mkfs.c revision 1.62 1 /* $NetBSD: mkfs.c,v 1.62 2002/04/10 08:27:23 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1980, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 #ifndef lint
38 #if 0
39 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
40 #else
41 __RCSID("$NetBSD: mkfs.c,v 1.62 2002/04/10 08:27:23 mycroft Exp $");
42 #endif
43 #endif /* not lint */
44
45 #include <sys/param.h>
46 #include <sys/mman.h>
47 #include <sys/time.h>
48 #include <sys/resource.h>
49 #include <ufs/ufs/dinode.h>
50 #include <ufs/ufs/dir.h>
51 #include <ufs/ufs/ufs_bswap.h>
52 #include <ufs/ffs/fs.h>
53 #include <ufs/ffs/ffs_extern.h>
54 #include <sys/disklabel.h>
55
56 #include <err.h>
57 #include <errno.h>
58 #include <string.h>
59 #include <unistd.h>
60 #include <stdlib.h>
61
62 #ifndef STANDALONE
63 #include <stdio.h>
64 #endif
65
66 #include "extern.h"
67
68 static void initcg(int, time_t);
69 static int fsinit(time_t, mode_t, uid_t, gid_t);
70 static int makedir(struct direct *, int);
71 static daddr_t alloc(int, int);
72 static void iput(struct dinode *, ino_t);
73 static void rdfs(daddr_t, int, void *);
74 static void wtfs(daddr_t, int, void *);
75 static int isblock(struct fs *, unsigned char *, int);
76 static void clrblock(struct fs *, unsigned char *, int);
77 static void setblock(struct fs *, unsigned char *, int);
78 static int32_t calcipg(int32_t, int32_t, off_t *);
79 static void swap_cg(struct cg *, struct cg *);
80 #ifdef MFS
81 static void calc_memfree(void);
82 static void *mkfs_malloc(size_t size);
83 #endif
84
85 static int count_digits(int);
86
87 /*
88 * make file system for cylinder-group style file systems
89 */
90
91 /*
92 * We limit the size of the inode map to be no more than a
93 * third of the cylinder group space, since we must leave at
94 * least an equal amount of space for the block map.
95 *
96 * N.B.: MAXIPG must be a multiple of INOPB(fs).
97 */
98 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
99
100 #define UMASK 0755
101 #define MAXINOPB (MAXBSIZE / DINODE_SIZE)
102 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
103
104 union {
105 struct fs fs;
106 char pad[SBSIZE];
107 } fsun;
108 #define sblock fsun.fs
109 struct csum *fscs;
110
111 union {
112 struct cg cg;
113 char pad[MAXBSIZE];
114 } cgun;
115 #define acg cgun.cg
116
117 struct dinode zino[MAXBSIZE / DINODE_SIZE];
118
119 char writebuf[MAXBSIZE];
120
121 int fsi, fso;
122
123 void
124 mkfs(struct partition *pp, const char *fsys, int fi, int fo,
125 mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
126 {
127 int32_t i, mincpc, mincpg, inospercg;
128 int32_t cylno, rpos, blk, j, warning = 0;
129 int32_t used, mincpgcnt, bpcg;
130 off_t usedb;
131 int32_t mapcramped, inodecramped;
132 int32_t postblsize, rotblsize, totalsbsize;
133 time_t utime;
134 long long sizepb;
135 char *writebuf2; /* dynamic buffer */
136 int nprintcols, printcolwidth;
137
138 #ifndef STANDALONE
139 time(&utime);
140 #endif
141 #ifdef MFS
142 if (mfs) {
143 calc_memfree();
144 if (fssize * sectorsize > memleft)
145 fssize = memleft / sectorsize;
146 if ((membase = mkfs_malloc(fssize * sectorsize)) == 0)
147 exit(12);
148 }
149 #endif
150 fsi = fi;
151 fso = fo;
152 if (Oflag) {
153 sblock.fs_inodefmt = FS_42INODEFMT;
154 sblock.fs_maxsymlinklen = 0;
155 } else {
156 sblock.fs_inodefmt = FS_44INODEFMT;
157 sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
158 }
159 /*
160 * Validate the given file system size.
161 * Verify that its last block can actually be accessed.
162 */
163 if (fssize <= 0)
164 printf("preposterous size %d\n", fssize), exit(13);
165 wtfs(fssize - 1, sectorsize, (char *)&sblock);
166
167 /*
168 * collect and verify the sector and track info
169 */
170 sblock.fs_nsect = nsectors;
171 sblock.fs_ntrak = ntracks;
172 if (sblock.fs_ntrak <= 0)
173 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
174 if (sblock.fs_nsect <= 0)
175 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
176 /*
177 * collect and verify the filesystem density info
178 */
179 sblock.fs_avgfilesize = avgfilesize;
180 sblock.fs_avgfpdir = avgfpdir;
181 if (sblock.fs_avgfilesize <= 0)
182 printf("illegal expected average file size %d\n",
183 sblock.fs_avgfilesize), exit(14);
184 if (sblock.fs_avgfpdir <= 0)
185 printf("illegal expected number of files per directory %d\n",
186 sblock.fs_avgfpdir), exit(15);
187 /*
188 * collect and verify the block and fragment sizes
189 */
190 sblock.fs_bsize = bsize;
191 sblock.fs_fsize = fsize;
192 if (!POWEROF2(sblock.fs_bsize)) {
193 printf("block size must be a power of 2, not %d\n",
194 sblock.fs_bsize);
195 exit(16);
196 }
197 if (!POWEROF2(sblock.fs_fsize)) {
198 printf("fragment size must be a power of 2, not %d\n",
199 sblock.fs_fsize);
200 exit(17);
201 }
202 if (sblock.fs_fsize < sectorsize) {
203 printf("fragment size %d is too small, minimum is %d\n",
204 sblock.fs_fsize, sectorsize);
205 exit(18);
206 }
207 if (sblock.fs_bsize < MINBSIZE) {
208 printf("block size %d is too small, minimum is %d\n",
209 sblock.fs_bsize, MINBSIZE);
210 exit(19);
211 }
212 if (sblock.fs_bsize > MAXBSIZE) {
213 printf("block size %d is too large, maximum is %d\n",
214 sblock.fs_bsize, MAXBSIZE);
215 exit(19);
216 }
217 if (sblock.fs_bsize < sblock.fs_fsize) {
218 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
219 sblock.fs_bsize, sblock.fs_fsize);
220 exit(20);
221 }
222 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
223 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
224 sblock.fs_qbmask = ~sblock.fs_bmask;
225 sblock.fs_qfmask = ~sblock.fs_fmask;
226 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
227 sblock.fs_bshift++;
228 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
229 sblock.fs_fshift++;
230 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
231 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
232 sblock.fs_fragshift++;
233 if (sblock.fs_frag > MAXFRAG) {
234 printf("fragment size %d is too small, "
235 "minimum with block size %d is %d\n",
236 sblock.fs_fsize, sblock.fs_bsize,
237 sblock.fs_bsize / MAXFRAG);
238 exit(21);
239 }
240 sblock.fs_nrpos = nrpos;
241 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
242 sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
243 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
244 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
245 sblock.fs_fsbtodb++;
246 sblock.fs_sblkno =
247 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
248 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
249 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
250 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
251 sblock.fs_cgoffset = roundup(
252 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
253 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
254 sblock.fs_cgmask <<= 1;
255 if (!POWEROF2(sblock.fs_ntrak))
256 sblock.fs_cgmask <<= 1;
257 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
258 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
259 sizepb *= NINDIR(&sblock);
260 sblock.fs_maxfilesize += sizepb;
261 }
262 /*
263 * Validate specified/determined secpercyl
264 * and calculate minimum cylinders per group.
265 */
266 sblock.fs_spc = secpercyl;
267 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
268 sblock.fs_cpc > 1 && (i & 1) == 0;
269 sblock.fs_cpc >>= 1, i >>= 1)
270 /* void */;
271 mincpc = sblock.fs_cpc;
272 bpcg = sblock.fs_spc * sectorsize;
273 inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
274 if (inospercg > MAXIPG(&sblock))
275 inospercg = MAXIPG(&sblock);
276 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
277 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
278 sblock.fs_spc);
279 mincpg = roundup(mincpgcnt, mincpc);
280 /*
281 * Ensure that cylinder group with mincpg has enough space
282 * for block maps.
283 */
284 sblock.fs_cpg = mincpg;
285 sblock.fs_ipg = inospercg;
286 if (maxcontig > 1)
287 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
288 mapcramped = 0;
289 while (CGSIZE(&sblock) > sblock.fs_bsize) {
290 mapcramped = 1;
291 if (sblock.fs_bsize < MAXBSIZE) {
292 sblock.fs_bsize <<= 1;
293 if ((i & 1) == 0) {
294 i >>= 1;
295 } else {
296 sblock.fs_cpc <<= 1;
297 mincpc <<= 1;
298 mincpg = roundup(mincpgcnt, mincpc);
299 sblock.fs_cpg = mincpg;
300 }
301 sblock.fs_frag <<= 1;
302 sblock.fs_fragshift += 1;
303 if (sblock.fs_frag <= MAXFRAG)
304 continue;
305 }
306 if (sblock.fs_fsize == sblock.fs_bsize) {
307 printf("There is no block size that");
308 printf(" can support this disk\n");
309 exit(22);
310 }
311 sblock.fs_frag >>= 1;
312 sblock.fs_fragshift -= 1;
313 sblock.fs_fsize <<= 1;
314 sblock.fs_nspf <<= 1;
315 }
316 /*
317 * Ensure that cylinder group with mincpg has enough space for inodes.
318 */
319 inodecramped = 0;
320 inospercg = calcipg(mincpg, bpcg, &usedb);
321 sblock.fs_ipg = inospercg;
322 while (inospercg > MAXIPG(&sblock)) {
323 inodecramped = 1;
324 if (mincpc == 1 || sblock.fs_frag == 1 ||
325 sblock.fs_bsize == MINBSIZE)
326 break;
327 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
328 "minimum bytes per inode is",
329 (int)((mincpg * (off_t)bpcg - usedb)
330 / MAXIPG(&sblock) + 1));
331 sblock.fs_bsize >>= 1;
332 sblock.fs_frag >>= 1;
333 sblock.fs_fragshift -= 1;
334 mincpc >>= 1;
335 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
336 if (CGSIZE(&sblock) > sblock.fs_bsize) {
337 sblock.fs_bsize <<= 1;
338 break;
339 }
340 mincpg = sblock.fs_cpg;
341 inospercg = calcipg(mincpg, bpcg, &usedb);
342 sblock.fs_ipg = inospercg;
343 }
344 if (inodecramped) {
345 if (inospercg > MAXIPG(&sblock)) {
346 printf("Minimum bytes per inode is %d\n",
347 (int)((mincpg * (off_t)bpcg - usedb)
348 / MAXIPG(&sblock) + 1));
349 } else if (!mapcramped) {
350 printf("With %d bytes per inode, ", density);
351 printf("minimum cylinders per group is %d\n", mincpg);
352 }
353 }
354 if (mapcramped) {
355 printf("With %d sectors per cylinder, ", sblock.fs_spc);
356 printf("minimum cylinders per group is %d\n", mincpg);
357 }
358 if (inodecramped || mapcramped) {
359 if (sblock.fs_bsize != bsize)
360 printf("%s to be changed from %d to %d\n",
361 "This requires the block size",
362 bsize, sblock.fs_bsize);
363 if (sblock.fs_fsize != fsize)
364 printf("\t%s to be changed from %d to %d\n",
365 "and the fragment size",
366 fsize, sblock.fs_fsize);
367 exit(23);
368 }
369 /*
370 * Calculate the number of cylinders per group
371 */
372 sblock.fs_cpg = cpg;
373 if (sblock.fs_cpg % mincpc != 0) {
374 printf("%s groups must have a multiple of %d cylinders\n",
375 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
376 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
377 if (!cpgflg)
378 cpg = sblock.fs_cpg;
379 }
380 /*
381 * Must ensure there is enough space for inodes.
382 */
383 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
384 while (sblock.fs_ipg > MAXIPG(&sblock)) {
385 inodecramped = 1;
386 sblock.fs_cpg -= mincpc;
387 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
388 }
389 /*
390 * Must ensure there is enough space to hold block map.
391 */
392 while (CGSIZE(&sblock) > sblock.fs_bsize) {
393 mapcramped = 1;
394 sblock.fs_cpg -= mincpc;
395 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
396 }
397 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
398 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
399 printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
400 exit(24);
401 }
402 if (sblock.fs_cpg < mincpg) {
403 printf("cylinder groups must have at least %d cylinders\n",
404 mincpg);
405 exit(25);
406 } else if (sblock.fs_cpg != cpg && cpgflg) {
407 if (!mapcramped && !inodecramped)
408 exit(26);
409 if (mapcramped && inodecramped)
410 printf("Block size and bytes per inode restrict");
411 else if (mapcramped)
412 printf("Block size restricts");
413 else
414 printf("Bytes per inode restrict");
415 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
416 exit(27);
417 }
418 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
419 /*
420 * Now have size for file system and nsect and ntrak.
421 * Determine number of cylinders and blocks in the file system.
422 */
423 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
424 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
425 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
426 sblock.fs_ncyl++;
427 warning = 1;
428 }
429 if (sblock.fs_ncyl < 1) {
430 printf("file systems must have at least one cylinder\n");
431 exit(28);
432 }
433 /*
434 * Determine feasability/values of rotational layout tables.
435 *
436 * The size of the rotational layout tables is limited by the
437 * size of the superblock, SBSIZE. The amount of space available
438 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
439 * The size of these tables is inversely proportional to the block
440 * size of the file system. The size increases if sectors per track
441 * are not powers of two, because more cylinders must be described
442 * by the tables before the rotational pattern repeats (fs_cpc).
443 */
444 sblock.fs_interleave = interleave;
445 sblock.fs_trackskew = trackskew;
446 sblock.fs_npsect = nphyssectors;
447 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
448 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
449 if (sblock.fs_ntrak == 1) {
450 sblock.fs_cpc = 0;
451 goto next;
452 }
453 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
454 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
455 totalsbsize = sizeof(struct fs) + rotblsize;
456 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
457 /* use old static table space */
458 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
459 (char *)(&sblock.fs_firstfield);
460 sblock.fs_rotbloff = &sblock.fs_space[0] -
461 (u_char *)(&sblock.fs_firstfield);
462 } else {
463 /* use dynamic table space */
464 sblock.fs_postbloff = &sblock.fs_space[0] -
465 (u_char *)(&sblock.fs_firstfield);
466 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
467 totalsbsize += postblsize;
468 }
469 if (totalsbsize > SBSIZE ||
470 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
471 printf("%s %s %d %s %d.%s",
472 "Warning: insufficient space in super block for\n",
473 "rotational layout tables with nsect", sblock.fs_nsect,
474 "and ntrak", sblock.fs_ntrak,
475 "\nFile system performance may be impaired.\n");
476 sblock.fs_cpc = 0;
477 goto next;
478 }
479 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
480 /*
481 * calculate the available blocks for each rotational position
482 */
483 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
484 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
485 fs_postbl(&sblock, cylno)[rpos] = -1;
486 for (i = (rotblsize - 1) << sblock.fs_fragshift;
487 i >= 0; i -= sblock.fs_frag) {
488 cylno = cbtocylno(&sblock, i);
489 rpos = cbtorpos(&sblock, i);
490 blk = fragstoblks(&sblock, i);
491 if (fs_postbl(&sblock, cylno)[rpos] == -1)
492 fs_rotbl(&sblock)[blk] = 0;
493 else
494 fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
495 fs_postbl(&sblock, cylno)[rpos] = blk;
496 }
497 next:
498 /*
499 * Compute/validate number of cylinder groups.
500 */
501 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
502 if (sblock.fs_ncyl % sblock.fs_cpg)
503 sblock.fs_ncg++;
504 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
505 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
506 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
507 printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
508 cgdmin(&sblock, i) -
509 (cgbase(&sblock, i) >> sblock.fs_fragshift),
510 sblock.fs_fpg >> sblock.fs_fragshift);
511 printf("number of cylinders per cylinder group (%d) %s.\n",
512 sblock.fs_cpg, "must be increased");
513 exit(29);
514 }
515 j = sblock.fs_ncg - 1;
516 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
517 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
518 if (j == 0) {
519 printf("File system must have at least %d sectors\n",
520 NSPF(&sblock) *
521 (cgdmin(&sblock, 0) + (3 << sblock.fs_fragshift)));
522 exit(30);
523 }
524 printf("Warning: inode blocks/cyl group (%d) >= "
525 "data blocks (%d) in last\n",
526 (cgdmin(&sblock, j) -
527 cgbase(&sblock, j)) >> sblock.fs_fragshift,
528 i >> sblock.fs_fragshift);
529 printf(" cylinder group. This implies %d sector(s) "
530 "cannot be allocated.\n",
531 i * NSPF(&sblock));
532 sblock.fs_ncg--;
533 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
534 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
535 NSPF(&sblock);
536 warning = 0;
537 }
538 if (warning && !mfs) {
539 printf("Warning: %d sector(s) in last cylinder unallocated\n",
540 sblock.fs_spc -
541 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
542 * sblock.fs_spc));
543 }
544 /*
545 * fill in remaining fields of the super block
546 */
547 sblock.fs_csaddr = cgdmin(&sblock, 0);
548 sblock.fs_cssize =
549 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
550 /*
551 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
552 * longer used. However, we still initialise them so that the
553 * filesystem remains compatible with old kernels.
554 */
555 i = sblock.fs_bsize / sizeof(struct csum);
556 sblock.fs_csmask = ~(i - 1);
557 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
558 sblock.fs_csshift++;
559 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
560 if (fscs == NULL)
561 exit(39);
562 sblock.fs_magic = FS_MAGIC;
563 sblock.fs_rotdelay = rotdelay;
564 sblock.fs_minfree = minfree;
565 sblock.fs_maxcontig = maxcontig;
566 sblock.fs_maxbpg = maxbpg;
567 sblock.fs_rps = rpm / 60;
568 sblock.fs_optim = opt;
569 sblock.fs_cgrotor = 0;
570 sblock.fs_cstotal.cs_ndir = 0;
571 sblock.fs_cstotal.cs_nbfree = 0;
572 sblock.fs_cstotal.cs_nifree = 0;
573 sblock.fs_cstotal.cs_nffree = 0;
574 sblock.fs_fmod = 0;
575 sblock.fs_clean = FS_ISCLEAN;
576 sblock.fs_ronly = 0;
577 /*
578 * Dump out summary information about file system.
579 */
580 if (!mfs) {
581 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
582 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
583 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
584 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
585 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
586 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
587 sblock.fs_ncg, sblock.fs_cpg,
588 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
589 sblock.fs_ipg);
590 #undef B2MBFACTOR
591 }
592 /*
593 * Now determine how wide each column will be, and calculate how
594 * many columns will fit in a 76 char line. 76 is the width of the
595 * subwindows in sysinst.
596 */
597 printcolwidth = count_digits(
598 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
599 nprintcols = 76 / (printcolwidth + 2);
600 /*
601 * Now build the cylinders group blocks and
602 * then print out indices of cylinder groups.
603 */
604 if (!mfs)
605 printf("super-block backups (for fsck -b #) at:");
606 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
607 initcg(cylno, utime);
608 if (mfs)
609 continue;
610 if (cylno % nprintcols == 0)
611 printf("\n");
612 printf(" %*d,", printcolwidth,
613 fsbtodb(&sblock, cgsblock(&sblock, cylno)));
614 fflush(stdout);
615 }
616 if (!mfs)
617 printf("\n");
618 if (Nflag && !mfs)
619 exit(0);
620 /*
621 * Now construct the initial file system,
622 * then write out the super-block.
623 */
624 if (fsinit(utime, mfsmode, mfsuid, mfsgid) == 0 && mfs)
625 errx(1, "Error making filesystem");
626 sblock.fs_time = utime;
627 memcpy(writebuf, &sblock, sbsize);
628 if (needswap)
629 ffs_sb_swap(&sblock, (struct fs*)writebuf);
630 wtfs((int)SBOFF / sectorsize, sbsize, writebuf);
631 /*
632 * Write out the duplicate super blocks
633 */
634 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
635 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
636 sbsize, writebuf);
637
638 /*
639 * if we need to swap, create a buffer for the cylinder summaries
640 * to get swapped to.
641 */
642 if (needswap) {
643 if ((writebuf2 = malloc(sblock.fs_cssize)) == NULL)
644 exit(12);
645 ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize);
646 } else
647 writebuf2 = (char *)fscs;
648
649 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
650 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
651 sblock.fs_cssize - i < sblock.fs_bsize ?
652 sblock.fs_cssize - i : sblock.fs_bsize,
653 ((char *)writebuf2) + i);
654 if (writebuf2 != (char *)fscs)
655 free(writebuf2);
656
657 /*
658 * Update information about this partion in pack
659 * label, to that it may be updated on disk.
660 */
661 pp->p_fstype = FS_BSDFFS;
662 pp->p_fsize = sblock.fs_fsize;
663 pp->p_frag = sblock.fs_frag;
664 pp->p_cpg = sblock.fs_cpg;
665 }
666
667 /*
668 * Initialize a cylinder group.
669 */
670 void
671 initcg(int cylno, time_t utime)
672 {
673 daddr_t cbase, d, dlower, dupper, dmax, blkno;
674 int32_t i;
675 struct csum *cs;
676
677 /*
678 * Determine block bounds for cylinder group.
679 * Allow space for super block summary information in first
680 * cylinder group.
681 */
682 cbase = cgbase(&sblock, cylno);
683 dmax = cbase + sblock.fs_fpg;
684 if (dmax > sblock.fs_size)
685 dmax = sblock.fs_size;
686 dlower = cgsblock(&sblock, cylno) - cbase;
687 dupper = cgdmin(&sblock, cylno) - cbase;
688 if (cylno == 0)
689 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
690 cs = fscs + cylno;
691 memset(&acg, 0, sblock.fs_cgsize);
692 acg.cg_time = utime;
693 acg.cg_magic = CG_MAGIC;
694 acg.cg_cgx = cylno;
695 if (cylno == sblock.fs_ncg - 1)
696 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
697 else
698 acg.cg_ncyl = sblock.fs_cpg;
699 acg.cg_niblk = sblock.fs_ipg;
700 acg.cg_ndblk = dmax - cbase;
701 if (sblock.fs_contigsumsize > 0)
702 acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
703 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
704 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
705 acg.cg_iusedoff = acg.cg_boff +
706 sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
707 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
708 if (sblock.fs_contigsumsize <= 0) {
709 acg.cg_nextfreeoff = acg.cg_freeoff +
710 howmany(sblock.fs_fpg, NBBY);
711 } else {
712 acg.cg_clustersumoff = acg.cg_freeoff +
713 howmany(sblock.fs_fpg, NBBY) - sizeof(int32_t);
714 acg.cg_clustersumoff =
715 roundup(acg.cg_clustersumoff, sizeof(int32_t));
716 acg.cg_clusteroff = acg.cg_clustersumoff +
717 (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
718 acg.cg_nextfreeoff = acg.cg_clusteroff +
719 howmany(fragstoblks(&sblock, sblock.fs_fpg), NBBY);
720 }
721 printf("%d %d %d\n", acg.cg_clustersumoff, acg.cg_clusteroff,
722 acg.cg_nextfreeoff);
723 if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
724 printf("Panic: cylinder group too big\n");
725 exit(37);
726 }
727 acg.cg_cs.cs_nifree += sblock.fs_ipg;
728 if (cylno == 0)
729 for (i = 0; i < ROOTINO; i++) {
730 setbit(cg_inosused(&acg, 0), i);
731 acg.cg_cs.cs_nifree--;
732 }
733 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
734 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
735 sblock.fs_bsize, (char *)zino);
736 if (cylno > 0) {
737 /*
738 * In cylno 0, beginning space is reserved
739 * for boot and super blocks.
740 */
741 for (d = 0; d < dlower; d += sblock.fs_frag) {
742 blkno = d >> sblock.fs_fragshift;
743 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
744 if (sblock.fs_contigsumsize > 0)
745 setbit(cg_clustersfree(&acg, 0), blkno);
746 acg.cg_cs.cs_nbfree++;
747 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
748 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
749 [cbtorpos(&sblock, d)]++;
750 }
751 sblock.fs_dsize += dlower;
752 }
753 sblock.fs_dsize += acg.cg_ndblk - dupper;
754 if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
755 acg.cg_frsum[sblock.fs_frag - i]++;
756 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
757 setbit(cg_blksfree(&acg, 0), dupper);
758 acg.cg_cs.cs_nffree++;
759 }
760 }
761 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
762 blkno = d >> sblock.fs_fragshift;
763 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
764 if (sblock.fs_contigsumsize > 0)
765 setbit(cg_clustersfree(&acg, 0), blkno);
766 acg.cg_cs.cs_nbfree++;
767 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
768 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
769 [cbtorpos(&sblock, d)]++;
770 d += sblock.fs_frag;
771 }
772 if (d < dmax - cbase) {
773 acg.cg_frsum[dmax - cbase - d]++;
774 for (; d < dmax - cbase; d++) {
775 setbit(cg_blksfree(&acg, 0), d);
776 acg.cg_cs.cs_nffree++;
777 }
778 }
779 if (sblock.fs_contigsumsize > 0) {
780 int32_t *sump = cg_clustersum(&acg, 0);
781 u_char *mapp = cg_clustersfree(&acg, 0);
782 int map = *mapp++;
783 int bit = 1;
784 int run = 0;
785
786 for (i = 0; i < acg.cg_nclusterblks; i++) {
787 if ((map & bit) != 0) {
788 run++;
789 } else if (run != 0) {
790 if (run > sblock.fs_contigsumsize)
791 run = sblock.fs_contigsumsize;
792 sump[run]++;
793 run = 0;
794 }
795 if ((i & (NBBY - 1)) != (NBBY - 1)) {
796 bit <<= 1;
797 } else {
798 map = *mapp++;
799 bit = 1;
800 }
801 }
802 if (run != 0) {
803 if (run > sblock.fs_contigsumsize)
804 run = sblock.fs_contigsumsize;
805 sump[run]++;
806 }
807 }
808 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
809 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
810 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
811 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
812 *cs = acg.cg_cs;
813 memcpy(writebuf, &acg, sblock.fs_bsize);
814 if (needswap)
815 swap_cg(&acg, (struct cg*)writebuf);
816 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
817 sblock.fs_bsize, writebuf);
818 }
819
820 /*
821 * initialize the file system
822 */
823 struct dinode node;
824
825 #ifdef LOSTDIR
826 #define PREDEFDIR 3
827 #else
828 #define PREDEFDIR 2
829 #endif
830
831 struct direct root_dir[] = {
832 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
833 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
834 #ifdef LOSTDIR
835 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
836 #endif
837 };
838 struct odirect {
839 u_int32_t d_ino;
840 u_int16_t d_reclen;
841 u_int16_t d_namlen;
842 u_char d_name[MAXNAMLEN + 1];
843 } oroot_dir[] = {
844 { ROOTINO, sizeof(struct direct), 1, "." },
845 { ROOTINO, sizeof(struct direct), 2, ".." },
846 #ifdef LOSTDIR
847 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
848 #endif
849 };
850 #ifdef LOSTDIR
851 struct direct lost_found_dir[] = {
852 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
853 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
854 { 0, DIRBLKSIZ, 0, 0, 0 },
855 };
856 struct odirect olost_found_dir[] = {
857 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
858 { ROOTINO, sizeof(struct direct), 2, ".." },
859 { 0, DIRBLKSIZ, 0, 0 },
860 };
861 #endif
862 char buf[MAXBSIZE];
863 static void copy_dir(struct direct *, struct direct *);
864
865 int
866 fsinit(time_t utime, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
867 {
868 #ifdef LOSTDIR
869 int i;
870 #endif
871
872 /*
873 * initialize the node
874 */
875 memset(&node, 0, sizeof(node));
876 node.di_atime = utime;
877 node.di_mtime = utime;
878 node.di_ctime = utime;
879
880 #ifdef LOSTDIR
881 /*
882 * create the lost+found directory
883 */
884 if (Oflag) {
885 (void)makedir((struct direct *)olost_found_dir, 2);
886 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
887 copy_dir((struct direct*)&olost_found_dir[2],
888 (struct direct*)&buf[i]);
889 } else {
890 (void)makedir(lost_found_dir, 2);
891 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
892 copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
893 }
894 node.di_mode = IFDIR | UMASK;
895 node.di_nlink = 2;
896 node.di_size = sblock.fs_bsize;
897 node.di_db[0] = alloc(node.di_size, node.di_mode);
898 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
899 node.di_uid = geteuid();
900 node.di_gid = getegid();
901 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
902 iput(&node, LOSTFOUNDINO);
903 #endif
904 /*
905 * create the root directory
906 */
907 if (mfs) {
908 node.di_mode = IFDIR | mfsmode;
909 node.di_uid = mfsuid;
910 node.di_gid = mfsgid;
911 } else {
912 node.di_mode = IFDIR | UMASK;
913 node.di_uid = geteuid();
914 node.di_gid = getegid();
915 }
916 node.di_nlink = PREDEFDIR;
917 if (Oflag)
918 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
919 else
920 node.di_size = makedir(root_dir, PREDEFDIR);
921 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
922 if (node.di_db[0] == 0)
923 return (0);
924 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
925 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
926 iput(&node, ROOTINO);
927 return (1);
928 }
929
930 /*
931 * construct a set of directory entries in "buf".
932 * return size of directory.
933 */
934 int
935 makedir(struct direct *protodir, int entries)
936 {
937 char *cp;
938 int i, spcleft;
939
940 spcleft = DIRBLKSIZ;
941 for (cp = buf, i = 0; i < entries - 1; i++) {
942 protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0);
943 copy_dir(&protodir[i], (struct direct*)cp);
944 cp += protodir[i].d_reclen;
945 spcleft -= protodir[i].d_reclen;
946 }
947 protodir[i].d_reclen = spcleft;
948 copy_dir(&protodir[i], (struct direct*)cp);
949 return (DIRBLKSIZ);
950 }
951
952 /*
953 * allocate a block or frag
954 */
955 daddr_t
956 alloc(int size, int mode)
957 {
958 int i, frag;
959 daddr_t d, blkno;
960
961 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
962 /* fs -> host byte order */
963 if (needswap)
964 swap_cg(&acg, &acg);
965 if (acg.cg_magic != CG_MAGIC) {
966 printf("cg 0: bad magic number\n");
967 return (0);
968 }
969 if (acg.cg_cs.cs_nbfree == 0) {
970 printf("first cylinder group ran out of space\n");
971 return (0);
972 }
973 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
974 if (isblock(&sblock, cg_blksfree(&acg, 0),
975 d >> sblock.fs_fragshift))
976 goto goth;
977 printf("internal error: can't find block in cyl 0\n");
978 return (0);
979 goth:
980 blkno = fragstoblks(&sblock, d);
981 clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
982 if (sblock.fs_contigsumsize > 0)
983 clrbit(cg_clustersfree(&acg, 0), blkno);
984 acg.cg_cs.cs_nbfree--;
985 sblock.fs_cstotal.cs_nbfree--;
986 fscs[0].cs_nbfree--;
987 if (mode & IFDIR) {
988 acg.cg_cs.cs_ndir++;
989 sblock.fs_cstotal.cs_ndir++;
990 fscs[0].cs_ndir++;
991 }
992 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--;
993 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--;
994 if (size != sblock.fs_bsize) {
995 frag = howmany(size, sblock.fs_fsize);
996 fscs[0].cs_nffree += sblock.fs_frag - frag;
997 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
998 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
999 acg.cg_frsum[sblock.fs_frag - frag]++;
1000 for (i = frag; i < sblock.fs_frag; i++)
1001 setbit(cg_blksfree(&acg, 0), d + i);
1002 }
1003 /* host -> fs byte order */
1004 if (needswap)
1005 swap_cg(&acg, &acg);
1006 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1007 (char *)&acg);
1008 return (d);
1009 }
1010
1011 /*
1012 * Calculate number of inodes per group.
1013 */
1014 int32_t
1015 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
1016 {
1017 int i;
1018 int32_t ipg, new_ipg, ncg, ncyl;
1019 off_t usedb;
1020
1021 /*
1022 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1023 * Note that fssize is still in sectors, not file system blocks.
1024 */
1025 ncyl = howmany(fssize, secpercyl);
1026 ncg = howmany(ncyl, cylpg);
1027 /*
1028 * Iterate a few times to allow for ipg depending on itself.
1029 */
1030 ipg = 0;
1031 for (i = 0; i < 10; i++) {
1032 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1033 * NSPF(&sblock) * (off_t)sectorsize;
1034 new_ipg = (cylpg * (long long)bpcg - usedb) /
1035 (long long)density * fssize / (ncg * secpercyl * cylpg);
1036 if (new_ipg <= 0)
1037 new_ipg = 1; /* ensure ipg > 0 */
1038 new_ipg = roundup(new_ipg, INOPB(&sblock));
1039 if (new_ipg == ipg)
1040 break;
1041 ipg = new_ipg;
1042 }
1043 *usedbp = usedb;
1044 return (ipg);
1045 }
1046
1047 /*
1048 * Allocate an inode on the disk
1049 */
1050 static void
1051 iput(struct dinode *ip, ino_t ino)
1052 {
1053 struct dinode ibuf[MAXINOPB];
1054 daddr_t d;
1055 int c, i;
1056
1057 c = ino_to_cg(&sblock, ino);
1058 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1059 /* fs -> host byte order */
1060 if (needswap)
1061 swap_cg(&acg, &acg);
1062 if (acg.cg_magic != CG_MAGIC) {
1063 printf("cg 0: bad magic number\n");
1064 exit(31);
1065 }
1066 acg.cg_cs.cs_nifree--;
1067 setbit(cg_inosused(&acg, 0), ino);
1068 /* host -> fs byte order */
1069 if (needswap)
1070 swap_cg(&acg, &acg);
1071 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1072 (char *)&acg);
1073 sblock.fs_cstotal.cs_nifree--;
1074 fscs[0].cs_nifree--;
1075 if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1076 printf("fsinit: inode value out of range (%d).\n", ino);
1077 exit(32);
1078 }
1079 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1080 rdfs(d, sblock.fs_bsize, ibuf);
1081 if (needswap) {
1082 ffs_dinode_swap(ip, &ibuf[ino_to_fsbo(&sblock, ino)]);
1083 /* ffs_dinode_swap() doesn't swap blocks addrs */
1084 for (i=0; i<NDADDR + NIADDR; i++)
1085 (&ibuf[ino_to_fsbo(&sblock, ino)])->di_db[i] =
1086 bswap32(ip->di_db[i]);
1087 } else
1088 ibuf[ino_to_fsbo(&sblock, ino)] = *ip;
1089 wtfs(d, sblock.fs_bsize, ibuf);
1090 }
1091
1092 /*
1093 * read a block from the file system
1094 */
1095 void
1096 rdfs(daddr_t bno, int size, void *bf)
1097 {
1098 int n;
1099 off_t offset;
1100
1101 #ifdef MFS
1102 if (mfs) {
1103 memmove(bf, membase + bno * sectorsize, size);
1104 return;
1105 }
1106 #endif
1107 offset = bno;
1108 offset *= sectorsize;
1109 if (lseek(fsi, offset, SEEK_SET) < 0) {
1110 printf("rdfs: seek error for sector %d: %s\n",
1111 bno, strerror(errno));
1112 exit(33);
1113 }
1114 n = read(fsi, bf, size);
1115 if (n != size) {
1116 printf("rdfs: read error for sector %d: %s\n",
1117 bno, strerror(errno));
1118 exit(34);
1119 }
1120 }
1121
1122 /*
1123 * write a block to the file system
1124 */
1125 void
1126 wtfs(daddr_t bno, int size, void *bf)
1127 {
1128 int n;
1129 off_t offset;
1130
1131 #ifdef MFS
1132 if (mfs) {
1133 memmove(membase + bno * sectorsize, bf, size);
1134 return;
1135 }
1136 #endif
1137 if (Nflag)
1138 return;
1139 offset = bno;
1140 offset *= sectorsize;
1141 if (lseek(fso, offset, SEEK_SET) < 0) {
1142 printf("wtfs: seek error for sector %d: %s\n",
1143 bno, strerror(errno));
1144 exit(35);
1145 }
1146 n = write(fso, bf, size);
1147 if (n != size) {
1148 printf("wtfs: write error for sector %d: %s\n",
1149 bno, strerror(errno));
1150 exit(36);
1151 }
1152 }
1153
1154 /*
1155 * check if a block is available
1156 */
1157 int
1158 isblock(struct fs *fs, unsigned char *cp, int h)
1159 {
1160 unsigned char mask;
1161
1162 switch (fs->fs_fragshift) {
1163 case 3:
1164 return (cp[h] == 0xff);
1165 case 2:
1166 mask = 0x0f << ((h & 0x1) << 2);
1167 return ((cp[h >> 1] & mask) == mask);
1168 case 1:
1169 mask = 0x03 << ((h & 0x3) << 1);
1170 return ((cp[h >> 2] & mask) == mask);
1171 case 0:
1172 mask = 0x01 << (h & 0x7);
1173 return ((cp[h >> 3] & mask) == mask);
1174 default:
1175 #ifdef STANDALONE
1176 printf("isblock bad fs_fragshift %d\n", fs->fs_fragshift);
1177 #else
1178 fprintf(stderr, "isblock bad fs_fragshift %d\n",
1179 fs->fs_fragshift);
1180 #endif
1181 return (0);
1182 }
1183 }
1184
1185 /*
1186 * take a block out of the map
1187 */
1188 void
1189 clrblock(struct fs *fs, unsigned char *cp, int h)
1190 {
1191 switch ((fs)->fs_fragshift) {
1192 case 3:
1193 cp[h] = 0;
1194 return;
1195 case 2:
1196 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1197 return;
1198 case 1:
1199 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1200 return;
1201 case 0:
1202 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1203 return;
1204 default:
1205 #ifdef STANDALONE
1206 printf("clrblock bad fs_fragshift %d\n", fs->fs_fragshift);
1207 #else
1208 fprintf(stderr, "clrblock bad fs_fragshift %d\n",
1209 fs->fs_fragshift);
1210 #endif
1211 return;
1212 }
1213 }
1214
1215 /*
1216 * put a block into the map
1217 */
1218 void
1219 setblock(struct fs *fs, unsigned char *cp, int h)
1220 {
1221 switch (fs->fs_fragshift) {
1222 case 3:
1223 cp[h] = 0xff;
1224 return;
1225 case 2:
1226 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1227 return;
1228 case 1:
1229 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1230 return;
1231 case 0:
1232 cp[h >> 3] |= (0x01 << (h & 0x7));
1233 return;
1234 default:
1235 #ifdef STANDALONE
1236 printf("setblock bad fs_frag %d\n", fs->fs_fragshift);
1237 #else
1238 fprintf(stderr, "setblock bad fs_fragshift %d\n",
1239 fs->fs_fragshift);
1240 #endif
1241 return;
1242 }
1243 }
1244
1245 /* swap byte order of cylinder group */
1246 static void
1247 swap_cg(struct cg *o, struct cg *n)
1248 {
1249 int i, btotsize, fbsize;
1250 u_int32_t *n32, *o32;
1251 u_int16_t *n16, *o16;
1252
1253 n->cg_firstfield = bswap32(o->cg_firstfield);
1254 n->cg_magic = bswap32(o->cg_magic);
1255 n->cg_time = bswap32(o->cg_time);
1256 n->cg_cgx = bswap32(o->cg_cgx);
1257 n->cg_ncyl = bswap16(o->cg_ncyl);
1258 n->cg_niblk = bswap16(o->cg_niblk);
1259 n->cg_ndblk = bswap32(o->cg_ndblk);
1260 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
1261 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
1262 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
1263 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
1264 n->cg_rotor = bswap32(o->cg_rotor);
1265 n->cg_frotor = bswap32(o->cg_frotor);
1266 n->cg_irotor = bswap32(o->cg_irotor);
1267 n->cg_btotoff = bswap32(o->cg_btotoff);
1268 n->cg_boff = bswap32(o->cg_boff);
1269 n->cg_iusedoff = bswap32(o->cg_iusedoff);
1270 n->cg_freeoff = bswap32(o->cg_freeoff);
1271 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
1272 n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
1273 n->cg_clusteroff = bswap32(o->cg_clusteroff);
1274 n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
1275 for (i=0; i < MAXFRAG; i++)
1276 n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
1277
1278 /* alays new format */
1279 if (n->cg_magic == CG_MAGIC) {
1280 btotsize = n->cg_boff - n->cg_btotoff;
1281 fbsize = n->cg_iusedoff - n->cg_boff;
1282 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
1283 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
1284 n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
1285 o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
1286 } else {
1287 btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
1288 fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
1289 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
1290 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
1291 n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
1292 o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
1293 }
1294 for (i=0; i < btotsize / sizeof(u_int32_t); i++)
1295 n32[i] = bswap32(o32[i]);
1296
1297 for (i=0; i < fbsize/sizeof(u_int16_t); i++)
1298 n16[i] = bswap16(o16[i]);
1299
1300 if (n->cg_magic == CG_MAGIC) {
1301 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
1302 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
1303 } else {
1304 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
1305 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
1306 }
1307 for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
1308 n32[i] = bswap32(o32[i]);
1309 }
1310
1311 /* copy a direntry to a buffer, in fs byte order */
1312 static void
1313 copy_dir(struct direct *dir, struct direct *dbuf)
1314 {
1315 memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0));
1316 if (needswap) {
1317 dbuf->d_ino = bswap32(dir->d_ino);
1318 dbuf->d_reclen = bswap16(dir->d_reclen);
1319 if (Oflag)
1320 ((struct odirect*)dbuf)->d_namlen =
1321 bswap16(((struct odirect*)dir)->d_namlen);
1322 }
1323 }
1324
1325 /* Determine how many digits are needed to print a given integer */
1326 static int
1327 count_digits(int num)
1328 {
1329 int ndig;
1330
1331 for(ndig = 1; num > 9; num /=10, ndig++);
1332
1333 return (ndig);
1334 }
1335
1336 #ifdef MFS
1337 /*
1338 * XXX!
1339 * Attempt to guess how much more space is available for process data. The
1340 * heuristic we use is
1341 *
1342 * max_data_limit - (sbrk(0) - etext) - 128kB
1343 *
1344 * etext approximates that start address of the data segment, and the 128kB
1345 * allows some slop for both segment gap between text and data, and for other
1346 * (libc) malloc usage.
1347 */
1348 static void
1349 calc_memfree(void)
1350 {
1351 extern char etext;
1352 struct rlimit rlp;
1353 u_long base;
1354
1355 base = (u_long)sbrk(0) - (u_long)&etext;
1356 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1357 perror("getrlimit");
1358 rlp.rlim_cur = rlp.rlim_max;
1359 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1360 perror("setrlimit");
1361 memleft = rlp.rlim_max - base - (128 * 1024);
1362 }
1363
1364 /*
1365 * Internal version of malloc that trims the requested size if not enough
1366 * memory is available.
1367 */
1368 static void *
1369 mkfs_malloc(size_t size)
1370 {
1371 u_long pgsz;
1372
1373 if (size == 0)
1374 return (NULL);
1375 if (memleft == 0)
1376 calc_memfree();
1377
1378 pgsz = getpagesize() - 1;
1379 size = (size + pgsz) &~ pgsz;
1380 if (size > memleft)
1381 size = memleft;
1382 memleft -= size;
1383 return (mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
1384 -1, 0));
1385 }
1386 #endif /* MFS */
1387