mkfs.c revision 1.6 1 /*
2 * Copyright (c) 1980, 1989 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #ifndef lint
35 /*static char sccsid[] = "from: @(#)mkfs.c 6.18 (Berkeley) 7/3/91";*/
36 static char rcsid[] = "$Id: mkfs.c,v 1.6 1993/10/01 01:56:42 mycroft Exp $";
37 #endif /* not lint */
38
39 #ifndef STANDALONE
40 #include <stdio.h>
41 #include <a.out.h>
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/time.h>
46 #include <sys/wait.h>
47 #include <sys/resource.h>
48 #include <ufs/dinode.h>
49 #include <ufs/fs.h>
50 #include <ufs/dir.h>
51 #include <sys/disklabel.h>
52 #include <machine/endian.h>
53
54 /*
55 * make file system for cylinder-group style file systems
56 */
57
58 /*
59 * The size of a cylinder group is calculated by CGSIZE. The maximum size
60 * is limited by the fact that cylinder groups are at most one block.
61 * Its size is derived from the size of the maps maintained in the
62 * cylinder group and the (struct cg) size.
63 */
64 #define CGSIZE(fs) \
65 /* base cg */ (sizeof(struct cg) + \
66 /* blktot size */ (fs)->fs_cpg * sizeof(long) + \
67 /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof(short) + \
68 /* inode map */ howmany((fs)->fs_ipg, NBBY) + \
69 /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY))
70
71 /*
72 * We limit the size of the inode map to be no more than a
73 * third of the cylinder group space, since we must leave at
74 * least an equal amount of space for the block map.
75 *
76 * N.B.: MAXIPG must be a multiple of INOPB(fs).
77 */
78 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
79
80 #define UMASK 0755
81 #define MAXINOPB (MAXBSIZE / sizeof(struct dinode))
82 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
83
84 /*
85 * variables set up by front end.
86 */
87 extern int mfs; /* run as the memory based filesystem */
88 extern int Nflag; /* run mkfs without writing file system */
89 extern int fssize; /* file system size */
90 extern int ntracks; /* # tracks/cylinder */
91 extern int nsectors; /* # sectors/track */
92 extern int nphyssectors; /* # sectors/track including spares */
93 extern int secpercyl; /* sectors per cylinder */
94 extern int sectorsize; /* bytes/sector */
95 extern int rpm; /* revolutions/minute of drive */
96 extern int interleave; /* hardware sector interleave */
97 extern int trackskew; /* sector 0 skew, per track */
98 extern int headswitch; /* head switch time, usec */
99 extern int trackseek; /* track-to-track seek, usec */
100 extern int fsize; /* fragment size */
101 extern int bsize; /* block size */
102 extern int cpg; /* cylinders/cylinder group */
103 extern int cpgflg; /* cylinders/cylinder group flag was given */
104 extern int minfree; /* free space threshold */
105 extern int opt; /* optimization preference (space or time) */
106 extern int density; /* number of bytes per inode */
107 extern int maxcontig; /* max contiguous blocks to allocate */
108 extern int rotdelay; /* rotational delay between blocks */
109 extern int maxbpg; /* maximum blocks per file in a cyl group */
110 extern int nrpos; /* # of distinguished rotational positions */
111 extern int bbsize; /* boot block size */
112 extern int sbsize; /* superblock size */
113 extern u_long memleft; /* virtual memory available */
114 extern caddr_t membase; /* start address of memory based filesystem */
115 extern caddr_t malloc(), calloc();
116
117 union {
118 struct fs fs;
119 char pad[SBSIZE];
120 } fsun;
121 #define sblock fsun.fs
122 struct csum *fscs;
123
124 union {
125 struct cg cg;
126 char pad[MAXBSIZE];
127 } cgun;
128 #define acg cgun.cg
129
130 struct dinode zino[MAXBSIZE / sizeof(struct dinode)];
131
132 int fsi, fso;
133 daddr_t alloc();
134
135 mkfs(pp, fsys, fi, fo)
136 struct partition *pp;
137 char *fsys;
138 int fi, fo;
139 {
140 register long i, mincpc, mincpg, inospercg;
141 long cylno, rpos, blk, j, warn = 0;
142 long used, mincpgcnt, bpcg;
143 long mapcramped, inodecramped;
144 long postblsize, rotblsize, totalsbsize;
145 int ppid, status;
146 time_t utime;
147 void started();
148
149 #ifndef STANDALONE
150 time(&utime);
151 #endif
152 if (mfs) {
153 ppid = getpid();
154 (void) signal(SIGUSR1, started);
155 if (i = fork()) {
156 if (i == -1) {
157 perror("mount_mfs");
158 exit(10);
159 }
160 if (waitpid(i, &status, 0) != -1 && WIFEXITED(status))
161 exit(WEXITSTATUS(status));
162 exit(11);
163 /* NOTREACHED */
164 }
165 (void)malloc(0);
166 if (fssize * sectorsize > memleft)
167 fssize = (memleft - 16384) / sectorsize;
168 if ((membase = malloc(fssize * sectorsize)) == 0)
169 exit(12);
170 }
171 fsi = fi;
172 fso = fo;
173 /*
174 * Validate the given file system size.
175 * Verify that its last block can actually be accessed.
176 */
177 if (fssize <= 0)
178 printf("preposterous size %d\n", fssize), exit(13);
179 wtfs(fssize - 1, sectorsize, (char *)&sblock);
180 /*
181 * collect and verify the sector and track info
182 */
183 sblock.fs_nsect = nsectors;
184 sblock.fs_ntrak = ntracks;
185 if (sblock.fs_ntrak <= 0)
186 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
187 if (sblock.fs_nsect <= 0)
188 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
189 /*
190 * collect and verify the block and fragment sizes
191 */
192 sblock.fs_bsize = bsize;
193 sblock.fs_fsize = fsize;
194 if (!POWEROF2(sblock.fs_bsize)) {
195 printf("block size must be a power of 2, not %d\n",
196 sblock.fs_bsize);
197 exit(16);
198 }
199 if (!POWEROF2(sblock.fs_fsize)) {
200 printf("fragment size must be a power of 2, not %d\n",
201 sblock.fs_fsize);
202 exit(17);
203 }
204 if (sblock.fs_fsize < sectorsize) {
205 printf("fragment size %d is too small, minimum is %d\n",
206 sblock.fs_fsize, sectorsize);
207 exit(18);
208 }
209 if (sblock.fs_bsize < MINBSIZE) {
210 printf("block size %d is too small, minimum is %d\n",
211 sblock.fs_bsize, MINBSIZE);
212 exit(19);
213 }
214 if (sblock.fs_bsize < sblock.fs_fsize) {
215 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
216 sblock.fs_bsize, sblock.fs_fsize);
217 exit(20);
218 }
219 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
220 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
221 /*
222 * Planning now for future expansion.
223 */
224 # if (BYTE_ORDER == BIG_ENDIAN)
225 sblock.fs_qbmask.val[0] = 0;
226 sblock.fs_qbmask.val[1] = ~sblock.fs_bmask;
227 sblock.fs_qfmask.val[0] = 0;
228 sblock.fs_qfmask.val[1] = ~sblock.fs_fmask;
229 # endif /* BIG_ENDIAN */
230 # if (BYTE_ORDER == LITTLE_ENDIAN)
231 sblock.fs_qbmask.val[0] = ~sblock.fs_bmask;
232 sblock.fs_qbmask.val[1] = 0;
233 sblock.fs_qfmask.val[0] = ~sblock.fs_fmask;
234 sblock.fs_qfmask.val[1] = 0;
235 # endif /* LITTLE_ENDIAN */
236 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
237 sblock.fs_bshift++;
238 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
239 sblock.fs_fshift++;
240 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
241 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
242 sblock.fs_fragshift++;
243 if (sblock.fs_frag > MAXFRAG) {
244 printf("fragment size %d is too small, minimum with block size %d is %d\n",
245 sblock.fs_fsize, sblock.fs_bsize,
246 sblock.fs_bsize / MAXFRAG);
247 exit(21);
248 }
249 sblock.fs_nrpos = nrpos;
250 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
251 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode);
252 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
253 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
254 sblock.fs_fsbtodb++;
255 sblock.fs_sblkno =
256 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
257 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
258 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
259 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
260 sblock.fs_cgoffset = roundup(
261 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
262 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
263 sblock.fs_cgmask <<= 1;
264 if (!POWEROF2(sblock.fs_ntrak))
265 sblock.fs_cgmask <<= 1;
266 /*
267 * Validate specified/determined secpercyl
268 * and calculate minimum cylinders per group.
269 */
270 sblock.fs_spc = secpercyl;
271 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
272 sblock.fs_cpc > 1 && (i & 1) == 0;
273 sblock.fs_cpc >>= 1, i >>= 1)
274 /* void */;
275 mincpc = sblock.fs_cpc;
276 bpcg = sblock.fs_spc * sectorsize;
277 inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock));
278 if (inospercg > MAXIPG(&sblock))
279 inospercg = MAXIPG(&sblock);
280 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
281 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
282 sblock.fs_spc);
283 mincpg = roundup(mincpgcnt, mincpc);
284 /*
285 * Insure that cylinder group with mincpg has enough space
286 * for block maps
287 */
288 sblock.fs_cpg = mincpg;
289 sblock.fs_ipg = inospercg;
290 mapcramped = 0;
291 while (CGSIZE(&sblock) > sblock.fs_bsize) {
292 mapcramped = 1;
293 if (sblock.fs_bsize < MAXBSIZE) {
294 sblock.fs_bsize <<= 1;
295 if ((i & 1) == 0) {
296 i >>= 1;
297 } else {
298 sblock.fs_cpc <<= 1;
299 mincpc <<= 1;
300 mincpg = roundup(mincpgcnt, mincpc);
301 sblock.fs_cpg = mincpg;
302 }
303 sblock.fs_frag <<= 1;
304 sblock.fs_fragshift += 1;
305 if (sblock.fs_frag <= MAXFRAG)
306 continue;
307 }
308 if (sblock.fs_fsize == sblock.fs_bsize) {
309 printf("There is no block size that");
310 printf(" can support this disk\n");
311 exit(22);
312 }
313 sblock.fs_frag >>= 1;
314 sblock.fs_fragshift -= 1;
315 sblock.fs_fsize <<= 1;
316 sblock.fs_nspf <<= 1;
317 }
318 /*
319 * Insure that cylinder group with mincpg has enough space for inodes
320 */
321 inodecramped = 0;
322 used *= sectorsize;
323 inospercg = roundup((mincpg * bpcg - used) / density, INOPB(&sblock));
324 sblock.fs_ipg = inospercg;
325 while (inospercg > MAXIPG(&sblock)) {
326 inodecramped = 1;
327 if (mincpc == 1 || sblock.fs_frag == 1 ||
328 sblock.fs_bsize == MINBSIZE)
329 break;
330 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
331 "minimum bytes per inode is",
332 (mincpg * bpcg - used) / MAXIPG(&sblock) + 1);
333 sblock.fs_bsize >>= 1;
334 sblock.fs_frag >>= 1;
335 sblock.fs_fragshift -= 1;
336 mincpc >>= 1;
337 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
338 if (CGSIZE(&sblock) > sblock.fs_bsize) {
339 sblock.fs_bsize <<= 1;
340 break;
341 }
342 mincpg = sblock.fs_cpg;
343 inospercg =
344 roundup((mincpg * bpcg - used) / density, INOPB(&sblock));
345 sblock.fs_ipg = inospercg;
346 }
347 if (inodecramped) {
348 if (inospercg > MAXIPG(&sblock)) {
349 printf("Minimum bytes per inode is %d\n",
350 (mincpg * bpcg - used) / MAXIPG(&sblock) + 1);
351 } else if (!mapcramped) {
352 printf("With %d bytes per inode, ", density);
353 printf("minimum cylinders per group is %d\n", mincpg);
354 }
355 }
356 if (mapcramped) {
357 printf("With %d sectors per cylinder, ", sblock.fs_spc);
358 printf("minimum cylinders per group is %d\n", mincpg);
359 }
360 if (inodecramped || mapcramped) {
361 if (sblock.fs_bsize != bsize)
362 printf("%s to be changed from %d to %d\n",
363 "This requires the block size",
364 bsize, sblock.fs_bsize);
365 if (sblock.fs_fsize != fsize)
366 printf("\t%s to be changed from %d to %d\n",
367 "and the fragment size",
368 fsize, sblock.fs_fsize);
369 exit(23);
370 }
371 /*
372 * Calculate the number of cylinders per group
373 */
374 sblock.fs_cpg = cpg;
375 if (sblock.fs_cpg % mincpc != 0) {
376 printf("%s groups must have a multiple of %d cylinders\n",
377 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
378 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
379 if (!cpgflg)
380 cpg = sblock.fs_cpg;
381 }
382 /*
383 * Must insure there is enough space for inodes
384 */
385 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
386 INOPB(&sblock));
387 while (sblock.fs_ipg > MAXIPG(&sblock)) {
388 inodecramped = 1;
389 sblock.fs_cpg -= mincpc;
390 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
391 INOPB(&sblock));
392 }
393 /*
394 * Must insure there is enough space to hold block map
395 */
396 while (CGSIZE(&sblock) > sblock.fs_bsize) {
397 mapcramped = 1;
398 sblock.fs_cpg -= mincpc;
399 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
400 INOPB(&sblock));
401 }
402 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
403 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
404 printf("panic (fs_cpg * fs_spc) % NSPF != 0");
405 exit(24);
406 }
407 if (sblock.fs_cpg < mincpg) {
408 printf("cylinder groups must have at least %d cylinders\n",
409 mincpg);
410 exit(25);
411 } else if (sblock.fs_cpg != cpg) {
412 if (!cpgflg)
413 printf("Warning: ");
414 else if (!mapcramped && !inodecramped)
415 exit(26);
416 if (mapcramped && inodecramped)
417 printf("Block size and bytes per inode restrict");
418 else if (mapcramped)
419 printf("Block size restricts");
420 else
421 printf("Bytes per inode restrict");
422 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
423 if (cpgflg)
424 exit(27);
425 }
426 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
427 /*
428 * Now have size for file system and nsect and ntrak.
429 * Determine number of cylinders and blocks in the file system.
430 */
431 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
432 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
433 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
434 sblock.fs_ncyl++;
435 warn = 1;
436 }
437 if (sblock.fs_ncyl < 1) {
438 printf("file systems must have at least one cylinder\n");
439 exit(28);
440 }
441 /*
442 * Determine feasability/values of rotational layout tables.
443 *
444 * The size of the rotational layout tables is limited by the
445 * size of the superblock, SBSIZE. The amount of space available
446 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
447 * The size of these tables is inversely proportional to the block
448 * size of the file system. The size increases if sectors per track
449 * are not powers of two, because more cylinders must be described
450 * by the tables before the rotational pattern repeats (fs_cpc).
451 */
452 sblock.fs_interleave = interleave;
453 sblock.fs_trackskew = trackskew;
454 sblock.fs_npsect = nphyssectors;
455 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
456 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
457 if (sblock.fs_ntrak == 1) {
458 sblock.fs_cpc = 0;
459 goto next;
460 }
461 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(short);
462 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
463 totalsbsize = sizeof(struct fs) + rotblsize;
464 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
465 /* use old static table space */
466 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
467 (char *)(&sblock.fs_link);
468 sblock.fs_rotbloff = &sblock.fs_space[0] -
469 (u_char *)(&sblock.fs_link);
470 } else {
471 /* use dynamic table space */
472 sblock.fs_postbloff = &sblock.fs_space[0] -
473 (u_char *)(&sblock.fs_link);
474 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
475 totalsbsize += postblsize;
476 }
477 if (totalsbsize > SBSIZE ||
478 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
479 printf("%s %s %d %s %d.%s",
480 "Warning: insufficient space in super block for\n",
481 "rotational layout tables with nsect", sblock.fs_nsect,
482 "and ntrak", sblock.fs_ntrak,
483 "\nFile system performance may be impaired.\n");
484 sblock.fs_cpc = 0;
485 goto next;
486 }
487 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
488 /*
489 * calculate the available blocks for each rotational position
490 */
491 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
492 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
493 fs_postbl(&sblock, cylno)[rpos] = -1;
494 for (i = (rotblsize - 1) * sblock.fs_frag;
495 i >= 0; i -= sblock.fs_frag) {
496 cylno = cbtocylno(&sblock, i);
497 rpos = cbtorpos(&sblock, i);
498 blk = fragstoblks(&sblock, i);
499 if (fs_postbl(&sblock, cylno)[rpos] == -1)
500 fs_rotbl(&sblock)[blk] = 0;
501 else
502 fs_rotbl(&sblock)[blk] =
503 fs_postbl(&sblock, cylno)[rpos] - blk;
504 fs_postbl(&sblock, cylno)[rpos] = blk;
505 }
506 next:
507 /*
508 * Compute/validate number of cylinder groups.
509 */
510 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
511 if (sblock.fs_ncyl % sblock.fs_cpg)
512 sblock.fs_ncg++;
513 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
514 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
515 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
516 printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
517 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
518 sblock.fs_fpg / sblock.fs_frag);
519 printf("number of cylinders per cylinder group (%d) %s.\n",
520 sblock.fs_cpg, "must be increased");
521 exit(29);
522 }
523 j = sblock.fs_ncg - 1;
524 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
525 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
526 if (j == 0) {
527 printf("Filesystem must have at least %d sectors\n",
528 NSPF(&sblock) *
529 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
530 exit(30);
531 }
532 printf("Warning: inode blocks/cyl group (%d) >= data blocks (%d) in last\n",
533 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
534 i / sblock.fs_frag);
535 printf(" cylinder group. This implies %d sector(s) cannot be allocated.\n",
536 i * NSPF(&sblock));
537 sblock.fs_ncg--;
538 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
539 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
540 NSPF(&sblock);
541 warn = 0;
542 }
543 if (warn && !mfs) {
544 printf("Warning: %d sector(s) in last cylinder unallocated\n",
545 sblock.fs_spc -
546 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
547 * sblock.fs_spc));
548 }
549 /*
550 * fill in remaining fields of the super block
551 */
552 sblock.fs_csaddr = cgdmin(&sblock, 0);
553 sblock.fs_cssize =
554 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
555 i = sblock.fs_bsize / sizeof(struct csum);
556 sblock.fs_csmask = ~(i - 1);
557 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
558 sblock.fs_csshift++;
559 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
560 sblock.fs_magic = FS_MAGIC;
561 sblock.fs_rotdelay = rotdelay;
562 sblock.fs_minfree = minfree;
563 sblock.fs_maxcontig = maxcontig;
564 sblock.fs_headswitch = headswitch;
565 sblock.fs_trkseek = trackseek;
566 sblock.fs_maxbpg = maxbpg;
567 sblock.fs_rps = rpm / 60;
568 sblock.fs_optim = opt;
569 sblock.fs_cgrotor = 0;
570 sblock.fs_cstotal.cs_ndir = 0;
571 sblock.fs_cstotal.cs_nbfree = 0;
572 sblock.fs_cstotal.cs_nifree = 0;
573 sblock.fs_cstotal.cs_nffree = 0;
574 sblock.fs_fmod = 0;
575 sblock.fs_state = FSOKAY;
576 sblock.fs_clean = FS_CLEANFREQ;
577 sblock.fs_ronly = 0;
578 /*
579 * Dump out summary information about file system.
580 */
581 if (!mfs) {
582 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
583 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
584 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
585 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
586 (float)sblock.fs_size * sblock.fs_fsize * 1e-6,
587 sblock.fs_ncg, sblock.fs_cpg,
588 (float)sblock.fs_fpg * sblock.fs_fsize * 1e-6,
589 sblock.fs_ipg);
590 }
591 /*
592 * Now build the cylinders group blocks and
593 * then print out indices of cylinder groups.
594 */
595 if (!mfs)
596 printf("super-block backups (for fsck -b #) at:");
597 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
598 initcg(cylno, utime);
599 if (mfs)
600 continue;
601 if (cylno % 9 == 0)
602 printf("\n");
603 printf(" %d,", fsbtodb(&sblock, cgsblock(&sblock, cylno)));
604 }
605 if (!mfs)
606 printf("\n");
607 if (Nflag && !mfs)
608 exit(0);
609 /*
610 * Now construct the initial file system,
611 * then write out the super-block.
612 */
613 fsinit(utime);
614 sblock.fs_time = utime;
615 wtfs(SBOFF / sectorsize, sbsize, (char *)&sblock);
616 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
617 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
618 sblock.fs_cssize - i < sblock.fs_bsize ?
619 sblock.fs_cssize - i : sblock.fs_bsize,
620 ((char *)fscs) + i);
621 /*
622 * Write out the duplicate super blocks
623 */
624 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
625 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
626 sbsize, (char *)&sblock);
627 /*
628 * Update information about this partion in pack
629 * label, to that it may be updated on disk.
630 */
631 pp->p_fstype = FS_BSDFFS;
632 pp->p_fsize = sblock.fs_fsize;
633 pp->p_frag = sblock.fs_frag;
634 pp->p_cpg = sblock.fs_cpg;
635 /*
636 * Notify parent process of success.
637 * Dissociate from session and tty.
638 */
639 if (mfs) {
640 kill(ppid, SIGUSR1);
641 (void) setsid();
642 (void) close(0);
643 (void) close(1);
644 (void) close(2);
645 (void) chdir("/");
646 }
647 }
648
649 /*
650 * Initialize a cylinder group.
651 */
652 initcg(cylno, utime)
653 int cylno;
654 time_t utime;
655 {
656 daddr_t cbase, d, dlower, dupper, dmax;
657 long i, j, s;
658 register struct csum *cs;
659
660 /*
661 * Determine block bounds for cylinder group.
662 * Allow space for super block summary information in first
663 * cylinder group.
664 */
665 cbase = cgbase(&sblock, cylno);
666 dmax = cbase + sblock.fs_fpg;
667 if (dmax > sblock.fs_size)
668 dmax = sblock.fs_size;
669 dlower = cgsblock(&sblock, cylno) - cbase;
670 dupper = cgdmin(&sblock, cylno) - cbase;
671 if (cylno == 0)
672 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
673 cs = fscs + cylno;
674 acg.cg_time = utime;
675 acg.cg_magic = CG_MAGIC;
676 acg.cg_cgx = cylno;
677 if (cylno == sblock.fs_ncg - 1)
678 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
679 else
680 acg.cg_ncyl = sblock.fs_cpg;
681 acg.cg_niblk = sblock.fs_ipg;
682 acg.cg_ndblk = dmax - cbase;
683 acg.cg_cs.cs_ndir = 0;
684 acg.cg_cs.cs_nffree = 0;
685 acg.cg_cs.cs_nbfree = 0;
686 acg.cg_cs.cs_nifree = 0;
687 acg.cg_rotor = 0;
688 acg.cg_frotor = 0;
689 acg.cg_irotor = 0;
690 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_link);
691 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(long);
692 acg.cg_iusedoff = acg.cg_boff +
693 sblock.fs_cpg * sblock.fs_nrpos * sizeof(short);
694 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
695 acg.cg_nextfreeoff = acg.cg_freeoff +
696 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
697 for (i = 0; i < sblock.fs_frag; i++) {
698 acg.cg_frsum[i] = 0;
699 }
700 bzero((caddr_t)cg_inosused(&acg), acg.cg_freeoff - acg.cg_iusedoff);
701 acg.cg_cs.cs_nifree += sblock.fs_ipg;
702 if (cylno == 0)
703 for (i = 0; i < ROOTINO; i++) {
704 setbit(cg_inosused(&acg), i);
705 acg.cg_cs.cs_nifree--;
706 }
707 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
708 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
709 sblock.fs_bsize, (char *)zino);
710 bzero((caddr_t)cg_blktot(&acg), acg.cg_boff - acg.cg_btotoff);
711 bzero((caddr_t)cg_blks(&sblock, &acg, 0),
712 acg.cg_iusedoff - acg.cg_boff);
713 bzero((caddr_t)cg_blksfree(&acg), acg.cg_nextfreeoff - acg.cg_freeoff);
714 if (cylno > 0) {
715 /*
716 * In cylno 0, beginning space is reserved
717 * for boot and super blocks.
718 */
719 for (d = 0; d < dlower; d += sblock.fs_frag) {
720 setblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
721 acg.cg_cs.cs_nbfree++;
722 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
723 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
724 [cbtorpos(&sblock, d)]++;
725 }
726 sblock.fs_dsize += dlower;
727 }
728 sblock.fs_dsize += acg.cg_ndblk - dupper;
729 if (i = dupper % sblock.fs_frag) {
730 acg.cg_frsum[sblock.fs_frag - i]++;
731 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
732 setbit(cg_blksfree(&acg), dupper);
733 acg.cg_cs.cs_nffree++;
734 }
735 }
736 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
737 setblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
738 acg.cg_cs.cs_nbfree++;
739 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
740 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
741 [cbtorpos(&sblock, d)]++;
742 d += sblock.fs_frag;
743 }
744 if (d < dmax - cbase) {
745 acg.cg_frsum[dmax - cbase - d]++;
746 for (; d < dmax - cbase; d++) {
747 setbit(cg_blksfree(&acg), d);
748 acg.cg_cs.cs_nffree++;
749 }
750 }
751 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
752 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
753 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
754 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
755 *cs = acg.cg_cs;
756 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
757 sblock.fs_bsize, (char *)&acg);
758 }
759
760 /*
761 * initialize the file system
762 */
763 struct dinode node;
764
765 #ifdef LOSTDIR
766 #define PREDEFDIR 3
767 #else
768 #define PREDEFDIR 2
769 #endif
770
771 struct direct root_dir[] = {
772 { ROOTINO, sizeof(struct direct), 1, "." },
773 { ROOTINO, sizeof(struct direct), 2, ".." },
774 #ifdef LOSTDIR
775 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
776 #endif
777 };
778 #ifdef LOSTDIR
779 struct direct lost_found_dir[] = {
780 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
781 { ROOTINO, sizeof(struct direct), 2, ".." },
782 { 0, DIRBLKSIZ, 0, 0 },
783 };
784 #endif
785 char buf[MAXBSIZE];
786
787 fsinit(utime)
788 time_t utime;
789 {
790 int i;
791
792 /*
793 * initialize the node
794 */
795 node.di_atime = utime;
796 node.di_mtime = utime;
797 node.di_ctime = utime;
798 #ifdef LOSTDIR
799 /*
800 * create the lost+found directory
801 */
802 (void)makedir(lost_found_dir, 2);
803 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
804 bcopy(&lost_found_dir[2], &buf[i], DIRSIZ(&lost_found_dir[2]));
805 node.di_mode = IFDIR | UMASK;
806 node.di_nlink = 2;
807 node.di_size = sblock.fs_bsize;
808 node.di_db[0] = alloc(node.di_size, node.di_mode);
809 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
810 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
811 iput(&node, LOSTFOUNDINO);
812 #endif
813 /*
814 * create the root directory
815 */
816 if (mfs)
817 node.di_mode = IFDIR | 01777;
818 else
819 node.di_mode = IFDIR | UMASK;
820 node.di_nlink = PREDEFDIR;
821 node.di_size = makedir(root_dir, PREDEFDIR);
822 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
823 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
824 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
825 iput(&node, ROOTINO);
826 }
827
828 /*
829 * construct a set of directory entries in "buf".
830 * return size of directory.
831 */
832 makedir(protodir, entries)
833 register struct direct *protodir;
834 int entries;
835 {
836 char *cp;
837 int i, spcleft;
838
839 spcleft = DIRBLKSIZ;
840 for (cp = buf, i = 0; i < entries - 1; i++) {
841 protodir[i].d_reclen = DIRSIZ(&protodir[i]);
842 bcopy(&protodir[i], cp, protodir[i].d_reclen);
843 cp += protodir[i].d_reclen;
844 spcleft -= protodir[i].d_reclen;
845 }
846 protodir[i].d_reclen = spcleft;
847 bcopy(&protodir[i], cp, DIRSIZ(&protodir[i]));
848 return (DIRBLKSIZ);
849 }
850
851 /*
852 * allocate a block or frag
853 */
854 daddr_t
855 alloc(size, mode)
856 int size;
857 int mode;
858 {
859 int i, frag;
860 daddr_t d;
861
862 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
863 (char *)&acg);
864 if (acg.cg_magic != CG_MAGIC) {
865 printf("cg 0: bad magic number\n");
866 return (0);
867 }
868 if (acg.cg_cs.cs_nbfree == 0) {
869 printf("first cylinder group ran out of space\n");
870 return (0);
871 }
872 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
873 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
874 goto goth;
875 printf("internal error: can't find block in cyl 0\n");
876 return (0);
877 goth:
878 clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
879 acg.cg_cs.cs_nbfree--;
880 sblock.fs_cstotal.cs_nbfree--;
881 fscs[0].cs_nbfree--;
882 if (mode & IFDIR) {
883 acg.cg_cs.cs_ndir++;
884 sblock.fs_cstotal.cs_ndir++;
885 fscs[0].cs_ndir++;
886 }
887 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
888 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
889 if (size != sblock.fs_bsize) {
890 frag = howmany(size, sblock.fs_fsize);
891 fscs[0].cs_nffree += sblock.fs_frag - frag;
892 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
893 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
894 acg.cg_frsum[sblock.fs_frag - frag]++;
895 for (i = frag; i < sblock.fs_frag; i++)
896 setbit(cg_blksfree(&acg), d + i);
897 }
898 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
899 (char *)&acg);
900 return (d);
901 }
902
903 /*
904 * Allocate an inode on the disk
905 */
906 iput(ip, ino)
907 register struct dinode *ip;
908 register ino_t ino;
909 {
910 struct dinode buf[MAXINOPB];
911 daddr_t d;
912 int c;
913
914 c = itog(&sblock, ino);
915 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
916 (char *)&acg);
917 if (acg.cg_magic != CG_MAGIC) {
918 printf("cg 0: bad magic number\n");
919 exit(31);
920 }
921 acg.cg_cs.cs_nifree--;
922 setbit(cg_inosused(&acg), ino);
923 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
924 (char *)&acg);
925 sblock.fs_cstotal.cs_nifree--;
926 fscs[0].cs_nifree--;
927 if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
928 printf("fsinit: inode value out of range (%d).\n", ino);
929 exit(32);
930 }
931 d = fsbtodb(&sblock, itod(&sblock, ino));
932 rdfs(d, sblock.fs_bsize, buf);
933 buf[itoo(&sblock, ino)] = *ip;
934 wtfs(d, sblock.fs_bsize, buf);
935 }
936
937 /*
938 * Notify parent process that the filesystem has created itself successfully.
939 */
940 void
941 started()
942 {
943
944 exit(0);
945 }
946
947 /*
948 * Replace libc function with one suited to our needs.
949 */
950 caddr_t
951 malloc(size)
952 register u_long size;
953 {
954 u_long base, i;
955 static u_long pgsz;
956 struct rlimit rlp;
957
958 if (pgsz == 0) {
959 base = sbrk(0);
960 pgsz = getpagesize() - 1;
961 i = (base + pgsz) &~ pgsz;
962 base = sbrk(i - base);
963 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
964 perror("getrlimit");
965 rlp.rlim_cur = rlp.rlim_max;
966 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
967 perror("setrlimit");
968 memleft = rlp.rlim_max - base;
969 }
970 size = (size + pgsz) &~ pgsz;
971 if (size > memleft)
972 size = memleft;
973 memleft -= size;
974 if (size == 0)
975 return (0);
976 return ((caddr_t)sbrk(size));
977 }
978
979 /*
980 * Replace libc function with one suited to our needs.
981 */
982 caddr_t
983 realloc(ptr, size)
984 char *ptr;
985 u_long size;
986 {
987
988 /* always fail for now */
989 return ((caddr_t)0);
990 }
991
992 /*
993 * Replace libc function with one suited to our needs.
994 */
995 char *
996 calloc(size, numelm)
997 u_long size, numelm;
998 {
999 caddr_t base;
1000
1001 size *= numelm;
1002 base = malloc(size);
1003 bzero(base, size);
1004 return (base);
1005 }
1006
1007 /*
1008 * Replace libc function with one suited to our needs.
1009 */
1010 free(ptr)
1011 char *ptr;
1012 {
1013
1014 /* do not worry about it for now */
1015 }
1016
1017 /*
1018 * read a block from the file system
1019 */
1020 rdfs(bno, size, bf)
1021 daddr_t bno;
1022 int size;
1023 char *bf;
1024 {
1025 int n;
1026
1027 if (mfs) {
1028 bcopy(membase + bno * sectorsize, bf, size);
1029 return;
1030 }
1031 if (lseek(fsi, bno * sectorsize, 0) < 0) {
1032 printf("seek error: %ld\n", bno);
1033 perror("rdfs");
1034 exit(33);
1035 }
1036 n = read(fsi, bf, size);
1037 if(n != size) {
1038 printf("read error: %ld\n", bno);
1039 perror("rdfs");
1040 exit(34);
1041 }
1042 }
1043
1044 /*
1045 * write a block to the file system
1046 */
1047 wtfs(bno, size, bf)
1048 daddr_t bno;
1049 int size;
1050 char *bf;
1051 {
1052 int n;
1053
1054 if (mfs) {
1055 bcopy(bf, membase + bno * sectorsize, size);
1056 return;
1057 }
1058 if (Nflag)
1059 return;
1060 if (lseek(fso, bno * sectorsize, 0) < 0) {
1061 printf("seek error: %ld\n", bno);
1062 perror("wtfs");
1063 exit(35);
1064 }
1065 n = write(fso, bf, size);
1066 if(n != size) {
1067 printf("write error: %ld\n", bno);
1068 perror("wtfs");
1069 exit(36);
1070 }
1071 }
1072
1073 /*
1074 * check if a block is available
1075 */
1076 isblock(fs, cp, h)
1077 struct fs *fs;
1078 unsigned char *cp;
1079 int h;
1080 {
1081 unsigned char mask;
1082
1083 switch (fs->fs_frag) {
1084 case 8:
1085 return (cp[h] == 0xff);
1086 case 4:
1087 mask = 0x0f << ((h & 0x1) << 2);
1088 return ((cp[h >> 1] & mask) == mask);
1089 case 2:
1090 mask = 0x03 << ((h & 0x3) << 1);
1091 return ((cp[h >> 2] & mask) == mask);
1092 case 1:
1093 mask = 0x01 << (h & 0x7);
1094 return ((cp[h >> 3] & mask) == mask);
1095 default:
1096 #ifdef STANDALONE
1097 printf("isblock bad fs_frag %d\n", fs->fs_frag);
1098 #else
1099 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1100 #endif
1101 return (0);
1102 }
1103 }
1104
1105 /*
1106 * take a block out of the map
1107 */
1108 clrblock(fs, cp, h)
1109 struct fs *fs;
1110 unsigned char *cp;
1111 int h;
1112 {
1113 switch ((fs)->fs_frag) {
1114 case 8:
1115 cp[h] = 0;
1116 return;
1117 case 4:
1118 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1119 return;
1120 case 2:
1121 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1122 return;
1123 case 1:
1124 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1125 return;
1126 default:
1127 #ifdef STANDALONE
1128 printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1129 #else
1130 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1131 #endif
1132 return;
1133 }
1134 }
1135
1136 /*
1137 * put a block into the map
1138 */
1139 setblock(fs, cp, h)
1140 struct fs *fs;
1141 unsigned char *cp;
1142 int h;
1143 {
1144 switch (fs->fs_frag) {
1145 case 8:
1146 cp[h] = 0xff;
1147 return;
1148 case 4:
1149 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1150 return;
1151 case 2:
1152 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1153 return;
1154 case 1:
1155 cp[h >> 3] |= (0x01 << (h & 0x7));
1156 return;
1157 default:
1158 #ifdef STANDALONE
1159 printf("setblock bad fs_frag %d\n", fs->fs_frag);
1160 #else
1161 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1162 #endif
1163 return;
1164 }
1165 }
1166