg > MAXIPG(&sblock)) {
388 inodecramped = 1;
389 sblock.fs_cpg -= mincpc;
390 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
391 INOPB(&sblock));
392 }
393 /*
394 * Must insure there is enough space to hold block map
395 */
396 while (CGSIZE(&sblock) > sblock.fs_bsize) {
397 mapcramped = 1;
398 sblock.fs_cpg -= mincpc;
399 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
400 INOPB(&sblock));
401 }
402 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
403 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
404 printf("panic (fs_cpg * fs_spc) % NSPF != 0");
405 exit(24);
406 }
407 if (sblock.fs_cpg < mincpg) {
408 printf("cylinder groups must have at least %d cylinders\n",
409 mincpg);
410 exit(25);
411 } else if (sblock.fs_cpg != cpg) {
412 if (!cpgflg)
413 printf("Warning: ");
414 else if (!mapcramped && !inodecramped)
415 exit(26);
416 if (mapcramped && inodecramped)
417 printf("Block size and bytes per inode restrict");
418 else if (mapcramped)
419 printf("Block size restricts");
420 else
421 printf("Bytes per inode restrict");
422 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
423 if (cpgflg)
424 exit(27);
425 }
426 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
427 /*
428 * Now have size for file system and nsect and ntrak.
429 * Determine number of cylinders and blocks in the file system.
430 */
431 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
432 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
433 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
434 sblock.fs_ncyl++;
435 warn = 1;
436 }
437 if (sblock.fs_ncyl < 1) {
438 printf("file systems must have at least one cylinder\n");
439 exit(28);
440 }
441 /*
442 * Determine feasability/values of rotational layout tables.
443 *
444 * The size of the rotational layout tables is limited by the
445 * size of the superblock, SBSIZE. The amount of space available
446 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
447 * The size of these tables is inversely proportional to the block
448 * size of the file system. The size increases if sectors per track
449 * are not powers of two, because more cylinders must be described
450 * by the tables before the rotational pattern repeats (fs_cpc).
451 */
452 sblock.fs_interleave = interleave;
453 sblock.fs_trackskew = trackskew;
454 sblock.fs_npsect = nphyssectors;
455 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
456 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
457 if (sblock.fs_ntrak == 1) {
458 sblock.fs_cpc = 0;
459 goto next;
460 }
461 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(short);
462 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
463 totalsbsize = sizeof(struct fs) + rotblsize;
464 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
465 /* use old static table space */
466 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
467 (char *)(&sblock.fs_link);
468 sblock.fs_rotbloff = &sblock.fs_space[0] -
469 (u_char *)(&sblock.fs_link);
470 } else {
471 /* use dynamic table space */
472 sblock.fs_postbloff = &sblock.fs_space[0] -
473 (u_char *)(&sblock.fs_link);
474 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
475 totalsbsize += postblsize;
476 }
477 if (totalsbsize > SBSIZE ||
478 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
479 printf("%s %s %d %s %d.%s",
480 "Warning: insufficient space in super block for\n",
481 "rotational layout tables with nsect", sblock.fs_nsect,
482 "and ntrak", sblock.fs_ntrak,
483 "\nFile system performance may be impaired.\n");
484 sblock.fs_cpc = 0;
485 goto next;
486 }
487 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
488 /*
489 * calculate the available blocks for each rotational position
490 */
491 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
492 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
493 fs_postbl(&sblock, cylno)[rpos] = -1;
494 for (i = (rotblsize - 1) * sblock.fs_frag;
495 i >= 0; i -= sblock.fs_frag) {
496 cylno = cbtocylno(&sblock, i);
497 rpos = cbtorpos(&sblock, i);
498 blk = fragstoblks(&sblock, i);
499 if (fs_postbl(&sblock, cylno)[rpos] == -1)
500 fs_rotbl(&sblock)[blk] = 0;
501 else
502 fs_rotbl(&sblock)[blk] =
503 fs_postbl(&sblock, cylno)[rpos] - blk;
504 fs_postbl(&sblock, cylno)[rpos] = blk;
505 }
506 next:
507 /*
508 * Compute/validate number of cylinder groups.
509 */
510 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
511 if (sblock.fs_ncyl % sblock.fs_cpg)
512 sblock.fs_ncg++;
513 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
514 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
515 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
516 printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
517 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
518 sblock.fs_fpg / sblock.fs_frag);
519 printf("number of cylinders per cylinder group (%d) %s.\n",
520 sblock.fs_cpg, "must be increased");
521 exit(29);
522 }
523 j = sblock.fs_ncg - 1;
524 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
525 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
526 if (j == 0) {
527 printf("Filesystem must have at least %d sectors\n",
528 NSPF(&sblock) *
529 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
530 exit(30);
531 }
532 printf("Warning: inode blocks/cyl group (%d) >= data blocks (%d) in last\n",
533 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
534 i / sblock.fs_frag);
535 printf(" cylinder group. This implies %d sector(s) cannot be allocated.\n",
536 i * NSPF(&sblock));
537 sblock.fs_ncg--;
538 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
539 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
540 NSPF(&sblock);
541 warn = 0;
542 }
543 if (warn && !mfs) {
544 printf("Warning: %d sector(s) in last cylinder unallocated\n",
545 sblock.fs_spc -
546 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
547 * sblock.fs_spc));
548 }
549 /*
550 * fill in remaining fields of the super block
551 */
552 sblock.fs_csaddr = cgdmin(&sblock, 0);
553 sblock.fs_cssize =
554 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
555 i = sblock.fs_bsize / sizeof(struct csum);
556 sblock.fs_csmask = ~(i - 1);
557 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
558 sblock.fs_csshift++;
559 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
560 sblock.fs_magic = FS_MAGIC;
561 sblock.fs_rotdelay = rotdelay;
562 sblock.fs_minfree = minfree;
563 sblock.fs_maxcontig = maxcontig;
564 sblock.fs_headswitch = headswitch;
565 sblock.fs_trkseek = trackseek;
566 sblock.fs_maxbpg = maxbpg;
567 sblock.fs_rps = rpm / 60;
568 sblock.fs_optim = opt;
569 sblock.fs_cgrotor = 0;
570 sblock.fs_cstotal.cs_ndir = 0;
571 sblock.fs_cstotal.cs_nbfree = 0;
572 sblock.fs_cstotal.cs_nifree = 0;
573 sblock.fs_cstotal.cs_nffree = 0;
574 sblock.fs_fmod = 0;
575 sblock.fs_ronly = 0;
576 /*
577 * Dump out summary information about file system.
578 */
579 if (!mfs) {
580 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
581 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
582 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
583 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
584 (float)sblock.fs_size * sblock.fs_fsize * 1e-6,
585 sblock.fs_ncg, sblock.fs_cpg,
586 (float)sblock.fs_fpg * sblock.fs_fsize * 1e-6,
587 sblock.fs_ipg);
588 }
589 /*
590 * Now build the cylinders group blocks and
591 * then print out indices of cylinder groups.
592 */
593 if (!mfs)
594 printf("super-block backups (for fsck -b #) at:");
595 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
596 initcg(cylno, utime);
597 if (mfs)
598 continue;
599 if (cylno % 9 == 0)
600 printf("\n");
601 printf(" %d,", fsbtodb(&sblock, cgsblock(&sblock, cylno)));
602 }
603 if (!mfs)
604 printf("\n");
605 if (Nflag && !mfs)
606 exit(0);
607 /*
608 * Now construct the initial file system,
609 * then write out the super-block.
610 */
611 fsinit(utime);
612 sblock.fs_time = utime;
613 wtfs(SBOFF / sectorsize, sbsize, (char *)&sblock);
614 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
615 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
616 sblock.fs_cssize - i < sblock.fs_bsize ?
617 sblock.fs_cssize - i : sblock.fs_bsize,
618 ((char *)fscs) + i);
619 /*
620 * Write out the duplicate super blocks
621 */
622 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
623 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
624 sbsize, (char *)&sblock);
625 /*
626 * Update information about this partion in pack
627 * label, to that it may be updated on disk.
628 */
629 pp->p_fstype = FS_BSDFFS;
630 pp->p_fsize = sblock.fs_fsize;
631 pp->p_frag = sblock.fs_frag;
632 pp->p_cpg = sblock.fs_cpg;
633 /*
634 * Notify parent process of success.
635 * Dissociate from session and tty.
636 */
637 if (mfs) {
638 kill(ppid, SIGUSR1);
639 (void) setsid();
640 (void) close(0);
641 (void) close(1);
642 (void) close(2);
643 (void) chdir("/");
644 }
645 }
646
647 /*
648 * Initialize a cylinder group.
649 */
650 initcg(cylno, utime)
651 int cylno;
652 time_t utime;
653 {
654 daddr_t cbase, d, dlower, dupper, dmax;
655 long i, j, s;
656 register struct csum *cs;
657
658 /*
659 * Determine block bounds for cylinder group.
660 * Allow space for super block summary information in first
661 * cylinder group.
662 */
663 cbase = cgbase(&sblock, cylno);
664 dmax = cbase + sblock.fs_fpg;
665 if (dmax > sblock.fs_size)
666 dmax = sblock.fs_size;
667 dlower = cgsblock(&sblock, cylno) - cbase;
668 dupper = cgdmin(&sblock, cylno) - cbase;
669 if (cylno == 0)
670 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
671 cs = fscs + cylno;
672 acg.cg_time = utime;
673 acg.cg_magic = CG_MAGIC;
674 acg.cg_cgx = cylno;
675 if (cylno == sblock.fs_ncg - 1)
676 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
677 else
678 acg.cg_ncyl = sblock.fs_cpg;
679 acg.cg_niblk = sblock.fs_ipg;
680 acg.cg_ndblk = dmax - cbase;
681 acg.cg_cs.cs_ndir = 0;
682 acg.cg_cs.cs_nffree = 0;
683 acg.cg_cs.cs_nbfree = 0;
684 acg.cg_cs.cs_nifree = 0;
685 acg.cg_rotor = 0;
686 acg.cg_frotor = 0;
687 acg.cg_irotor = 0;
688 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_link);
689 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(long);
690 acg.cg_iusedoff = acg.cg_boff +
691 sblock.fs_cpg * sblock.fs_nrpos * sizeof(short);
692 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
693 acg.cg_nextfreeoff = acg.cg_freeoff +
694 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
695 for (i = 0; i < sblock.fs_frag; i++) {
696 acg.cg_frsum[i] = 0;
697 }
698 bzero((caddr_t)cg_inosused(&acg), acg.cg_freeoff - acg.cg_iusedoff);
699 acg.cg_cs.cs_nifree += sblock.fs_ipg;
700 if (cylno == 0)
701 for (i = 0; i < ROOTINO; i++) {
702 setbit(cg_inosused(&acg), i);
703 acg.cg_cs.cs_nifree--;
704 }
705 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
706 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
707 sblock.fs_bsize, (char *)zino);
708 bzero((caddr_t)cg_blktot(&acg), acg.cg_boff - acg.cg_btotoff);
709 bzero((caddr_t)cg_blks(&sblock, &acg, 0),
710 acg.cg_iusedoff - acg.cg_boff);
711 bzero((caddr_t)cg_blksfree(&acg), acg.cg_nextfreeoff - acg.cg_freeoff);
712 if (cylno > 0) {
713 /*
714 * In cylno 0, beginning space is reserved
715 * for boot and super blocks.
716 */
717 for (d = 0; d < dlower; d += sblock.fs_frag) {
718 setblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
719 acg.cg_cs.cs_nbfree++;
720 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
721 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
722 [cbtorpos(&sblock, d)]++;
723 }
724 sblock.fs_dsize += dlower;
725 }
726 sblock.fs_dsize += acg.cg_ndblk - dupper;
727 if (i = dupper % sblock.fs_frag) {
728 acg.cg_frsum[sblock.fs_frag - i]++;
729 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
730 setbit(cg_blksfree(&acg), dupper);
731 acg.cg_cs.cs_nffree++;
732 }
733 }
734 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
735 setblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
736 acg.cg_cs.cs_nbfree++;
737 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
738 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
739 [cbtorpos(&sblock, d)]++;
740 d += sblock.fs_frag;
741 }
742 if (d < dmax - cbase) {
743 acg.cg_frsum[dmax - cbase - d]++;
744 for (; d < dmax - cbase; d++) {
745 setbit(cg_blksfree(&acg), d);
746 acg.cg_cs.cs_nffree++;
747 }
748 }
749 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
750 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
751 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
752 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
753 *cs = acg.cg_cs;
754 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
755 sblock.fs_bsize, (char *)&acg);
756 }
757
758 /*
759 * initialize the file system
760 */
761 struct dinode node;
762
763 #ifdef LOSTDIR
764 #define PREDEFDIR 3
765 #else
766 #define PREDEFDIR 2
767 #endif
768
769 struct direct root_dir[] = {
770 { ROOTINO, sizeof(struct direct), 1, "." },
771 { ROOTINO, sizeof(struct direct), 2, ".." },
772 #ifdef LOSTDIR
773 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
774 #endif
775 };
776 #ifdef LOSTDIR
777 struct direct lost_found_dir[] = {
778 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
779 { ROOTINO, sizeof(struct direct), 2, ".." },
780 { 0, DIRBLKSIZ, 0, 0 },
781 };
782 #endif
783 char buf[MAXBSIZE];
784
785 fsinit(utime)
786 time_t utime;
787 {
788 int i;
789
790 /*
791 * initialize the node
792 */
793 node.di_atime = utime;
794 node.di_mtime = utime;
795 node.di_ctime = utime;
796 #ifdef LOSTDIR
797 /*
798 * create the lost+found directory
799 */
800 (void)makedir(lost_found_dir, 2);
801 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
802 bcopy(&lost_found_dir[2], &buf[i], DIRSIZ(&lost_found_dir[2]));
803 node.di_mode = IFDIR | UMASK;
804 node.di_nlink = 2;
805 node.di_size = sblock.fs_bsize;
806 node.di_db[0] = alloc(node.di_size, node.di_mode);
807 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
808 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
809 iput(&node, LOSTFOUNDINO);
810 #endif
811 /*
812 * create the root directory
813 */
814 if (mfs)
815 node.di_mode = IFDIR | 01777;
816 else
817 node.di_mode = IFDIR | UMASK;
818 node.di_nlink = PREDEFDIR;
819 node.di_size = makedir(root_dir, PREDEFDIR);
820 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
821 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
822 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
823 iput(&node, ROOTINO);
824 }
825
826 /*
827 * construct a set of directory entries in "buf".
828 * return size of directory.
829 */
830 makedir(protodir, entries)
831 register struct direct *protodir;
832 int entries;
833 {
834 char *cp;
835 int i, spcleft;
836
837 spcleft = DIRBLKSIZ;
838 for (cp = buf, i = 0; i < entries - 1; i++) {
839 protodir[i].d_reclen = DIRSIZ(&protodir[i]);
840 bcopy(&protodir[i], cp, protodir[i].d_reclen);
841 cp += protodir[i].d_reclen;
842 spcleft -= protodir[i].d_reclen;
843 }
844 protodir[i].d_reclen = spcleft;
845 bcopy(&protodir[i], cp, DIRSIZ(&protodir[i]));
846 return (DIRBLKSIZ);
847 }
848
849 /*
850 * allocate a block or frag
851 */
852 daddr_t
853 alloc(size, mode)
854 int size;
855 int mode;
856 {
857 int i, frag;
858 daddr_t d;
859
860 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
861 (char *)&acg);
862 if (acg.cg_magic != CG_MAGIC) {
863 printf("cg 0: bad magic number\n");
864 return (0);
865 }
866 if (acg.cg_cs.cs_nbfree == 0) {
867 printf("first cylinder group ran out of space\n");
868 return (0);
869 }
870 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
871 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
872 goto goth;
873 printf("internal error: can't find block in cyl 0\n");
874 return (0);
875 goth:
876 clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
877 acg.cg_cs.cs_nbfree--;
878 sblock.fs_cstotal.cs_nbfree--;
879 fscs[0].cs_nbfree--;
880 if (mode & IFDIR) {
881 acg.cg_cs.cs_ndir++;
882 sblock.fs_cstotal.cs_ndir++;
883 fscs[0].cs_ndir++;
884 }
885 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
886 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
887 if (size != sblock.fs_bsize) {
888 frag = howmany(size, sblock.fs_fsize);
889 fscs[0].cs_nffree += sblock.fs_frag - frag;
890 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
891 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
892 acg.cg_frsum[sblock.fs_frag - frag]++;
893 for (i = frag; i < sblock.fs_frag; i++)
894 setbit(cg_blksfree(&acg), d + i);
895 }
896 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
897 (char *)&acg);
898 return (d);
899 }
900
901 /*
902 * Allocate an inode on the disk
903 */
904 iput(ip, ino)
905 register struct dinode *ip;
906 register ino_t ino;
907 {
908 struct dinode buf[MAXINOPB];
909 daddr_t d;
910 int c;
911
912 c = itog(&sblock, ino);
913 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
914 (char *)&acg);
915 if (acg.cg_magic != CG_MAGIC) {
916 printf("cg 0: bad magic number\n");
917 exit(31);
918 }
919 acg.cg_cs.cs_nifree--;
920 setbit(cg_inosused(&acg), ino);
921 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
922 (char *)&acg);
923 sblock.fs_cstotal.cs_nifree--;
924 fscs[0].cs_nifree--;
925 if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
926 printf("fsinit: inode value out of range (%d).\n", ino);
927 exit(32);
928 }
929 d = fsbtodb(&sblock, itod(&sblock, ino));
930 rdfs(d, sblock.fs_bsize, buf);
931 buf[itoo(&sblock, ino)] = *ip;
932 wtfs(d, sblock.fs_bsize, buf);
933 }
934
935 /*
936 * Notify parent process that the filesystem has created itself successfully.
937 */
938 void
939 started()
940 {
941
942 exit(0);
943 }
944
945 /*
946 * Replace libc function with one suited to our needs.
947 */
948 caddr_t
949 malloc(size)
950 register u_long size;
951 {
952 u_long base, i;
953 static u_long pgsz;
954 struct rlimit rlp;
955
956 if (pgsz == 0) {
957 base = sbrk(0);
958 pgsz = getpagesize() - 1;
959 i = (base + pgsz) &~ pgsz;
960 base = sbrk(i - base);
961 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
962 perror("getrlimit");
963 rlp.rlim_cur = rlp.rlim_max;
964 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
965 perror("setrlimit");
966 memleft = rlp.rlim_max - base;
967 }
968 size = (size + pgsz) &~ pgsz;
969 if (size > memleft)
970 size = memleft;
971 memleft -= size;
972 if (size == 0)
973 return (0);
974 return ((caddr_t)sbrk(size));
975 }
976
977 /*
978 * Replace libc function with one suited to our needs.
979 */
980 caddr_t
981 realloc(ptr, size)
982 char *ptr;
983 u_long size;
984 {
985
986 /* always fail for now */
987 return ((caddr_t)0);
988 }
989
990 /*
991 * Replace libc function with one suited to our needs.
992 */
993 char *
994 calloc(size, numelm)
995 u_long size, numelm;
996 {
997 caddr_t base;
998
999 size *= numelm;
1000 base = malloc(size);
1001 bzero(base, size);
1002 return (base);
1003 }
1004
1005 /*
1006 * Replace libc function with one suited to our needs.
1007 */
1008 free(ptr)
1009 char *ptr;
1010 {
1011
1012 /* do not worry about it for now */
1013 }
1014
1015 /*
1016 * read a block from the file system
1017 */
1018 rdfs(bno, size, bf)
1019 daddr_t bno;
1020 int size;
1021 char *bf;
1022 {
1023 int n;
1024
1025 if (mfs) {
1026 bcopy(membase + bno * sectorsize, bf, size);
1027 return;
1028 }
1029 if (lseek(fsi, bno * sectorsize, 0) < 0) {
1030 printf("seek error: %ld\n", bno);
1031 perror("rdfs");
1032 exit(33);
1033 }
1034 n = read(fsi, bf, size);
1035 if(n != size) {
1036 printf("read error: %ld\n", bno);
1037 perror("rdfs");
1038 exit(34);
1039 }
1040 }
1041
1042 /*
1043 * write a block to the file system
1044 */
1045 wtfs(bno, size, bf)
1046 daddr_t bno;
1047 int size;
1048 char *bf;
1049 {
1050 int n;
1051
1052 if (mfs) {
1053 bcopy(bf, membase + bno * sectorsize, size);
1054 return;
1055 }
1056 if (Nflag)
1057 return;
1058 if (lseek(fso, bno * sectorsize, 0) < 0) {
1059 printf("seek error: %ld\n", bno);
1060 perror("wtfs");
1061 exit(35);
1062 }
1063 n = write(fso, bf, size);
1064 if(n != size) {
1065 printf("write error: %ld\n", bno);
1066 perror("wtfs");
1067 exit(36);
1068 }
1069 }
1070
1071 /*
1072 * check if a block is available
1073 */
1074 isblock(fs, cp, h)
1075 struct fs *fs;
1076 unsigned char *cp;
1077 int h;
1078 {
1079 unsigned char mask;
1080
1081 switch (fs->fs_frag) {
1082 case 8:
1083 return (cp[h] == 0xff);
1084 case 4:
1085 mask = 0x0f << ((h & 0x1) << 2);
1086 return ((cp[h >> 1] & mask) == mask);
1087 case 2:
1088 mask = 0x03 << ((h & 0x3) << 1);
1089 return ((cp[h >> 2] & mask) == mask);
1090 case 1:
1091 mask = 0x01 << (h & 0x7);
1092 return ((cp[h >> 3] & mask) == mask);
1093 default:
1094 #ifdef STANDALONE
1095 printf("isblock bad fs_frag %d\n", fs->fs_frag);
1096 #else
1097 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1098 #endif
1099 return (0);
1100 }
1101 }
1102
1103 /*
1104 * take a block out of the map
1105 */
1106 clrblock(fs, cp, h)
1107 struct fs *fs;
1108 unsigned char *cp;
1109 int h;
1110 {
1111 switch ((fs)->fs_frag) {
1112 case 8:
1113 cp[h] = 0;
1114 return;
1115 case 4:
1116 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1117 return;
1118 case 2:
1119 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1120 return;
1121 case 1:
1122 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1123 return;
1124 default:
1125 #ifdef STANDALONE
1126 printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1127 #else
1128 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1129 #endif
1130 return;
1131 }
1132 }
1133
1134 /*
1135 * put a block into the map
1136 */
1137 setblock(fs, cp, h)
1138 struct fs *fs;
1139 unsigned char *cp;
1140 int h;
1141 {
1142 switch (fs->fs_frag) {
1143 case 8:
1144 cp[h] = 0xff;
1145 return;
1146 case 4:
1147 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1148 return;
1149 case 2:
1150 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1151 return;
1152 case 1:
1153 cp[h >> 3] |= (0x01 << (h & 0x7));
1154 return;
1155 default:
1156 #ifdef STANDALONE
1157 printf("setblock bad fs_frag %d\n", fs->fs_frag);
1158 #else
1159 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1160 #endif
1161 return;
1162 }
1163 }
1164