mkfs.c revision 1.61 1 /* $NetBSD: mkfs.c,v 1.61 2002/01/18 08:59:18 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1980, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 #ifndef lint
38 #if 0
39 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
40 #else
41 __RCSID("$NetBSD: mkfs.c,v 1.61 2002/01/18 08:59:18 lukem Exp $");
42 #endif
43 #endif /* not lint */
44
45 #include <sys/param.h>
46 #include <sys/mman.h>
47 #include <sys/time.h>
48 #include <sys/resource.h>
49 #include <ufs/ufs/dinode.h>
50 #include <ufs/ufs/dir.h>
51 #include <ufs/ufs/ufs_bswap.h>
52 #include <ufs/ffs/fs.h>
53 #include <ufs/ffs/ffs_extern.h>
54 #include <sys/disklabel.h>
55
56 #include <err.h>
57 #include <errno.h>
58 #include <string.h>
59 #include <unistd.h>
60 #include <stdlib.h>
61
62 #ifndef STANDALONE
63 #include <stdio.h>
64 #endif
65
66 #include "extern.h"
67
68 static void initcg(int, time_t);
69 static int fsinit(time_t, mode_t, uid_t, gid_t);
70 static int makedir(struct direct *, int);
71 static daddr_t alloc(int, int);
72 static void iput(struct dinode *, ino_t);
73 static void rdfs(daddr_t, int, void *);
74 static void wtfs(daddr_t, int, void *);
75 static int isblock(struct fs *, unsigned char *, int);
76 static void clrblock(struct fs *, unsigned char *, int);
77 static void setblock(struct fs *, unsigned char *, int);
78 static int32_t calcipg(int32_t, int32_t, off_t *);
79 static void swap_cg(struct cg *, struct cg *);
80 #ifdef MFS
81 static void calc_memfree(void);
82 static void *mkfs_malloc(size_t size);
83 #endif
84
85 static int count_digits(int);
86
87 /*
88 * make file system for cylinder-group style file systems
89 */
90
91 /*
92 * We limit the size of the inode map to be no more than a
93 * third of the cylinder group space, since we must leave at
94 * least an equal amount of space for the block map.
95 *
96 * N.B.: MAXIPG must be a multiple of INOPB(fs).
97 */
98 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
99
100 #define UMASK 0755
101 #define MAXINOPB (MAXBSIZE / DINODE_SIZE)
102 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
103
104 union {
105 struct fs fs;
106 char pad[SBSIZE];
107 } fsun;
108 #define sblock fsun.fs
109 struct csum *fscs;
110
111 union {
112 struct cg cg;
113 char pad[MAXBSIZE];
114 } cgun;
115 #define acg cgun.cg
116
117 struct dinode zino[MAXBSIZE / DINODE_SIZE];
118
119 char writebuf[MAXBSIZE];
120
121 int fsi, fso;
122
123 void
124 mkfs(struct partition *pp, const char *fsys, int fi, int fo,
125 mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
126 {
127 int32_t i, mincpc, mincpg, inospercg;
128 int32_t cylno, rpos, blk, j, warning = 0;
129 int32_t used, mincpgcnt, bpcg;
130 off_t usedb;
131 int32_t mapcramped, inodecramped;
132 int32_t postblsize, rotblsize, totalsbsize;
133 time_t utime;
134 long long sizepb;
135 char *writebuf2; /* dynamic buffer */
136 int nprintcols, printcolwidth;
137
138 #ifndef STANDALONE
139 time(&utime);
140 #endif
141 #ifdef MFS
142 if (mfs) {
143 calc_memfree();
144 if (fssize * sectorsize > memleft)
145 fssize = memleft / sectorsize;
146 if ((membase = mkfs_malloc(fssize * sectorsize)) == 0)
147 exit(12);
148 }
149 #endif
150 fsi = fi;
151 fso = fo;
152 if (Oflag) {
153 sblock.fs_inodefmt = FS_42INODEFMT;
154 sblock.fs_maxsymlinklen = 0;
155 } else {
156 sblock.fs_inodefmt = FS_44INODEFMT;
157 sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
158 }
159 /*
160 * Validate the given file system size.
161 * Verify that its last block can actually be accessed.
162 */
163 if (fssize <= 0)
164 printf("preposterous size %d\n", fssize), exit(13);
165 wtfs(fssize - 1, sectorsize, (char *)&sblock);
166
167 /*
168 * collect and verify the sector and track info
169 */
170 sblock.fs_nsect = nsectors;
171 sblock.fs_ntrak = ntracks;
172 if (sblock.fs_ntrak <= 0)
173 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
174 if (sblock.fs_nsect <= 0)
175 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
176 /*
177 * collect and verify the filesystem density info
178 */
179 sblock.fs_avgfilesize = avgfilesize;
180 sblock.fs_avgfpdir = avgfpdir;
181 if (sblock.fs_avgfilesize <= 0)
182 printf("illegal expected average file size %d\n",
183 sblock.fs_avgfilesize), exit(14);
184 if (sblock.fs_avgfpdir <= 0)
185 printf("illegal expected number of files per directory %d\n",
186 sblock.fs_avgfpdir), exit(15);
187 /*
188 * collect and verify the block and fragment sizes
189 */
190 sblock.fs_bsize = bsize;
191 sblock.fs_fsize = fsize;
192 if (!POWEROF2(sblock.fs_bsize)) {
193 printf("block size must be a power of 2, not %d\n",
194 sblock.fs_bsize);
195 exit(16);
196 }
197 if (!POWEROF2(sblock.fs_fsize)) {
198 printf("fragment size must be a power of 2, not %d\n",
199 sblock.fs_fsize);
200 exit(17);
201 }
202 if (sblock.fs_fsize < sectorsize) {
203 printf("fragment size %d is too small, minimum is %d\n",
204 sblock.fs_fsize, sectorsize);
205 exit(18);
206 }
207 if (sblock.fs_bsize < MINBSIZE) {
208 printf("block size %d is too small, minimum is %d\n",
209 sblock.fs_bsize, MINBSIZE);
210 exit(19);
211 }
212 if (sblock.fs_bsize > MAXBSIZE) {
213 printf("block size %d is too large, maximum is %d\n",
214 sblock.fs_bsize, MAXBSIZE);
215 exit(19);
216 }
217 if (sblock.fs_bsize < sblock.fs_fsize) {
218 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
219 sblock.fs_bsize, sblock.fs_fsize);
220 exit(20);
221 }
222 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
223 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
224 sblock.fs_qbmask = ~sblock.fs_bmask;
225 sblock.fs_qfmask = ~sblock.fs_fmask;
226 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
227 sblock.fs_bshift++;
228 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
229 sblock.fs_fshift++;
230 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
231 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
232 sblock.fs_fragshift++;
233 if (sblock.fs_frag > MAXFRAG) {
234 printf("fragment size %d is too small, "
235 "minimum with block size %d is %d\n",
236 sblock.fs_fsize, sblock.fs_bsize,
237 sblock.fs_bsize / MAXFRAG);
238 exit(21);
239 }
240 sblock.fs_nrpos = nrpos;
241 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
242 sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
243 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
244 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
245 sblock.fs_fsbtodb++;
246 sblock.fs_sblkno =
247 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
248 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
249 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
250 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
251 sblock.fs_cgoffset = roundup(
252 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
253 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
254 sblock.fs_cgmask <<= 1;
255 if (!POWEROF2(sblock.fs_ntrak))
256 sblock.fs_cgmask <<= 1;
257 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
258 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
259 sizepb *= NINDIR(&sblock);
260 sblock.fs_maxfilesize += sizepb;
261 }
262 /*
263 * Validate specified/determined secpercyl
264 * and calculate minimum cylinders per group.
265 */
266 sblock.fs_spc = secpercyl;
267 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
268 sblock.fs_cpc > 1 && (i & 1) == 0;
269 sblock.fs_cpc >>= 1, i >>= 1)
270 /* void */;
271 mincpc = sblock.fs_cpc;
272 bpcg = sblock.fs_spc * sectorsize;
273 inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
274 if (inospercg > MAXIPG(&sblock))
275 inospercg = MAXIPG(&sblock);
276 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
277 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
278 sblock.fs_spc);
279 mincpg = roundup(mincpgcnt, mincpc);
280 /*
281 * Ensure that cylinder group with mincpg has enough space
282 * for block maps.
283 */
284 sblock.fs_cpg = mincpg;
285 sblock.fs_ipg = inospercg;
286 if (maxcontig > 1)
287 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
288 mapcramped = 0;
289 while (CGSIZE(&sblock) > sblock.fs_bsize) {
290 mapcramped = 1;
291 if (sblock.fs_bsize < MAXBSIZE) {
292 sblock.fs_bsize <<= 1;
293 if ((i & 1) == 0) {
294 i >>= 1;
295 } else {
296 sblock.fs_cpc <<= 1;
297 mincpc <<= 1;
298 mincpg = roundup(mincpgcnt, mincpc);
299 sblock.fs_cpg = mincpg;
300 }
301 sblock.fs_frag <<= 1;
302 sblock.fs_fragshift += 1;
303 if (sblock.fs_frag <= MAXFRAG)
304 continue;
305 }
306 if (sblock.fs_fsize == sblock.fs_bsize) {
307 printf("There is no block size that");
308 printf(" can support this disk\n");
309 exit(22);
310 }
311 sblock.fs_frag >>= 1;
312 sblock.fs_fragshift -= 1;
313 sblock.fs_fsize <<= 1;
314 sblock.fs_nspf <<= 1;
315 }
316 /*
317 * Ensure that cylinder group with mincpg has enough space for inodes.
318 */
319 inodecramped = 0;
320 inospercg = calcipg(mincpg, bpcg, &usedb);
321 sblock.fs_ipg = inospercg;
322 while (inospercg > MAXIPG(&sblock)) {
323 inodecramped = 1;
324 if (mincpc == 1 || sblock.fs_frag == 1 ||
325 sblock.fs_bsize == MINBSIZE)
326 break;
327 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
328 "minimum bytes per inode is",
329 (int)((mincpg * (off_t)bpcg - usedb)
330 / MAXIPG(&sblock) + 1));
331 sblock.fs_bsize >>= 1;
332 sblock.fs_frag >>= 1;
333 sblock.fs_fragshift -= 1;
334 mincpc >>= 1;
335 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
336 if (CGSIZE(&sblock) > sblock.fs_bsize) {
337 sblock.fs_bsize <<= 1;
338 break;
339 }
340 mincpg = sblock.fs_cpg;
341 inospercg = calcipg(mincpg, bpcg, &usedb);
342 sblock.fs_ipg = inospercg;
343 }
344 if (inodecramped) {
345 if (inospercg > MAXIPG(&sblock)) {
346 printf("Minimum bytes per inode is %d\n",
347 (int)((mincpg * (off_t)bpcg - usedb)
348 / MAXIPG(&sblock) + 1));
349 } else if (!mapcramped) {
350 printf("With %d bytes per inode, ", density);
351 printf("minimum cylinders per group is %d\n", mincpg);
352 }
353 }
354 if (mapcramped) {
355 printf("With %d sectors per cylinder, ", sblock.fs_spc);
356 printf("minimum cylinders per group is %d\n", mincpg);
357 }
358 if (inodecramped || mapcramped) {
359 if (sblock.fs_bsize != bsize)
360 printf("%s to be changed from %d to %d\n",
361 "This requires the block size",
362 bsize, sblock.fs_bsize);
363 if (sblock.fs_fsize != fsize)
364 printf("\t%s to be changed from %d to %d\n",
365 "and the fragment size",
366 fsize, sblock.fs_fsize);
367 exit(23);
368 }
369 /*
370 * Calculate the number of cylinders per group
371 */
372 sblock.fs_cpg = cpg;
373 if (sblock.fs_cpg % mincpc != 0) {
374 printf("%s groups must have a multiple of %d cylinders\n",
375 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
376 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
377 if (!cpgflg)
378 cpg = sblock.fs_cpg;
379 }
380 /*
381 * Must ensure there is enough space for inodes.
382 */
383 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
384 while (sblock.fs_ipg > MAXIPG(&sblock)) {
385 inodecramped = 1;
386 sblock.fs_cpg -= mincpc;
387 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
388 }
389 /*
390 * Must ensure there is enough space to hold block map.
391 */
392 while (CGSIZE(&sblock) > sblock.fs_bsize) {
393 mapcramped = 1;
394 sblock.fs_cpg -= mincpc;
395 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
396 }
397 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
398 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
399 printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
400 exit(24);
401 }
402 if (sblock.fs_cpg < mincpg) {
403 printf("cylinder groups must have at least %d cylinders\n",
404 mincpg);
405 exit(25);
406 } else if (sblock.fs_cpg != cpg && cpgflg) {
407 if (!mapcramped && !inodecramped)
408 exit(26);
409 if (mapcramped && inodecramped)
410 printf("Block size and bytes per inode restrict");
411 else if (mapcramped)
412 printf("Block size restricts");
413 else
414 printf("Bytes per inode restrict");
415 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
416 exit(27);
417 }
418 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
419 /*
420 * Now have size for file system and nsect and ntrak.
421 * Determine number of cylinders and blocks in the file system.
422 */
423 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
424 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
425 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
426 sblock.fs_ncyl++;
427 warning = 1;
428 }
429 if (sblock.fs_ncyl < 1) {
430 printf("file systems must have at least one cylinder\n");
431 exit(28);
432 }
433 /*
434 * Determine feasability/values of rotational layout tables.
435 *
436 * The size of the rotational layout tables is limited by the
437 * size of the superblock, SBSIZE. The amount of space available
438 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
439 * The size of these tables is inversely proportional to the block
440 * size of the file system. The size increases if sectors per track
441 * are not powers of two, because more cylinders must be described
442 * by the tables before the rotational pattern repeats (fs_cpc).
443 */
444 sblock.fs_interleave = interleave;
445 sblock.fs_trackskew = trackskew;
446 sblock.fs_npsect = nphyssectors;
447 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
448 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
449 if (sblock.fs_ntrak == 1) {
450 sblock.fs_cpc = 0;
451 goto next;
452 }
453 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
454 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
455 totalsbsize = sizeof(struct fs) + rotblsize;
456 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
457 /* use old static table space */
458 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
459 (char *)(&sblock.fs_firstfield);
460 sblock.fs_rotbloff = &sblock.fs_space[0] -
461 (u_char *)(&sblock.fs_firstfield);
462 } else {
463 /* use dynamic table space */
464 sblock.fs_postbloff = &sblock.fs_space[0] -
465 (u_char *)(&sblock.fs_firstfield);
466 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
467 totalsbsize += postblsize;
468 }
469 if (totalsbsize > SBSIZE ||
470 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
471 printf("%s %s %d %s %d.%s",
472 "Warning: insufficient space in super block for\n",
473 "rotational layout tables with nsect", sblock.fs_nsect,
474 "and ntrak", sblock.fs_ntrak,
475 "\nFile system performance may be impaired.\n");
476 sblock.fs_cpc = 0;
477 goto next;
478 }
479 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
480 /*
481 * calculate the available blocks for each rotational position
482 */
483 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
484 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
485 fs_postbl(&sblock, cylno)[rpos] = -1;
486 for (i = (rotblsize - 1) * sblock.fs_frag;
487 i >= 0; i -= sblock.fs_frag) {
488 cylno = cbtocylno(&sblock, i);
489 rpos = cbtorpos(&sblock, i);
490 blk = fragstoblks(&sblock, i);
491 if (fs_postbl(&sblock, cylno)[rpos] == -1)
492 fs_rotbl(&sblock)[blk] = 0;
493 else
494 fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
495 fs_postbl(&sblock, cylno)[rpos] = blk;
496 }
497 next:
498 /*
499 * Compute/validate number of cylinder groups.
500 */
501 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
502 if (sblock.fs_ncyl % sblock.fs_cpg)
503 sblock.fs_ncg++;
504 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
505 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
506 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
507 printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
508 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
509 sblock.fs_fpg / sblock.fs_frag);
510 printf("number of cylinders per cylinder group (%d) %s.\n",
511 sblock.fs_cpg, "must be increased");
512 exit(29);
513 }
514 j = sblock.fs_ncg - 1;
515 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
516 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
517 if (j == 0) {
518 printf("File system must have at least %d sectors\n",
519 NSPF(&sblock) *
520 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
521 exit(30);
522 }
523 printf("Warning: inode blocks/cyl group (%d) >= "
524 "data blocks (%d) in last\n",
525 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
526 i / sblock.fs_frag);
527 printf(" cylinder group. This implies %d sector(s) "
528 "cannot be allocated.\n",
529 i * NSPF(&sblock));
530 sblock.fs_ncg--;
531 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
532 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
533 NSPF(&sblock);
534 warning = 0;
535 }
536 if (warning && !mfs) {
537 printf("Warning: %d sector(s) in last cylinder unallocated\n",
538 sblock.fs_spc -
539 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
540 * sblock.fs_spc));
541 }
542 /*
543 * fill in remaining fields of the super block
544 */
545 sblock.fs_csaddr = cgdmin(&sblock, 0);
546 sblock.fs_cssize =
547 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
548 /*
549 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
550 * longer used. However, we still initialise them so that the
551 * filesystem remains compatible with old kernels.
552 */
553 i = sblock.fs_bsize / sizeof(struct csum);
554 sblock.fs_csmask = ~(i - 1);
555 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
556 sblock.fs_csshift++;
557 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
558 if (fscs == NULL)
559 exit(39);
560 sblock.fs_magic = FS_MAGIC;
561 sblock.fs_rotdelay = rotdelay;
562 sblock.fs_minfree = minfree;
563 sblock.fs_maxcontig = maxcontig;
564 sblock.fs_maxbpg = maxbpg;
565 sblock.fs_rps = rpm / 60;
566 sblock.fs_optim = opt;
567 sblock.fs_cgrotor = 0;
568 sblock.fs_cstotal.cs_ndir = 0;
569 sblock.fs_cstotal.cs_nbfree = 0;
570 sblock.fs_cstotal.cs_nifree = 0;
571 sblock.fs_cstotal.cs_nffree = 0;
572 sblock.fs_fmod = 0;
573 sblock.fs_clean = FS_ISCLEAN;
574 sblock.fs_ronly = 0;
575 /*
576 * Dump out summary information about file system.
577 */
578 if (!mfs) {
579 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
580 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
581 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
582 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
583 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
584 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
585 sblock.fs_ncg, sblock.fs_cpg,
586 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
587 sblock.fs_ipg);
588 #undef B2MBFACTOR
589 }
590 /*
591 * Now determine how wide each column will be, and calculate how
592 * many columns will fit in a 76 char line. 76 is the width of the
593 * subwindows in sysinst.
594 */
595 printcolwidth = count_digits(
596 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
597 nprintcols = 76 / (printcolwidth + 2);
598 /*
599 * Now build the cylinders group blocks and
600 * then print out indices of cylinder groups.
601 */
602 if (!mfs)
603 printf("super-block backups (for fsck -b #) at:");
604 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
605 initcg(cylno, utime);
606 if (mfs)
607 continue;
608 if (cylno % nprintcols == 0)
609 printf("\n");
610 printf(" %*d,", printcolwidth,
611 fsbtodb(&sblock, cgsblock(&sblock, cylno)));
612 fflush(stdout);
613 }
614 if (!mfs)
615 printf("\n");
616 if (Nflag && !mfs)
617 exit(0);
618 /*
619 * Now construct the initial file system,
620 * then write out the super-block.
621 */
622 if (fsinit(utime, mfsmode, mfsuid, mfsgid) == 0 && mfs)
623 errx(1, "Error making filesystem");
624 sblock.fs_time = utime;
625 memcpy(writebuf, &sblock, sbsize);
626 if (needswap)
627 ffs_sb_swap(&sblock, (struct fs*)writebuf);
628 wtfs((int)SBOFF / sectorsize, sbsize, writebuf);
629 /*
630 * Write out the duplicate super blocks
631 */
632 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
633 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
634 sbsize, writebuf);
635
636 /*
637 * if we need to swap, create a buffer for the cylinder summaries
638 * to get swapped to.
639 */
640 if (needswap) {
641 if ((writebuf2 = malloc(sblock.fs_cssize)) == NULL)
642 exit(12);
643 ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize);
644 } else
645 writebuf2 = (char *)fscs;
646
647 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
648 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
649 sblock.fs_cssize - i < sblock.fs_bsize ?
650 sblock.fs_cssize - i : sblock.fs_bsize,
651 ((char *)writebuf2) + i);
652 if (writebuf2 != (char *)fscs)
653 free(writebuf2);
654
655 /*
656 * Update information about this partion in pack
657 * label, to that it may be updated on disk.
658 */
659 pp->p_fstype = FS_BSDFFS;
660 pp->p_fsize = sblock.fs_fsize;
661 pp->p_frag = sblock.fs_frag;
662 pp->p_cpg = sblock.fs_cpg;
663 }
664
665 /*
666 * Initialize a cylinder group.
667 */
668 void
669 initcg(int cylno, time_t utime)
670 {
671 daddr_t cbase, d, dlower, dupper, dmax, blkno;
672 int32_t i;
673 struct csum *cs;
674
675 /*
676 * Determine block bounds for cylinder group.
677 * Allow space for super block summary information in first
678 * cylinder group.
679 */
680 cbase = cgbase(&sblock, cylno);
681 dmax = cbase + sblock.fs_fpg;
682 if (dmax > sblock.fs_size)
683 dmax = sblock.fs_size;
684 dlower = cgsblock(&sblock, cylno) - cbase;
685 dupper = cgdmin(&sblock, cylno) - cbase;
686 if (cylno == 0)
687 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
688 cs = fscs + cylno;
689 memset(&acg, 0, sblock.fs_cgsize);
690 acg.cg_time = utime;
691 acg.cg_magic = CG_MAGIC;
692 acg.cg_cgx = cylno;
693 if (cylno == sblock.fs_ncg - 1)
694 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
695 else
696 acg.cg_ncyl = sblock.fs_cpg;
697 acg.cg_niblk = sblock.fs_ipg;
698 acg.cg_ndblk = dmax - cbase;
699 if (sblock.fs_contigsumsize > 0)
700 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
701 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
702 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
703 acg.cg_iusedoff = acg.cg_boff +
704 sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
705 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
706 if (sblock.fs_contigsumsize <= 0) {
707 acg.cg_nextfreeoff = acg.cg_freeoff +
708 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
709 } else {
710 acg.cg_clustersumoff = acg.cg_freeoff + howmany
711 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
712 sizeof(int32_t);
713 acg.cg_clustersumoff =
714 roundup(acg.cg_clustersumoff, sizeof(int32_t));
715 acg.cg_clusteroff = acg.cg_clustersumoff +
716 (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
717 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
718 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
719 }
720 if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
721 printf("Panic: cylinder group too big\n");
722 exit(37);
723 }
724 acg.cg_cs.cs_nifree += sblock.fs_ipg;
725 if (cylno == 0)
726 for (i = 0; i < ROOTINO; i++) {
727 setbit(cg_inosused(&acg, 0), i);
728 acg.cg_cs.cs_nifree--;
729 }
730 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
731 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
732 sblock.fs_bsize, (char *)zino);
733 if (cylno > 0) {
734 /*
735 * In cylno 0, beginning space is reserved
736 * for boot and super blocks.
737 */
738 for (d = 0; d < dlower; d += sblock.fs_frag) {
739 blkno = d / sblock.fs_frag;
740 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
741 if (sblock.fs_contigsumsize > 0)
742 setbit(cg_clustersfree(&acg, 0), blkno);
743 acg.cg_cs.cs_nbfree++;
744 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
745 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
746 [cbtorpos(&sblock, d)]++;
747 }
748 sblock.fs_dsize += dlower;
749 }
750 sblock.fs_dsize += acg.cg_ndblk - dupper;
751 if ((i = (dupper % sblock.fs_frag)) != 0) {
752 acg.cg_frsum[sblock.fs_frag - i]++;
753 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
754 setbit(cg_blksfree(&acg, 0), dupper);
755 acg.cg_cs.cs_nffree++;
756 }
757 }
758 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
759 blkno = d / sblock.fs_frag;
760 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
761 if (sblock.fs_contigsumsize > 0)
762 setbit(cg_clustersfree(&acg, 0), blkno);
763 acg.cg_cs.cs_nbfree++;
764 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
765 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
766 [cbtorpos(&sblock, d)]++;
767 d += sblock.fs_frag;
768 }
769 if (d < dmax - cbase) {
770 acg.cg_frsum[dmax - cbase - d]++;
771 for (; d < dmax - cbase; d++) {
772 setbit(cg_blksfree(&acg, 0), d);
773 acg.cg_cs.cs_nffree++;
774 }
775 }
776 if (sblock.fs_contigsumsize > 0) {
777 int32_t *sump = cg_clustersum(&acg, 0);
778 u_char *mapp = cg_clustersfree(&acg, 0);
779 int map = *mapp++;
780 int bit = 1;
781 int run = 0;
782
783 for (i = 0; i < acg.cg_nclusterblks; i++) {
784 if ((map & bit) != 0) {
785 run++;
786 } else if (run != 0) {
787 if (run > sblock.fs_contigsumsize)
788 run = sblock.fs_contigsumsize;
789 sump[run]++;
790 run = 0;
791 }
792 if ((i & (NBBY - 1)) != (NBBY - 1)) {
793 bit <<= 1;
794 } else {
795 map = *mapp++;
796 bit = 1;
797 }
798 }
799 if (run != 0) {
800 if (run > sblock.fs_contigsumsize)
801 run = sblock.fs_contigsumsize;
802 sump[run]++;
803 }
804 }
805 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
806 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
807 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
808 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
809 *cs = acg.cg_cs;
810 memcpy(writebuf, &acg, sblock.fs_bsize);
811 if (needswap)
812 swap_cg(&acg, (struct cg*)writebuf);
813 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
814 sblock.fs_bsize, writebuf);
815 }
816
817 /*
818 * initialize the file system
819 */
820 struct dinode node;
821
822 #ifdef LOSTDIR
823 #define PREDEFDIR 3
824 #else
825 #define PREDEFDIR 2
826 #endif
827
828 struct direct root_dir[] = {
829 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
830 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
831 #ifdef LOSTDIR
832 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
833 #endif
834 };
835 struct odirect {
836 u_int32_t d_ino;
837 u_int16_t d_reclen;
838 u_int16_t d_namlen;
839 u_char d_name[MAXNAMLEN + 1];
840 } oroot_dir[] = {
841 { ROOTINO, sizeof(struct direct), 1, "." },
842 { ROOTINO, sizeof(struct direct), 2, ".." },
843 #ifdef LOSTDIR
844 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
845 #endif
846 };
847 #ifdef LOSTDIR
848 struct direct lost_found_dir[] = {
849 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
850 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
851 { 0, DIRBLKSIZ, 0, 0, 0 },
852 };
853 struct odirect olost_found_dir[] = {
854 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
855 { ROOTINO, sizeof(struct direct), 2, ".." },
856 { 0, DIRBLKSIZ, 0, 0 },
857 };
858 #endif
859 char buf[MAXBSIZE];
860 static void copy_dir(struct direct *, struct direct *);
861
862 int
863 fsinit(time_t utime, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
864 {
865 #ifdef LOSTDIR
866 int i;
867 #endif
868
869 /*
870 * initialize the node
871 */
872 memset(&node, 0, sizeof(node));
873 node.di_atime = utime;
874 node.di_mtime = utime;
875 node.di_ctime = utime;
876
877 #ifdef LOSTDIR
878 /*
879 * create the lost+found directory
880 */
881 if (Oflag) {
882 (void)makedir((struct direct *)olost_found_dir, 2);
883 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
884 copy_dir((struct direct*)&olost_found_dir[2],
885 (struct direct*)&buf[i]);
886 } else {
887 (void)makedir(lost_found_dir, 2);
888 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
889 copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
890 }
891 node.di_mode = IFDIR | UMASK;
892 node.di_nlink = 2;
893 node.di_size = sblock.fs_bsize;
894 node.di_db[0] = alloc(node.di_size, node.di_mode);
895 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
896 node.di_uid = geteuid();
897 node.di_gid = getegid();
898 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
899 iput(&node, LOSTFOUNDINO);
900 #endif
901 /*
902 * create the root directory
903 */
904 if (mfs) {
905 node.di_mode = IFDIR | mfsmode;
906 node.di_uid = mfsuid;
907 node.di_gid = mfsgid;
908 } else {
909 node.di_mode = IFDIR | UMASK;
910 node.di_uid = geteuid();
911 node.di_gid = getegid();
912 }
913 node.di_nlink = PREDEFDIR;
914 if (Oflag)
915 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
916 else
917 node.di_size = makedir(root_dir, PREDEFDIR);
918 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
919 if (node.di_db[0] == 0)
920 return (0);
921 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
922 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
923 iput(&node, ROOTINO);
924 return (1);
925 }
926
927 /*
928 * construct a set of directory entries in "buf".
929 * return size of directory.
930 */
931 int
932 makedir(struct direct *protodir, int entries)
933 {
934 char *cp;
935 int i, spcleft;
936
937 spcleft = DIRBLKSIZ;
938 for (cp = buf, i = 0; i < entries - 1; i++) {
939 protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0);
940 copy_dir(&protodir[i], (struct direct*)cp);
941 cp += protodir[i].d_reclen;
942 spcleft -= protodir[i].d_reclen;
943 }
944 protodir[i].d_reclen = spcleft;
945 copy_dir(&protodir[i], (struct direct*)cp);
946 return (DIRBLKSIZ);
947 }
948
949 /*
950 * allocate a block or frag
951 */
952 daddr_t
953 alloc(int size, int mode)
954 {
955 int i, frag;
956 daddr_t d, blkno;
957
958 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
959 /* fs -> host byte order */
960 if (needswap)
961 swap_cg(&acg, &acg);
962 if (acg.cg_magic != CG_MAGIC) {
963 printf("cg 0: bad magic number\n");
964 return (0);
965 }
966 if (acg.cg_cs.cs_nbfree == 0) {
967 printf("first cylinder group ran out of space\n");
968 return (0);
969 }
970 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
971 if (isblock(&sblock, cg_blksfree(&acg, 0), d / sblock.fs_frag))
972 goto goth;
973 printf("internal error: can't find block in cyl 0\n");
974 return (0);
975 goth:
976 blkno = fragstoblks(&sblock, d);
977 clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
978 if (sblock.fs_contigsumsize > 0)
979 clrbit(cg_clustersfree(&acg, 0), blkno);
980 acg.cg_cs.cs_nbfree--;
981 sblock.fs_cstotal.cs_nbfree--;
982 fscs[0].cs_nbfree--;
983 if (mode & IFDIR) {
984 acg.cg_cs.cs_ndir++;
985 sblock.fs_cstotal.cs_ndir++;
986 fscs[0].cs_ndir++;
987 }
988 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--;
989 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--;
990 if (size != sblock.fs_bsize) {
991 frag = howmany(size, sblock.fs_fsize);
992 fscs[0].cs_nffree += sblock.fs_frag - frag;
993 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
994 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
995 acg.cg_frsum[sblock.fs_frag - frag]++;
996 for (i = frag; i < sblock.fs_frag; i++)
997 setbit(cg_blksfree(&acg, 0), d + i);
998 }
999 /* host -> fs byte order */
1000 if (needswap)
1001 swap_cg(&acg, &acg);
1002 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1003 (char *)&acg);
1004 return (d);
1005 }
1006
1007 /*
1008 * Calculate number of inodes per group.
1009 */
1010 int32_t
1011 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
1012 {
1013 int i;
1014 int32_t ipg, new_ipg, ncg, ncyl;
1015 off_t usedb;
1016
1017 /*
1018 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1019 * Note that fssize is still in sectors, not file system blocks.
1020 */
1021 ncyl = howmany(fssize, secpercyl);
1022 ncg = howmany(ncyl, cylpg);
1023 /*
1024 * Iterate a few times to allow for ipg depending on itself.
1025 */
1026 ipg = 0;
1027 for (i = 0; i < 10; i++) {
1028 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1029 * NSPF(&sblock) * (off_t)sectorsize;
1030 new_ipg = (cylpg * (long long)bpcg - usedb) /
1031 (long long)density * fssize / (ncg * secpercyl * cylpg);
1032 if (new_ipg <= 0)
1033 new_ipg = 1; /* ensure ipg > 0 */
1034 new_ipg = roundup(new_ipg, INOPB(&sblock));
1035 if (new_ipg == ipg)
1036 break;
1037 ipg = new_ipg;
1038 }
1039 *usedbp = usedb;
1040 return (ipg);
1041 }
1042
1043 /*
1044 * Allocate an inode on the disk
1045 */
1046 static void
1047 iput(struct dinode *ip, ino_t ino)
1048 {
1049 struct dinode ibuf[MAXINOPB];
1050 daddr_t d;
1051 int c, i;
1052
1053 c = ino_to_cg(&sblock, ino);
1054 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1055 /* fs -> host byte order */
1056 if (needswap)
1057 swap_cg(&acg, &acg);
1058 if (acg.cg_magic != CG_MAGIC) {
1059 printf("cg 0: bad magic number\n");
1060 exit(31);
1061 }
1062 acg.cg_cs.cs_nifree--;
1063 setbit(cg_inosused(&acg, 0), ino);
1064 /* host -> fs byte order */
1065 if (needswap)
1066 swap_cg(&acg, &acg);
1067 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1068 (char *)&acg);
1069 sblock.fs_cstotal.cs_nifree--;
1070 fscs[0].cs_nifree--;
1071 if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1072 printf("fsinit: inode value out of range (%d).\n", ino);
1073 exit(32);
1074 }
1075 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1076 rdfs(d, sblock.fs_bsize, ibuf);
1077 if (needswap) {
1078 ffs_dinode_swap(ip, &ibuf[ino_to_fsbo(&sblock, ino)]);
1079 /* ffs_dinode_swap() doesn't swap blocks addrs */
1080 for (i=0; i<NDADDR + NIADDR; i++)
1081 (&ibuf[ino_to_fsbo(&sblock, ino)])->di_db[i] =
1082 bswap32(ip->di_db[i]);
1083 } else
1084 ibuf[ino_to_fsbo(&sblock, ino)] = *ip;
1085 wtfs(d, sblock.fs_bsize, ibuf);
1086 }
1087
1088 /*
1089 * read a block from the file system
1090 */
1091 void
1092 rdfs(daddr_t bno, int size, void *bf)
1093 {
1094 int n;
1095 off_t offset;
1096
1097 #ifdef MFS
1098 if (mfs) {
1099 memmove(bf, membase + bno * sectorsize, size);
1100 return;
1101 }
1102 #endif
1103 offset = bno;
1104 offset *= sectorsize;
1105 if (lseek(fsi, offset, SEEK_SET) < 0) {
1106 printf("rdfs: seek error for sector %d: %s\n",
1107 bno, strerror(errno));
1108 exit(33);
1109 }
1110 n = read(fsi, bf, size);
1111 if (n != size) {
1112 printf("rdfs: read error for sector %d: %s\n",
1113 bno, strerror(errno));
1114 exit(34);
1115 }
1116 }
1117
1118 /*
1119 * write a block to the file system
1120 */
1121 void
1122 wtfs(daddr_t bno, int size, void *bf)
1123 {
1124 int n;
1125 off_t offset;
1126
1127 #ifdef MFS
1128 if (mfs) {
1129 memmove(membase + bno * sectorsize, bf, size);
1130 return;
1131 }
1132 #endif
1133 if (Nflag)
1134 return;
1135 offset = bno;
1136 offset *= sectorsize;
1137 if (lseek(fso, offset, SEEK_SET) < 0) {
1138 printf("wtfs: seek error for sector %d: %s\n",
1139 bno, strerror(errno));
1140 exit(35);
1141 }
1142 n = write(fso, bf, size);
1143 if (n != size) {
1144 printf("wtfs: write error for sector %d: %s\n",
1145 bno, strerror(errno));
1146 exit(36);
1147 }
1148 }
1149
1150 /*
1151 * check if a block is available
1152 */
1153 int
1154 isblock(struct fs *fs, unsigned char *cp, int h)
1155 {
1156 unsigned char mask;
1157
1158 switch (fs->fs_frag) {
1159 case 8:
1160 return (cp[h] == 0xff);
1161 case 4:
1162 mask = 0x0f << ((h & 0x1) << 2);
1163 return ((cp[h >> 1] & mask) == mask);
1164 case 2:
1165 mask = 0x03 << ((h & 0x3) << 1);
1166 return ((cp[h >> 2] & mask) == mask);
1167 case 1:
1168 mask = 0x01 << (h & 0x7);
1169 return ((cp[h >> 3] & mask) == mask);
1170 default:
1171 #ifdef STANDALONE
1172 printf("isblock bad fs_frag %d\n", fs->fs_frag);
1173 #else
1174 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1175 #endif
1176 return (0);
1177 }
1178 }
1179
1180 /*
1181 * take a block out of the map
1182 */
1183 void
1184 clrblock(struct fs *fs, unsigned char *cp, int h)
1185 {
1186 switch ((fs)->fs_frag) {
1187 case 8:
1188 cp[h] = 0;
1189 return;
1190 case 4:
1191 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1192 return;
1193 case 2:
1194 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1195 return;
1196 case 1:
1197 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1198 return;
1199 default:
1200 #ifdef STANDALONE
1201 printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1202 #else
1203 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1204 #endif
1205 return;
1206 }
1207 }
1208
1209 /*
1210 * put a block into the map
1211 */
1212 void
1213 setblock(struct fs *fs, unsigned char *cp, int h)
1214 {
1215 switch (fs->fs_frag) {
1216 case 8:
1217 cp[h] = 0xff;
1218 return;
1219 case 4:
1220 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1221 return;
1222 case 2:
1223 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1224 return;
1225 case 1:
1226 cp[h >> 3] |= (0x01 << (h & 0x7));
1227 return;
1228 default:
1229 #ifdef STANDALONE
1230 printf("setblock bad fs_frag %d\n", fs->fs_frag);
1231 #else
1232 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1233 #endif
1234 return;
1235 }
1236 }
1237
1238 /* swap byte order of cylinder group */
1239 static void
1240 swap_cg(struct cg *o, struct cg *n)
1241 {
1242 int i, btotsize, fbsize;
1243 u_int32_t *n32, *o32;
1244 u_int16_t *n16, *o16;
1245
1246 n->cg_firstfield = bswap32(o->cg_firstfield);
1247 n->cg_magic = bswap32(o->cg_magic);
1248 n->cg_time = bswap32(o->cg_time);
1249 n->cg_cgx = bswap32(o->cg_cgx);
1250 n->cg_ncyl = bswap16(o->cg_ncyl);
1251 n->cg_niblk = bswap16(o->cg_niblk);
1252 n->cg_ndblk = bswap32(o->cg_ndblk);
1253 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
1254 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
1255 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
1256 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
1257 n->cg_rotor = bswap32(o->cg_rotor);
1258 n->cg_frotor = bswap32(o->cg_frotor);
1259 n->cg_irotor = bswap32(o->cg_irotor);
1260 n->cg_btotoff = bswap32(o->cg_btotoff);
1261 n->cg_boff = bswap32(o->cg_boff);
1262 n->cg_iusedoff = bswap32(o->cg_iusedoff);
1263 n->cg_freeoff = bswap32(o->cg_freeoff);
1264 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
1265 n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
1266 n->cg_clusteroff = bswap32(o->cg_clusteroff);
1267 n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
1268 for (i=0; i < MAXFRAG; i++)
1269 n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
1270
1271 /* alays new format */
1272 if (n->cg_magic == CG_MAGIC) {
1273 btotsize = n->cg_boff - n->cg_btotoff;
1274 fbsize = n->cg_iusedoff - n->cg_boff;
1275 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
1276 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
1277 n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
1278 o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
1279 } else {
1280 btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
1281 fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
1282 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
1283 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
1284 n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
1285 o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
1286 }
1287 for (i=0; i < btotsize / sizeof(u_int32_t); i++)
1288 n32[i] = bswap32(o32[i]);
1289
1290 for (i=0; i < fbsize/sizeof(u_int16_t); i++)
1291 n16[i] = bswap16(o16[i]);
1292
1293 if (n->cg_magic == CG_MAGIC) {
1294 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
1295 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
1296 } else {
1297 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
1298 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
1299 }
1300 for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
1301 n32[i] = bswap32(o32[i]);
1302 }
1303
1304 /* copy a direntry to a buffer, in fs byte order */
1305 static void
1306 copy_dir(struct direct *dir, struct direct *dbuf)
1307 {
1308 memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0));
1309 if (needswap) {
1310 dbuf->d_ino = bswap32(dir->d_ino);
1311 dbuf->d_reclen = bswap16(dir->d_reclen);
1312 if (Oflag)
1313 ((struct odirect*)dbuf)->d_namlen =
1314 bswap16(((struct odirect*)dir)->d_namlen);
1315 }
1316 }
1317
1318 /* Determine how many digits are needed to print a given integer */
1319 static int
1320 count_digits(int num)
1321 {
1322 int ndig;
1323
1324 for(ndig = 1; num > 9; num /=10, ndig++);
1325
1326 return (ndig);
1327 }
1328
1329 #ifdef MFS
1330 /*
1331 * XXX!
1332 * Attempt to guess how much more space is available for process data. The
1333 * heuristic we use is
1334 *
1335 * max_data_limit - (sbrk(0) - etext) - 128kB
1336 *
1337 * etext approximates that start address of the data segment, and the 128kB
1338 * allows some slop for both segment gap between text and data, and for other
1339 * (libc) malloc usage.
1340 */
1341 static void
1342 calc_memfree(void)
1343 {
1344 extern char etext;
1345 struct rlimit rlp;
1346 u_long base;
1347
1348 base = (u_long)sbrk(0) - (u_long)&etext;
1349 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1350 perror("getrlimit");
1351 rlp.rlim_cur = rlp.rlim_max;
1352 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1353 perror("setrlimit");
1354 memleft = rlp.rlim_max - base - (128 * 1024);
1355 }
1356
1357 /*
1358 * Internal version of malloc that trims the requested size if not enough
1359 * memory is available.
1360 */
1361 static void *
1362 mkfs_malloc(size_t size)
1363 {
1364 u_long pgsz;
1365
1366 if (size == 0)
1367 return (NULL);
1368 if (memleft == 0)
1369 calc_memfree();
1370
1371 pgsz = getpagesize() - 1;
1372 size = (size + pgsz) &~ pgsz;
1373 if (size > memleft)
1374 size = memleft;
1375 memleft -= size;
1376 return (mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
1377 -1, 0));
1378 }
1379 #endif /* MFS */
1380