Home | History | Annotate | Line # | Download | only in newfs
mkfs.c revision 1.59
      1 /*	$NetBSD: mkfs.c,v 1.59 2001/12/31 07:07:58 lukem Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1980, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 #ifndef lint
     38 #if 0
     39 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
     40 #else
     41 __RCSID("$NetBSD: mkfs.c,v 1.59 2001/12/31 07:07:58 lukem Exp $");
     42 #endif
     43 #endif /* not lint */
     44 
     45 #include <sys/param.h>
     46 #include <sys/time.h>
     47 #include <sys/resource.h>
     48 #include <ufs/ufs/dinode.h>
     49 #include <ufs/ufs/dir.h>
     50 #include <ufs/ufs/ufs_bswap.h>
     51 #include <ufs/ffs/fs.h>
     52 #include <ufs/ffs/ffs_extern.h>
     53 #include <sys/disklabel.h>
     54 
     55 #include <errno.h>
     56 #include <string.h>
     57 #include <unistd.h>
     58 #include <stdlib.h>
     59 
     60 #ifndef STANDALONE
     61 #include <stdio.h>
     62 #endif
     63 
     64 #include "extern.h"
     65 
     66 
     67 static void initcg(int, time_t);
     68 static void fsinit(time_t);
     69 static int makedir(struct direct *, int);
     70 static daddr_t alloc(int, int);
     71 static void iput(struct dinode *, ino_t);
     72 static void rdfs(daddr_t, int, void *);
     73 static void wtfs(daddr_t, int, void *);
     74 static int isblock(struct fs *, unsigned char *, int);
     75 static void clrblock(struct fs *, unsigned char *, int);
     76 static void setblock(struct fs *, unsigned char *, int);
     77 static int32_t calcipg(int32_t, int32_t, off_t *);
     78 static void swap_cg(struct cg *, struct cg *);
     79 
     80 static int count_digits(int);
     81 
     82 /*
     83  * make file system for cylinder-group style file systems
     84  */
     85 
     86 /*
     87  * We limit the size of the inode map to be no more than a
     88  * third of the cylinder group space, since we must leave at
     89  * least an equal amount of space for the block map.
     90  *
     91  * N.B.: MAXIPG must be a multiple of INOPB(fs).
     92  */
     93 #define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
     94 
     95 #define UMASK		0755
     96 #define MAXINOPB	(MAXBSIZE / DINODE_SIZE)
     97 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
     98 
     99 union {
    100 	struct fs fs;
    101 	char pad[SBSIZE];
    102 } fsun;
    103 #define	sblock	fsun.fs
    104 struct	csum *fscs;
    105 
    106 union {
    107 	struct cg cg;
    108 	char pad[MAXBSIZE];
    109 } cgun;
    110 #define	acg	cgun.cg
    111 
    112 struct dinode zino[MAXBSIZE / DINODE_SIZE];
    113 
    114 char writebuf[MAXBSIZE];
    115 
    116 int	fsi, fso;
    117 
    118 void
    119 mkfs(struct partition *pp, const char *fsys, int fi, int fo)
    120 {
    121 	int32_t i, mincpc, mincpg, inospercg;
    122 	int32_t cylno, rpos, blk, j, warn = 0;
    123 	int32_t used, mincpgcnt, bpcg;
    124 	off_t usedb;
    125 	int32_t mapcramped, inodecramped;
    126 	int32_t postblsize, rotblsize, totalsbsize;
    127 	time_t utime;
    128 	long long sizepb;
    129 	char *writebuf2;		/* dynamic buffer */
    130 	int nprintcols, printcolwidth;
    131 
    132 #ifndef STANDALONE
    133 	time(&utime);
    134 #endif
    135 	if (mfs) {
    136 		(void)malloc(0);
    137 		if (fssize * sectorsize > memleft)
    138 			fssize = (memleft - 16384) / sectorsize;
    139 		if ((membase = malloc(fssize * sectorsize)) == 0)
    140 			exit(12);
    141 	}
    142 	fsi = fi;
    143 	fso = fo;
    144 	if (Oflag) {
    145 		sblock.fs_inodefmt = FS_42INODEFMT;
    146 		sblock.fs_maxsymlinklen = 0;
    147 	} else {
    148 		sblock.fs_inodefmt = FS_44INODEFMT;
    149 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
    150 	}
    151 	/*
    152 	 * Validate the given file system size.
    153 	 * Verify that its last block can actually be accessed.
    154 	 */
    155 	if (fssize <= 0)
    156 		printf("preposterous size %d\n", fssize), exit(13);
    157 	wtfs(fssize - 1, sectorsize, (char *)&sblock);
    158 
    159 	/*
    160 	 * collect and verify the sector and track info
    161 	 */
    162 	sblock.fs_nsect = nsectors;
    163 	sblock.fs_ntrak = ntracks;
    164 	if (sblock.fs_ntrak <= 0)
    165 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
    166 	if (sblock.fs_nsect <= 0)
    167 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
    168 	/*
    169 	 * collect and verify the filesystem density info
    170 	 */
    171 	sblock.fs_avgfilesize = avgfilesize;
    172 	sblock.fs_avgfpdir = avgfpdir;
    173 	if (sblock.fs_avgfilesize <= 0)
    174 		printf("illegal expected average file size %d\n",
    175 		    sblock.fs_avgfilesize), exit(14);
    176 	if (sblock.fs_avgfpdir <= 0)
    177 		printf("illegal expected number of files per directory %d\n",
    178 		    sblock.fs_avgfpdir), exit(15);
    179 	/*
    180 	 * collect and verify the block and fragment sizes
    181 	 */
    182 	sblock.fs_bsize = bsize;
    183 	sblock.fs_fsize = fsize;
    184 	if (!POWEROF2(sblock.fs_bsize)) {
    185 		printf("block size must be a power of 2, not %d\n",
    186 		    sblock.fs_bsize);
    187 		exit(16);
    188 	}
    189 	if (!POWEROF2(sblock.fs_fsize)) {
    190 		printf("fragment size must be a power of 2, not %d\n",
    191 		    sblock.fs_fsize);
    192 		exit(17);
    193 	}
    194 	if (sblock.fs_fsize < sectorsize) {
    195 		printf("fragment size %d is too small, minimum is %d\n",
    196 		    sblock.fs_fsize, sectorsize);
    197 		exit(18);
    198 	}
    199 	if (sblock.fs_bsize < MINBSIZE) {
    200 		printf("block size %d is too small, minimum is %d\n",
    201 		    sblock.fs_bsize, MINBSIZE);
    202 		exit(19);
    203 	}
    204 	if (sblock.fs_bsize > MAXBSIZE) {
    205 		printf("block size %d is too large, maximum is %d\n",
    206 		    sblock.fs_bsize, MAXBSIZE);
    207 		exit(19);
    208 	}
    209 	if (sblock.fs_bsize < sblock.fs_fsize) {
    210 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
    211 		    sblock.fs_bsize, sblock.fs_fsize);
    212 		exit(20);
    213 	}
    214 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
    215 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
    216 	sblock.fs_qbmask = ~sblock.fs_bmask;
    217 	sblock.fs_qfmask = ~sblock.fs_fmask;
    218 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
    219 		sblock.fs_bshift++;
    220 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
    221 		sblock.fs_fshift++;
    222 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
    223 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
    224 		sblock.fs_fragshift++;
    225 	if (sblock.fs_frag > MAXFRAG) {
    226 		printf("fragment size %d is too small, "
    227 			"minimum with block size %d is %d\n",
    228 		    sblock.fs_fsize, sblock.fs_bsize,
    229 		    sblock.fs_bsize / MAXFRAG);
    230 		exit(21);
    231 	}
    232 	sblock.fs_nrpos = nrpos;
    233 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
    234 	sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
    235 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
    236 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
    237 		sblock.fs_fsbtodb++;
    238 	sblock.fs_sblkno =
    239 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
    240 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
    241 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
    242 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
    243 	sblock.fs_cgoffset = roundup(
    244 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
    245 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
    246 		sblock.fs_cgmask <<= 1;
    247 	if (!POWEROF2(sblock.fs_ntrak))
    248 		sblock.fs_cgmask <<= 1;
    249 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
    250 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
    251 		sizepb *= NINDIR(&sblock);
    252 		sblock.fs_maxfilesize += sizepb;
    253 	}
    254 	/*
    255 	 * Validate specified/determined secpercyl
    256 	 * and calculate minimum cylinders per group.
    257 	 */
    258 	sblock.fs_spc = secpercyl;
    259 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
    260 	     sblock.fs_cpc > 1 && (i & 1) == 0;
    261 	     sblock.fs_cpc >>= 1, i >>= 1)
    262 		/* void */;
    263 	mincpc = sblock.fs_cpc;
    264 	bpcg = sblock.fs_spc * sectorsize;
    265 	inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
    266 	if (inospercg > MAXIPG(&sblock))
    267 		inospercg = MAXIPG(&sblock);
    268 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
    269 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
    270 	    sblock.fs_spc);
    271 	mincpg = roundup(mincpgcnt, mincpc);
    272 	/*
    273 	 * Ensure that cylinder group with mincpg has enough space
    274 	 * for block maps.
    275 	 */
    276 	sblock.fs_cpg = mincpg;
    277 	sblock.fs_ipg = inospercg;
    278 	if (maxcontig > 1)
    279 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
    280 	mapcramped = 0;
    281 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
    282 		mapcramped = 1;
    283 		if (sblock.fs_bsize < MAXBSIZE) {
    284 			sblock.fs_bsize <<= 1;
    285 			if ((i & 1) == 0) {
    286 				i >>= 1;
    287 			} else {
    288 				sblock.fs_cpc <<= 1;
    289 				mincpc <<= 1;
    290 				mincpg = roundup(mincpgcnt, mincpc);
    291 				sblock.fs_cpg = mincpg;
    292 			}
    293 			sblock.fs_frag <<= 1;
    294 			sblock.fs_fragshift += 1;
    295 			if (sblock.fs_frag <= MAXFRAG)
    296 				continue;
    297 		}
    298 		if (sblock.fs_fsize == sblock.fs_bsize) {
    299 			printf("There is no block size that");
    300 			printf(" can support this disk\n");
    301 			exit(22);
    302 		}
    303 		sblock.fs_frag >>= 1;
    304 		sblock.fs_fragshift -= 1;
    305 		sblock.fs_fsize <<= 1;
    306 		sblock.fs_nspf <<= 1;
    307 	}
    308 	/*
    309 	 * Ensure that cylinder group with mincpg has enough space for inodes.
    310 	 */
    311 	inodecramped = 0;
    312 	inospercg = calcipg(mincpg, bpcg, &usedb);
    313 	sblock.fs_ipg = inospercg;
    314 	while (inospercg > MAXIPG(&sblock)) {
    315 		inodecramped = 1;
    316 		if (mincpc == 1 || sblock.fs_frag == 1 ||
    317 		    sblock.fs_bsize == MINBSIZE)
    318 			break;
    319 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
    320 		       "minimum bytes per inode is",
    321 		       (int)((mincpg * (off_t)bpcg - usedb)
    322 			     / MAXIPG(&sblock) + 1));
    323 		sblock.fs_bsize >>= 1;
    324 		sblock.fs_frag >>= 1;
    325 		sblock.fs_fragshift -= 1;
    326 		mincpc >>= 1;
    327 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
    328 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
    329 			sblock.fs_bsize <<= 1;
    330 			break;
    331 		}
    332 		mincpg = sblock.fs_cpg;
    333 		inospercg = calcipg(mincpg, bpcg, &usedb);
    334 		sblock.fs_ipg = inospercg;
    335 	}
    336 	if (inodecramped) {
    337 		if (inospercg > MAXIPG(&sblock)) {
    338 			printf("Minimum bytes per inode is %d\n",
    339 			       (int)((mincpg * (off_t)bpcg - usedb)
    340 				     / MAXIPG(&sblock) + 1));
    341 		} else if (!mapcramped) {
    342 			printf("With %d bytes per inode, ", density);
    343 			printf("minimum cylinders per group is %d\n", mincpg);
    344 		}
    345 	}
    346 	if (mapcramped) {
    347 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
    348 		printf("minimum cylinders per group is %d\n", mincpg);
    349 	}
    350 	if (inodecramped || mapcramped) {
    351 		if (sblock.fs_bsize != bsize)
    352 			printf("%s to be changed from %d to %d\n",
    353 			    "This requires the block size",
    354 			    bsize, sblock.fs_bsize);
    355 		if (sblock.fs_fsize != fsize)
    356 			printf("\t%s to be changed from %d to %d\n",
    357 			    "and the fragment size",
    358 			    fsize, sblock.fs_fsize);
    359 		exit(23);
    360 	}
    361 	/*
    362 	 * Calculate the number of cylinders per group
    363 	 */
    364 	sblock.fs_cpg = cpg;
    365 	if (sblock.fs_cpg % mincpc != 0) {
    366 		printf("%s groups must have a multiple of %d cylinders\n",
    367 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
    368 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
    369 		if (!cpgflg)
    370 			cpg = sblock.fs_cpg;
    371 	}
    372 	/*
    373 	 * Must ensure there is enough space for inodes.
    374 	 */
    375 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
    376 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
    377 		inodecramped = 1;
    378 		sblock.fs_cpg -= mincpc;
    379 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
    380 	}
    381 	/*
    382 	 * Must ensure there is enough space to hold block map.
    383 	 */
    384 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
    385 		mapcramped = 1;
    386 		sblock.fs_cpg -= mincpc;
    387 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
    388 	}
    389 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
    390 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
    391 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
    392 		exit(24);
    393 	}
    394 	if (sblock.fs_cpg < mincpg) {
    395 		printf("cylinder groups must have at least %d cylinders\n",
    396 			mincpg);
    397 		exit(25);
    398 	} else if (sblock.fs_cpg != cpg && cpgflg) {
    399 		if (!mapcramped && !inodecramped)
    400 			exit(26);
    401 		if (mapcramped && inodecramped)
    402 			printf("Block size and bytes per inode restrict");
    403 		else if (mapcramped)
    404 			printf("Block size restricts");
    405 		else
    406 			printf("Bytes per inode restrict");
    407 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
    408 		exit(27);
    409 	}
    410 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
    411 	/*
    412 	 * Now have size for file system and nsect and ntrak.
    413 	 * Determine number of cylinders and blocks in the file system.
    414 	 */
    415 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
    416 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
    417 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
    418 		sblock.fs_ncyl++;
    419 		warn = 1;
    420 	}
    421 	if (sblock.fs_ncyl < 1) {
    422 		printf("file systems must have at least one cylinder\n");
    423 		exit(28);
    424 	}
    425 	/*
    426 	 * Determine feasability/values of rotational layout tables.
    427 	 *
    428 	 * The size of the rotational layout tables is limited by the
    429 	 * size of the superblock, SBSIZE. The amount of space available
    430 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
    431 	 * The size of these tables is inversely proportional to the block
    432 	 * size of the file system. The size increases if sectors per track
    433 	 * are not powers of two, because more cylinders must be described
    434 	 * by the tables before the rotational pattern repeats (fs_cpc).
    435 	 */
    436 	sblock.fs_interleave = interleave;
    437 	sblock.fs_trackskew = trackskew;
    438 	sblock.fs_npsect = nphyssectors;
    439 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
    440 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
    441 	if (sblock.fs_ntrak == 1) {
    442 		sblock.fs_cpc = 0;
    443 		goto next;
    444 	}
    445 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
    446 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
    447 	totalsbsize = sizeof(struct fs) + rotblsize;
    448 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
    449 		/* use old static table space */
    450 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
    451 		    (char *)(&sblock.fs_firstfield);
    452 		sblock.fs_rotbloff = &sblock.fs_space[0] -
    453 		    (u_char *)(&sblock.fs_firstfield);
    454 	} else {
    455 		/* use dynamic table space */
    456 		sblock.fs_postbloff = &sblock.fs_space[0] -
    457 		    (u_char *)(&sblock.fs_firstfield);
    458 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
    459 		totalsbsize += postblsize;
    460 	}
    461 	if (totalsbsize > SBSIZE ||
    462 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
    463 		printf("%s %s %d %s %d.%s",
    464 		    "Warning: insufficient space in super block for\n",
    465 		    "rotational layout tables with nsect", sblock.fs_nsect,
    466 		    "and ntrak", sblock.fs_ntrak,
    467 		    "\nFile system performance may be impaired.\n");
    468 		sblock.fs_cpc = 0;
    469 		goto next;
    470 	}
    471 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
    472 	/*
    473 	 * calculate the available blocks for each rotational position
    474 	 */
    475 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
    476 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
    477 			fs_postbl(&sblock, cylno)[rpos] = -1;
    478 	for (i = (rotblsize - 1) * sblock.fs_frag;
    479 	     i >= 0; i -= sblock.fs_frag) {
    480 		cylno = cbtocylno(&sblock, i);
    481 		rpos = cbtorpos(&sblock, i);
    482 		blk = fragstoblks(&sblock, i);
    483 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
    484 			fs_rotbl(&sblock)[blk] = 0;
    485 		else
    486 			fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
    487 		fs_postbl(&sblock, cylno)[rpos] = blk;
    488 	}
    489 next:
    490 	/*
    491 	 * Compute/validate number of cylinder groups.
    492 	 */
    493 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
    494 	if (sblock.fs_ncyl % sblock.fs_cpg)
    495 		sblock.fs_ncg++;
    496 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
    497 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
    498 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
    499 		printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
    500 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
    501 		    sblock.fs_fpg / sblock.fs_frag);
    502 		printf("number of cylinders per cylinder group (%d) %s.\n",
    503 		    sblock.fs_cpg, "must be increased");
    504 		exit(29);
    505 	}
    506 	j = sblock.fs_ncg - 1;
    507 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
    508 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
    509 		if (j == 0) {
    510 			printf("File system must have at least %d sectors\n",
    511 			    NSPF(&sblock) *
    512 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
    513 			exit(30);
    514 		}
    515 		printf("Warning: inode blocks/cyl group (%d) >= "
    516 			"data blocks (%d) in last\n",
    517 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
    518 		    i / sblock.fs_frag);
    519 		printf("    cylinder group. This implies %d sector(s) "
    520 			"cannot be allocated.\n",
    521 		    i * NSPF(&sblock));
    522 		sblock.fs_ncg--;
    523 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
    524 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
    525 		    NSPF(&sblock);
    526 		warn = 0;
    527 	}
    528 	if (warn && !mfs) {
    529 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
    530 		    sblock.fs_spc -
    531 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
    532 		    * sblock.fs_spc));
    533 	}
    534 	/*
    535 	 * fill in remaining fields of the super block
    536 	 */
    537 	sblock.fs_csaddr = cgdmin(&sblock, 0);
    538 	sblock.fs_cssize =
    539 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
    540 	/*
    541 	 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
    542 	 * longer used. However, we still initialise them so that the
    543 	 * filesystem remains compatible with old kernels.
    544 	 */
    545 	i = sblock.fs_bsize / sizeof(struct csum);
    546 	sblock.fs_csmask = ~(i - 1);
    547 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
    548 		sblock.fs_csshift++;
    549 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
    550 	if (fscs == NULL)
    551 		exit(39);
    552 	sblock.fs_magic = FS_MAGIC;
    553 	sblock.fs_rotdelay = rotdelay;
    554 	sblock.fs_minfree = minfree;
    555 	sblock.fs_maxcontig = maxcontig;
    556 	sblock.fs_maxbpg = maxbpg;
    557 	sblock.fs_rps = rpm / 60;
    558 	sblock.fs_optim = opt;
    559 	sblock.fs_cgrotor = 0;
    560 	sblock.fs_cstotal.cs_ndir = 0;
    561 	sblock.fs_cstotal.cs_nbfree = 0;
    562 	sblock.fs_cstotal.cs_nifree = 0;
    563 	sblock.fs_cstotal.cs_nffree = 0;
    564 	sblock.fs_fmod = 0;
    565 	sblock.fs_clean = FS_ISCLEAN;
    566 	sblock.fs_ronly = 0;
    567 	/*
    568 	 * Dump out summary information about file system.
    569 	 */
    570 	if (!mfs) {
    571 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
    572 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
    573 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
    574 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
    575 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
    576 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
    577 		    sblock.fs_ncg, sblock.fs_cpg,
    578 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
    579 		    sblock.fs_ipg);
    580 #undef B2MBFACTOR
    581 	}
    582 	/*
    583 	 * Now determine how wide each column will be, and calculate how
    584 	 * many columns will fit in a 76 char line. 76 is the width of the
    585 	 * subwindows in sysinst.
    586 	 */
    587 	printcolwidth = count_digits(
    588 			fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
    589 	nprintcols = 76 / (printcolwidth + 2);
    590 	/*
    591 	 * Now build the cylinders group blocks and
    592 	 * then print out indices of cylinder groups.
    593 	 */
    594 	if (!mfs)
    595 		printf("super-block backups (for fsck -b #) at:");
    596 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
    597 		initcg(cylno, utime);
    598 		if (mfs)
    599 			continue;
    600 		if (cylno % nprintcols == 0)
    601 			printf("\n");
    602 		printf(" %*d,", printcolwidth,
    603 				fsbtodb(&sblock, cgsblock(&sblock, cylno)));
    604 		fflush(stdout);
    605 	}
    606 	if (!mfs)
    607 		printf("\n");
    608 	if (Nflag && !mfs)
    609 		exit(0);
    610 	/*
    611 	 * Now construct the initial file system,
    612 	 * then write out the super-block.
    613 	 */
    614 	fsinit(utime);
    615 	sblock.fs_time = utime;
    616 	memcpy(writebuf, &sblock, sbsize);
    617 	if (needswap)
    618 		ffs_sb_swap(&sblock, (struct fs*)writebuf);
    619 	wtfs((int)SBOFF / sectorsize, sbsize, writebuf);
    620 	/*
    621 	 * Write out the duplicate super blocks
    622 	 */
    623 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
    624 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
    625 		    sbsize, writebuf);
    626 
    627 	/*
    628 	 * if we need to swap, create a buffer for the cylinder summaries
    629 	 * to get swapped to.
    630 	 */
    631 	if (needswap) {
    632 		if ((writebuf2=malloc(sblock.fs_cssize)) == NULL)
    633 			exit(12);
    634 		ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize);
    635 	} else
    636 		writebuf2 = (char *)fscs;
    637 
    638 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
    639 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
    640 			sblock.fs_cssize - i < sblock.fs_bsize ?
    641 			    sblock.fs_cssize - i : sblock.fs_bsize,
    642 			((char *)writebuf2) + i);
    643 	if (writebuf2 != (char *)fscs)
    644 		free(writebuf2);
    645 
    646 	/*
    647 	 * Update information about this partion in pack
    648 	 * label, to that it may be updated on disk.
    649 	 */
    650 	pp->p_fstype = FS_BSDFFS;
    651 	pp->p_fsize = sblock.fs_fsize;
    652 	pp->p_frag = sblock.fs_frag;
    653 	pp->p_cpg = sblock.fs_cpg;
    654 }
    655 
    656 /*
    657  * Initialize a cylinder group.
    658  */
    659 void
    660 initcg(int cylno, time_t utime)
    661 {
    662 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
    663 	int32_t i;
    664 	struct csum *cs;
    665 
    666 	/*
    667 	 * Determine block bounds for cylinder group.
    668 	 * Allow space for super block summary information in first
    669 	 * cylinder group.
    670 	 */
    671 	cbase = cgbase(&sblock, cylno);
    672 	dmax = cbase + sblock.fs_fpg;
    673 	if (dmax > sblock.fs_size)
    674 		dmax = sblock.fs_size;
    675 	dlower = cgsblock(&sblock, cylno) - cbase;
    676 	dupper = cgdmin(&sblock, cylno) - cbase;
    677 	if (cylno == 0)
    678 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
    679 	cs = fscs + cylno;
    680 	memset(&acg, 0, sblock.fs_cgsize);
    681 	acg.cg_time = utime;
    682 	acg.cg_magic = CG_MAGIC;
    683 	acg.cg_cgx = cylno;
    684 	if (cylno == sblock.fs_ncg - 1)
    685 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
    686 	else
    687 		acg.cg_ncyl = sblock.fs_cpg;
    688 	acg.cg_niblk = sblock.fs_ipg;
    689 	acg.cg_ndblk = dmax - cbase;
    690 	if (sblock.fs_contigsumsize > 0)
    691 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
    692 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
    693 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
    694 	acg.cg_iusedoff = acg.cg_boff +
    695 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
    696 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
    697 	if (sblock.fs_contigsumsize <= 0) {
    698 		acg.cg_nextfreeoff = acg.cg_freeoff +
    699 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
    700 	} else {
    701 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
    702 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
    703 		    sizeof(int32_t);
    704 		acg.cg_clustersumoff =
    705 		    roundup(acg.cg_clustersumoff, sizeof(int32_t));
    706 		acg.cg_clusteroff = acg.cg_clustersumoff +
    707 		    (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
    708 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
    709 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
    710 	}
    711 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
    712 		printf("Panic: cylinder group too big\n");
    713 		exit(37);
    714 	}
    715 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
    716 	if (cylno == 0)
    717 		for (i = 0; i < ROOTINO; i++) {
    718 			setbit(cg_inosused(&acg, 0), i);
    719 			acg.cg_cs.cs_nifree--;
    720 		}
    721 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
    722 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
    723 		    sblock.fs_bsize, (char *)zino);
    724 	if (cylno > 0) {
    725 		/*
    726 		 * In cylno 0, beginning space is reserved
    727 		 * for boot and super blocks.
    728 		 */
    729 		for (d = 0; d < dlower; d += sblock.fs_frag) {
    730 			blkno = d / sblock.fs_frag;
    731 			setblock(&sblock, cg_blksfree(&acg, 0), blkno);
    732 			if (sblock.fs_contigsumsize > 0)
    733 				setbit(cg_clustersfree(&acg, 0), blkno);
    734 			acg.cg_cs.cs_nbfree++;
    735 			cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
    736 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
    737 			    [cbtorpos(&sblock, d)]++;
    738 		}
    739 		sblock.fs_dsize += dlower;
    740 	}
    741 	sblock.fs_dsize += acg.cg_ndblk - dupper;
    742 	if ((i = (dupper % sblock.fs_frag)) != 0) {
    743 		acg.cg_frsum[sblock.fs_frag - i]++;
    744 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
    745 			setbit(cg_blksfree(&acg, 0), dupper);
    746 			acg.cg_cs.cs_nffree++;
    747 		}
    748 	}
    749 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
    750 		blkno = d / sblock.fs_frag;
    751 		setblock(&sblock, cg_blksfree(&acg, 0), blkno);
    752 		if (sblock.fs_contigsumsize > 0)
    753 			setbit(cg_clustersfree(&acg, 0), blkno);
    754 		acg.cg_cs.cs_nbfree++;
    755 		cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
    756 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
    757 		    [cbtorpos(&sblock, d)]++;
    758 		d += sblock.fs_frag;
    759 	}
    760 	if (d < dmax - cbase) {
    761 		acg.cg_frsum[dmax - cbase - d]++;
    762 		for (; d < dmax - cbase; d++) {
    763 			setbit(cg_blksfree(&acg, 0), d);
    764 			acg.cg_cs.cs_nffree++;
    765 		}
    766 	}
    767 	if (sblock.fs_contigsumsize > 0) {
    768 		int32_t *sump = cg_clustersum(&acg, 0);
    769 		u_char *mapp = cg_clustersfree(&acg, 0);
    770 		int map = *mapp++;
    771 		int bit = 1;
    772 		int run = 0;
    773 
    774 		for (i = 0; i < acg.cg_nclusterblks; i++) {
    775 			if ((map & bit) != 0) {
    776 				run++;
    777 			} else if (run != 0) {
    778 				if (run > sblock.fs_contigsumsize)
    779 					run = sblock.fs_contigsumsize;
    780 				sump[run]++;
    781 				run = 0;
    782 			}
    783 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
    784 				bit <<= 1;
    785 			} else {
    786 				map = *mapp++;
    787 				bit = 1;
    788 			}
    789 		}
    790 		if (run != 0) {
    791 			if (run > sblock.fs_contigsumsize)
    792 				run = sblock.fs_contigsumsize;
    793 			sump[run]++;
    794 		}
    795 	}
    796 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
    797 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
    798 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
    799 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
    800 	*cs = acg.cg_cs;
    801 	memcpy(writebuf, &acg, sblock.fs_bsize);
    802 	if (needswap)
    803 		swap_cg(&acg, (struct cg*)writebuf);
    804 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
    805 		sblock.fs_bsize, writebuf);
    806 }
    807 
    808 /*
    809  * initialize the file system
    810  */
    811 struct dinode node;
    812 
    813 #ifdef LOSTDIR
    814 #define PREDEFDIR 3
    815 #else
    816 #define PREDEFDIR 2
    817 #endif
    818 
    819 struct direct root_dir[] = {
    820 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
    821 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
    822 #ifdef LOSTDIR
    823 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
    824 #endif
    825 };
    826 struct odirect {
    827 	u_int32_t d_ino;
    828 	u_int16_t d_reclen;
    829 	u_int16_t d_namlen;
    830 	u_char	d_name[MAXNAMLEN + 1];
    831 } oroot_dir[] = {
    832 	{ ROOTINO, sizeof(struct direct), 1, "." },
    833 	{ ROOTINO, sizeof(struct direct), 2, ".." },
    834 #ifdef LOSTDIR
    835 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
    836 #endif
    837 };
    838 #ifdef LOSTDIR
    839 struct direct lost_found_dir[] = {
    840 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
    841 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
    842 	{ 0, DIRBLKSIZ, 0, 0, 0 },
    843 };
    844 struct odirect olost_found_dir[] = {
    845 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
    846 	{ ROOTINO, sizeof(struct direct), 2, ".." },
    847 	{ 0, DIRBLKSIZ, 0, 0 },
    848 };
    849 #endif
    850 char buf[MAXBSIZE];
    851 static void copy_dir(struct direct *, struct direct *);
    852 
    853 void
    854 fsinit(time_t utime)
    855 {
    856 #ifdef LOSTDIR
    857 	int i;
    858 #endif
    859 
    860 	/*
    861 	 * initialize the node
    862 	 */
    863 	memset(&node, 0, sizeof(node));
    864 	node.di_atime = utime;
    865 	node.di_mtime = utime;
    866 	node.di_ctime = utime;
    867 
    868 #ifdef LOSTDIR
    869 	/*
    870 	 * create the lost+found directory
    871 	 */
    872 	if (Oflag) {
    873 		(void)makedir((struct direct *)olost_found_dir, 2);
    874 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
    875 			copy_dir((struct direct*)&olost_found_dir[2],
    876 				(struct direct*)&buf[i]);
    877 	} else {
    878 		(void)makedir(lost_found_dir, 2);
    879 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
    880 			copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
    881 	}
    882 	node.di_mode = IFDIR | UMASK;
    883 	node.di_nlink = 2;
    884 	node.di_size = sblock.fs_bsize;
    885 	node.di_db[0] = alloc(node.di_size, node.di_mode);
    886 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
    887 	node.di_uid = geteuid();
    888 	node.di_gid = getegid();
    889 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
    890 	iput(&node, LOSTFOUNDINO);
    891 #endif
    892 	/*
    893 	 * create the root directory
    894 	 */
    895 	if (mfs)
    896 		node.di_mode = IFDIR | 01777;
    897 	else
    898 		node.di_mode = IFDIR | UMASK;
    899 	node.di_nlink = PREDEFDIR;
    900 	if (Oflag)
    901 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
    902 	else
    903 		node.di_size = makedir(root_dir, PREDEFDIR);
    904 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
    905 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
    906 	node.di_uid = geteuid();
    907 	node.di_gid = getegid();
    908 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
    909 	iput(&node, ROOTINO);
    910 }
    911 
    912 /*
    913  * construct a set of directory entries in "buf".
    914  * return size of directory.
    915  */
    916 int
    917 makedir(struct direct *protodir, int entries)
    918 {
    919 	char *cp;
    920 	int i, spcleft;
    921 
    922 	spcleft = DIRBLKSIZ;
    923 	for (cp = buf, i = 0; i < entries - 1; i++) {
    924 		protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0);
    925 		copy_dir(&protodir[i], (struct direct*)cp);
    926 		cp += protodir[i].d_reclen;
    927 		spcleft -= protodir[i].d_reclen;
    928 	}
    929 	protodir[i].d_reclen = spcleft;
    930 	copy_dir(&protodir[i], (struct direct*)cp);
    931 	return (DIRBLKSIZ);
    932 }
    933 
    934 /*
    935  * allocate a block or frag
    936  */
    937 daddr_t
    938 alloc(int size, int mode)
    939 {
    940 	int i, frag;
    941 	daddr_t d, blkno;
    942 
    943 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
    944 	/* fs -> host byte order */
    945 	if (needswap)
    946 		swap_cg(&acg, &acg);
    947 	if (acg.cg_magic != CG_MAGIC) {
    948 		printf("cg 0: bad magic number\n");
    949 		return (0);
    950 	}
    951 	if (acg.cg_cs.cs_nbfree == 0) {
    952 		printf("first cylinder group ran out of space\n");
    953 		return (0);
    954 	}
    955 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
    956 		if (isblock(&sblock, cg_blksfree(&acg, 0), d / sblock.fs_frag))
    957 			goto goth;
    958 	printf("internal error: can't find block in cyl 0\n");
    959 	return (0);
    960 goth:
    961 	blkno = fragstoblks(&sblock, d);
    962 	clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
    963 	if (sblock.fs_contigsumsize > 0)
    964 		clrbit(cg_clustersfree(&acg, 0), blkno);
    965 	acg.cg_cs.cs_nbfree--;
    966 	sblock.fs_cstotal.cs_nbfree--;
    967 	fscs[0].cs_nbfree--;
    968 	if (mode & IFDIR) {
    969 		acg.cg_cs.cs_ndir++;
    970 		sblock.fs_cstotal.cs_ndir++;
    971 		fscs[0].cs_ndir++;
    972 	}
    973 	cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--;
    974 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--;
    975 	if (size != sblock.fs_bsize) {
    976 		frag = howmany(size, sblock.fs_fsize);
    977 		fscs[0].cs_nffree += sblock.fs_frag - frag;
    978 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
    979 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
    980 		acg.cg_frsum[sblock.fs_frag - frag]++;
    981 		for (i = frag; i < sblock.fs_frag; i++)
    982 			setbit(cg_blksfree(&acg, 0), d + i);
    983 	}
    984 	/* host -> fs byte order */
    985 	if (needswap)
    986 		swap_cg(&acg, &acg);
    987 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
    988 	    (char *)&acg);
    989 	return (d);
    990 }
    991 
    992 /*
    993  * Calculate number of inodes per group.
    994  */
    995 int32_t
    996 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
    997 {
    998 	int i;
    999 	int32_t ipg, new_ipg, ncg, ncyl;
   1000 	off_t usedb;
   1001 
   1002 	/*
   1003 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
   1004 	 * Note that fssize is still in sectors, not file system blocks.
   1005 	 */
   1006 	ncyl = howmany(fssize, secpercyl);
   1007 	ncg = howmany(ncyl, cylpg);
   1008 	/*
   1009 	 * Iterate a few times to allow for ipg depending on itself.
   1010 	 */
   1011 	ipg = 0;
   1012 	for (i = 0; i < 10; i++) {
   1013 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
   1014 			* NSPF(&sblock) * (off_t)sectorsize;
   1015 		new_ipg = (cylpg * (long long)bpcg - usedb) /
   1016 		    (long long)density * fssize / (ncg * secpercyl * cylpg);
   1017 		if (new_ipg <= 0)
   1018 			new_ipg = 1;		/* ensure ipg > 0 */
   1019 		new_ipg = roundup(new_ipg, INOPB(&sblock));
   1020 		if (new_ipg == ipg)
   1021 			break;
   1022 		ipg = new_ipg;
   1023 	}
   1024 	*usedbp = usedb;
   1025 	return (ipg);
   1026 }
   1027 
   1028 /*
   1029  * Allocate an inode on the disk
   1030  */
   1031 static void
   1032 iput(struct dinode *ip, ino_t ino)
   1033 {
   1034 	struct dinode ibuf[MAXINOPB];
   1035 	daddr_t d;
   1036 	int c, i;
   1037 
   1038 	c = ino_to_cg(&sblock, ino);
   1039 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
   1040 	/* fs -> host byte order */
   1041 	if (needswap)
   1042 		swap_cg(&acg, &acg);
   1043 	if (acg.cg_magic != CG_MAGIC) {
   1044 		printf("cg 0: bad magic number\n");
   1045 		exit(31);
   1046 	}
   1047 	acg.cg_cs.cs_nifree--;
   1048 	setbit(cg_inosused(&acg, 0), ino);
   1049 	/* host -> fs byte order */
   1050 	if (needswap)
   1051 		swap_cg(&acg, &acg);
   1052 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
   1053 	    (char *)&acg);
   1054 	sblock.fs_cstotal.cs_nifree--;
   1055 	fscs[0].cs_nifree--;
   1056 	if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
   1057 		printf("fsinit: inode value out of range (%d).\n", ino);
   1058 		exit(32);
   1059 	}
   1060 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
   1061 	rdfs(d, sblock.fs_bsize, ibuf);
   1062 	if (needswap) {
   1063 		ffs_dinode_swap(ip, &ibuf[ino_to_fsbo(&sblock, ino)]);
   1064 		/* ffs_dinode_swap() doesn't swap blocks addrs */
   1065 		for (i=0; i<NDADDR + NIADDR; i++)
   1066 			(&ibuf[ino_to_fsbo(&sblock, ino)])->di_db[i] =
   1067 				bswap32(ip->di_db[i]);
   1068 	} else
   1069 		ibuf[ino_to_fsbo(&sblock, ino)] = *ip;
   1070 	wtfs(d, sblock.fs_bsize, ibuf);
   1071 }
   1072 
   1073 /*
   1074  * Replace libc function with one suited to our needs.
   1075  */
   1076 void *
   1077 malloc(size_t size)
   1078 {
   1079 	void *p;
   1080 	char *base, *i;
   1081 	static u_long pgsz;
   1082 	struct rlimit rlp;
   1083 
   1084 	if (pgsz == 0) {
   1085 		base = sbrk(0);
   1086 		pgsz = getpagesize() - 1;
   1087 		i = (char *)((u_long)(base + pgsz) &~ pgsz);
   1088 		base = sbrk(i - base);
   1089 		if (getrlimit(RLIMIT_DATA, &rlp) < 0)
   1090 			perror("getrlimit");
   1091 		rlp.rlim_cur = rlp.rlim_max;
   1092 		if (setrlimit(RLIMIT_DATA, &rlp) < 0)
   1093 			perror("setrlimit");
   1094 		memleft = rlp.rlim_max - (u_long)base;
   1095 	}
   1096 	size = (size + pgsz) &~ pgsz;
   1097 	if (size > memleft)
   1098 		size = memleft;
   1099 	memleft -= size;
   1100 	if (size == 0)
   1101 		return (NULL);
   1102 	p = sbrk(size);
   1103 	if (p == (void *)-1)
   1104 		p = NULL;
   1105 	return (p);
   1106 }
   1107 
   1108 /*
   1109  * Replace libc function with one suited to our needs.
   1110  */
   1111 void *
   1112 realloc(void *ptr, size_t size)
   1113 {
   1114 	void *p;
   1115 
   1116 	if ((p = malloc(size)) == NULL)
   1117 		return (NULL);
   1118 	memmove(p, ptr, size);
   1119 	free(ptr);
   1120 	return (p);
   1121 }
   1122 
   1123 /*
   1124  * Replace libc function with one suited to our needs.
   1125  */
   1126 void *
   1127 calloc(size_t size, size_t numelm)
   1128 {
   1129 	void *base;
   1130 
   1131 	size *= numelm;
   1132 	base = malloc(size);
   1133 	if (base == NULL)
   1134 		return (NULL);
   1135 	memset(base, 0, size);
   1136 	return (base);
   1137 }
   1138 
   1139 /*
   1140  * Replace libc function with one suited to our needs.
   1141  */
   1142 void
   1143 free(void *ptr)
   1144 {
   1145 
   1146 	/* do not worry about it for now */
   1147 }
   1148 
   1149 /*
   1150  * read a block from the file system
   1151  */
   1152 void
   1153 rdfs(daddr_t bno, int size, void *bf)
   1154 {
   1155 	int n;
   1156 	off_t offset;
   1157 
   1158 	if (mfs) {
   1159 		memmove(bf, membase + bno * sectorsize, size);
   1160 		return;
   1161 	}
   1162 	offset = bno;
   1163 	offset *= sectorsize;
   1164 	if (lseek(fsi, offset, SEEK_SET) < 0) {
   1165 		printf("rdfs: seek error for sector %d: %s\n",
   1166 		    bno, strerror(errno));
   1167 		exit(33);
   1168 	}
   1169 	n = read(fsi, bf, size);
   1170 	if (n != size) {
   1171 		printf("rdfs: read error for sector %d: %s\n",
   1172 		    bno, strerror(errno));
   1173 		exit(34);
   1174 	}
   1175 }
   1176 
   1177 /*
   1178  * write a block to the file system
   1179  */
   1180 void
   1181 wtfs(daddr_t bno, int size, void *bf)
   1182 {
   1183 	int n;
   1184 	off_t offset;
   1185 
   1186 	if (mfs) {
   1187 		memmove(membase + bno * sectorsize, bf, size);
   1188 		return;
   1189 	}
   1190 	if (Nflag)
   1191 		return;
   1192 	offset = bno;
   1193 	offset *= sectorsize;
   1194 	if (lseek(fso, offset, SEEK_SET) < 0) {
   1195 		printf("wtfs: seek error for sector %d: %s\n",
   1196 		    bno, strerror(errno));
   1197 		exit(35);
   1198 	}
   1199 	n = write(fso, bf, size);
   1200 	if (n != size) {
   1201 		printf("wtfs: write error for sector %d: %s\n",
   1202 		    bno, strerror(errno));
   1203 		exit(36);
   1204 	}
   1205 }
   1206 
   1207 /*
   1208  * check if a block is available
   1209  */
   1210 int
   1211 isblock(struct fs *fs, unsigned char *cp, int h)
   1212 {
   1213 	unsigned char mask;
   1214 
   1215 	switch (fs->fs_frag) {
   1216 	case 8:
   1217 		return (cp[h] == 0xff);
   1218 	case 4:
   1219 		mask = 0x0f << ((h & 0x1) << 2);
   1220 		return ((cp[h >> 1] & mask) == mask);
   1221 	case 2:
   1222 		mask = 0x03 << ((h & 0x3) << 1);
   1223 		return ((cp[h >> 2] & mask) == mask);
   1224 	case 1:
   1225 		mask = 0x01 << (h & 0x7);
   1226 		return ((cp[h >> 3] & mask) == mask);
   1227 	default:
   1228 #ifdef STANDALONE
   1229 		printf("isblock bad fs_frag %d\n", fs->fs_frag);
   1230 #else
   1231 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
   1232 #endif
   1233 		return (0);
   1234 	}
   1235 }
   1236 
   1237 /*
   1238  * take a block out of the map
   1239  */
   1240 void
   1241 clrblock(struct fs *fs, unsigned char *cp, int h)
   1242 {
   1243 	switch ((fs)->fs_frag) {
   1244 	case 8:
   1245 		cp[h] = 0;
   1246 		return;
   1247 	case 4:
   1248 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
   1249 		return;
   1250 	case 2:
   1251 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
   1252 		return;
   1253 	case 1:
   1254 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
   1255 		return;
   1256 	default:
   1257 #ifdef STANDALONE
   1258 		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
   1259 #else
   1260 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
   1261 #endif
   1262 		return;
   1263 	}
   1264 }
   1265 
   1266 /*
   1267  * put a block into the map
   1268  */
   1269 void
   1270 setblock(struct fs *fs, unsigned char *cp, int h)
   1271 {
   1272 	switch (fs->fs_frag) {
   1273 	case 8:
   1274 		cp[h] = 0xff;
   1275 		return;
   1276 	case 4:
   1277 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
   1278 		return;
   1279 	case 2:
   1280 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
   1281 		return;
   1282 	case 1:
   1283 		cp[h >> 3] |= (0x01 << (h & 0x7));
   1284 		return;
   1285 	default:
   1286 #ifdef STANDALONE
   1287 		printf("setblock bad fs_frag %d\n", fs->fs_frag);
   1288 #else
   1289 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
   1290 #endif
   1291 		return;
   1292 	}
   1293 }
   1294 
   1295 /* swap byte order of cylinder group */
   1296 static void
   1297 swap_cg(struct cg *o, struct cg *n)
   1298 {
   1299 	int i, btotsize, fbsize;
   1300 	u_int32_t *n32, *o32;
   1301 	u_int16_t *n16, *o16;
   1302 
   1303 	n->cg_firstfield = bswap32(o->cg_firstfield);
   1304 	n->cg_magic = bswap32(o->cg_magic);
   1305 	n->cg_time = bswap32(o->cg_time);
   1306 	n->cg_cgx = bswap32(o->cg_cgx);
   1307 	n->cg_ncyl = bswap16(o->cg_ncyl);
   1308 	n->cg_niblk = bswap16(o->cg_niblk);
   1309 	n->cg_ndblk = bswap32(o->cg_ndblk);
   1310 	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
   1311 	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
   1312 	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
   1313 	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
   1314 	n->cg_rotor = bswap32(o->cg_rotor);
   1315 	n->cg_frotor = bswap32(o->cg_frotor);
   1316 	n->cg_irotor = bswap32(o->cg_irotor);
   1317 	n->cg_btotoff = bswap32(o->cg_btotoff);
   1318 	n->cg_boff = bswap32(o->cg_boff);
   1319 	n->cg_iusedoff = bswap32(o->cg_iusedoff);
   1320 	n->cg_freeoff = bswap32(o->cg_freeoff);
   1321 	n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
   1322 	n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
   1323 	n->cg_clusteroff = bswap32(o->cg_clusteroff);
   1324 	n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
   1325 	for (i=0; i < MAXFRAG; i++)
   1326 		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
   1327 
   1328 	/* alays new format */
   1329 	if (n->cg_magic == CG_MAGIC) {
   1330 		btotsize = n->cg_boff - n->cg_btotoff;
   1331 		fbsize = n->cg_iusedoff - n->cg_boff;
   1332 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
   1333 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
   1334 		n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
   1335 		o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
   1336 	} else {
   1337 		btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
   1338 		fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
   1339 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
   1340 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
   1341 		n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
   1342 		o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
   1343 	}
   1344 	for (i=0; i < btotsize / sizeof(u_int32_t); i++)
   1345 		n32[i] = bswap32(o32[i]);
   1346 
   1347 	for (i=0; i < fbsize/sizeof(u_int16_t); i++)
   1348 		n16[i] = bswap16(o16[i]);
   1349 
   1350 	if (n->cg_magic == CG_MAGIC) {
   1351 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
   1352 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
   1353 	} else {
   1354 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
   1355 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
   1356 	}
   1357 	for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
   1358 		n32[i] = bswap32(o32[i]);
   1359 }
   1360 
   1361 /* copy a direntry to a buffer, in fs byte order */
   1362 static void
   1363 copy_dir(struct direct *dir, struct direct *dbuf)
   1364 {
   1365 	memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0));
   1366 	if (needswap) {
   1367 		dbuf->d_ino = bswap32(dir->d_ino);
   1368 		dbuf->d_reclen = bswap16(dir->d_reclen);
   1369 		if (Oflag)
   1370 			((struct odirect*)dbuf)->d_namlen =
   1371 				bswap16(((struct odirect*)dir)->d_namlen);
   1372 	}
   1373 }
   1374 
   1375 /* Determine how many digits are needed to print a given integer */
   1376 static int
   1377 count_digits(int num)
   1378 {
   1379 	int ndig;
   1380 
   1381 	for(ndig = 1; num > 9; num /=10, ndig++);
   1382 
   1383 	return (ndig);
   1384 }
   1385