Home | History | Annotate | Line # | Download | only in newfs
mkfs.c revision 1.65
      1 /*	$NetBSD: mkfs.c,v 1.65 2002/09/28 20:11:07 dbj Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1980, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 #ifndef lint
     38 #if 0
     39 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
     40 #else
     41 __RCSID("$NetBSD: mkfs.c,v 1.65 2002/09/28 20:11:07 dbj Exp $");
     42 #endif
     43 #endif /* not lint */
     44 
     45 #include <sys/param.h>
     46 #include <sys/mman.h>
     47 #include <sys/time.h>
     48 #include <sys/resource.h>
     49 #include <ufs/ufs/dinode.h>
     50 #include <ufs/ufs/dir.h>
     51 #include <ufs/ufs/ufs_bswap.h>
     52 #include <ufs/ffs/fs.h>
     53 #include <ufs/ffs/ffs_extern.h>
     54 #include <sys/disklabel.h>
     55 
     56 #include <err.h>
     57 #include <errno.h>
     58 #include <string.h>
     59 #include <unistd.h>
     60 #include <stdlib.h>
     61 
     62 #ifndef STANDALONE
     63 #include <stdio.h>
     64 #endif
     65 
     66 #include "extern.h"
     67 
     68 static void initcg(int, time_t);
     69 static int fsinit(time_t, mode_t, uid_t, gid_t);
     70 static int makedir(struct direct *, int);
     71 static daddr_t alloc(int, int);
     72 static void iput(struct dinode *, ino_t);
     73 static void rdfs(daddr_t, int, void *);
     74 static void wtfs(daddr_t, int, void *);
     75 static int isblock(struct fs *, unsigned char *, int);
     76 static void clrblock(struct fs *, unsigned char *, int);
     77 static void setblock(struct fs *, unsigned char *, int);
     78 static int32_t calcipg(int32_t, int32_t, off_t *);
     79 static void swap_cg(struct cg *, struct cg *);
     80 #ifdef MFS
     81 static void calc_memfree(void);
     82 static void *mkfs_malloc(size_t size);
     83 #endif
     84 
     85 static int count_digits(int);
     86 
     87 /*
     88  * make file system for cylinder-group style file systems
     89  */
     90 
     91 /*
     92  * We limit the size of the inode map to be no more than a
     93  * third of the cylinder group space, since we must leave at
     94  * least an equal amount of space for the block map.
     95  *
     96  * N.B.: MAXIPG must be a multiple of INOPB(fs).
     97  */
     98 #define	MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
     99 
    100 #define	UMASK		0755
    101 #define	MAXINOPB	(MAXBSIZE / DINODE_SIZE)
    102 #define	POWEROF2(num)	(((num) & ((num) - 1)) == 0)
    103 
    104 union {
    105 	struct fs fs;
    106 	char pad[SBSIZE];
    107 } fsun;
    108 #define	sblock	fsun.fs
    109 struct	csum *fscs;
    110 
    111 union {
    112 	struct cg cg;
    113 	char pad[MAXBSIZE];
    114 } cgun;
    115 #define	acg	cgun.cg
    116 
    117 struct dinode zino[MAXBSIZE / DINODE_SIZE];
    118 
    119 char writebuf[MAXBSIZE];
    120 
    121 int	fsi, fso;
    122 
    123 void
    124 mkfs(struct partition *pp, const char *fsys, int fi, int fo,
    125     mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
    126 {
    127 	int32_t i, mincpc, mincpg, inospercg;
    128 	int32_t cylno, rpos, blk, j, warning = 0;
    129 	int32_t used, mincpgcnt, bpcg;
    130 	off_t usedb;
    131 	int32_t mapcramped, inodecramped;
    132 	int32_t postblsize, rotblsize, totalsbsize;
    133 	time_t utime;
    134 	long long sizepb;
    135 	char *writebuf2;		/* dynamic buffer */
    136 	int nprintcols, printcolwidth;
    137 
    138 #ifndef STANDALONE
    139 	time(&utime);
    140 #endif
    141 #ifdef MFS
    142 	if (mfs) {
    143 		calc_memfree();
    144 		if (fssize * sectorsize > memleft)
    145 			fssize = memleft / sectorsize;
    146 		if ((membase = mkfs_malloc(fssize * sectorsize)) == 0)
    147 			exit(12);
    148 	}
    149 #endif
    150 	fsi = fi;
    151 	fso = fo;
    152 	if (Oflag) {
    153 		sblock.fs_inodefmt = FS_42INODEFMT;
    154 		sblock.fs_maxsymlinklen = 0;
    155 	} else {
    156 		sblock.fs_inodefmt = FS_44INODEFMT;
    157 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
    158 	}
    159 	/*
    160 	 * Validate the given file system size.
    161 	 * Verify that its last block can actually be accessed.
    162 	 */
    163 	if (fssize <= 0)
    164 		printf("preposterous size %d\n", fssize), exit(13);
    165 	wtfs(fssize - 1, sectorsize, (char *)&sblock);
    166 
    167 	if (isappleufs) {
    168 		struct appleufslabel appleufs;
    169 		ffs_appleufs_set(&appleufs,appleufs_volname,utime);
    170 		wtfs(APPLEUFS_LABEL_OFFSET/sectorsize,APPLEUFS_LABEL_SIZE,&appleufs);
    171 	}
    172 
    173 	/*
    174 	 * collect and verify the sector and track info
    175 	 */
    176 	sblock.fs_nsect = nsectors;
    177 	sblock.fs_ntrak = ntracks;
    178 	if (sblock.fs_ntrak <= 0)
    179 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
    180 	if (sblock.fs_nsect <= 0)
    181 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
    182 	/*
    183 	 * collect and verify the filesystem density info
    184 	 */
    185 	sblock.fs_avgfilesize = avgfilesize;
    186 	sblock.fs_avgfpdir = avgfpdir;
    187 	if (sblock.fs_avgfilesize <= 0)
    188 		printf("illegal expected average file size %d\n",
    189 		    sblock.fs_avgfilesize), exit(14);
    190 	if (sblock.fs_avgfpdir <= 0)
    191 		printf("illegal expected number of files per directory %d\n",
    192 		    sblock.fs_avgfpdir), exit(15);
    193 	/*
    194 	 * collect and verify the block and fragment sizes
    195 	 */
    196 	sblock.fs_bsize = bsize;
    197 	sblock.fs_fsize = fsize;
    198 	if (!POWEROF2(sblock.fs_bsize)) {
    199 		printf("block size must be a power of 2, not %d\n",
    200 		    sblock.fs_bsize);
    201 		exit(16);
    202 	}
    203 	if (!POWEROF2(sblock.fs_fsize)) {
    204 		printf("fragment size must be a power of 2, not %d\n",
    205 		    sblock.fs_fsize);
    206 		exit(17);
    207 	}
    208 	if (sblock.fs_fsize < sectorsize) {
    209 		printf("fragment size %d is too small, minimum is %d\n",
    210 		    sblock.fs_fsize, sectorsize);
    211 		exit(18);
    212 	}
    213 	if (sblock.fs_bsize < MINBSIZE) {
    214 		printf("block size %d is too small, minimum is %d\n",
    215 		    sblock.fs_bsize, MINBSIZE);
    216 		exit(19);
    217 	}
    218 	if (sblock.fs_bsize > MAXBSIZE) {
    219 		printf("block size %d is too large, maximum is %d\n",
    220 		    sblock.fs_bsize, MAXBSIZE);
    221 		exit(19);
    222 	}
    223 	if (sblock.fs_bsize < sblock.fs_fsize) {
    224 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
    225 		    sblock.fs_bsize, sblock.fs_fsize);
    226 		exit(20);
    227 	}
    228 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
    229 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
    230 	sblock.fs_qbmask = ~sblock.fs_bmask;
    231 	sblock.fs_qfmask = ~sblock.fs_fmask;
    232 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
    233 		sblock.fs_bshift++;
    234 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
    235 		sblock.fs_fshift++;
    236 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
    237 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
    238 		sblock.fs_fragshift++;
    239 	if (sblock.fs_frag > MAXFRAG) {
    240 		printf("fragment size %d is too small, "
    241 			"minimum with block size %d is %d\n",
    242 		    sblock.fs_fsize, sblock.fs_bsize,
    243 		    sblock.fs_bsize / MAXFRAG);
    244 		exit(21);
    245 	}
    246 	sblock.fs_nrpos = nrpos;
    247 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
    248 	sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
    249 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
    250 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
    251 		sblock.fs_fsbtodb++;
    252 	sblock.fs_sblkno =
    253 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
    254 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
    255 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
    256 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
    257 	sblock.fs_cgoffset = roundup(
    258 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
    259 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
    260 		sblock.fs_cgmask <<= 1;
    261 	if (!POWEROF2(sblock.fs_ntrak))
    262 		sblock.fs_cgmask <<= 1;
    263 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
    264 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
    265 		sizepb *= NINDIR(&sblock);
    266 		sblock.fs_maxfilesize += sizepb;
    267 	}
    268 	/*
    269 	 * Validate specified/determined secpercyl
    270 	 * and calculate minimum cylinders per group.
    271 	 */
    272 	sblock.fs_spc = secpercyl;
    273 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
    274 	     sblock.fs_cpc > 1 && (i & 1) == 0;
    275 	     sblock.fs_cpc >>= 1, i >>= 1)
    276 		/* void */;
    277 	mincpc = sblock.fs_cpc;
    278 	bpcg = sblock.fs_spc * sectorsize;
    279 	inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
    280 	if (inospercg > MAXIPG(&sblock))
    281 		inospercg = MAXIPG(&sblock);
    282 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
    283 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
    284 	    sblock.fs_spc);
    285 	mincpg = roundup(mincpgcnt, mincpc);
    286 	/*
    287 	 * Ensure that cylinder group with mincpg has enough space
    288 	 * for block maps.
    289 	 */
    290 	sblock.fs_cpg = mincpg;
    291 	sblock.fs_ipg = inospercg;
    292 	if (maxcontig > 1)
    293 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
    294 	mapcramped = 0;
    295 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
    296 		mapcramped = 1;
    297 		if (sblock.fs_bsize < MAXBSIZE) {
    298 			sblock.fs_bsize <<= 1;
    299 			if ((i & 1) == 0) {
    300 				i >>= 1;
    301 			} else {
    302 				sblock.fs_cpc <<= 1;
    303 				mincpc <<= 1;
    304 				mincpg = roundup(mincpgcnt, mincpc);
    305 				sblock.fs_cpg = mincpg;
    306 			}
    307 			sblock.fs_frag <<= 1;
    308 			sblock.fs_fragshift += 1;
    309 			if (sblock.fs_frag <= MAXFRAG)
    310 				continue;
    311 		}
    312 		if (sblock.fs_fsize == sblock.fs_bsize) {
    313 			printf("There is no block size that");
    314 			printf(" can support this disk\n");
    315 			exit(22);
    316 		}
    317 		sblock.fs_frag >>= 1;
    318 		sblock.fs_fragshift -= 1;
    319 		sblock.fs_fsize <<= 1;
    320 		sblock.fs_nspf <<= 1;
    321 	}
    322 	/*
    323 	 * Ensure that cylinder group with mincpg has enough space for inodes.
    324 	 */
    325 	inodecramped = 0;
    326 	inospercg = calcipg(mincpg, bpcg, &usedb);
    327 	sblock.fs_ipg = inospercg;
    328 	while (inospercg > MAXIPG(&sblock)) {
    329 		inodecramped = 1;
    330 		if (mincpc == 1 || sblock.fs_frag == 1 ||
    331 		    sblock.fs_bsize == MINBSIZE)
    332 			break;
    333 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
    334 		       "minimum bytes per inode is",
    335 		       (int)((mincpg * (off_t)bpcg - usedb)
    336 			     / MAXIPG(&sblock) + 1));
    337 		sblock.fs_bsize >>= 1;
    338 		sblock.fs_frag >>= 1;
    339 		sblock.fs_fragshift -= 1;
    340 		mincpc >>= 1;
    341 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
    342 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
    343 			sblock.fs_bsize <<= 1;
    344 			break;
    345 		}
    346 		mincpg = sblock.fs_cpg;
    347 		inospercg = calcipg(mincpg, bpcg, &usedb);
    348 		sblock.fs_ipg = inospercg;
    349 	}
    350 	if (inodecramped) {
    351 		if (inospercg > MAXIPG(&sblock)) {
    352 			printf("Minimum bytes per inode is %d\n",
    353 			       (int)((mincpg * (off_t)bpcg - usedb)
    354 				     / MAXIPG(&sblock) + 1));
    355 		} else if (!mapcramped) {
    356 			printf("With %d bytes per inode, ", density);
    357 			printf("minimum cylinders per group is %d\n", mincpg);
    358 		}
    359 	}
    360 	if (mapcramped) {
    361 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
    362 		printf("minimum cylinders per group is %d\n", mincpg);
    363 	}
    364 	if (inodecramped || mapcramped) {
    365 		if (sblock.fs_bsize != bsize)
    366 			printf("%s to be changed from %d to %d\n",
    367 			    "This requires the block size",
    368 			    bsize, sblock.fs_bsize);
    369 		if (sblock.fs_fsize != fsize)
    370 			printf("\t%s to be changed from %d to %d\n",
    371 			    "and the fragment size",
    372 			    fsize, sblock.fs_fsize);
    373 		exit(23);
    374 	}
    375 	/*
    376 	 * Calculate the number of cylinders per group
    377 	 */
    378 	sblock.fs_cpg = cpg;
    379 	if (sblock.fs_cpg % mincpc != 0) {
    380 		printf("%s groups must have a multiple of %d cylinders\n",
    381 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
    382 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
    383 		if (!cpgflg)
    384 			cpg = sblock.fs_cpg;
    385 	}
    386 	/*
    387 	 * Must ensure there is enough space for inodes.
    388 	 */
    389 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
    390 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
    391 		inodecramped = 1;
    392 		sblock.fs_cpg -= mincpc;
    393 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
    394 	}
    395 	/*
    396 	 * Must ensure there is enough space to hold block map.
    397 	 */
    398 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
    399 		mapcramped = 1;
    400 		sblock.fs_cpg -= mincpc;
    401 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
    402 	}
    403 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
    404 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
    405 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
    406 		exit(24);
    407 	}
    408 	if (sblock.fs_cpg < mincpg) {
    409 		printf("cylinder groups must have at least %d cylinders\n",
    410 			mincpg);
    411 		exit(25);
    412 	} else if (sblock.fs_cpg != cpg && cpgflg) {
    413 		if (!mapcramped && !inodecramped)
    414 			exit(26);
    415 		if (mapcramped && inodecramped)
    416 			printf("Block size and bytes per inode restrict");
    417 		else if (mapcramped)
    418 			printf("Block size restricts");
    419 		else
    420 			printf("Bytes per inode restrict");
    421 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
    422 		exit(27);
    423 	}
    424 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
    425 	/*
    426 	 * Now have size for file system and nsect and ntrak.
    427 	 * Determine number of cylinders and blocks in the file system.
    428 	 */
    429 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
    430 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
    431 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
    432 		sblock.fs_ncyl++;
    433 		warning = 1;
    434 	}
    435 	if (sblock.fs_ncyl < 1) {
    436 		printf("file systems must have at least one cylinder\n");
    437 		exit(28);
    438 	}
    439 	/*
    440 	 * Determine feasability/values of rotational layout tables.
    441 	 *
    442 	 * The size of the rotational layout tables is limited by the
    443 	 * size of the superblock, SBSIZE. The amount of space available
    444 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
    445 	 * The size of these tables is inversely proportional to the block
    446 	 * size of the file system. The size increases if sectors per track
    447 	 * are not powers of two, because more cylinders must be described
    448 	 * by the tables before the rotational pattern repeats (fs_cpc).
    449 	 */
    450 	sblock.fs_interleave = interleave;
    451 	sblock.fs_trackskew = trackskew;
    452 	sblock.fs_npsect = nphyssectors;
    453 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
    454 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
    455 	if (sblock.fs_ntrak == 1) {
    456 		sblock.fs_cpc = 0;
    457 		goto next;
    458 	}
    459 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
    460 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
    461 	totalsbsize = sizeof(struct fs) + rotblsize;
    462 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
    463 		/* use old static table space */
    464 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
    465 		    (char *)(&sblock.fs_firstfield);
    466 		sblock.fs_rotbloff = &sblock.fs_space[0] -
    467 		    (u_char *)(&sblock.fs_firstfield);
    468 	} else {
    469 		/* use dynamic table space */
    470 		sblock.fs_postbloff = &sblock.fs_space[0] -
    471 		    (u_char *)(&sblock.fs_firstfield);
    472 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
    473 		totalsbsize += postblsize;
    474 	}
    475 	if (totalsbsize > SBSIZE ||
    476 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
    477 		printf("%s %s %d %s %d.%s",
    478 		    "Warning: insufficient space in super block for\n",
    479 		    "rotational layout tables with nsect", sblock.fs_nsect,
    480 		    "and ntrak", sblock.fs_ntrak,
    481 		    "\nFile system performance may be impaired.\n");
    482 		sblock.fs_cpc = 0;
    483 		goto next;
    484 	}
    485 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
    486 	/*
    487 	 * calculate the available blocks for each rotational position
    488 	 */
    489 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
    490 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
    491 			fs_postbl(&sblock, cylno)[rpos] = -1;
    492 	for (i = (rotblsize - 1) << sblock.fs_fragshift;
    493 	     i >= 0; i -= sblock.fs_frag) {
    494 		cylno = cbtocylno(&sblock, i);
    495 		rpos = cbtorpos(&sblock, i);
    496 		blk = fragstoblks(&sblock, i);
    497 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
    498 			fs_rotbl(&sblock)[blk] = 0;
    499 		else
    500 			fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
    501 		fs_postbl(&sblock, cylno)[rpos] = blk;
    502 	}
    503 next:
    504 	/*
    505 	 * Compute/validate number of cylinder groups.
    506 	 */
    507 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
    508 	if (sblock.fs_ncyl % sblock.fs_cpg)
    509 		sblock.fs_ncg++;
    510 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
    511 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
    512 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
    513 		printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
    514 		    cgdmin(&sblock, i) -
    515 		    (cgbase(&sblock, i) >> sblock.fs_fragshift),
    516 		    sblock.fs_fpg >> sblock.fs_fragshift);
    517 		printf("number of cylinders per cylinder group (%d) %s.\n",
    518 		    sblock.fs_cpg, "must be increased");
    519 		exit(29);
    520 	}
    521 	j = sblock.fs_ncg - 1;
    522 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
    523 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
    524 		if (j == 0) {
    525 			printf("File system must have at least %d sectors\n",
    526 			    NSPF(&sblock) *
    527 			    (cgdmin(&sblock, 0) + (3 << sblock.fs_fragshift)));
    528 			exit(30);
    529 		}
    530 		printf("Warning: inode blocks/cyl group (%d) >= "
    531 			"data blocks (%d) in last\n",
    532 		    (cgdmin(&sblock, j) -
    533 		     cgbase(&sblock, j)) >> sblock.fs_fragshift,
    534 		    i >> sblock.fs_fragshift);
    535 		printf("    cylinder group. This implies %d sector(s) "
    536 			"cannot be allocated.\n",
    537 		    i * NSPF(&sblock));
    538 		sblock.fs_ncg--;
    539 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
    540 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
    541 		    NSPF(&sblock);
    542 		warning = 0;
    543 	}
    544 	if (warning && !mfs) {
    545 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
    546 		    sblock.fs_spc -
    547 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
    548 		    * sblock.fs_spc));
    549 	}
    550 	/*
    551 	 * fill in remaining fields of the super block
    552 	 */
    553 	sblock.fs_csaddr = cgdmin(&sblock, 0);
    554 	sblock.fs_cssize =
    555 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
    556 	/*
    557 	 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
    558 	 * longer used. However, we still initialise them so that the
    559 	 * filesystem remains compatible with old kernels.
    560 	 */
    561 	i = sblock.fs_bsize / sizeof(struct csum);
    562 	sblock.fs_csmask = ~(i - 1);
    563 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
    564 		sblock.fs_csshift++;
    565 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
    566 	if (fscs == NULL)
    567 		exit(39);
    568 	sblock.fs_magic = FS_MAGIC;
    569 	sblock.fs_rotdelay = rotdelay;
    570 	sblock.fs_minfree = minfree;
    571 	sblock.fs_maxcontig = maxcontig;
    572 	sblock.fs_maxbpg = maxbpg;
    573 	sblock.fs_rps = rpm / 60;
    574 	sblock.fs_optim = opt;
    575 	sblock.fs_cgrotor = 0;
    576 	sblock.fs_cstotal.cs_ndir = 0;
    577 	sblock.fs_cstotal.cs_nbfree = 0;
    578 	sblock.fs_cstotal.cs_nifree = 0;
    579 	sblock.fs_cstotal.cs_nffree = 0;
    580 	sblock.fs_fmod = 0;
    581 	sblock.fs_clean = FS_ISCLEAN;
    582 	sblock.fs_ronly = 0;
    583 	/*
    584 	 * Dump out summary information about file system.
    585 	 */
    586 	if (!mfs) {
    587 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
    588 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
    589 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
    590 #define	B2MBFACTOR (1 / (1024.0 * 1024.0))
    591 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
    592 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
    593 		    sblock.fs_ncg, sblock.fs_cpg,
    594 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
    595 		    sblock.fs_ipg);
    596 #undef B2MBFACTOR
    597 	}
    598 	/*
    599 	 * Now determine how wide each column will be, and calculate how
    600 	 * many columns will fit in a 76 char line. 76 is the width of the
    601 	 * subwindows in sysinst.
    602 	 */
    603 	printcolwidth = count_digits(
    604 			fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
    605 	nprintcols = 76 / (printcolwidth + 2);
    606 	/*
    607 	 * Now build the cylinders group blocks and
    608 	 * then print out indices of cylinder groups.
    609 	 */
    610 	if (!mfs)
    611 		printf("super-block backups (for fsck -b #) at:");
    612 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
    613 		initcg(cylno, utime);
    614 		if (mfs)
    615 			continue;
    616 		if (cylno % nprintcols == 0)
    617 			printf("\n");
    618 		printf(" %*d,", printcolwidth,
    619 				fsbtodb(&sblock, cgsblock(&sblock, cylno)));
    620 		fflush(stdout);
    621 	}
    622 	if (!mfs)
    623 		printf("\n");
    624 	if (Nflag && !mfs)
    625 		exit(0);
    626 	/*
    627 	 * Now construct the initial file system,
    628 	 * then write out the super-block.
    629 	 */
    630 	if (fsinit(utime, mfsmode, mfsuid, mfsgid) == 0 && mfs)
    631 		errx(1, "Error making filesystem");
    632 	sblock.fs_time = utime;
    633 	memcpy(writebuf, &sblock, sbsize);
    634 	if (needswap)
    635 		ffs_sb_swap(&sblock, (struct fs*)writebuf);
    636 	wtfs((int)SBOFF / sectorsize, sbsize, writebuf);
    637 	/*
    638 	 * Write out the duplicate super blocks
    639 	 */
    640 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
    641 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
    642 		    sbsize, writebuf);
    643 
    644 	/*
    645 	 * if we need to swap, create a buffer for the cylinder summaries
    646 	 * to get swapped to.
    647 	 */
    648 	if (needswap) {
    649 		if ((writebuf2 = malloc(sblock.fs_cssize)) == NULL)
    650 			exit(12);
    651 		ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize);
    652 	} else
    653 		writebuf2 = (char *)fscs;
    654 
    655 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
    656 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
    657 			sblock.fs_cssize - i < sblock.fs_bsize ?
    658 			    sblock.fs_cssize - i : sblock.fs_bsize,
    659 			((char *)writebuf2) + i);
    660 	if (writebuf2 != (char *)fscs)
    661 		free(writebuf2);
    662 
    663 	/*
    664 	 * Update information about this partion in pack
    665 	 * label, to that it may be updated on disk.
    666 	 */
    667 	if (isappleufs)
    668 		pp->p_fstype = FS_APPLEUFS;
    669 	else
    670 		pp->p_fstype = FS_BSDFFS;
    671 	pp->p_fsize = sblock.fs_fsize;
    672 	pp->p_frag = sblock.fs_frag;
    673 	pp->p_cpg = sblock.fs_cpg;
    674 }
    675 
    676 /*
    677  * Initialize a cylinder group.
    678  */
    679 void
    680 initcg(int cylno, time_t utime)
    681 {
    682 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
    683 	int32_t i;
    684 	struct csum *cs;
    685 	int cn;
    686 
    687 	/*
    688 	 * Determine block bounds for cylinder group.
    689 	 * Allow space for super block summary information in first
    690 	 * cylinder group.
    691 	 */
    692 	cbase = cgbase(&sblock, cylno);
    693 	dmax = cbase + sblock.fs_fpg;
    694 	if (dmax > sblock.fs_size)
    695 		dmax = sblock.fs_size;
    696 	dlower = cgsblock(&sblock, cylno) - cbase;
    697 	dupper = cgdmin(&sblock, cylno) - cbase;
    698 	if (cylno == 0)
    699 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
    700 	cs = fscs + cylno;
    701 	memset(&acg, 0, sblock.fs_cgsize);
    702 	acg.cg_time = utime;
    703 	acg.cg_magic = CG_MAGIC;
    704 	acg.cg_cgx = cylno;
    705 	if (cylno == sblock.fs_ncg - 1)
    706 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
    707 	else
    708 		acg.cg_ncyl = sblock.fs_cpg;
    709 	acg.cg_niblk = sblock.fs_ipg;
    710 	acg.cg_ndblk = dmax - cbase;
    711 	if (sblock.fs_contigsumsize > 0)
    712 		acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
    713 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
    714 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
    715 	acg.cg_iusedoff = acg.cg_boff +
    716 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
    717 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
    718 	if (sblock.fs_contigsumsize <= 0) {
    719 		acg.cg_nextfreeoff = acg.cg_freeoff +
    720 		   howmany(sblock.fs_fpg, NBBY);
    721 	} else {
    722 		acg.cg_clustersumoff = acg.cg_freeoff +
    723 		    howmany(sblock.fs_fpg, NBBY) - sizeof(int32_t);
    724 		if (isappleufs) {
    725 			/* Apple PR2216969 gives rationale for this change.
    726 			 * I believe they were mistaken, but we need to
    727 			 * duplicate it for compatibility.  -- dbj (at) netbsd.org
    728 			 */
    729 			acg.cg_clustersumoff += sizeof(int32_t);
    730 		}
    731 		acg.cg_clustersumoff =
    732 		    roundup(acg.cg_clustersumoff, sizeof(int32_t));
    733 		acg.cg_clusteroff = acg.cg_clustersumoff +
    734 		    (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
    735 		acg.cg_nextfreeoff = acg.cg_clusteroff +
    736 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), NBBY);
    737 	}
    738 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
    739 		printf("Panic: cylinder group too big\n");
    740 		exit(37);
    741 	}
    742 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
    743 	if (cylno == 0)
    744 		for (i = 0; i < ROOTINO; i++) {
    745 			setbit(cg_inosused(&acg, 0), i);
    746 			acg.cg_cs.cs_nifree--;
    747 		}
    748 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
    749 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
    750 		    sblock.fs_bsize, (char *)zino);
    751 	if (cylno > 0) {
    752 		/*
    753 		 * In cylno 0, beginning space is reserved
    754 		 * for boot and super blocks.
    755 		 */
    756 		for (d = 0, blkno = 0; d < dlower; ) {
    757 			setblock(&sblock, cg_blksfree(&acg, 0), blkno);
    758 			if (sblock.fs_contigsumsize > 0)
    759 				setbit(cg_clustersfree(&acg, 0), blkno);
    760 			acg.cg_cs.cs_nbfree++;
    761 			cn = cbtocylno(&sblock, d);
    762 			cg_blktot(&acg, 0)[cn]++;
    763 			cg_blks(&sblock, &acg, cn, 0)[cbtorpos(&sblock, d)]++;
    764 			d += sblock.fs_frag;
    765 			blkno++;
    766 		}
    767 		sblock.fs_dsize += dlower;
    768 	}
    769 	sblock.fs_dsize += acg.cg_ndblk - dupper;
    770 	if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
    771 		acg.cg_frsum[sblock.fs_frag - i]++;
    772 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
    773 			setbit(cg_blksfree(&acg, 0), dupper);
    774 			acg.cg_cs.cs_nffree++;
    775 		}
    776 	}
    777 	for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
    778 	     d + sblock.fs_frag <= dmax - cbase; ) {
    779 		setblock(&sblock, cg_blksfree(&acg, 0), blkno);
    780 		if (sblock.fs_contigsumsize > 0)
    781 			setbit(cg_clustersfree(&acg, 0), blkno);
    782 		acg.cg_cs.cs_nbfree++;
    783 		cn = cbtocylno(&sblock, d);
    784 		cg_blktot(&acg, 0)[cn]++;
    785 		cg_blks(&sblock, &acg, cn, 0)[cbtorpos(&sblock, d)]++;
    786 		d += sblock.fs_frag;
    787 		blkno++;
    788 	}
    789 	if (d < dmax - cbase) {
    790 		acg.cg_frsum[dmax - cbase - d]++;
    791 		for (; d < dmax - cbase; d++) {
    792 			setbit(cg_blksfree(&acg, 0), d);
    793 			acg.cg_cs.cs_nffree++;
    794 		}
    795 	}
    796 	if (sblock.fs_contigsumsize > 0) {
    797 		int32_t *sump = cg_clustersum(&acg, 0);
    798 		u_char *mapp = cg_clustersfree(&acg, 0);
    799 		int map = *mapp++;
    800 		int bit = 1;
    801 		int run = 0;
    802 
    803 		for (i = 0; i < acg.cg_nclusterblks; i++) {
    804 			if ((map & bit) != 0) {
    805 				run++;
    806 			} else if (run != 0) {
    807 				if (run > sblock.fs_contigsumsize)
    808 					run = sblock.fs_contigsumsize;
    809 				sump[run]++;
    810 				run = 0;
    811 			}
    812 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
    813 				bit <<= 1;
    814 			} else {
    815 				map = *mapp++;
    816 				bit = 1;
    817 			}
    818 		}
    819 		if (run != 0) {
    820 			if (run > sblock.fs_contigsumsize)
    821 				run = sblock.fs_contigsumsize;
    822 			sump[run]++;
    823 		}
    824 	}
    825 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
    826 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
    827 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
    828 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
    829 	*cs = acg.cg_cs;
    830 	memcpy(writebuf, &acg, sblock.fs_bsize);
    831 	if (needswap)
    832 		swap_cg(&acg, (struct cg*)writebuf);
    833 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
    834 		sblock.fs_bsize, writebuf);
    835 }
    836 
    837 /*
    838  * initialize the file system
    839  */
    840 struct dinode node;
    841 
    842 #ifdef LOSTDIR
    843 #define	PREDEFDIR 3
    844 #else
    845 #define	PREDEFDIR 2
    846 #endif
    847 
    848 struct direct root_dir[] = {
    849 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
    850 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
    851 #ifdef LOSTDIR
    852 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
    853 #endif
    854 };
    855 struct odirect {
    856 	u_int32_t d_ino;
    857 	u_int16_t d_reclen;
    858 	u_int16_t d_namlen;
    859 	u_char	d_name[MAXNAMLEN + 1];
    860 } oroot_dir[] = {
    861 	{ ROOTINO, sizeof(struct direct), 1, "." },
    862 	{ ROOTINO, sizeof(struct direct), 2, ".." },
    863 #ifdef LOSTDIR
    864 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
    865 #endif
    866 };
    867 #ifdef LOSTDIR
    868 struct direct lost_found_dir[] = {
    869 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
    870 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
    871 	{ 0, DIRBLKSIZ, 0, 0, 0 },
    872 };
    873 struct odirect olost_found_dir[] = {
    874 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
    875 	{ ROOTINO, sizeof(struct direct), 2, ".." },
    876 	{ 0, DIRBLKSIZ, 0, 0 },
    877 };
    878 #endif
    879 char buf[MAXBSIZE];
    880 static void copy_dir(struct direct *, struct direct *);
    881 
    882 int
    883 fsinit(time_t utime, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
    884 {
    885 #ifdef LOSTDIR
    886 	int i;
    887 	int dirblksiz = DIRBLKSIZ;
    888 	if (isappleufs)
    889 		dirblksiz = APPLEUFS_DIRBLKSIZ;
    890 #endif
    891 
    892 	/*
    893 	 * initialize the node
    894 	 */
    895 	memset(&node, 0, sizeof(node));
    896 	node.di_atime = utime;
    897 	node.di_mtime = utime;
    898 	node.di_ctime = utime;
    899 
    900 #ifdef LOSTDIR
    901 	/*
    902 	 * create the lost+found directory
    903 	 */
    904 	if (Oflag) {
    905 		(void)makedir((struct direct *)olost_found_dir, 2);
    906 		for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
    907 			copy_dir((struct direct*)&olost_found_dir[2],
    908 				(struct direct*)&buf[i]);
    909 	} else {
    910 		(void)makedir(lost_found_dir, 2);
    911 		for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
    912 			copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
    913 	}
    914 	node.di_mode = IFDIR | UMASK;
    915 	node.di_nlink = 2;
    916 	node.di_size = sblock.fs_bsize;
    917 	node.di_db[0] = alloc(node.di_size, node.di_mode);
    918 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
    919 	node.di_uid = geteuid();
    920 	node.di_gid = getegid();
    921 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
    922 	iput(&node, LOSTFOUNDINO);
    923 #endif
    924 	/*
    925 	 * create the root directory
    926 	 */
    927 	if (mfs) {
    928 		node.di_mode = IFDIR | mfsmode;
    929 		node.di_uid = mfsuid;
    930 		node.di_gid = mfsgid;
    931 	} else {
    932 		node.di_mode = IFDIR | UMASK;
    933 		node.di_uid = geteuid();
    934 		node.di_gid = getegid();
    935 	}
    936 	node.di_nlink = PREDEFDIR;
    937 	if (Oflag)
    938 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
    939 	else
    940 		node.di_size = makedir(root_dir, PREDEFDIR);
    941 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
    942 	if (node.di_db[0] == 0)
    943 		return (0);
    944 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
    945 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
    946 	iput(&node, ROOTINO);
    947 	return (1);
    948 }
    949 
    950 /*
    951  * construct a set of directory entries in "buf".
    952  * return size of directory.
    953  */
    954 int
    955 makedir(struct direct *protodir, int entries)
    956 {
    957 	char *cp;
    958 	int i, spcleft;
    959 	int dirblksiz = DIRBLKSIZ;
    960 	if (isappleufs)
    961 		dirblksiz = APPLEUFS_DIRBLKSIZ;
    962 
    963 	spcleft = dirblksiz;
    964 	for (cp = buf, i = 0; i < entries - 1; i++) {
    965 		protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0);
    966 		copy_dir(&protodir[i], (struct direct*)cp);
    967 		cp += protodir[i].d_reclen;
    968 		spcleft -= protodir[i].d_reclen;
    969 	}
    970 	protodir[i].d_reclen = spcleft;
    971 	copy_dir(&protodir[i], (struct direct*)cp);
    972 	return (dirblksiz);
    973 }
    974 
    975 /*
    976  * allocate a block or frag
    977  */
    978 daddr_t
    979 alloc(int size, int mode)
    980 {
    981 	int i, frag;
    982 	daddr_t d, blkno;
    983 
    984 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
    985 	/* fs -> host byte order */
    986 	if (needswap)
    987 		swap_cg(&acg, &acg);
    988 	if (acg.cg_magic != CG_MAGIC) {
    989 		printf("cg 0: bad magic number\n");
    990 		return (0);
    991 	}
    992 	if (acg.cg_cs.cs_nbfree == 0) {
    993 		printf("first cylinder group ran out of space\n");
    994 		return (0);
    995 	}
    996 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
    997 		if (isblock(&sblock, cg_blksfree(&acg, 0),
    998 		    d >> sblock.fs_fragshift))
    999 			goto goth;
   1000 	printf("internal error: can't find block in cyl 0\n");
   1001 	return (0);
   1002 goth:
   1003 	blkno = fragstoblks(&sblock, d);
   1004 	clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
   1005 	if (sblock.fs_contigsumsize > 0)
   1006 		clrbit(cg_clustersfree(&acg, 0), blkno);
   1007 	acg.cg_cs.cs_nbfree--;
   1008 	sblock.fs_cstotal.cs_nbfree--;
   1009 	fscs[0].cs_nbfree--;
   1010 	if (mode & IFDIR) {
   1011 		acg.cg_cs.cs_ndir++;
   1012 		sblock.fs_cstotal.cs_ndir++;
   1013 		fscs[0].cs_ndir++;
   1014 	}
   1015 	cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--;
   1016 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--;
   1017 	if (size != sblock.fs_bsize) {
   1018 		frag = howmany(size, sblock.fs_fsize);
   1019 		fscs[0].cs_nffree += sblock.fs_frag - frag;
   1020 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
   1021 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
   1022 		acg.cg_frsum[sblock.fs_frag - frag]++;
   1023 		for (i = frag; i < sblock.fs_frag; i++)
   1024 			setbit(cg_blksfree(&acg, 0), d + i);
   1025 	}
   1026 	/* host -> fs byte order */
   1027 	if (needswap)
   1028 		swap_cg(&acg, &acg);
   1029 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
   1030 	    (char *)&acg);
   1031 	return (d);
   1032 }
   1033 
   1034 /*
   1035  * Calculate number of inodes per group.
   1036  */
   1037 int32_t
   1038 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
   1039 {
   1040 	int i;
   1041 	int32_t ipg, new_ipg, ncg, ncyl;
   1042 	off_t usedb;
   1043 
   1044 	/*
   1045 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
   1046 	 * Note that fssize is still in sectors, not file system blocks.
   1047 	 */
   1048 	ncyl = howmany(fssize, secpercyl);
   1049 	ncg = howmany(ncyl, cylpg);
   1050 	/*
   1051 	 * Iterate a few times to allow for ipg depending on itself.
   1052 	 */
   1053 	ipg = 0;
   1054 	for (i = 0; i < 10; i++) {
   1055 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
   1056 			* NSPF(&sblock) * (off_t)sectorsize;
   1057 		new_ipg = (cylpg * (long long)bpcg - usedb) /
   1058 		    (long long)density * fssize / (ncg * secpercyl * cylpg);
   1059 		if (new_ipg <= 0)
   1060 			new_ipg = 1;		/* ensure ipg > 0 */
   1061 		new_ipg = roundup(new_ipg, INOPB(&sblock));
   1062 		if (new_ipg == ipg)
   1063 			break;
   1064 		ipg = new_ipg;
   1065 	}
   1066 	*usedbp = usedb;
   1067 	return (ipg);
   1068 }
   1069 
   1070 /*
   1071  * Allocate an inode on the disk
   1072  */
   1073 static void
   1074 iput(struct dinode *ip, ino_t ino)
   1075 {
   1076 	struct dinode ibuf[MAXINOPB];
   1077 	daddr_t d;
   1078 	int c, i;
   1079 
   1080 	c = ino_to_cg(&sblock, ino);
   1081 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
   1082 	/* fs -> host byte order */
   1083 	if (needswap)
   1084 		swap_cg(&acg, &acg);
   1085 	if (acg.cg_magic != CG_MAGIC) {
   1086 		printf("cg 0: bad magic number\n");
   1087 		exit(31);
   1088 	}
   1089 	acg.cg_cs.cs_nifree--;
   1090 	setbit(cg_inosused(&acg, 0), ino);
   1091 	/* host -> fs byte order */
   1092 	if (needswap)
   1093 		swap_cg(&acg, &acg);
   1094 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
   1095 	    (char *)&acg);
   1096 	sblock.fs_cstotal.cs_nifree--;
   1097 	fscs[0].cs_nifree--;
   1098 	if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
   1099 		printf("fsinit: inode value out of range (%d).\n", ino);
   1100 		exit(32);
   1101 	}
   1102 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
   1103 	rdfs(d, sblock.fs_bsize, ibuf);
   1104 	if (needswap) {
   1105 		ffs_dinode_swap(ip, &ibuf[ino_to_fsbo(&sblock, ino)]);
   1106 		/* ffs_dinode_swap() doesn't swap blocks addrs */
   1107 		for (i=0; i<NDADDR + NIADDR; i++)
   1108 			(&ibuf[ino_to_fsbo(&sblock, ino)])->di_db[i] =
   1109 				bswap32(ip->di_db[i]);
   1110 	} else
   1111 		ibuf[ino_to_fsbo(&sblock, ino)] = *ip;
   1112 	wtfs(d, sblock.fs_bsize, ibuf);
   1113 }
   1114 
   1115 /*
   1116  * read a block from the file system
   1117  */
   1118 void
   1119 rdfs(daddr_t bno, int size, void *bf)
   1120 {
   1121 	int n;
   1122 	off_t offset;
   1123 
   1124 #ifdef MFS
   1125 	if (mfs) {
   1126 		memmove(bf, membase + bno * sectorsize, size);
   1127 		return;
   1128 	}
   1129 #endif
   1130 	offset = bno;
   1131 	offset *= sectorsize;
   1132 	if (lseek(fsi, offset, SEEK_SET) < 0) {
   1133 		printf("rdfs: seek error for sector %d: %s\n",
   1134 		    bno, strerror(errno));
   1135 		exit(33);
   1136 	}
   1137 	n = read(fsi, bf, size);
   1138 	if (n != size) {
   1139 		printf("rdfs: read error for sector %d: %s\n",
   1140 		    bno, strerror(errno));
   1141 		exit(34);
   1142 	}
   1143 }
   1144 
   1145 /*
   1146  * write a block to the file system
   1147  */
   1148 void
   1149 wtfs(daddr_t bno, int size, void *bf)
   1150 {
   1151 	int n;
   1152 	off_t offset;
   1153 
   1154 #ifdef MFS
   1155 	if (mfs) {
   1156 		memmove(membase + bno * sectorsize, bf, size);
   1157 		return;
   1158 	}
   1159 #endif
   1160 	if (Nflag)
   1161 		return;
   1162 	offset = bno;
   1163 	offset *= sectorsize;
   1164 	if (lseek(fso, offset, SEEK_SET) < 0) {
   1165 		printf("wtfs: seek error for sector %d: %s\n",
   1166 		    bno, strerror(errno));
   1167 		exit(35);
   1168 	}
   1169 	n = write(fso, bf, size);
   1170 	if (n != size) {
   1171 		printf("wtfs: write error for sector %d: %s\n",
   1172 		    bno, strerror(errno));
   1173 		exit(36);
   1174 	}
   1175 }
   1176 
   1177 /*
   1178  * check if a block is available
   1179  */
   1180 int
   1181 isblock(struct fs *fs, unsigned char *cp, int h)
   1182 {
   1183 	unsigned char mask;
   1184 
   1185 	switch (fs->fs_fragshift) {
   1186 	case 3:
   1187 		return (cp[h] == 0xff);
   1188 	case 2:
   1189 		mask = 0x0f << ((h & 0x1) << 2);
   1190 		return ((cp[h >> 1] & mask) == mask);
   1191 	case 1:
   1192 		mask = 0x03 << ((h & 0x3) << 1);
   1193 		return ((cp[h >> 2] & mask) == mask);
   1194 	case 0:
   1195 		mask = 0x01 << (h & 0x7);
   1196 		return ((cp[h >> 3] & mask) == mask);
   1197 	default:
   1198 #ifdef STANDALONE
   1199 		printf("isblock bad fs_fragshift %d\n", fs->fs_fragshift);
   1200 #else
   1201 		fprintf(stderr, "isblock bad fs_fragshift %d\n",
   1202 		    fs->fs_fragshift);
   1203 #endif
   1204 		return (0);
   1205 	}
   1206 }
   1207 
   1208 /*
   1209  * take a block out of the map
   1210  */
   1211 void
   1212 clrblock(struct fs *fs, unsigned char *cp, int h)
   1213 {
   1214 	switch ((fs)->fs_fragshift) {
   1215 	case 3:
   1216 		cp[h] = 0;
   1217 		return;
   1218 	case 2:
   1219 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
   1220 		return;
   1221 	case 1:
   1222 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
   1223 		return;
   1224 	case 0:
   1225 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
   1226 		return;
   1227 	default:
   1228 #ifdef STANDALONE
   1229 		printf("clrblock bad fs_fragshift %d\n", fs->fs_fragshift);
   1230 #else
   1231 		fprintf(stderr, "clrblock bad fs_fragshift %d\n",
   1232 		    fs->fs_fragshift);
   1233 #endif
   1234 		return;
   1235 	}
   1236 }
   1237 
   1238 /*
   1239  * put a block into the map
   1240  */
   1241 void
   1242 setblock(struct fs *fs, unsigned char *cp, int h)
   1243 {
   1244 	switch (fs->fs_fragshift) {
   1245 	case 3:
   1246 		cp[h] = 0xff;
   1247 		return;
   1248 	case 2:
   1249 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
   1250 		return;
   1251 	case 1:
   1252 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
   1253 		return;
   1254 	case 0:
   1255 		cp[h >> 3] |= (0x01 << (h & 0x7));
   1256 		return;
   1257 	default:
   1258 #ifdef STANDALONE
   1259 		printf("setblock bad fs_frag %d\n", fs->fs_fragshift);
   1260 #else
   1261 		fprintf(stderr, "setblock bad fs_fragshift %d\n",
   1262 		    fs->fs_fragshift);
   1263 #endif
   1264 		return;
   1265 	}
   1266 }
   1267 
   1268 /* swap byte order of cylinder group */
   1269 static void
   1270 swap_cg(struct cg *o, struct cg *n)
   1271 {
   1272 	int i, btotsize, fbsize;
   1273 	u_int32_t *n32, *o32;
   1274 	u_int16_t *n16, *o16;
   1275 
   1276 	n->cg_firstfield = bswap32(o->cg_firstfield);
   1277 	n->cg_magic = bswap32(o->cg_magic);
   1278 	n->cg_time = bswap32(o->cg_time);
   1279 	n->cg_cgx = bswap32(o->cg_cgx);
   1280 	n->cg_ncyl = bswap16(o->cg_ncyl);
   1281 	n->cg_niblk = bswap16(o->cg_niblk);
   1282 	n->cg_ndblk = bswap32(o->cg_ndblk);
   1283 	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
   1284 	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
   1285 	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
   1286 	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
   1287 	n->cg_rotor = bswap32(o->cg_rotor);
   1288 	n->cg_frotor = bswap32(o->cg_frotor);
   1289 	n->cg_irotor = bswap32(o->cg_irotor);
   1290 	n->cg_btotoff = bswap32(o->cg_btotoff);
   1291 	n->cg_boff = bswap32(o->cg_boff);
   1292 	n->cg_iusedoff = bswap32(o->cg_iusedoff);
   1293 	n->cg_freeoff = bswap32(o->cg_freeoff);
   1294 	n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
   1295 	n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
   1296 	n->cg_clusteroff = bswap32(o->cg_clusteroff);
   1297 	n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
   1298 	for (i=0; i < MAXFRAG; i++)
   1299 		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
   1300 
   1301 	/* alays new format */
   1302 	if (n->cg_magic == CG_MAGIC) {
   1303 		btotsize = n->cg_boff - n->cg_btotoff;
   1304 		fbsize = n->cg_iusedoff - n->cg_boff;
   1305 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
   1306 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
   1307 		n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
   1308 		o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
   1309 	} else {
   1310 		btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
   1311 		fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
   1312 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
   1313 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
   1314 		n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
   1315 		o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
   1316 	}
   1317 	for (i=0; i < btotsize / sizeof(u_int32_t); i++)
   1318 		n32[i] = bswap32(o32[i]);
   1319 
   1320 	for (i=0; i < fbsize/sizeof(u_int16_t); i++)
   1321 		n16[i] = bswap16(o16[i]);
   1322 
   1323 	if (n->cg_magic == CG_MAGIC) {
   1324 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
   1325 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
   1326 	} else {
   1327 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
   1328 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
   1329 	}
   1330 	for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
   1331 		n32[i] = bswap32(o32[i]);
   1332 }
   1333 
   1334 /* copy a direntry to a buffer, in fs byte order */
   1335 static void
   1336 copy_dir(struct direct *dir, struct direct *dbuf)
   1337 {
   1338 	memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0));
   1339 	if (needswap) {
   1340 		dbuf->d_ino = bswap32(dir->d_ino);
   1341 		dbuf->d_reclen = bswap16(dir->d_reclen);
   1342 		if (Oflag)
   1343 			((struct odirect*)dbuf)->d_namlen =
   1344 				bswap16(((struct odirect*)dir)->d_namlen);
   1345 	}
   1346 }
   1347 
   1348 /* Determine how many digits are needed to print a given integer */
   1349 static int
   1350 count_digits(int num)
   1351 {
   1352 	int ndig;
   1353 
   1354 	for(ndig = 1; num > 9; num /=10, ndig++);
   1355 
   1356 	return (ndig);
   1357 }
   1358 
   1359 #ifdef MFS
   1360 /*
   1361  * XXX!
   1362  * Attempt to guess how much more space is available for process data.  The
   1363  * heuristic we use is
   1364  *
   1365  *	max_data_limit - (sbrk(0) - etext) - 128kB
   1366  *
   1367  * etext approximates that start address of the data segment, and the 128kB
   1368  * allows some slop for both segment gap between text and data, and for other
   1369  * (libc) malloc usage.
   1370  */
   1371 static void
   1372 calc_memfree(void)
   1373 {
   1374 	extern char etext;
   1375 	struct rlimit rlp;
   1376 	u_long base;
   1377 
   1378 	base = (u_long)sbrk(0) - (u_long)&etext;
   1379 	if (getrlimit(RLIMIT_DATA, &rlp) < 0)
   1380 		perror("getrlimit");
   1381 	rlp.rlim_cur = rlp.rlim_max;
   1382 	if (setrlimit(RLIMIT_DATA, &rlp) < 0)
   1383 		perror("setrlimit");
   1384 	memleft = rlp.rlim_max - base - (128 * 1024);
   1385 }
   1386 
   1387 /*
   1388  * Internal version of malloc that trims the requested size if not enough
   1389  * memory is available.
   1390  */
   1391 static void *
   1392 mkfs_malloc(size_t size)
   1393 {
   1394 	u_long pgsz;
   1395 
   1396 	if (size == 0)
   1397 		return (NULL);
   1398 	if (memleft == 0)
   1399 		calc_memfree();
   1400 
   1401 	pgsz = getpagesize() - 1;
   1402 	size = (size + pgsz) &~ pgsz;
   1403 	if (size > memleft)
   1404 		size = memleft;
   1405 	memleft -= size;
   1406 	return (mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
   1407 	    -1, 0));
   1408 }
   1409 #endif	/* MFS */
   1410