Home | History | Annotate | Line # | Download | only in newfs
mkfs.c revision 1.61
      1 /*	$NetBSD: mkfs.c,v 1.61 2002/01/18 08:59:18 lukem Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1980, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 #ifndef lint
     38 #if 0
     39 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
     40 #else
     41 __RCSID("$NetBSD: mkfs.c,v 1.61 2002/01/18 08:59:18 lukem Exp $");
     42 #endif
     43 #endif /* not lint */
     44 
     45 #include <sys/param.h>
     46 #include <sys/mman.h>
     47 #include <sys/time.h>
     48 #include <sys/resource.h>
     49 #include <ufs/ufs/dinode.h>
     50 #include <ufs/ufs/dir.h>
     51 #include <ufs/ufs/ufs_bswap.h>
     52 #include <ufs/ffs/fs.h>
     53 #include <ufs/ffs/ffs_extern.h>
     54 #include <sys/disklabel.h>
     55 
     56 #include <err.h>
     57 #include <errno.h>
     58 #include <string.h>
     59 #include <unistd.h>
     60 #include <stdlib.h>
     61 
     62 #ifndef STANDALONE
     63 #include <stdio.h>
     64 #endif
     65 
     66 #include "extern.h"
     67 
     68 static void initcg(int, time_t);
     69 static int fsinit(time_t, mode_t, uid_t, gid_t);
     70 static int makedir(struct direct *, int);
     71 static daddr_t alloc(int, int);
     72 static void iput(struct dinode *, ino_t);
     73 static void rdfs(daddr_t, int, void *);
     74 static void wtfs(daddr_t, int, void *);
     75 static int isblock(struct fs *, unsigned char *, int);
     76 static void clrblock(struct fs *, unsigned char *, int);
     77 static void setblock(struct fs *, unsigned char *, int);
     78 static int32_t calcipg(int32_t, int32_t, off_t *);
     79 static void swap_cg(struct cg *, struct cg *);
     80 #ifdef MFS
     81 static void calc_memfree(void);
     82 static void *mkfs_malloc(size_t size);
     83 #endif
     84 
     85 static int count_digits(int);
     86 
     87 /*
     88  * make file system for cylinder-group style file systems
     89  */
     90 
     91 /*
     92  * We limit the size of the inode map to be no more than a
     93  * third of the cylinder group space, since we must leave at
     94  * least an equal amount of space for the block map.
     95  *
     96  * N.B.: MAXIPG must be a multiple of INOPB(fs).
     97  */
     98 #define	MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
     99 
    100 #define	UMASK		0755
    101 #define	MAXINOPB	(MAXBSIZE / DINODE_SIZE)
    102 #define	POWEROF2(num)	(((num) & ((num) - 1)) == 0)
    103 
    104 union {
    105 	struct fs fs;
    106 	char pad[SBSIZE];
    107 } fsun;
    108 #define	sblock	fsun.fs
    109 struct	csum *fscs;
    110 
    111 union {
    112 	struct cg cg;
    113 	char pad[MAXBSIZE];
    114 } cgun;
    115 #define	acg	cgun.cg
    116 
    117 struct dinode zino[MAXBSIZE / DINODE_SIZE];
    118 
    119 char writebuf[MAXBSIZE];
    120 
    121 int	fsi, fso;
    122 
    123 void
    124 mkfs(struct partition *pp, const char *fsys, int fi, int fo,
    125     mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
    126 {
    127 	int32_t i, mincpc, mincpg, inospercg;
    128 	int32_t cylno, rpos, blk, j, warning = 0;
    129 	int32_t used, mincpgcnt, bpcg;
    130 	off_t usedb;
    131 	int32_t mapcramped, inodecramped;
    132 	int32_t postblsize, rotblsize, totalsbsize;
    133 	time_t utime;
    134 	long long sizepb;
    135 	char *writebuf2;		/* dynamic buffer */
    136 	int nprintcols, printcolwidth;
    137 
    138 #ifndef STANDALONE
    139 	time(&utime);
    140 #endif
    141 #ifdef MFS
    142 	if (mfs) {
    143 		calc_memfree();
    144 		if (fssize * sectorsize > memleft)
    145 			fssize = memleft / sectorsize;
    146 		if ((membase = mkfs_malloc(fssize * sectorsize)) == 0)
    147 			exit(12);
    148 	}
    149 #endif
    150 	fsi = fi;
    151 	fso = fo;
    152 	if (Oflag) {
    153 		sblock.fs_inodefmt = FS_42INODEFMT;
    154 		sblock.fs_maxsymlinklen = 0;
    155 	} else {
    156 		sblock.fs_inodefmt = FS_44INODEFMT;
    157 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
    158 	}
    159 	/*
    160 	 * Validate the given file system size.
    161 	 * Verify that its last block can actually be accessed.
    162 	 */
    163 	if (fssize <= 0)
    164 		printf("preposterous size %d\n", fssize), exit(13);
    165 	wtfs(fssize - 1, sectorsize, (char *)&sblock);
    166 
    167 	/*
    168 	 * collect and verify the sector and track info
    169 	 */
    170 	sblock.fs_nsect = nsectors;
    171 	sblock.fs_ntrak = ntracks;
    172 	if (sblock.fs_ntrak <= 0)
    173 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
    174 	if (sblock.fs_nsect <= 0)
    175 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
    176 	/*
    177 	 * collect and verify the filesystem density info
    178 	 */
    179 	sblock.fs_avgfilesize = avgfilesize;
    180 	sblock.fs_avgfpdir = avgfpdir;
    181 	if (sblock.fs_avgfilesize <= 0)
    182 		printf("illegal expected average file size %d\n",
    183 		    sblock.fs_avgfilesize), exit(14);
    184 	if (sblock.fs_avgfpdir <= 0)
    185 		printf("illegal expected number of files per directory %d\n",
    186 		    sblock.fs_avgfpdir), exit(15);
    187 	/*
    188 	 * collect and verify the block and fragment sizes
    189 	 */
    190 	sblock.fs_bsize = bsize;
    191 	sblock.fs_fsize = fsize;
    192 	if (!POWEROF2(sblock.fs_bsize)) {
    193 		printf("block size must be a power of 2, not %d\n",
    194 		    sblock.fs_bsize);
    195 		exit(16);
    196 	}
    197 	if (!POWEROF2(sblock.fs_fsize)) {
    198 		printf("fragment size must be a power of 2, not %d\n",
    199 		    sblock.fs_fsize);
    200 		exit(17);
    201 	}
    202 	if (sblock.fs_fsize < sectorsize) {
    203 		printf("fragment size %d is too small, minimum is %d\n",
    204 		    sblock.fs_fsize, sectorsize);
    205 		exit(18);
    206 	}
    207 	if (sblock.fs_bsize < MINBSIZE) {
    208 		printf("block size %d is too small, minimum is %d\n",
    209 		    sblock.fs_bsize, MINBSIZE);
    210 		exit(19);
    211 	}
    212 	if (sblock.fs_bsize > MAXBSIZE) {
    213 		printf("block size %d is too large, maximum is %d\n",
    214 		    sblock.fs_bsize, MAXBSIZE);
    215 		exit(19);
    216 	}
    217 	if (sblock.fs_bsize < sblock.fs_fsize) {
    218 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
    219 		    sblock.fs_bsize, sblock.fs_fsize);
    220 		exit(20);
    221 	}
    222 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
    223 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
    224 	sblock.fs_qbmask = ~sblock.fs_bmask;
    225 	sblock.fs_qfmask = ~sblock.fs_fmask;
    226 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
    227 		sblock.fs_bshift++;
    228 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
    229 		sblock.fs_fshift++;
    230 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
    231 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
    232 		sblock.fs_fragshift++;
    233 	if (sblock.fs_frag > MAXFRAG) {
    234 		printf("fragment size %d is too small, "
    235 			"minimum with block size %d is %d\n",
    236 		    sblock.fs_fsize, sblock.fs_bsize,
    237 		    sblock.fs_bsize / MAXFRAG);
    238 		exit(21);
    239 	}
    240 	sblock.fs_nrpos = nrpos;
    241 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
    242 	sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
    243 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
    244 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
    245 		sblock.fs_fsbtodb++;
    246 	sblock.fs_sblkno =
    247 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
    248 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
    249 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
    250 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
    251 	sblock.fs_cgoffset = roundup(
    252 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
    253 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
    254 		sblock.fs_cgmask <<= 1;
    255 	if (!POWEROF2(sblock.fs_ntrak))
    256 		sblock.fs_cgmask <<= 1;
    257 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
    258 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
    259 		sizepb *= NINDIR(&sblock);
    260 		sblock.fs_maxfilesize += sizepb;
    261 	}
    262 	/*
    263 	 * Validate specified/determined secpercyl
    264 	 * and calculate minimum cylinders per group.
    265 	 */
    266 	sblock.fs_spc = secpercyl;
    267 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
    268 	     sblock.fs_cpc > 1 && (i & 1) == 0;
    269 	     sblock.fs_cpc >>= 1, i >>= 1)
    270 		/* void */;
    271 	mincpc = sblock.fs_cpc;
    272 	bpcg = sblock.fs_spc * sectorsize;
    273 	inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
    274 	if (inospercg > MAXIPG(&sblock))
    275 		inospercg = MAXIPG(&sblock);
    276 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
    277 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
    278 	    sblock.fs_spc);
    279 	mincpg = roundup(mincpgcnt, mincpc);
    280 	/*
    281 	 * Ensure that cylinder group with mincpg has enough space
    282 	 * for block maps.
    283 	 */
    284 	sblock.fs_cpg = mincpg;
    285 	sblock.fs_ipg = inospercg;
    286 	if (maxcontig > 1)
    287 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
    288 	mapcramped = 0;
    289 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
    290 		mapcramped = 1;
    291 		if (sblock.fs_bsize < MAXBSIZE) {
    292 			sblock.fs_bsize <<= 1;
    293 			if ((i & 1) == 0) {
    294 				i >>= 1;
    295 			} else {
    296 				sblock.fs_cpc <<= 1;
    297 				mincpc <<= 1;
    298 				mincpg = roundup(mincpgcnt, mincpc);
    299 				sblock.fs_cpg = mincpg;
    300 			}
    301 			sblock.fs_frag <<= 1;
    302 			sblock.fs_fragshift += 1;
    303 			if (sblock.fs_frag <= MAXFRAG)
    304 				continue;
    305 		}
    306 		if (sblock.fs_fsize == sblock.fs_bsize) {
    307 			printf("There is no block size that");
    308 			printf(" can support this disk\n");
    309 			exit(22);
    310 		}
    311 		sblock.fs_frag >>= 1;
    312 		sblock.fs_fragshift -= 1;
    313 		sblock.fs_fsize <<= 1;
    314 		sblock.fs_nspf <<= 1;
    315 	}
    316 	/*
    317 	 * Ensure that cylinder group with mincpg has enough space for inodes.
    318 	 */
    319 	inodecramped = 0;
    320 	inospercg = calcipg(mincpg, bpcg, &usedb);
    321 	sblock.fs_ipg = inospercg;
    322 	while (inospercg > MAXIPG(&sblock)) {
    323 		inodecramped = 1;
    324 		if (mincpc == 1 || sblock.fs_frag == 1 ||
    325 		    sblock.fs_bsize == MINBSIZE)
    326 			break;
    327 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
    328 		       "minimum bytes per inode is",
    329 		       (int)((mincpg * (off_t)bpcg - usedb)
    330 			     / MAXIPG(&sblock) + 1));
    331 		sblock.fs_bsize >>= 1;
    332 		sblock.fs_frag >>= 1;
    333 		sblock.fs_fragshift -= 1;
    334 		mincpc >>= 1;
    335 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
    336 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
    337 			sblock.fs_bsize <<= 1;
    338 			break;
    339 		}
    340 		mincpg = sblock.fs_cpg;
    341 		inospercg = calcipg(mincpg, bpcg, &usedb);
    342 		sblock.fs_ipg = inospercg;
    343 	}
    344 	if (inodecramped) {
    345 		if (inospercg > MAXIPG(&sblock)) {
    346 			printf("Minimum bytes per inode is %d\n",
    347 			       (int)((mincpg * (off_t)bpcg - usedb)
    348 				     / MAXIPG(&sblock) + 1));
    349 		} else if (!mapcramped) {
    350 			printf("With %d bytes per inode, ", density);
    351 			printf("minimum cylinders per group is %d\n", mincpg);
    352 		}
    353 	}
    354 	if (mapcramped) {
    355 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
    356 		printf("minimum cylinders per group is %d\n", mincpg);
    357 	}
    358 	if (inodecramped || mapcramped) {
    359 		if (sblock.fs_bsize != bsize)
    360 			printf("%s to be changed from %d to %d\n",
    361 			    "This requires the block size",
    362 			    bsize, sblock.fs_bsize);
    363 		if (sblock.fs_fsize != fsize)
    364 			printf("\t%s to be changed from %d to %d\n",
    365 			    "and the fragment size",
    366 			    fsize, sblock.fs_fsize);
    367 		exit(23);
    368 	}
    369 	/*
    370 	 * Calculate the number of cylinders per group
    371 	 */
    372 	sblock.fs_cpg = cpg;
    373 	if (sblock.fs_cpg % mincpc != 0) {
    374 		printf("%s groups must have a multiple of %d cylinders\n",
    375 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
    376 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
    377 		if (!cpgflg)
    378 			cpg = sblock.fs_cpg;
    379 	}
    380 	/*
    381 	 * Must ensure there is enough space for inodes.
    382 	 */
    383 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
    384 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
    385 		inodecramped = 1;
    386 		sblock.fs_cpg -= mincpc;
    387 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
    388 	}
    389 	/*
    390 	 * Must ensure there is enough space to hold block map.
    391 	 */
    392 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
    393 		mapcramped = 1;
    394 		sblock.fs_cpg -= mincpc;
    395 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
    396 	}
    397 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
    398 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
    399 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
    400 		exit(24);
    401 	}
    402 	if (sblock.fs_cpg < mincpg) {
    403 		printf("cylinder groups must have at least %d cylinders\n",
    404 			mincpg);
    405 		exit(25);
    406 	} else if (sblock.fs_cpg != cpg && cpgflg) {
    407 		if (!mapcramped && !inodecramped)
    408 			exit(26);
    409 		if (mapcramped && inodecramped)
    410 			printf("Block size and bytes per inode restrict");
    411 		else if (mapcramped)
    412 			printf("Block size restricts");
    413 		else
    414 			printf("Bytes per inode restrict");
    415 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
    416 		exit(27);
    417 	}
    418 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
    419 	/*
    420 	 * Now have size for file system and nsect and ntrak.
    421 	 * Determine number of cylinders and blocks in the file system.
    422 	 */
    423 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
    424 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
    425 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
    426 		sblock.fs_ncyl++;
    427 		warning = 1;
    428 	}
    429 	if (sblock.fs_ncyl < 1) {
    430 		printf("file systems must have at least one cylinder\n");
    431 		exit(28);
    432 	}
    433 	/*
    434 	 * Determine feasability/values of rotational layout tables.
    435 	 *
    436 	 * The size of the rotational layout tables is limited by the
    437 	 * size of the superblock, SBSIZE. The amount of space available
    438 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
    439 	 * The size of these tables is inversely proportional to the block
    440 	 * size of the file system. The size increases if sectors per track
    441 	 * are not powers of two, because more cylinders must be described
    442 	 * by the tables before the rotational pattern repeats (fs_cpc).
    443 	 */
    444 	sblock.fs_interleave = interleave;
    445 	sblock.fs_trackskew = trackskew;
    446 	sblock.fs_npsect = nphyssectors;
    447 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
    448 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
    449 	if (sblock.fs_ntrak == 1) {
    450 		sblock.fs_cpc = 0;
    451 		goto next;
    452 	}
    453 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
    454 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
    455 	totalsbsize = sizeof(struct fs) + rotblsize;
    456 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
    457 		/* use old static table space */
    458 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
    459 		    (char *)(&sblock.fs_firstfield);
    460 		sblock.fs_rotbloff = &sblock.fs_space[0] -
    461 		    (u_char *)(&sblock.fs_firstfield);
    462 	} else {
    463 		/* use dynamic table space */
    464 		sblock.fs_postbloff = &sblock.fs_space[0] -
    465 		    (u_char *)(&sblock.fs_firstfield);
    466 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
    467 		totalsbsize += postblsize;
    468 	}
    469 	if (totalsbsize > SBSIZE ||
    470 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
    471 		printf("%s %s %d %s %d.%s",
    472 		    "Warning: insufficient space in super block for\n",
    473 		    "rotational layout tables with nsect", sblock.fs_nsect,
    474 		    "and ntrak", sblock.fs_ntrak,
    475 		    "\nFile system performance may be impaired.\n");
    476 		sblock.fs_cpc = 0;
    477 		goto next;
    478 	}
    479 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
    480 	/*
    481 	 * calculate the available blocks for each rotational position
    482 	 */
    483 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
    484 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
    485 			fs_postbl(&sblock, cylno)[rpos] = -1;
    486 	for (i = (rotblsize - 1) * sblock.fs_frag;
    487 	     i >= 0; i -= sblock.fs_frag) {
    488 		cylno = cbtocylno(&sblock, i);
    489 		rpos = cbtorpos(&sblock, i);
    490 		blk = fragstoblks(&sblock, i);
    491 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
    492 			fs_rotbl(&sblock)[blk] = 0;
    493 		else
    494 			fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
    495 		fs_postbl(&sblock, cylno)[rpos] = blk;
    496 	}
    497 next:
    498 	/*
    499 	 * Compute/validate number of cylinder groups.
    500 	 */
    501 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
    502 	if (sblock.fs_ncyl % sblock.fs_cpg)
    503 		sblock.fs_ncg++;
    504 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
    505 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
    506 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
    507 		printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
    508 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
    509 		    sblock.fs_fpg / sblock.fs_frag);
    510 		printf("number of cylinders per cylinder group (%d) %s.\n",
    511 		    sblock.fs_cpg, "must be increased");
    512 		exit(29);
    513 	}
    514 	j = sblock.fs_ncg - 1;
    515 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
    516 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
    517 		if (j == 0) {
    518 			printf("File system must have at least %d sectors\n",
    519 			    NSPF(&sblock) *
    520 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
    521 			exit(30);
    522 		}
    523 		printf("Warning: inode blocks/cyl group (%d) >= "
    524 			"data blocks (%d) in last\n",
    525 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
    526 		    i / sblock.fs_frag);
    527 		printf("    cylinder group. This implies %d sector(s) "
    528 			"cannot be allocated.\n",
    529 		    i * NSPF(&sblock));
    530 		sblock.fs_ncg--;
    531 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
    532 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
    533 		    NSPF(&sblock);
    534 		warning = 0;
    535 	}
    536 	if (warning && !mfs) {
    537 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
    538 		    sblock.fs_spc -
    539 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
    540 		    * sblock.fs_spc));
    541 	}
    542 	/*
    543 	 * fill in remaining fields of the super block
    544 	 */
    545 	sblock.fs_csaddr = cgdmin(&sblock, 0);
    546 	sblock.fs_cssize =
    547 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
    548 	/*
    549 	 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
    550 	 * longer used. However, we still initialise them so that the
    551 	 * filesystem remains compatible with old kernels.
    552 	 */
    553 	i = sblock.fs_bsize / sizeof(struct csum);
    554 	sblock.fs_csmask = ~(i - 1);
    555 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
    556 		sblock.fs_csshift++;
    557 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
    558 	if (fscs == NULL)
    559 		exit(39);
    560 	sblock.fs_magic = FS_MAGIC;
    561 	sblock.fs_rotdelay = rotdelay;
    562 	sblock.fs_minfree = minfree;
    563 	sblock.fs_maxcontig = maxcontig;
    564 	sblock.fs_maxbpg = maxbpg;
    565 	sblock.fs_rps = rpm / 60;
    566 	sblock.fs_optim = opt;
    567 	sblock.fs_cgrotor = 0;
    568 	sblock.fs_cstotal.cs_ndir = 0;
    569 	sblock.fs_cstotal.cs_nbfree = 0;
    570 	sblock.fs_cstotal.cs_nifree = 0;
    571 	sblock.fs_cstotal.cs_nffree = 0;
    572 	sblock.fs_fmod = 0;
    573 	sblock.fs_clean = FS_ISCLEAN;
    574 	sblock.fs_ronly = 0;
    575 	/*
    576 	 * Dump out summary information about file system.
    577 	 */
    578 	if (!mfs) {
    579 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
    580 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
    581 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
    582 #define	B2MBFACTOR (1 / (1024.0 * 1024.0))
    583 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
    584 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
    585 		    sblock.fs_ncg, sblock.fs_cpg,
    586 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
    587 		    sblock.fs_ipg);
    588 #undef B2MBFACTOR
    589 	}
    590 	/*
    591 	 * Now determine how wide each column will be, and calculate how
    592 	 * many columns will fit in a 76 char line. 76 is the width of the
    593 	 * subwindows in sysinst.
    594 	 */
    595 	printcolwidth = count_digits(
    596 			fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
    597 	nprintcols = 76 / (printcolwidth + 2);
    598 	/*
    599 	 * Now build the cylinders group blocks and
    600 	 * then print out indices of cylinder groups.
    601 	 */
    602 	if (!mfs)
    603 		printf("super-block backups (for fsck -b #) at:");
    604 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
    605 		initcg(cylno, utime);
    606 		if (mfs)
    607 			continue;
    608 		if (cylno % nprintcols == 0)
    609 			printf("\n");
    610 		printf(" %*d,", printcolwidth,
    611 				fsbtodb(&sblock, cgsblock(&sblock, cylno)));
    612 		fflush(stdout);
    613 	}
    614 	if (!mfs)
    615 		printf("\n");
    616 	if (Nflag && !mfs)
    617 		exit(0);
    618 	/*
    619 	 * Now construct the initial file system,
    620 	 * then write out the super-block.
    621 	 */
    622 	if (fsinit(utime, mfsmode, mfsuid, mfsgid) == 0 && mfs)
    623 		errx(1, "Error making filesystem");
    624 	sblock.fs_time = utime;
    625 	memcpy(writebuf, &sblock, sbsize);
    626 	if (needswap)
    627 		ffs_sb_swap(&sblock, (struct fs*)writebuf);
    628 	wtfs((int)SBOFF / sectorsize, sbsize, writebuf);
    629 	/*
    630 	 * Write out the duplicate super blocks
    631 	 */
    632 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
    633 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
    634 		    sbsize, writebuf);
    635 
    636 	/*
    637 	 * if we need to swap, create a buffer for the cylinder summaries
    638 	 * to get swapped to.
    639 	 */
    640 	if (needswap) {
    641 		if ((writebuf2 = malloc(sblock.fs_cssize)) == NULL)
    642 			exit(12);
    643 		ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize);
    644 	} else
    645 		writebuf2 = (char *)fscs;
    646 
    647 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
    648 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
    649 			sblock.fs_cssize - i < sblock.fs_bsize ?
    650 			    sblock.fs_cssize - i : sblock.fs_bsize,
    651 			((char *)writebuf2) + i);
    652 	if (writebuf2 != (char *)fscs)
    653 		free(writebuf2);
    654 
    655 	/*
    656 	 * Update information about this partion in pack
    657 	 * label, to that it may be updated on disk.
    658 	 */
    659 	pp->p_fstype = FS_BSDFFS;
    660 	pp->p_fsize = sblock.fs_fsize;
    661 	pp->p_frag = sblock.fs_frag;
    662 	pp->p_cpg = sblock.fs_cpg;
    663 }
    664 
    665 /*
    666  * Initialize a cylinder group.
    667  */
    668 void
    669 initcg(int cylno, time_t utime)
    670 {
    671 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
    672 	int32_t i;
    673 	struct csum *cs;
    674 
    675 	/*
    676 	 * Determine block bounds for cylinder group.
    677 	 * Allow space for super block summary information in first
    678 	 * cylinder group.
    679 	 */
    680 	cbase = cgbase(&sblock, cylno);
    681 	dmax = cbase + sblock.fs_fpg;
    682 	if (dmax > sblock.fs_size)
    683 		dmax = sblock.fs_size;
    684 	dlower = cgsblock(&sblock, cylno) - cbase;
    685 	dupper = cgdmin(&sblock, cylno) - cbase;
    686 	if (cylno == 0)
    687 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
    688 	cs = fscs + cylno;
    689 	memset(&acg, 0, sblock.fs_cgsize);
    690 	acg.cg_time = utime;
    691 	acg.cg_magic = CG_MAGIC;
    692 	acg.cg_cgx = cylno;
    693 	if (cylno == sblock.fs_ncg - 1)
    694 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
    695 	else
    696 		acg.cg_ncyl = sblock.fs_cpg;
    697 	acg.cg_niblk = sblock.fs_ipg;
    698 	acg.cg_ndblk = dmax - cbase;
    699 	if (sblock.fs_contigsumsize > 0)
    700 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
    701 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
    702 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
    703 	acg.cg_iusedoff = acg.cg_boff +
    704 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
    705 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
    706 	if (sblock.fs_contigsumsize <= 0) {
    707 		acg.cg_nextfreeoff = acg.cg_freeoff +
    708 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
    709 	} else {
    710 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
    711 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
    712 		    sizeof(int32_t);
    713 		acg.cg_clustersumoff =
    714 		    roundup(acg.cg_clustersumoff, sizeof(int32_t));
    715 		acg.cg_clusteroff = acg.cg_clustersumoff +
    716 		    (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
    717 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
    718 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
    719 	}
    720 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
    721 		printf("Panic: cylinder group too big\n");
    722 		exit(37);
    723 	}
    724 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
    725 	if (cylno == 0)
    726 		for (i = 0; i < ROOTINO; i++) {
    727 			setbit(cg_inosused(&acg, 0), i);
    728 			acg.cg_cs.cs_nifree--;
    729 		}
    730 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
    731 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
    732 		    sblock.fs_bsize, (char *)zino);
    733 	if (cylno > 0) {
    734 		/*
    735 		 * In cylno 0, beginning space is reserved
    736 		 * for boot and super blocks.
    737 		 */
    738 		for (d = 0; d < dlower; d += sblock.fs_frag) {
    739 			blkno = d / sblock.fs_frag;
    740 			setblock(&sblock, cg_blksfree(&acg, 0), blkno);
    741 			if (sblock.fs_contigsumsize > 0)
    742 				setbit(cg_clustersfree(&acg, 0), blkno);
    743 			acg.cg_cs.cs_nbfree++;
    744 			cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
    745 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
    746 			    [cbtorpos(&sblock, d)]++;
    747 		}
    748 		sblock.fs_dsize += dlower;
    749 	}
    750 	sblock.fs_dsize += acg.cg_ndblk - dupper;
    751 	if ((i = (dupper % sblock.fs_frag)) != 0) {
    752 		acg.cg_frsum[sblock.fs_frag - i]++;
    753 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
    754 			setbit(cg_blksfree(&acg, 0), dupper);
    755 			acg.cg_cs.cs_nffree++;
    756 		}
    757 	}
    758 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
    759 		blkno = d / sblock.fs_frag;
    760 		setblock(&sblock, cg_blksfree(&acg, 0), blkno);
    761 		if (sblock.fs_contigsumsize > 0)
    762 			setbit(cg_clustersfree(&acg, 0), blkno);
    763 		acg.cg_cs.cs_nbfree++;
    764 		cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
    765 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
    766 		    [cbtorpos(&sblock, d)]++;
    767 		d += sblock.fs_frag;
    768 	}
    769 	if (d < dmax - cbase) {
    770 		acg.cg_frsum[dmax - cbase - d]++;
    771 		for (; d < dmax - cbase; d++) {
    772 			setbit(cg_blksfree(&acg, 0), d);
    773 			acg.cg_cs.cs_nffree++;
    774 		}
    775 	}
    776 	if (sblock.fs_contigsumsize > 0) {
    777 		int32_t *sump = cg_clustersum(&acg, 0);
    778 		u_char *mapp = cg_clustersfree(&acg, 0);
    779 		int map = *mapp++;
    780 		int bit = 1;
    781 		int run = 0;
    782 
    783 		for (i = 0; i < acg.cg_nclusterblks; i++) {
    784 			if ((map & bit) != 0) {
    785 				run++;
    786 			} else if (run != 0) {
    787 				if (run > sblock.fs_contigsumsize)
    788 					run = sblock.fs_contigsumsize;
    789 				sump[run]++;
    790 				run = 0;
    791 			}
    792 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
    793 				bit <<= 1;
    794 			} else {
    795 				map = *mapp++;
    796 				bit = 1;
    797 			}
    798 		}
    799 		if (run != 0) {
    800 			if (run > sblock.fs_contigsumsize)
    801 				run = sblock.fs_contigsumsize;
    802 			sump[run]++;
    803 		}
    804 	}
    805 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
    806 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
    807 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
    808 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
    809 	*cs = acg.cg_cs;
    810 	memcpy(writebuf, &acg, sblock.fs_bsize);
    811 	if (needswap)
    812 		swap_cg(&acg, (struct cg*)writebuf);
    813 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
    814 		sblock.fs_bsize, writebuf);
    815 }
    816 
    817 /*
    818  * initialize the file system
    819  */
    820 struct dinode node;
    821 
    822 #ifdef LOSTDIR
    823 #define	PREDEFDIR 3
    824 #else
    825 #define	PREDEFDIR 2
    826 #endif
    827 
    828 struct direct root_dir[] = {
    829 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
    830 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
    831 #ifdef LOSTDIR
    832 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
    833 #endif
    834 };
    835 struct odirect {
    836 	u_int32_t d_ino;
    837 	u_int16_t d_reclen;
    838 	u_int16_t d_namlen;
    839 	u_char	d_name[MAXNAMLEN + 1];
    840 } oroot_dir[] = {
    841 	{ ROOTINO, sizeof(struct direct), 1, "." },
    842 	{ ROOTINO, sizeof(struct direct), 2, ".." },
    843 #ifdef LOSTDIR
    844 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
    845 #endif
    846 };
    847 #ifdef LOSTDIR
    848 struct direct lost_found_dir[] = {
    849 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
    850 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
    851 	{ 0, DIRBLKSIZ, 0, 0, 0 },
    852 };
    853 struct odirect olost_found_dir[] = {
    854 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
    855 	{ ROOTINO, sizeof(struct direct), 2, ".." },
    856 	{ 0, DIRBLKSIZ, 0, 0 },
    857 };
    858 #endif
    859 char buf[MAXBSIZE];
    860 static void copy_dir(struct direct *, struct direct *);
    861 
    862 int
    863 fsinit(time_t utime, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
    864 {
    865 #ifdef LOSTDIR
    866 	int i;
    867 #endif
    868 
    869 	/*
    870 	 * initialize the node
    871 	 */
    872 	memset(&node, 0, sizeof(node));
    873 	node.di_atime = utime;
    874 	node.di_mtime = utime;
    875 	node.di_ctime = utime;
    876 
    877 #ifdef LOSTDIR
    878 	/*
    879 	 * create the lost+found directory
    880 	 */
    881 	if (Oflag) {
    882 		(void)makedir((struct direct *)olost_found_dir, 2);
    883 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
    884 			copy_dir((struct direct*)&olost_found_dir[2],
    885 				(struct direct*)&buf[i]);
    886 	} else {
    887 		(void)makedir(lost_found_dir, 2);
    888 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
    889 			copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
    890 	}
    891 	node.di_mode = IFDIR | UMASK;
    892 	node.di_nlink = 2;
    893 	node.di_size = sblock.fs_bsize;
    894 	node.di_db[0] = alloc(node.di_size, node.di_mode);
    895 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
    896 	node.di_uid = geteuid();
    897 	node.di_gid = getegid();
    898 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
    899 	iput(&node, LOSTFOUNDINO);
    900 #endif
    901 	/*
    902 	 * create the root directory
    903 	 */
    904 	if (mfs) {
    905 		node.di_mode = IFDIR | mfsmode;
    906 		node.di_uid = mfsuid;
    907 		node.di_gid = mfsgid;
    908 	} else {
    909 		node.di_mode = IFDIR | UMASK;
    910 		node.di_uid = geteuid();
    911 		node.di_gid = getegid();
    912 	}
    913 	node.di_nlink = PREDEFDIR;
    914 	if (Oflag)
    915 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
    916 	else
    917 		node.di_size = makedir(root_dir, PREDEFDIR);
    918 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
    919 	if (node.di_db[0] == 0)
    920 		return (0);
    921 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
    922 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
    923 	iput(&node, ROOTINO);
    924 	return (1);
    925 }
    926 
    927 /*
    928  * construct a set of directory entries in "buf".
    929  * return size of directory.
    930  */
    931 int
    932 makedir(struct direct *protodir, int entries)
    933 {
    934 	char *cp;
    935 	int i, spcleft;
    936 
    937 	spcleft = DIRBLKSIZ;
    938 	for (cp = buf, i = 0; i < entries - 1; i++) {
    939 		protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0);
    940 		copy_dir(&protodir[i], (struct direct*)cp);
    941 		cp += protodir[i].d_reclen;
    942 		spcleft -= protodir[i].d_reclen;
    943 	}
    944 	protodir[i].d_reclen = spcleft;
    945 	copy_dir(&protodir[i], (struct direct*)cp);
    946 	return (DIRBLKSIZ);
    947 }
    948 
    949 /*
    950  * allocate a block or frag
    951  */
    952 daddr_t
    953 alloc(int size, int mode)
    954 {
    955 	int i, frag;
    956 	daddr_t d, blkno;
    957 
    958 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
    959 	/* fs -> host byte order */
    960 	if (needswap)
    961 		swap_cg(&acg, &acg);
    962 	if (acg.cg_magic != CG_MAGIC) {
    963 		printf("cg 0: bad magic number\n");
    964 		return (0);
    965 	}
    966 	if (acg.cg_cs.cs_nbfree == 0) {
    967 		printf("first cylinder group ran out of space\n");
    968 		return (0);
    969 	}
    970 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
    971 		if (isblock(&sblock, cg_blksfree(&acg, 0), d / sblock.fs_frag))
    972 			goto goth;
    973 	printf("internal error: can't find block in cyl 0\n");
    974 	return (0);
    975 goth:
    976 	blkno = fragstoblks(&sblock, d);
    977 	clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
    978 	if (sblock.fs_contigsumsize > 0)
    979 		clrbit(cg_clustersfree(&acg, 0), blkno);
    980 	acg.cg_cs.cs_nbfree--;
    981 	sblock.fs_cstotal.cs_nbfree--;
    982 	fscs[0].cs_nbfree--;
    983 	if (mode & IFDIR) {
    984 		acg.cg_cs.cs_ndir++;
    985 		sblock.fs_cstotal.cs_ndir++;
    986 		fscs[0].cs_ndir++;
    987 	}
    988 	cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--;
    989 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--;
    990 	if (size != sblock.fs_bsize) {
    991 		frag = howmany(size, sblock.fs_fsize);
    992 		fscs[0].cs_nffree += sblock.fs_frag - frag;
    993 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
    994 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
    995 		acg.cg_frsum[sblock.fs_frag - frag]++;
    996 		for (i = frag; i < sblock.fs_frag; i++)
    997 			setbit(cg_blksfree(&acg, 0), d + i);
    998 	}
    999 	/* host -> fs byte order */
   1000 	if (needswap)
   1001 		swap_cg(&acg, &acg);
   1002 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
   1003 	    (char *)&acg);
   1004 	return (d);
   1005 }
   1006 
   1007 /*
   1008  * Calculate number of inodes per group.
   1009  */
   1010 int32_t
   1011 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
   1012 {
   1013 	int i;
   1014 	int32_t ipg, new_ipg, ncg, ncyl;
   1015 	off_t usedb;
   1016 
   1017 	/*
   1018 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
   1019 	 * Note that fssize is still in sectors, not file system blocks.
   1020 	 */
   1021 	ncyl = howmany(fssize, secpercyl);
   1022 	ncg = howmany(ncyl, cylpg);
   1023 	/*
   1024 	 * Iterate a few times to allow for ipg depending on itself.
   1025 	 */
   1026 	ipg = 0;
   1027 	for (i = 0; i < 10; i++) {
   1028 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
   1029 			* NSPF(&sblock) * (off_t)sectorsize;
   1030 		new_ipg = (cylpg * (long long)bpcg - usedb) /
   1031 		    (long long)density * fssize / (ncg * secpercyl * cylpg);
   1032 		if (new_ipg <= 0)
   1033 			new_ipg = 1;		/* ensure ipg > 0 */
   1034 		new_ipg = roundup(new_ipg, INOPB(&sblock));
   1035 		if (new_ipg == ipg)
   1036 			break;
   1037 		ipg = new_ipg;
   1038 	}
   1039 	*usedbp = usedb;
   1040 	return (ipg);
   1041 }
   1042 
   1043 /*
   1044  * Allocate an inode on the disk
   1045  */
   1046 static void
   1047 iput(struct dinode *ip, ino_t ino)
   1048 {
   1049 	struct dinode ibuf[MAXINOPB];
   1050 	daddr_t d;
   1051 	int c, i;
   1052 
   1053 	c = ino_to_cg(&sblock, ino);
   1054 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
   1055 	/* fs -> host byte order */
   1056 	if (needswap)
   1057 		swap_cg(&acg, &acg);
   1058 	if (acg.cg_magic != CG_MAGIC) {
   1059 		printf("cg 0: bad magic number\n");
   1060 		exit(31);
   1061 	}
   1062 	acg.cg_cs.cs_nifree--;
   1063 	setbit(cg_inosused(&acg, 0), ino);
   1064 	/* host -> fs byte order */
   1065 	if (needswap)
   1066 		swap_cg(&acg, &acg);
   1067 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
   1068 	    (char *)&acg);
   1069 	sblock.fs_cstotal.cs_nifree--;
   1070 	fscs[0].cs_nifree--;
   1071 	if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
   1072 		printf("fsinit: inode value out of range (%d).\n", ino);
   1073 		exit(32);
   1074 	}
   1075 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
   1076 	rdfs(d, sblock.fs_bsize, ibuf);
   1077 	if (needswap) {
   1078 		ffs_dinode_swap(ip, &ibuf[ino_to_fsbo(&sblock, ino)]);
   1079 		/* ffs_dinode_swap() doesn't swap blocks addrs */
   1080 		for (i=0; i<NDADDR + NIADDR; i++)
   1081 			(&ibuf[ino_to_fsbo(&sblock, ino)])->di_db[i] =
   1082 				bswap32(ip->di_db[i]);
   1083 	} else
   1084 		ibuf[ino_to_fsbo(&sblock, ino)] = *ip;
   1085 	wtfs(d, sblock.fs_bsize, ibuf);
   1086 }
   1087 
   1088 /*
   1089  * read a block from the file system
   1090  */
   1091 void
   1092 rdfs(daddr_t bno, int size, void *bf)
   1093 {
   1094 	int n;
   1095 	off_t offset;
   1096 
   1097 #ifdef MFS
   1098 	if (mfs) {
   1099 		memmove(bf, membase + bno * sectorsize, size);
   1100 		return;
   1101 	}
   1102 #endif
   1103 	offset = bno;
   1104 	offset *= sectorsize;
   1105 	if (lseek(fsi, offset, SEEK_SET) < 0) {
   1106 		printf("rdfs: seek error for sector %d: %s\n",
   1107 		    bno, strerror(errno));
   1108 		exit(33);
   1109 	}
   1110 	n = read(fsi, bf, size);
   1111 	if (n != size) {
   1112 		printf("rdfs: read error for sector %d: %s\n",
   1113 		    bno, strerror(errno));
   1114 		exit(34);
   1115 	}
   1116 }
   1117 
   1118 /*
   1119  * write a block to the file system
   1120  */
   1121 void
   1122 wtfs(daddr_t bno, int size, void *bf)
   1123 {
   1124 	int n;
   1125 	off_t offset;
   1126 
   1127 #ifdef MFS
   1128 	if (mfs) {
   1129 		memmove(membase + bno * sectorsize, bf, size);
   1130 		return;
   1131 	}
   1132 #endif
   1133 	if (Nflag)
   1134 		return;
   1135 	offset = bno;
   1136 	offset *= sectorsize;
   1137 	if (lseek(fso, offset, SEEK_SET) < 0) {
   1138 		printf("wtfs: seek error for sector %d: %s\n",
   1139 		    bno, strerror(errno));
   1140 		exit(35);
   1141 	}
   1142 	n = write(fso, bf, size);
   1143 	if (n != size) {
   1144 		printf("wtfs: write error for sector %d: %s\n",
   1145 		    bno, strerror(errno));
   1146 		exit(36);
   1147 	}
   1148 }
   1149 
   1150 /*
   1151  * check if a block is available
   1152  */
   1153 int
   1154 isblock(struct fs *fs, unsigned char *cp, int h)
   1155 {
   1156 	unsigned char mask;
   1157 
   1158 	switch (fs->fs_frag) {
   1159 	case 8:
   1160 		return (cp[h] == 0xff);
   1161 	case 4:
   1162 		mask = 0x0f << ((h & 0x1) << 2);
   1163 		return ((cp[h >> 1] & mask) == mask);
   1164 	case 2:
   1165 		mask = 0x03 << ((h & 0x3) << 1);
   1166 		return ((cp[h >> 2] & mask) == mask);
   1167 	case 1:
   1168 		mask = 0x01 << (h & 0x7);
   1169 		return ((cp[h >> 3] & mask) == mask);
   1170 	default:
   1171 #ifdef STANDALONE
   1172 		printf("isblock bad fs_frag %d\n", fs->fs_frag);
   1173 #else
   1174 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
   1175 #endif
   1176 		return (0);
   1177 	}
   1178 }
   1179 
   1180 /*
   1181  * take a block out of the map
   1182  */
   1183 void
   1184 clrblock(struct fs *fs, unsigned char *cp, int h)
   1185 {
   1186 	switch ((fs)->fs_frag) {
   1187 	case 8:
   1188 		cp[h] = 0;
   1189 		return;
   1190 	case 4:
   1191 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
   1192 		return;
   1193 	case 2:
   1194 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
   1195 		return;
   1196 	case 1:
   1197 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
   1198 		return;
   1199 	default:
   1200 #ifdef STANDALONE
   1201 		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
   1202 #else
   1203 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
   1204 #endif
   1205 		return;
   1206 	}
   1207 }
   1208 
   1209 /*
   1210  * put a block into the map
   1211  */
   1212 void
   1213 setblock(struct fs *fs, unsigned char *cp, int h)
   1214 {
   1215 	switch (fs->fs_frag) {
   1216 	case 8:
   1217 		cp[h] = 0xff;
   1218 		return;
   1219 	case 4:
   1220 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
   1221 		return;
   1222 	case 2:
   1223 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
   1224 		return;
   1225 	case 1:
   1226 		cp[h >> 3] |= (0x01 << (h & 0x7));
   1227 		return;
   1228 	default:
   1229 #ifdef STANDALONE
   1230 		printf("setblock bad fs_frag %d\n", fs->fs_frag);
   1231 #else
   1232 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
   1233 #endif
   1234 		return;
   1235 	}
   1236 }
   1237 
   1238 /* swap byte order of cylinder group */
   1239 static void
   1240 swap_cg(struct cg *o, struct cg *n)
   1241 {
   1242 	int i, btotsize, fbsize;
   1243 	u_int32_t *n32, *o32;
   1244 	u_int16_t *n16, *o16;
   1245 
   1246 	n->cg_firstfield = bswap32(o->cg_firstfield);
   1247 	n->cg_magic = bswap32(o->cg_magic);
   1248 	n->cg_time = bswap32(o->cg_time);
   1249 	n->cg_cgx = bswap32(o->cg_cgx);
   1250 	n->cg_ncyl = bswap16(o->cg_ncyl);
   1251 	n->cg_niblk = bswap16(o->cg_niblk);
   1252 	n->cg_ndblk = bswap32(o->cg_ndblk);
   1253 	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
   1254 	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
   1255 	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
   1256 	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
   1257 	n->cg_rotor = bswap32(o->cg_rotor);
   1258 	n->cg_frotor = bswap32(o->cg_frotor);
   1259 	n->cg_irotor = bswap32(o->cg_irotor);
   1260 	n->cg_btotoff = bswap32(o->cg_btotoff);
   1261 	n->cg_boff = bswap32(o->cg_boff);
   1262 	n->cg_iusedoff = bswap32(o->cg_iusedoff);
   1263 	n->cg_freeoff = bswap32(o->cg_freeoff);
   1264 	n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
   1265 	n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
   1266 	n->cg_clusteroff = bswap32(o->cg_clusteroff);
   1267 	n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
   1268 	for (i=0; i < MAXFRAG; i++)
   1269 		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
   1270 
   1271 	/* alays new format */
   1272 	if (n->cg_magic == CG_MAGIC) {
   1273 		btotsize = n->cg_boff - n->cg_btotoff;
   1274 		fbsize = n->cg_iusedoff - n->cg_boff;
   1275 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
   1276 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
   1277 		n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
   1278 		o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
   1279 	} else {
   1280 		btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
   1281 		fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
   1282 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
   1283 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
   1284 		n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
   1285 		o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
   1286 	}
   1287 	for (i=0; i < btotsize / sizeof(u_int32_t); i++)
   1288 		n32[i] = bswap32(o32[i]);
   1289 
   1290 	for (i=0; i < fbsize/sizeof(u_int16_t); i++)
   1291 		n16[i] = bswap16(o16[i]);
   1292 
   1293 	if (n->cg_magic == CG_MAGIC) {
   1294 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
   1295 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
   1296 	} else {
   1297 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
   1298 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
   1299 	}
   1300 	for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
   1301 		n32[i] = bswap32(o32[i]);
   1302 }
   1303 
   1304 /* copy a direntry to a buffer, in fs byte order */
   1305 static void
   1306 copy_dir(struct direct *dir, struct direct *dbuf)
   1307 {
   1308 	memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0));
   1309 	if (needswap) {
   1310 		dbuf->d_ino = bswap32(dir->d_ino);
   1311 		dbuf->d_reclen = bswap16(dir->d_reclen);
   1312 		if (Oflag)
   1313 			((struct odirect*)dbuf)->d_namlen =
   1314 				bswap16(((struct odirect*)dir)->d_namlen);
   1315 	}
   1316 }
   1317 
   1318 /* Determine how many digits are needed to print a given integer */
   1319 static int
   1320 count_digits(int num)
   1321 {
   1322 	int ndig;
   1323 
   1324 	for(ndig = 1; num > 9; num /=10, ndig++);
   1325 
   1326 	return (ndig);
   1327 }
   1328 
   1329 #ifdef MFS
   1330 /*
   1331  * XXX!
   1332  * Attempt to guess how much more space is available for process data.  The
   1333  * heuristic we use is
   1334  *
   1335  *	max_data_limit - (sbrk(0) - etext) - 128kB
   1336  *
   1337  * etext approximates that start address of the data segment, and the 128kB
   1338  * allows some slop for both segment gap between text and data, and for other
   1339  * (libc) malloc usage.
   1340  */
   1341 static void
   1342 calc_memfree(void)
   1343 {
   1344 	extern char etext;
   1345 	struct rlimit rlp;
   1346 	u_long base;
   1347 
   1348 	base = (u_long)sbrk(0) - (u_long)&etext;
   1349 	if (getrlimit(RLIMIT_DATA, &rlp) < 0)
   1350 		perror("getrlimit");
   1351 	rlp.rlim_cur = rlp.rlim_max;
   1352 	if (setrlimit(RLIMIT_DATA, &rlp) < 0)
   1353 		perror("setrlimit");
   1354 	memleft = rlp.rlim_max - base - (128 * 1024);
   1355 }
   1356 
   1357 /*
   1358  * Internal version of malloc that trims the requested size if not enough
   1359  * memory is available.
   1360  */
   1361 static void *
   1362 mkfs_malloc(size_t size)
   1363 {
   1364 	u_long pgsz;
   1365 
   1366 	if (size == 0)
   1367 		return (NULL);
   1368 	if (memleft == 0)
   1369 		calc_memfree();
   1370 
   1371 	pgsz = getpagesize() - 1;
   1372 	size = (size + pgsz) &~ pgsz;
   1373 	if (size > memleft)
   1374 		size = memleft;
   1375 	memleft -= size;
   1376 	return (mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
   1377 	    -1, 0));
   1378 }
   1379 #endif	/* MFS */
   1380