mkfs.c revision 1.67 1 /* $NetBSD: mkfs.c,v 1.67 2003/02/14 16:21:49 grant Exp $ */
2
3 /*
4 * Copyright (c) 1980, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 #ifndef lint
38 #if 0
39 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
40 #else
41 __RCSID("$NetBSD: mkfs.c,v 1.67 2003/02/14 16:21:49 grant Exp $");
42 #endif
43 #endif /* not lint */
44
45 #include <sys/param.h>
46 #include <sys/mman.h>
47 #include <sys/time.h>
48 #include <sys/resource.h>
49 #include <ufs/ufs/dinode.h>
50 #include <ufs/ufs/dir.h>
51 #include <ufs/ufs/ufs_bswap.h>
52 #include <ufs/ffs/fs.h>
53 #include <ufs/ffs/ffs_extern.h>
54 #include <sys/disklabel.h>
55
56 #include <err.h>
57 #include <errno.h>
58 #include <string.h>
59 #include <unistd.h>
60 #include <stdlib.h>
61
62 #ifndef STANDALONE
63 #include <stdio.h>
64 #endif
65
66 #include "extern.h"
67
68 static void initcg(int, time_t);
69 static int fsinit(time_t, mode_t, uid_t, gid_t);
70 static int makedir(struct direct *, int);
71 static daddr_t alloc(int, int);
72 static void iput(struct dinode *, ino_t);
73 static void rdfs(daddr_t, int, void *);
74 static void wtfs(daddr_t, int, void *);
75 static int isblock(struct fs *, unsigned char *, int);
76 static void clrblock(struct fs *, unsigned char *, int);
77 static void setblock(struct fs *, unsigned char *, int);
78 static int32_t calcipg(int32_t, int32_t, off_t *);
79 static void swap_cg(struct cg *, struct cg *);
80 #ifdef MFS
81 static void calc_memfree(void);
82 static void *mkfs_malloc(size_t size);
83 #endif
84
85 static int count_digits(int);
86
87 /*
88 * make file system for cylinder-group style file systems
89 */
90
91 /*
92 * We limit the size of the inode map to be no more than a
93 * third of the cylinder group space, since we must leave at
94 * least an equal amount of space for the block map.
95 *
96 * N.B.: MAXIPG must be a multiple of INOPB(fs).
97 */
98 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
99
100 #define UMASK 0755
101 #define MAXINOPB (MAXBSIZE / DINODE_SIZE)
102 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
103
104 union {
105 struct fs fs;
106 char pad[SBSIZE];
107 } fsun;
108 #define sblock fsun.fs
109 struct csum *fscs;
110
111 union {
112 struct cg cg;
113 char pad[MAXBSIZE];
114 } cgun;
115 #define acg cgun.cg
116
117 struct dinode zino[MAXBSIZE / DINODE_SIZE];
118
119 char writebuf[MAXBSIZE];
120
121 int fsi, fso;
122
123 void
124 mkfs(struct partition *pp, const char *fsys, int fi, int fo,
125 mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
126 {
127 int32_t i, mincpc, mincpg, inospercg;
128 int32_t cylno, rpos, blk, j, warning = 0;
129 int32_t used, mincpgcnt, bpcg;
130 off_t usedb;
131 int32_t mapcramped, inodecramped;
132 int32_t postblsize, rotblsize, totalsbsize;
133 time_t utime;
134 long long sizepb;
135 char *writebuf2; /* dynamic buffer */
136 int nprintcols, printcolwidth;
137
138 #ifndef STANDALONE
139 time(&utime);
140 #endif
141 #ifdef MFS
142 if (mfs) {
143 calc_memfree();
144 if (fssize * sectorsize > memleft)
145 fssize = memleft / sectorsize;
146 if ((membase = mkfs_malloc(fssize * sectorsize)) == 0)
147 exit(12);
148 }
149 #endif
150 fsi = fi;
151 fso = fo;
152 if (Oflag) {
153 sblock.fs_inodefmt = FS_42INODEFMT;
154 sblock.fs_maxsymlinklen = 0;
155 } else {
156 sblock.fs_inodefmt = FS_44INODEFMT;
157 sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
158 }
159 /*
160 * Validate the given file system size.
161 * Verify that its last block can actually be accessed.
162 */
163 if (fssize <= 0)
164 printf("preposterous size %d\n", fssize), exit(13);
165 wtfs(fssize - 1, sectorsize, (char *)&sblock);
166
167 if (isappleufs) {
168 struct appleufslabel appleufs;
169 ffs_appleufs_set(&appleufs,appleufs_volname,utime);
170 wtfs(APPLEUFS_LABEL_OFFSET/sectorsize,APPLEUFS_LABEL_SIZE,&appleufs);
171 }
172
173 /*
174 * collect and verify the sector and track info
175 */
176 sblock.fs_nsect = nsectors;
177 sblock.fs_ntrak = ntracks;
178 if (sblock.fs_ntrak <= 0)
179 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
180 if (sblock.fs_nsect <= 0)
181 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
182 /*
183 * collect and verify the filesystem density info
184 */
185 sblock.fs_avgfilesize = avgfilesize;
186 sblock.fs_avgfpdir = avgfpdir;
187 if (sblock.fs_avgfilesize <= 0)
188 printf("illegal expected average file size %d\n",
189 sblock.fs_avgfilesize), exit(14);
190 if (sblock.fs_avgfpdir <= 0)
191 printf("illegal expected number of files per directory %d\n",
192 sblock.fs_avgfpdir), exit(15);
193 /*
194 * collect and verify the block and fragment sizes
195 */
196 sblock.fs_bsize = bsize;
197 sblock.fs_fsize = fsize;
198 if (!POWEROF2(sblock.fs_bsize)) {
199 printf("block size must be a power of 2, not %d\n",
200 sblock.fs_bsize);
201 exit(16);
202 }
203 if (!POWEROF2(sblock.fs_fsize)) {
204 printf("fragment size must be a power of 2, not %d\n",
205 sblock.fs_fsize);
206 exit(17);
207 }
208 if (sblock.fs_fsize < sectorsize) {
209 printf("fragment size %d is too small, minimum is %d\n",
210 sblock.fs_fsize, sectorsize);
211 exit(18);
212 }
213 if (sblock.fs_bsize < MINBSIZE) {
214 printf("block size %d is too small, minimum is %d\n",
215 sblock.fs_bsize, MINBSIZE);
216 exit(19);
217 }
218 if (sblock.fs_bsize > MAXBSIZE) {
219 printf("block size %d is too large, maximum is %d\n",
220 sblock.fs_bsize, MAXBSIZE);
221 exit(19);
222 }
223 if (sblock.fs_bsize < sblock.fs_fsize) {
224 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
225 sblock.fs_bsize, sblock.fs_fsize);
226 exit(20);
227 }
228 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
229 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
230 sblock.fs_qbmask = ~sblock.fs_bmask;
231 sblock.fs_qfmask = ~sblock.fs_fmask;
232 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
233 sblock.fs_bshift++;
234 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
235 sblock.fs_fshift++;
236 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
237 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
238 sblock.fs_fragshift++;
239 if (sblock.fs_frag > MAXFRAG) {
240 printf("fragment size %d is too small, "
241 "minimum with block size %d is %d\n",
242 sblock.fs_fsize, sblock.fs_bsize,
243 sblock.fs_bsize / MAXFRAG);
244 exit(21);
245 }
246 sblock.fs_nrpos = nrpos;
247 /* XXX ondisk32 */
248 sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t);
249 sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
250 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
251 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
252 sblock.fs_fsbtodb++;
253 sblock.fs_sblkno =
254 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
255 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
256 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
257 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
258 sblock.fs_cgoffset = roundup(
259 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
260 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
261 sblock.fs_cgmask <<= 1;
262 if (!POWEROF2(sblock.fs_ntrak))
263 sblock.fs_cgmask <<= 1;
264 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
265 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
266 sizepb *= NINDIR(&sblock);
267 sblock.fs_maxfilesize += sizepb;
268 }
269 /*
270 * Validate specified/determined secpercyl
271 * and calculate minimum cylinders per group.
272 */
273 sblock.fs_spc = secpercyl;
274 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
275 sblock.fs_cpc > 1 && (i & 1) == 0;
276 sblock.fs_cpc >>= 1, i >>= 1)
277 /* void */;
278 mincpc = sblock.fs_cpc;
279 bpcg = sblock.fs_spc * sectorsize;
280 inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
281 if (inospercg > MAXIPG(&sblock))
282 inospercg = MAXIPG(&sblock);
283 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
284 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
285 sblock.fs_spc);
286 mincpg = roundup(mincpgcnt, mincpc);
287 /*
288 * Ensure that cylinder group with mincpg has enough space
289 * for block maps.
290 */
291 sblock.fs_cpg = mincpg;
292 sblock.fs_ipg = inospercg;
293 if (maxcontig > 1)
294 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
295 mapcramped = 0;
296 while (CGSIZE(&sblock) > sblock.fs_bsize) {
297 mapcramped = 1;
298 if (sblock.fs_bsize < MAXBSIZE) {
299 sblock.fs_bsize <<= 1;
300 if ((i & 1) == 0) {
301 i >>= 1;
302 } else {
303 sblock.fs_cpc <<= 1;
304 mincpc <<= 1;
305 mincpg = roundup(mincpgcnt, mincpc);
306 sblock.fs_cpg = mincpg;
307 }
308 sblock.fs_frag <<= 1;
309 sblock.fs_fragshift += 1;
310 if (sblock.fs_frag <= MAXFRAG)
311 continue;
312 }
313 if (sblock.fs_fsize == sblock.fs_bsize) {
314 printf("There is no block size that");
315 printf(" can support this disk\n");
316 exit(22);
317 }
318 sblock.fs_frag >>= 1;
319 sblock.fs_fragshift -= 1;
320 sblock.fs_fsize <<= 1;
321 sblock.fs_nspf <<= 1;
322 }
323 /*
324 * Ensure that cylinder group with mincpg has enough space for inodes.
325 */
326 inodecramped = 0;
327 inospercg = calcipg(mincpg, bpcg, &usedb);
328 sblock.fs_ipg = inospercg;
329 while (inospercg > MAXIPG(&sblock)) {
330 inodecramped = 1;
331 if (mincpc == 1 || sblock.fs_frag == 1 ||
332 sblock.fs_bsize == MINBSIZE)
333 break;
334 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
335 "minimum bytes per inode is",
336 (int)((mincpg * (off_t)bpcg - usedb)
337 / MAXIPG(&sblock) + 1));
338 sblock.fs_bsize >>= 1;
339 sblock.fs_frag >>= 1;
340 sblock.fs_fragshift -= 1;
341 mincpc >>= 1;
342 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
343 if (CGSIZE(&sblock) > sblock.fs_bsize) {
344 sblock.fs_bsize <<= 1;
345 break;
346 }
347 mincpg = sblock.fs_cpg;
348 inospercg = calcipg(mincpg, bpcg, &usedb);
349 sblock.fs_ipg = inospercg;
350 }
351 if (inodecramped) {
352 if (inospercg > MAXIPG(&sblock)) {
353 printf("Minimum bytes per inode is %d\n",
354 (int)((mincpg * (off_t)bpcg - usedb)
355 / MAXIPG(&sblock) + 1));
356 } else if (!mapcramped) {
357 printf("With %d bytes per inode, ", density);
358 printf("minimum cylinders per group is %d\n", mincpg);
359 }
360 }
361 if (mapcramped) {
362 printf("With %d sectors per cylinder, ", sblock.fs_spc);
363 printf("minimum cylinders per group is %d\n", mincpg);
364 }
365 if (inodecramped || mapcramped) {
366 if (sblock.fs_bsize != bsize)
367 printf("%s to be changed from %d to %d\n",
368 "This requires the block size",
369 bsize, sblock.fs_bsize);
370 if (sblock.fs_fsize != fsize)
371 printf("\t%s to be changed from %d to %d\n",
372 "and the fragment size",
373 fsize, sblock.fs_fsize);
374 exit(23);
375 }
376 /*
377 * Calculate the number of cylinders per group
378 */
379 sblock.fs_cpg = cpg;
380 if (sblock.fs_cpg % mincpc != 0) {
381 printf("%s groups must have a multiple of %d cylinders\n",
382 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
383 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
384 if (!cpgflg)
385 cpg = sblock.fs_cpg;
386 }
387 /*
388 * Must ensure there is enough space for inodes.
389 */
390 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
391 while (sblock.fs_ipg > MAXIPG(&sblock)) {
392 inodecramped = 1;
393 sblock.fs_cpg -= mincpc;
394 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
395 }
396 /*
397 * Must ensure there is enough space to hold block map.
398 */
399 while (CGSIZE(&sblock) > sblock.fs_bsize) {
400 mapcramped = 1;
401 sblock.fs_cpg -= mincpc;
402 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
403 }
404 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
405 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
406 printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
407 exit(24);
408 }
409 if (sblock.fs_cpg < mincpg) {
410 printf("cylinder groups must have at least %d cylinders\n",
411 mincpg);
412 exit(25);
413 } else if (sblock.fs_cpg != cpg && cpgflg) {
414 if (!mapcramped && !inodecramped)
415 exit(26);
416 if (mapcramped && inodecramped)
417 printf("Block size and bytes per inode restrict");
418 else if (mapcramped)
419 printf("Block size restricts");
420 else
421 printf("Bytes per inode restrict");
422 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
423 exit(27);
424 }
425 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
426 /*
427 * Now have size for file system and nsect and ntrak.
428 * Determine number of cylinders and blocks in the file system.
429 */
430 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
431 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
432 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
433 sblock.fs_ncyl++;
434 warning = 1;
435 }
436 if (sblock.fs_ncyl < 1) {
437 printf("file systems must have at least one cylinder\n");
438 exit(28);
439 }
440 /*
441 * Determine feasability/values of rotational layout tables.
442 *
443 * The size of the rotational layout tables is limited by the
444 * size of the superblock, SBSIZE. The amount of space available
445 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
446 * The size of these tables is inversely proportional to the block
447 * size of the file system. The size increases if sectors per track
448 * are not powers of two, because more cylinders must be described
449 * by the tables before the rotational pattern repeats (fs_cpc).
450 */
451 sblock.fs_interleave = interleave;
452 sblock.fs_trackskew = trackskew;
453 sblock.fs_npsect = nphyssectors;
454 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
455 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
456 if (sblock.fs_ntrak == 1) {
457 sblock.fs_cpc = 0;
458 goto next;
459 }
460 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
461 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
462 totalsbsize = sizeof(struct fs) + rotblsize;
463 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
464 /* use old static table space */
465 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
466 (char *)(&sblock.fs_firstfield);
467 sblock.fs_rotbloff = &sblock.fs_space[0] -
468 (u_char *)(&sblock.fs_firstfield);
469 } else {
470 /* use dynamic table space */
471 sblock.fs_postbloff = &sblock.fs_space[0] -
472 (u_char *)(&sblock.fs_firstfield);
473 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
474 totalsbsize += postblsize;
475 }
476 if (totalsbsize > SBSIZE ||
477 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
478 printf("%s %s %d %s %d.%s",
479 "Warning: insufficient space in super block for\n",
480 "rotational layout tables with nsect", sblock.fs_nsect,
481 "and ntrak", sblock.fs_ntrak,
482 "\nFile system performance may be impaired.\n");
483 sblock.fs_cpc = 0;
484 goto next;
485 }
486 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
487 /*
488 * calculate the available blocks for each rotational position
489 */
490 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
491 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
492 fs_postbl(&sblock, cylno)[rpos] = -1;
493 for (i = (rotblsize - 1) << sblock.fs_fragshift;
494 i >= 0; i -= sblock.fs_frag) {
495 cylno = cbtocylno(&sblock, i);
496 rpos = cbtorpos(&sblock, i);
497 blk = fragstoblks(&sblock, i);
498 if (fs_postbl(&sblock, cylno)[rpos] == -1)
499 fs_rotbl(&sblock)[blk] = 0;
500 else
501 fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
502 fs_postbl(&sblock, cylno)[rpos] = blk;
503 }
504 next:
505 /*
506 * Compute/validate number of cylinder groups.
507 */
508 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
509 if (sblock.fs_ncyl % sblock.fs_cpg)
510 sblock.fs_ncg++;
511 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
512 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
513 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
514 printf("inode blocks/cyl group (%lld) >= data blocks (%lld)\n",
515 (long long)cgdmin(&sblock, i) -
516 (long long)(cgbase(&sblock, i) >> sblock.fs_fragshift),
517 (long long)(sblock.fs_fpg >> sblock.fs_fragshift));
518 printf("number of cylinders per cylinder group (%d) %s.\n",
519 sblock.fs_cpg, "must be increased");
520 exit(29);
521 }
522 j = sblock.fs_ncg - 1;
523 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
524 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
525 if (j == 0) {
526 printf("File system must have at least %lld sectors\n",
527 (long long)(NSPF(&sblock) *
528 (cgdmin(&sblock, 0) + (3 << sblock.fs_fragshift))));
529 exit(30);
530 }
531 printf("Warning: inode blocks/cyl group (%lld) >= "
532 "data blocks (%d) in last\n",
533 (long long)(cgdmin(&sblock, j) -
534 cgbase(&sblock, j)) >> sblock.fs_fragshift,
535 i >> sblock.fs_fragshift);
536 printf(" cylinder group. This implies %d sector(s) "
537 "cannot be allocated.\n",
538 i * NSPF(&sblock));
539 sblock.fs_ncg--;
540 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
541 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
542 NSPF(&sblock);
543 warning = 0;
544 }
545 if (warning && !mfs) {
546 printf("Warning: %d sector(s) in last cylinder unallocated\n",
547 sblock.fs_spc -
548 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
549 * sblock.fs_spc));
550 }
551 /*
552 * fill in remaining fields of the super block
553 */
554 sblock.fs_csaddr = cgdmin(&sblock, 0);
555 sblock.fs_cssize =
556 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
557 /*
558 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
559 * longer used. However, we still initialise them so that the
560 * filesystem remains compatible with old kernels.
561 */
562 i = sblock.fs_bsize / sizeof(struct csum);
563 sblock.fs_csmask = ~(i - 1);
564 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
565 sblock.fs_csshift++;
566 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
567 if (fscs == NULL)
568 exit(39);
569 sblock.fs_magic = FS_MAGIC;
570 sblock.fs_rotdelay = rotdelay;
571 sblock.fs_minfree = minfree;
572 sblock.fs_maxcontig = maxcontig;
573 sblock.fs_maxbpg = maxbpg;
574 sblock.fs_rps = rpm / 60;
575 sblock.fs_optim = opt;
576 sblock.fs_cgrotor = 0;
577 sblock.fs_cstotal.cs_ndir = 0;
578 sblock.fs_cstotal.cs_nbfree = 0;
579 sblock.fs_cstotal.cs_nifree = 0;
580 sblock.fs_cstotal.cs_nffree = 0;
581 sblock.fs_fmod = 0;
582 sblock.fs_clean = FS_ISCLEAN;
583 sblock.fs_ronly = 0;
584 /*
585 * Dump out summary information about file system.
586 */
587 if (!mfs) {
588 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
589 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
590 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
591 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
592 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
593 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
594 sblock.fs_ncg, sblock.fs_cpg,
595 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
596 sblock.fs_ipg);
597 #undef B2MBFACTOR
598 }
599 /*
600 * Now determine how wide each column will be, and calculate how
601 * many columns will fit in a 76 char line. 76 is the width of the
602 * subwindows in sysinst.
603 */
604 printcolwidth = count_digits(
605 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
606 nprintcols = 76 / (printcolwidth + 2);
607 /*
608 * Now build the cylinders group blocks and
609 * then print out indices of cylinder groups.
610 */
611 if (!mfs)
612 printf("super-block backups (for fsck -b #) at:");
613 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
614 initcg(cylno, utime);
615 if (mfs)
616 continue;
617 if (cylno % nprintcols == 0)
618 printf("\n");
619 printf(" %*lld,", printcolwidth,
620 (long long)fsbtodb(&sblock, cgsblock(&sblock, cylno)));
621 fflush(stdout);
622 }
623 if (!mfs)
624 printf("\n");
625 if (Nflag && !mfs)
626 exit(0);
627 /*
628 * Now construct the initial file system,
629 * then write out the super-block.
630 */
631 if (fsinit(utime, mfsmode, mfsuid, mfsgid) == 0 && mfs)
632 errx(1, "Error making filesystem");
633 sblock.fs_time = utime;
634 memcpy(writebuf, &sblock, sbsize);
635 if (needswap)
636 ffs_sb_swap(&sblock, (struct fs*)writebuf);
637 wtfs((int)SBOFF / sectorsize, sbsize, writebuf);
638 /*
639 * Write out the duplicate super blocks
640 */
641 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
642 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
643 sbsize, writebuf);
644
645 /*
646 * if we need to swap, create a buffer for the cylinder summaries
647 * to get swapped to.
648 */
649 if (needswap) {
650 if ((writebuf2 = malloc(sblock.fs_cssize)) == NULL)
651 exit(12);
652 ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize);
653 } else
654 writebuf2 = (char *)fscs;
655
656 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
657 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
658 sblock.fs_cssize - i < sblock.fs_bsize ?
659 sblock.fs_cssize - i : sblock.fs_bsize,
660 ((char *)writebuf2) + i);
661 if (writebuf2 != (char *)fscs)
662 free(writebuf2);
663
664 /*
665 * Update information about this partion in pack
666 * label, to that it may be updated on disk.
667 */
668 if (isappleufs)
669 pp->p_fstype = FS_APPLEUFS;
670 else
671 pp->p_fstype = FS_BSDFFS;
672 pp->p_fsize = sblock.fs_fsize;
673 pp->p_frag = sblock.fs_frag;
674 pp->p_cpg = sblock.fs_cpg;
675 }
676
677 /*
678 * Initialize a cylinder group.
679 */
680 void
681 initcg(int cylno, time_t utime)
682 {
683 daddr_t cbase, d, dlower, dupper, dmax, blkno;
684 int32_t i;
685 struct csum *cs;
686 int cn;
687
688 /*
689 * Determine block bounds for cylinder group.
690 * Allow space for super block summary information in first
691 * cylinder group.
692 */
693 cbase = cgbase(&sblock, cylno);
694 dmax = cbase + sblock.fs_fpg;
695 if (dmax > sblock.fs_size)
696 dmax = sblock.fs_size;
697 dlower = cgsblock(&sblock, cylno) - cbase;
698 dupper = cgdmin(&sblock, cylno) - cbase;
699 if (cylno == 0)
700 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
701 cs = fscs + cylno;
702 memset(&acg, 0, sblock.fs_cgsize);
703 acg.cg_time = utime;
704 acg.cg_magic = CG_MAGIC;
705 acg.cg_cgx = cylno;
706 if (cylno == sblock.fs_ncg - 1)
707 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
708 else
709 acg.cg_ncyl = sblock.fs_cpg;
710 acg.cg_niblk = sblock.fs_ipg;
711 acg.cg_ndblk = dmax - cbase;
712 if (sblock.fs_contigsumsize > 0)
713 acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
714 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
715 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
716 acg.cg_iusedoff = acg.cg_boff +
717 sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
718 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
719 if (sblock.fs_contigsumsize <= 0) {
720 acg.cg_nextfreeoff = acg.cg_freeoff +
721 howmany(sblock.fs_fpg, NBBY);
722 } else {
723 acg.cg_clustersumoff = acg.cg_freeoff +
724 howmany(sblock.fs_fpg, NBBY) - sizeof(int32_t);
725 if (isappleufs) {
726 /* Apple PR2216969 gives rationale for this change.
727 * I believe they were mistaken, but we need to
728 * duplicate it for compatibility. -- dbj (at) NetBSD.org
729 */
730 acg.cg_clustersumoff += sizeof(int32_t);
731 }
732 acg.cg_clustersumoff =
733 roundup(acg.cg_clustersumoff, sizeof(int32_t));
734 acg.cg_clusteroff = acg.cg_clustersumoff +
735 (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
736 acg.cg_nextfreeoff = acg.cg_clusteroff +
737 howmany(fragstoblks(&sblock, sblock.fs_fpg), NBBY);
738 }
739 if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
740 printf("Panic: cylinder group too big\n");
741 exit(37);
742 }
743 acg.cg_cs.cs_nifree += sblock.fs_ipg;
744 if (cylno == 0)
745 for (i = 0; i < ROOTINO; i++) {
746 setbit(cg_inosused(&acg, 0), i);
747 acg.cg_cs.cs_nifree--;
748 }
749 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
750 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
751 sblock.fs_bsize, (char *)zino);
752 if (cylno > 0) {
753 /*
754 * In cylno 0, beginning space is reserved
755 * for boot and super blocks.
756 */
757 for (d = 0, blkno = 0; d < dlower; ) {
758 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
759 if (sblock.fs_contigsumsize > 0)
760 setbit(cg_clustersfree(&acg, 0), blkno);
761 acg.cg_cs.cs_nbfree++;
762 cn = cbtocylno(&sblock, d);
763 cg_blktot(&acg, 0)[cn]++;
764 cg_blks(&sblock, &acg, cn, 0)[cbtorpos(&sblock, d)]++;
765 d += sblock.fs_frag;
766 blkno++;
767 }
768 sblock.fs_dsize += dlower;
769 }
770 sblock.fs_dsize += acg.cg_ndblk - dupper;
771 if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
772 acg.cg_frsum[sblock.fs_frag - i]++;
773 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
774 setbit(cg_blksfree(&acg, 0), dupper);
775 acg.cg_cs.cs_nffree++;
776 }
777 }
778 for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
779 d + sblock.fs_frag <= dmax - cbase; ) {
780 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
781 if (sblock.fs_contigsumsize > 0)
782 setbit(cg_clustersfree(&acg, 0), blkno);
783 acg.cg_cs.cs_nbfree++;
784 cn = cbtocylno(&sblock, d);
785 cg_blktot(&acg, 0)[cn]++;
786 cg_blks(&sblock, &acg, cn, 0)[cbtorpos(&sblock, d)]++;
787 d += sblock.fs_frag;
788 blkno++;
789 }
790 if (d < dmax - cbase) {
791 acg.cg_frsum[dmax - cbase - d]++;
792 for (; d < dmax - cbase; d++) {
793 setbit(cg_blksfree(&acg, 0), d);
794 acg.cg_cs.cs_nffree++;
795 }
796 }
797 if (sblock.fs_contigsumsize > 0) {
798 int32_t *sump = cg_clustersum(&acg, 0);
799 u_char *mapp = cg_clustersfree(&acg, 0);
800 int map = *mapp++;
801 int bit = 1;
802 int run = 0;
803
804 for (i = 0; i < acg.cg_nclusterblks; i++) {
805 if ((map & bit) != 0) {
806 run++;
807 } else if (run != 0) {
808 if (run > sblock.fs_contigsumsize)
809 run = sblock.fs_contigsumsize;
810 sump[run]++;
811 run = 0;
812 }
813 if ((i & (NBBY - 1)) != (NBBY - 1)) {
814 bit <<= 1;
815 } else {
816 map = *mapp++;
817 bit = 1;
818 }
819 }
820 if (run != 0) {
821 if (run > sblock.fs_contigsumsize)
822 run = sblock.fs_contigsumsize;
823 sump[run]++;
824 }
825 }
826 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
827 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
828 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
829 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
830 *cs = acg.cg_cs;
831 memcpy(writebuf, &acg, sblock.fs_bsize);
832 if (needswap)
833 swap_cg(&acg, (struct cg*)writebuf);
834 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
835 sblock.fs_bsize, writebuf);
836 }
837
838 /*
839 * initialize the file system
840 */
841 struct dinode node;
842
843 #ifdef LOSTDIR
844 #define PREDEFDIR 3
845 #else
846 #define PREDEFDIR 2
847 #endif
848
849 struct direct root_dir[] = {
850 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
851 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
852 #ifdef LOSTDIR
853 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
854 #endif
855 };
856 struct odirect {
857 u_int32_t d_ino;
858 u_int16_t d_reclen;
859 u_int16_t d_namlen;
860 u_char d_name[MAXNAMLEN + 1];
861 } oroot_dir[] = {
862 { ROOTINO, sizeof(struct direct), 1, "." },
863 { ROOTINO, sizeof(struct direct), 2, ".." },
864 #ifdef LOSTDIR
865 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
866 #endif
867 };
868 #ifdef LOSTDIR
869 struct direct lost_found_dir[] = {
870 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
871 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
872 { 0, DIRBLKSIZ, 0, 0, 0 },
873 };
874 struct odirect olost_found_dir[] = {
875 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
876 { ROOTINO, sizeof(struct direct), 2, ".." },
877 { 0, DIRBLKSIZ, 0, 0 },
878 };
879 #endif
880 char buf[MAXBSIZE];
881 static void copy_dir(struct direct *, struct direct *);
882
883 int
884 fsinit(time_t utime, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
885 {
886 #ifdef LOSTDIR
887 int i;
888 int dirblksiz = DIRBLKSIZ;
889 if (isappleufs)
890 dirblksiz = APPLEUFS_DIRBLKSIZ;
891 #endif
892
893 /*
894 * initialize the node
895 */
896 memset(&node, 0, sizeof(node));
897 node.di_atime = utime;
898 node.di_mtime = utime;
899 node.di_ctime = utime;
900
901 #ifdef LOSTDIR
902 /*
903 * create the lost+found directory
904 */
905 if (Oflag) {
906 (void)makedir((struct direct *)olost_found_dir, 2);
907 for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
908 copy_dir((struct direct*)&olost_found_dir[2],
909 (struct direct*)&buf[i]);
910 } else {
911 (void)makedir(lost_found_dir, 2);
912 for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
913 copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
914 }
915 node.di_mode = IFDIR | UMASK;
916 node.di_nlink = 2;
917 node.di_size = sblock.fs_bsize;
918 node.di_db[0] = alloc(node.di_size, node.di_mode);
919 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
920 node.di_uid = geteuid();
921 node.di_gid = getegid();
922 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
923 iput(&node, LOSTFOUNDINO);
924 #endif
925 /*
926 * create the root directory
927 */
928 if (mfs) {
929 node.di_mode = IFDIR | mfsmode;
930 node.di_uid = mfsuid;
931 node.di_gid = mfsgid;
932 } else {
933 node.di_mode = IFDIR | UMASK;
934 node.di_uid = geteuid();
935 node.di_gid = getegid();
936 }
937 node.di_nlink = PREDEFDIR;
938 if (Oflag)
939 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
940 else
941 node.di_size = makedir(root_dir, PREDEFDIR);
942 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
943 if (node.di_db[0] == 0)
944 return (0);
945 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
946 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
947 iput(&node, ROOTINO);
948 return (1);
949 }
950
951 /*
952 * construct a set of directory entries in "buf".
953 * return size of directory.
954 */
955 int
956 makedir(struct direct *protodir, int entries)
957 {
958 char *cp;
959 int i, spcleft;
960 int dirblksiz = DIRBLKSIZ;
961 if (isappleufs)
962 dirblksiz = APPLEUFS_DIRBLKSIZ;
963
964 spcleft = dirblksiz;
965 for (cp = buf, i = 0; i < entries - 1; i++) {
966 protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0);
967 copy_dir(&protodir[i], (struct direct*)cp);
968 cp += protodir[i].d_reclen;
969 spcleft -= protodir[i].d_reclen;
970 }
971 protodir[i].d_reclen = spcleft;
972 copy_dir(&protodir[i], (struct direct*)cp);
973 return (dirblksiz);
974 }
975
976 /*
977 * allocate a block or frag
978 */
979 daddr_t
980 alloc(int size, int mode)
981 {
982 int i, frag;
983 daddr_t d, blkno;
984
985 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
986 /* fs -> host byte order */
987 if (needswap)
988 swap_cg(&acg, &acg);
989 if (acg.cg_magic != CG_MAGIC) {
990 printf("cg 0: bad magic number\n");
991 return (0);
992 }
993 if (acg.cg_cs.cs_nbfree == 0) {
994 printf("first cylinder group ran out of space\n");
995 return (0);
996 }
997 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
998 if (isblock(&sblock, cg_blksfree(&acg, 0),
999 d >> sblock.fs_fragshift))
1000 goto goth;
1001 printf("internal error: can't find block in cyl 0\n");
1002 return (0);
1003 goth:
1004 blkno = fragstoblks(&sblock, d);
1005 clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
1006 if (sblock.fs_contigsumsize > 0)
1007 clrbit(cg_clustersfree(&acg, 0), blkno);
1008 acg.cg_cs.cs_nbfree--;
1009 sblock.fs_cstotal.cs_nbfree--;
1010 fscs[0].cs_nbfree--;
1011 if (mode & IFDIR) {
1012 acg.cg_cs.cs_ndir++;
1013 sblock.fs_cstotal.cs_ndir++;
1014 fscs[0].cs_ndir++;
1015 }
1016 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--;
1017 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--;
1018 if (size != sblock.fs_bsize) {
1019 frag = howmany(size, sblock.fs_fsize);
1020 fscs[0].cs_nffree += sblock.fs_frag - frag;
1021 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1022 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1023 acg.cg_frsum[sblock.fs_frag - frag]++;
1024 for (i = frag; i < sblock.fs_frag; i++)
1025 setbit(cg_blksfree(&acg, 0), d + i);
1026 }
1027 /* host -> fs byte order */
1028 if (needswap)
1029 swap_cg(&acg, &acg);
1030 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1031 (char *)&acg);
1032 return (d);
1033 }
1034
1035 /*
1036 * Calculate number of inodes per group.
1037 */
1038 int32_t
1039 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
1040 {
1041 int i;
1042 int32_t ipg, new_ipg, ncg, ncyl;
1043 off_t usedb;
1044
1045 /*
1046 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1047 * Note that fssize is still in sectors, not file system blocks.
1048 */
1049 ncyl = howmany(fssize, secpercyl);
1050 ncg = howmany(ncyl, cylpg);
1051 /*
1052 * Iterate a few times to allow for ipg depending on itself.
1053 */
1054 ipg = 0;
1055 for (i = 0; i < 10; i++) {
1056 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1057 * NSPF(&sblock) * (off_t)sectorsize;
1058 new_ipg = (cylpg * (long long)bpcg - usedb) /
1059 (long long)density * fssize / (ncg * secpercyl * cylpg);
1060 if (new_ipg <= 0)
1061 new_ipg = 1; /* ensure ipg > 0 */
1062 new_ipg = roundup(new_ipg, INOPB(&sblock));
1063 if (new_ipg == ipg)
1064 break;
1065 ipg = new_ipg;
1066 }
1067 *usedbp = usedb;
1068 return (ipg);
1069 }
1070
1071 /*
1072 * Allocate an inode on the disk
1073 */
1074 static void
1075 iput(struct dinode *ip, ino_t ino)
1076 {
1077 struct dinode ibuf[MAXINOPB];
1078 daddr_t d;
1079 int c, i;
1080
1081 c = ino_to_cg(&sblock, ino);
1082 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1083 /* fs -> host byte order */
1084 if (needswap)
1085 swap_cg(&acg, &acg);
1086 if (acg.cg_magic != CG_MAGIC) {
1087 printf("cg 0: bad magic number\n");
1088 exit(31);
1089 }
1090 acg.cg_cs.cs_nifree--;
1091 setbit(cg_inosused(&acg, 0), ino);
1092 /* host -> fs byte order */
1093 if (needswap)
1094 swap_cg(&acg, &acg);
1095 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1096 (char *)&acg);
1097 sblock.fs_cstotal.cs_nifree--;
1098 fscs[0].cs_nifree--;
1099 if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1100 printf("fsinit: inode value out of range (%d).\n", ino);
1101 exit(32);
1102 }
1103 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1104 rdfs(d, sblock.fs_bsize, ibuf);
1105 if (needswap) {
1106 ffs_dinode_swap(ip, &ibuf[ino_to_fsbo(&sblock, ino)]);
1107 /* ffs_dinode_swap() doesn't swap blocks addrs */
1108 for (i=0; i<NDADDR + NIADDR; i++)
1109 (&ibuf[ino_to_fsbo(&sblock, ino)])->di_db[i] =
1110 bswap32(ip->di_db[i]);
1111 } else
1112 ibuf[ino_to_fsbo(&sblock, ino)] = *ip;
1113 wtfs(d, sblock.fs_bsize, ibuf);
1114 }
1115
1116 /*
1117 * read a block from the file system
1118 */
1119 void
1120 rdfs(daddr_t bno, int size, void *bf)
1121 {
1122 int n;
1123 off_t offset;
1124
1125 #ifdef MFS
1126 if (mfs) {
1127 memmove(bf, membase + bno * sectorsize, size);
1128 return;
1129 }
1130 #endif
1131 offset = bno;
1132 offset *= sectorsize;
1133 if (lseek(fsi, offset, SEEK_SET) < 0) {
1134 printf("rdfs: seek error for sector %lld: %s\n",
1135 (long long)bno, strerror(errno));
1136 exit(33);
1137 }
1138 n = read(fsi, bf, size);
1139 if (n != size) {
1140 printf("rdfs: read error for sector %lld: %s\n",
1141 (long long)bno, strerror(errno));
1142 exit(34);
1143 }
1144 }
1145
1146 /*
1147 * write a block to the file system
1148 */
1149 void
1150 wtfs(daddr_t bno, int size, void *bf)
1151 {
1152 int n;
1153 off_t offset;
1154
1155 #ifdef MFS
1156 if (mfs) {
1157 memmove(membase + bno * sectorsize, bf, size);
1158 return;
1159 }
1160 #endif
1161 if (Nflag)
1162 return;
1163 offset = bno;
1164 offset *= sectorsize;
1165 if (lseek(fso, offset, SEEK_SET) < 0) {
1166 printf("wtfs: seek error for sector %lld: %s\n",
1167 (long long)bno, strerror(errno));
1168 exit(35);
1169 }
1170 n = write(fso, bf, size);
1171 if (n != size) {
1172 printf("wtfs: write error for sector %lld: %s\n",
1173 (long long)bno, strerror(errno));
1174 exit(36);
1175 }
1176 }
1177
1178 /*
1179 * check if a block is available
1180 */
1181 int
1182 isblock(struct fs *fs, unsigned char *cp, int h)
1183 {
1184 unsigned char mask;
1185
1186 switch (fs->fs_fragshift) {
1187 case 3:
1188 return (cp[h] == 0xff);
1189 case 2:
1190 mask = 0x0f << ((h & 0x1) << 2);
1191 return ((cp[h >> 1] & mask) == mask);
1192 case 1:
1193 mask = 0x03 << ((h & 0x3) << 1);
1194 return ((cp[h >> 2] & mask) == mask);
1195 case 0:
1196 mask = 0x01 << (h & 0x7);
1197 return ((cp[h >> 3] & mask) == mask);
1198 default:
1199 #ifdef STANDALONE
1200 printf("isblock bad fs_fragshift %d\n", fs->fs_fragshift);
1201 #else
1202 fprintf(stderr, "isblock bad fs_fragshift %d\n",
1203 fs->fs_fragshift);
1204 #endif
1205 return (0);
1206 }
1207 }
1208
1209 /*
1210 * take a block out of the map
1211 */
1212 void
1213 clrblock(struct fs *fs, unsigned char *cp, int h)
1214 {
1215 switch ((fs)->fs_fragshift) {
1216 case 3:
1217 cp[h] = 0;
1218 return;
1219 case 2:
1220 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1221 return;
1222 case 1:
1223 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1224 return;
1225 case 0:
1226 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1227 return;
1228 default:
1229 #ifdef STANDALONE
1230 printf("clrblock bad fs_fragshift %d\n", fs->fs_fragshift);
1231 #else
1232 fprintf(stderr, "clrblock bad fs_fragshift %d\n",
1233 fs->fs_fragshift);
1234 #endif
1235 return;
1236 }
1237 }
1238
1239 /*
1240 * put a block into the map
1241 */
1242 void
1243 setblock(struct fs *fs, unsigned char *cp, int h)
1244 {
1245 switch (fs->fs_fragshift) {
1246 case 3:
1247 cp[h] = 0xff;
1248 return;
1249 case 2:
1250 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1251 return;
1252 case 1:
1253 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1254 return;
1255 case 0:
1256 cp[h >> 3] |= (0x01 << (h & 0x7));
1257 return;
1258 default:
1259 #ifdef STANDALONE
1260 printf("setblock bad fs_frag %d\n", fs->fs_fragshift);
1261 #else
1262 fprintf(stderr, "setblock bad fs_fragshift %d\n",
1263 fs->fs_fragshift);
1264 #endif
1265 return;
1266 }
1267 }
1268
1269 /* swap byte order of cylinder group */
1270 static void
1271 swap_cg(struct cg *o, struct cg *n)
1272 {
1273 int i, btotsize, fbsize;
1274 u_int32_t *n32, *o32;
1275 u_int16_t *n16, *o16;
1276
1277 n->cg_firstfield = bswap32(o->cg_firstfield);
1278 n->cg_magic = bswap32(o->cg_magic);
1279 n->cg_time = bswap32(o->cg_time);
1280 n->cg_cgx = bswap32(o->cg_cgx);
1281 n->cg_ncyl = bswap16(o->cg_ncyl);
1282 n->cg_niblk = bswap16(o->cg_niblk);
1283 n->cg_ndblk = bswap32(o->cg_ndblk);
1284 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
1285 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
1286 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
1287 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
1288 n->cg_rotor = bswap32(o->cg_rotor);
1289 n->cg_frotor = bswap32(o->cg_frotor);
1290 n->cg_irotor = bswap32(o->cg_irotor);
1291 n->cg_btotoff = bswap32(o->cg_btotoff);
1292 n->cg_boff = bswap32(o->cg_boff);
1293 n->cg_iusedoff = bswap32(o->cg_iusedoff);
1294 n->cg_freeoff = bswap32(o->cg_freeoff);
1295 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
1296 n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
1297 n->cg_clusteroff = bswap32(o->cg_clusteroff);
1298 n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
1299 for (i=0; i < MAXFRAG; i++)
1300 n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
1301
1302 /* alays new format */
1303 if (n->cg_magic == CG_MAGIC) {
1304 btotsize = n->cg_boff - n->cg_btotoff;
1305 fbsize = n->cg_iusedoff - n->cg_boff;
1306 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
1307 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
1308 n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
1309 o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
1310 } else {
1311 btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
1312 fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
1313 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
1314 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
1315 n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
1316 o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
1317 }
1318 for (i=0; i < btotsize / sizeof(u_int32_t); i++)
1319 n32[i] = bswap32(o32[i]);
1320
1321 for (i=0; i < fbsize/sizeof(u_int16_t); i++)
1322 n16[i] = bswap16(o16[i]);
1323
1324 if (n->cg_magic == CG_MAGIC) {
1325 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
1326 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
1327 } else {
1328 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
1329 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
1330 }
1331 for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
1332 n32[i] = bswap32(o32[i]);
1333 }
1334
1335 /* copy a direntry to a buffer, in fs byte order */
1336 static void
1337 copy_dir(struct direct *dir, struct direct *dbuf)
1338 {
1339 memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0));
1340 if (needswap) {
1341 dbuf->d_ino = bswap32(dir->d_ino);
1342 dbuf->d_reclen = bswap16(dir->d_reclen);
1343 if (Oflag)
1344 ((struct odirect*)dbuf)->d_namlen =
1345 bswap16(((struct odirect*)dir)->d_namlen);
1346 }
1347 }
1348
1349 /* Determine how many digits are needed to print a given integer */
1350 static int
1351 count_digits(int num)
1352 {
1353 int ndig;
1354
1355 for(ndig = 1; num > 9; num /=10, ndig++);
1356
1357 return (ndig);
1358 }
1359
1360 #ifdef MFS
1361 /*
1362 * XXX!
1363 * Attempt to guess how much more space is available for process data. The
1364 * heuristic we use is
1365 *
1366 * max_data_limit - (sbrk(0) - etext) - 128kB
1367 *
1368 * etext approximates that start address of the data segment, and the 128kB
1369 * allows some slop for both segment gap between text and data, and for other
1370 * (libc) malloc usage.
1371 */
1372 static void
1373 calc_memfree(void)
1374 {
1375 extern char etext;
1376 struct rlimit rlp;
1377 u_long base;
1378
1379 base = (u_long)sbrk(0) - (u_long)&etext;
1380 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1381 perror("getrlimit");
1382 rlp.rlim_cur = rlp.rlim_max;
1383 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1384 perror("setrlimit");
1385 memleft = rlp.rlim_max - base - (128 * 1024);
1386 }
1387
1388 /*
1389 * Internal version of malloc that trims the requested size if not enough
1390 * memory is available.
1391 */
1392 static void *
1393 mkfs_malloc(size_t size)
1394 {
1395 u_long pgsz;
1396
1397 if (size == 0)
1398 return (NULL);
1399 if (memleft == 0)
1400 calc_memfree();
1401
1402 pgsz = getpagesize() - 1;
1403 size = (size + pgsz) &~ pgsz;
1404 if (size > memleft)
1405 size = memleft;
1406 memleft -= size;
1407 return (mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
1408 -1, 0));
1409 }
1410 #endif /* MFS */
1411