mkfs.c revision 1.80 1 /* $NetBSD: mkfs.c,v 1.80 2003/09/10 17:25:14 dsl Exp $ */
2
3 /*
4 * Copyright (c) 1980, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2002 Networks Associates Technology, Inc.
34 * All rights reserved.
35 *
36 * This software was developed for the FreeBSD Project by Marshall
37 * Kirk McKusick and Network Associates Laboratories, the Security
38 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 * research program
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 */
70
71 #include <sys/cdefs.h>
72 #ifndef lint
73 #if 0
74 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
75 #else
76 __RCSID("$NetBSD: mkfs.c,v 1.80 2003/09/10 17:25:14 dsl Exp $");
77 #endif
78 #endif /* not lint */
79
80 #include <sys/param.h>
81 #include <sys/mman.h>
82 #include <sys/time.h>
83 #include <sys/resource.h>
84 #include <ufs/ufs/dinode.h>
85 #include <ufs/ufs/dir.h>
86 #include <ufs/ufs/ufs_bswap.h>
87 #include <ufs/ffs/fs.h>
88 #include <ufs/ffs/ffs_extern.h>
89 #include <sys/disklabel.h>
90
91 #include <err.h>
92 #include <errno.h>
93 #include <string.h>
94 #include <unistd.h>
95 #include <stdlib.h>
96 #include <stddef.h>
97
98 #ifndef STANDALONE
99 #include <stdio.h>
100 #endif
101
102 #include "extern.h"
103
104 union dinode {
105 struct ufs1_dinode dp1;
106 struct ufs2_dinode dp2;
107 };
108
109 static void initcg(int, const struct timeval *);
110 static int fsinit(const struct timeval *, mode_t, uid_t, gid_t);
111 static int makedir(struct direct *, int);
112 static daddr_t alloc(int, int);
113 static void iput(union dinode *, ino_t);
114 static void rdfs(daddr_t, int, void *);
115 static void wtfs(daddr_t, int, void *);
116 static int isblock(struct fs *, unsigned char *, int);
117 static void clrblock(struct fs *, unsigned char *, int);
118 static void setblock(struct fs *, unsigned char *, int);
119 static int ilog2(int);
120 static void zap_old_sblock(int);
121 #ifdef MFS
122 static void calc_memfree(void);
123 static void *mkfs_malloc(size_t size);
124 #endif
125
126 static int count_digits(uint64_t);
127
128 /*
129 * make file system for cylinder-group style file systems
130 */
131 #define UMASK 0755
132 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
133
134 union {
135 struct fs fs;
136 char pad[SBLOCKSIZE];
137 } fsun;
138 #define sblock fsun.fs
139
140 struct csum *fscs_0; /* first block of cylinder summaries */
141 struct csum *fscs_next; /* place for next summary */
142 struct csum *fscs_end; /* end of summary buffer */
143 struct csum *fscs_reset; /* place for next summary after write */
144 uint fs_csaddr; /* fragment number to write to */
145
146 union {
147 struct cg cg;
148 char pad[MAXBSIZE];
149 } cgun;
150 #define acg cgun.cg
151
152 #define DIP(dp, field) \
153 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \
154 (dp)->dp1.di_##field : (dp)->dp2.di_##field)
155
156 char *iobuf;
157 int iobufsize;
158
159 int fsi, fso;
160
161 void
162 mkfs(struct partition *pp, const char *fsys, int fi, int fo,
163 mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
164 {
165 uint fragsperinodeblk, ncg;
166 uint cgzero;
167 uint64_t inodeblks, cgall;
168 int32_t cylno, i, csfrags;
169 struct timeval tv;
170 long long sizepb;
171 int nprintcols, printcolwidth;
172
173 #ifndef STANDALONE
174 gettimeofday(&tv, NULL);
175 #endif
176 #ifdef MFS
177 if (mfs) {
178 calc_memfree();
179 if (fssize * sectorsize > memleft)
180 fssize = memleft / sectorsize;
181 if ((membase = mkfs_malloc(fssize * sectorsize)) == 0)
182 exit(12);
183 }
184 #endif
185 fsi = fi;
186 fso = fo;
187 if (Oflag == 0) {
188 sblock.fs_old_inodefmt = FS_42INODEFMT;
189 sblock.fs_maxsymlinklen = 0;
190 sblock.fs_old_flags = 0;
191 } else {
192 sblock.fs_old_inodefmt = FS_44INODEFMT;
193 sblock.fs_maxsymlinklen = (Oflag == 1 ? MAXSYMLINKLEN_UFS1 :
194 MAXSYMLINKLEN_UFS2);
195 sblock.fs_old_flags = FS_FLAGS_UPDATED;
196 sblock.fs_flags = 0;
197 }
198
199 /*
200 * collect and verify the filesystem density info
201 */
202 sblock.fs_avgfilesize = avgfilesize;
203 sblock.fs_avgfpdir = avgfpdir;
204 if (sblock.fs_avgfilesize <= 0) {
205 printf("illegal expected average file size %d\n",
206 sblock.fs_avgfilesize);
207 exit(14);
208 }
209 if (sblock.fs_avgfpdir <= 0) {
210 printf("illegal expected number of files per directory %d\n",
211 sblock.fs_avgfpdir);
212 exit(15);
213 }
214 /*
215 * collect and verify the block and fragment sizes
216 */
217 sblock.fs_bsize = bsize;
218 sblock.fs_fsize = fsize;
219 if (!POWEROF2(sblock.fs_bsize)) {
220 printf("block size must be a power of 2, not %d\n",
221 sblock.fs_bsize);
222 exit(16);
223 }
224 if (!POWEROF2(sblock.fs_fsize)) {
225 printf("fragment size must be a power of 2, not %d\n",
226 sblock.fs_fsize);
227 exit(17);
228 }
229 if (sblock.fs_fsize < sectorsize) {
230 printf("fragment size %d is too small, minimum is %d\n",
231 sblock.fs_fsize, sectorsize);
232 exit(18);
233 }
234 if (sblock.fs_bsize < MINBSIZE) {
235 printf("block size %d is too small, minimum is %d\n",
236 sblock.fs_bsize, MINBSIZE);
237 exit(19);
238 }
239 if (sblock.fs_bsize > MAXBSIZE) {
240 printf("block size %d is too large, maximum is %d\n",
241 sblock.fs_bsize, MAXBSIZE);
242 exit(19);
243 }
244 if (sblock.fs_bsize < sblock.fs_fsize) {
245 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
246 sblock.fs_bsize, sblock.fs_fsize);
247 exit(20);
248 }
249
250 if (maxbsize < bsize || !POWEROF2(maxbsize)) {
251 sblock.fs_maxbsize = sblock.fs_bsize;
252 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
253 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
254 } else {
255 sblock.fs_maxbsize = maxbsize;
256 }
257 sblock.fs_maxcontig = maxcontig;
258 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
259 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
260 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
261 }
262 if (sblock.fs_maxcontig > 1)
263 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
264
265 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
266 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
267 sblock.fs_qbmask = ~sblock.fs_bmask;
268 sblock.fs_qfmask = ~sblock.fs_fmask;
269 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
270 sblock.fs_bshift++;
271 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
272 sblock.fs_fshift++;
273 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
274 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
275 sblock.fs_fragshift++;
276 if (sblock.fs_frag > MAXFRAG) {
277 printf("fragment size %d is too small, "
278 "minimum with block size %d is %d\n",
279 sblock.fs_fsize, sblock.fs_bsize,
280 sblock.fs_bsize / MAXFRAG);
281 exit(21);
282 }
283 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
284 sblock.fs_size = dbtofsb(&sblock, fssize);
285 if (Oflag <= 1) {
286 if (sblock.fs_size >= 1ull << 31) {
287 printf("Too many fragments (0x%" PRIx64
288 ") for a UFS1 filesystem\n", sblock.fs_size);
289 exit(22);
290 }
291 sblock.fs_magic = FS_UFS1_MAGIC;
292 sblock.fs_sblockloc = SBLOCK_UFS1;
293 sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t);
294 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
295 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
296 sizeof (int32_t));
297 sblock.fs_old_inodefmt = FS_44INODEFMT;
298 sblock.fs_old_cgoffset = 0;
299 sblock.fs_old_cgmask = 0xffffffff;
300 sblock.fs_old_size = sblock.fs_size;
301 sblock.fs_old_rotdelay = 0;
302 sblock.fs_old_rps = 60;
303 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
304 sblock.fs_old_cpg = 1;
305 sblock.fs_old_interleave = 1;
306 sblock.fs_old_trackskew = 0;
307 sblock.fs_old_cpc = 0;
308 sblock.fs_old_postblformat = FS_DYNAMICPOSTBLFMT;
309 sblock.fs_old_nrpos = 1;
310 } else {
311 sblock.fs_magic = FS_UFS2_MAGIC;
312 sblock.fs_sblockloc = SBLOCK_UFS2;
313 sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t);
314 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
315 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
316 sizeof (int64_t));
317 }
318
319 sblock.fs_sblkno =
320 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
321 sblock.fs_frag);
322 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
323 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag));
324 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
325 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
326 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
327 sizepb *= NINDIR(&sblock);
328 sblock.fs_maxfilesize += sizepb;
329 }
330
331 /*
332 * Calculate the number of blocks to put into each cylinder group.
333 *
334 * The cylinder group size is limited because the data structure
335 * must fit into a single block.
336 * We try to have as few cylinder groups as possible, with a proviso
337 * that we create at least MINCYLGRPS (==4) except for small
338 * filesystems.
339 *
340 * This algorithm works out how many blocks of inodes would be
341 * needed to fill the entire volume at the specified density.
342 * It then looks at how big the 'cylinder block' would have to
343 * be and, assuming that it is linearly related to the number
344 * of inodes and blocks how many cylinder groups are needed to
345 * keep the cylinder block below the filesystem block size.
346 *
347 * The cylinder groups are then all created with the average size.
348 *
349 * Space taken by the red tape on cylinder groups other than the
350 * first is ignored.
351 */
352
353 /* There must be space for 1 inode block and 2 data blocks */
354 if (sblock.fs_size < sblock.fs_iblkno + 3 * sblock.fs_frag) {
355 printf("Filesystem size %lld < minimum size of %d\n",
356 (long long)sblock.fs_size, sblock.fs_iblkno + 3 * sblock.fs_frag);
357 exit(23);
358 }
359 /*
360 * Calculate 'per inode block' so we can allocate less than 1 fragment
361 * per inode - useful for /dev.
362 */
363 fragsperinodeblk = MAX(numfrags(&sblock, density * INOPB(&sblock)), 1);
364 inodeblks = (sblock.fs_size - sblock.fs_iblkno - 2 * sblock.fs_frag) /
365 (sblock.fs_frag + fragsperinodeblk);
366 if (inodeblks == 0)
367 inodeblks = 1;
368 /* Even UFS2 limits number of inodes to 2^31 (fs_ipg is int32_t) */
369 if (inodeblks * INOPB(&sblock) >= 1ull << 31)
370 inodeblks = ((1ull << 31) - NBBY) / INOPB(&sblock);
371 /*
372 * See what would happen if we tried to use 1 cylinder group.
373 * Assume space linear, so work out number of cylinder groups needed.
374 * Subtract one from the allowed size to compensate for rounding
375 * a number of bits up to a complete byte.
376 */
377 cgzero = CGSIZE_IF(&sblock, 0, 0);
378 cgall = CGSIZE_IF(&sblock, inodeblks * INOPB(&sblock), sblock.fs_size);
379 ncg = howmany(cgall - cgzero, sblock.fs_bsize - cgzero - 1);
380 if (ncg < MINCYLGRPS) {
381 /*
382 * We would like to allocate MINCLYGRPS cylinder groups,
383 * but for small file sytems (especially ones with a lot
384 * of inodes) this is not desirable (or possible).
385 */
386 i = sblock.fs_size / 2 / (sblock.fs_iblkno +
387 inodeblks * sblock.fs_frag);
388 if (i > ncg)
389 ncg = i;
390 if (ncg > MINCYLGRPS)
391 ncg = MINCYLGRPS;
392 if (ncg > inodeblks)
393 ncg = inodeblks;
394 }
395 /*
396 * Put an equal number of blocks in each cylinder group.
397 * Round up so we don't have more fragments in the last CG than
398 * the earlier ones (does that matter?), but kill a block if the
399 * CGSIZE becomes too big (only happens if there are a lot of CGs).
400 */
401 sblock.fs_fpg = roundup(howmany(sblock.fs_size, ncg), sblock.fs_frag);
402 i = CGSIZE_IF(&sblock, inodeblks * INOPB(&sblock) / ncg, sblock.fs_fpg);
403 if (i > sblock.fs_bsize)
404 sblock.fs_fpg -= (i - sblock.fs_bsize) * NBBY;
405 /* ... and recalculate how many cylinder groups we now need */
406 ncg = howmany(sblock.fs_size, sblock.fs_fpg);
407 inodeblks /= ncg;
408 if (inodeblks == 0)
409 inodeblks = 1;
410 sblock.fs_ipg = inodeblks * INOPB(&sblock);
411 /* Sanity check on our sums... */
412 if (CGSIZE(&sblock) > sblock.fs_bsize) {
413 printf("CGSIZE miscalculated %d > %d\n",
414 (int)CGSIZE(&sblock), sblock.fs_bsize);
415 exit(24);
416 }
417 /* Check that the last cylinder group has enough space for the inodes */
418 i = sblock.fs_size - sblock.fs_fpg * (ncg - 1ull);
419 if (i < sblock.fs_iblkno + inodeblks * sblock.fs_frag) {
420 /*
421 * Since we make all the cylinder groups the same size, the
422 * last will only be small if there are a large number of
423 * cylinder groups. If we pull even a fragment from each
424 * of the other groups then the last CG will be overfull.
425 * So we just kill the last CG.
426 */
427 ncg--;
428 sblock.fs_size -= i;
429 }
430 sblock.fs_ncg = ncg;
431
432 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
433 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
434 if (Oflag <= 1) {
435 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
436 sblock.fs_old_nsect = sblock.fs_old_spc;
437 sblock.fs_old_npsect = sblock.fs_old_spc;
438 sblock.fs_old_ncyl = sblock.fs_ncg;
439 }
440
441 /*
442 * Cylinder group summary information for each cylinder is written
443 * into the first cylinder group.
444 * Write this fragment by fragment, but doing the first CG last
445 * (after we've taken stuff off for the structure itself and the
446 * root directory.
447 */
448 sblock.fs_csaddr = cgdmin(&sblock, 0);
449 sblock.fs_cssize =
450 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
451 if (512 % sizeof *fscs_0)
452 errx(1, "cylinder group summary doesn't fit in sectors");
453 fscs_0 = calloc(1, 2 * sblock.fs_fsize);
454 if (fscs_0 == NULL)
455 exit(39);
456 fs_csaddr = sblock.fs_csaddr;
457 fscs_next = fscs_0;
458 fscs_end = (void *)((char *)fscs_0 + 2 * sblock.fs_fsize);
459 fscs_reset = (void *)((char *)fscs_0 + sblock.fs_fsize);
460 /*
461 * fill in remaining fields of the super block
462 */
463 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
464 if (sblock.fs_sbsize > SBLOCKSIZE)
465 sblock.fs_sbsize = SBLOCKSIZE;
466 sblock.fs_minfree = minfree;
467 sblock.fs_maxcontig = maxcontig;
468 sblock.fs_maxbpg = maxbpg;
469 sblock.fs_optim = opt;
470 sblock.fs_cgrotor = 0;
471 sblock.fs_pendingblocks = 0;
472 sblock.fs_pendinginodes = 0;
473 sblock.fs_cstotal.cs_ndir = 0;
474 sblock.fs_cstotal.cs_nbfree = 0;
475 sblock.fs_cstotal.cs_nifree = 0;
476 sblock.fs_cstotal.cs_nffree = 0;
477 sblock.fs_fmod = 0;
478 sblock.fs_ronly = 0;
479 sblock.fs_state = 0;
480 sblock.fs_clean = FS_ISCLEAN;
481 sblock.fs_ronly = 0;
482 sblock.fs_id[0] = (long)tv.tv_sec; /* XXXfvdl huh? */
483 sblock.fs_id[1] = arc4random() & INT32_MAX;
484 sblock.fs_fsmnt[0] = '\0';
485 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
486 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
487 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
488 sblock.fs_cstotal.cs_nbfree =
489 fragstoblks(&sblock, sblock.fs_dsize) -
490 howmany(csfrags, sblock.fs_frag);
491 sblock.fs_cstotal.cs_nffree =
492 fragnum(&sblock, sblock.fs_size) +
493 (fragnum(&sblock, csfrags) > 0 ?
494 sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
495 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
496 sblock.fs_cstotal.cs_ndir = 0;
497 sblock.fs_dsize -= csfrags;
498 sblock.fs_time = tv.tv_sec;
499 if (Oflag <= 1) {
500 sblock.fs_old_time = tv.tv_sec;
501 sblock.fs_old_dsize = sblock.fs_dsize;
502 sblock.fs_old_csaddr = sblock.fs_csaddr;
503 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
504 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
505 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
506 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
507 }
508 /*
509 * Dump out summary information about file system.
510 */
511 if (!mfs) {
512 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
513 printf("%s: %.1fMB (%lld sectors) block size %d, "
514 "fragment size %d\n",
515 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
516 (long long)fsbtodb(&sblock, sblock.fs_size),
517 sblock.fs_bsize, sblock.fs_fsize);
518 printf("\tusing %d cylinder groups of %.2fMB, %d blks, "
519 "%d inodes.\n",
520 sblock.fs_ncg,
521 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
522 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
523 #undef B2MBFACTOR
524 }
525 /*
526 * Now determine how wide each column will be, and calculate how
527 * many columns will fit in a 80 char line.
528 */
529 printcolwidth = count_digits(
530 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
531 nprintcols = 80 / (printcolwidth + 2);
532
533 /*
534 * allocate space for superblock, cylinder group map, and
535 * two sets of inode blocks.
536 */
537 if (sblock.fs_bsize < SBLOCKSIZE)
538 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
539 else
540 iobufsize = 4 * sblock.fs_bsize;
541 if ((iobuf = malloc(iobufsize)) == 0) {
542 printf("Cannot allocate I/O buffer\n");
543 exit(38);
544 }
545 memset(iobuf, 0, iobufsize);
546
547 /*
548 * We now start writing to the filesystem
549 */
550
551 /*
552 * Validate the given file system size.
553 * Verify that its last block can actually be accessed.
554 * Convert to file system fragment sized units.
555 */
556 if (fssize <= 0) {
557 printf("preposterous size %lld\n", (long long)fssize);
558 exit(13);
559 }
560 wtfs(fssize - 1, sectorsize, iobuf);
561
562 /*
563 * Ensure there is nothing that looks like a filesystem
564 * superbock anywhere other than where ours will be.
565 * If fsck finds the wrong one all hell breaks loose!
566 */
567 for (i = 0; ; i++) {
568 static const int sblocklist[] = SBLOCKSEARCH;
569 int sblkoff = sblocklist[i];
570 int sz;
571 if (sblkoff == -1)
572 break;
573 /* Remove main superblock */
574 zap_old_sblock(sblkoff);
575 /* and all possible locations for the first alternate */
576 sblkoff += SBLOCKSIZE;
577 for (sz = SBLOCKSIZE; sz <= 0x10000; sz <<= 1)
578 zap_old_sblock(roundup(sblkoff, sz));
579 }
580
581 if (isappleufs) {
582 struct appleufslabel appleufs;
583 ffs_appleufs_set(&appleufs, appleufs_volname, tv.tv_sec);
584 wtfs(APPLEUFS_LABEL_OFFSET/sectorsize, APPLEUFS_LABEL_SIZE,
585 &appleufs);
586 }
587
588 /*
589 * Make a copy of the superblock into the buffer that we will be
590 * writing out in each cylinder group.
591 */
592 memcpy(iobuf, &sblock, sizeof sblock);
593 if (needswap)
594 ffs_sb_swap(&sblock, (struct fs *)iobuf);
595
596 if (!mfs)
597 printf("super-block backups (for fsck -b #) at:");
598 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
599 initcg(cylno, &tv);
600 if (mfs)
601 continue;
602 if (cylno % nprintcols == 0)
603 printf("\n");
604 printf(" %*lld,", printcolwidth,
605 (long long)fsbtodb(&sblock, cgsblock(&sblock, cylno)));
606 fflush(stdout);
607 }
608 if (!mfs)
609 printf("\n");
610 if (Nflag && !mfs)
611 exit(0);
612
613 /*
614 * Now construct the initial file system,
615 */
616 if (fsinit(&tv, mfsmode, mfsuid, mfsgid) == 0 && mfs)
617 errx(1, "Error making filesystem");
618 sblock.fs_time = tv.tv_sec;
619 if (Oflag <= 1) {
620 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
621 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
622 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
623 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
624 }
625 /*
626 * Write out the super-block and zeros until the first cg info
627 */
628 memset(iobuf, 0, iobufsize);
629 memcpy(iobuf, &sblock, sizeof sblock);
630 if (needswap)
631 ffs_sb_swap(&sblock, (struct fs *)iobuf);
632 wtfs(sblock.fs_sblockloc / sectorsize,
633 cgsblock(&sblock, 0) * sblock.fs_fsize - sblock.fs_sblockloc,
634 iobuf);
635
636 /* Write out first and last cylinder summary sectors */
637 if (needswap)
638 ffs_csum_swap(fscs_0, fscs_0, sblock.fs_fsize);
639 wtfs(fsbtodb(&sblock, sblock.fs_csaddr), sblock.fs_fsize, fscs_0);
640
641 if (fscs_next > fscs_reset) {
642 if (needswap)
643 ffs_csum_swap(fscs_reset, fscs_reset, sblock.fs_fsize);
644 fs_csaddr++;
645 wtfs(fsbtodb(&sblock, fs_csaddr), sblock.fs_fsize, fscs_reset);
646 }
647
648 /*
649 * Update information about this partion in pack
650 * label, to that it may be updated on disk.
651 */
652 if (isappleufs)
653 pp->p_fstype = FS_APPLEUFS;
654 else
655 pp->p_fstype = FS_BSDFFS;
656 pp->p_fsize = sblock.fs_fsize;
657 pp->p_frag = sblock.fs_frag;
658 pp->p_cpg = sblock.fs_fpg;
659 }
660
661 /*
662 * Initialize a cylinder group.
663 */
664 void
665 initcg(int cylno, const struct timeval *tv)
666 {
667 daddr_t cbase, dmax;
668 int32_t i, j, d, dlower, dupper, blkno;
669 struct ufs1_dinode *dp1;
670 struct ufs2_dinode *dp2;
671 int start;
672
673 /*
674 * Determine block bounds for cylinder group.
675 * Allow space for super block summary information in first
676 * cylinder group.
677 */
678 cbase = cgbase(&sblock, cylno);
679 dmax = cbase + sblock.fs_fpg;
680 if (dmax > sblock.fs_size)
681 dmax = sblock.fs_size;
682 dlower = cgsblock(&sblock, cylno) - cbase;
683 dupper = cgdmin(&sblock, cylno) - cbase;
684 if (cylno == 0) {
685 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
686 if (dupper >= cgstart(&sblock, cylno + 1)) {
687 printf("\rToo many cylinder groups to fit summary "
688 "information into first cylinder group\n");
689 exit(40);
690 }
691 }
692 memset(&acg, 0, sblock.fs_cgsize);
693 acg.cg_magic = CG_MAGIC;
694 acg.cg_cgx = cylno;
695 acg.cg_ndblk = dmax - cbase;
696 if (sblock.fs_contigsumsize > 0)
697 acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
698 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
699 if (Oflag == 2) {
700 acg.cg_time = tv->tv_sec;
701 acg.cg_niblk = sblock.fs_ipg;
702 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
703 sblock.fs_ipg : 2 * INOPB(&sblock);
704 acg.cg_iusedoff = start;
705 } else {
706 acg.cg_old_ncyl = sblock.fs_old_cpg;
707 acg.cg_old_time = tv->tv_sec;
708 acg.cg_old_niblk = sblock.fs_ipg;
709 acg.cg_old_btotoff = start;
710 acg.cg_old_boff = acg.cg_old_btotoff +
711 sblock.fs_old_cpg * sizeof(int32_t);
712 acg.cg_iusedoff = acg.cg_old_boff +
713 sblock.fs_old_cpg * sizeof(u_int16_t);
714 }
715 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
716 if (sblock.fs_contigsumsize <= 0) {
717 acg.cg_nextfreeoff = acg.cg_freeoff +
718 howmany(sblock.fs_fpg, CHAR_BIT);
719 } else {
720 acg.cg_clustersumoff = acg.cg_freeoff +
721 howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t);
722 if (isappleufs) {
723 /* Apple PR2216969 gives rationale for this change.
724 * I believe they were mistaken, but we need to
725 * duplicate it for compatibility. -- dbj (at) NetBSD.org
726 */
727 acg.cg_clustersumoff += sizeof(int32_t);
728 }
729 acg.cg_clustersumoff =
730 roundup(acg.cg_clustersumoff, sizeof(int32_t));
731 acg.cg_clusteroff = acg.cg_clustersumoff +
732 (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
733 acg.cg_nextfreeoff = acg.cg_clusteroff +
734 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
735 }
736 if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
737 printf("Panic: cylinder group too big\n");
738 exit(37);
739 }
740 acg.cg_cs.cs_nifree += sblock.fs_ipg;
741 if (cylno == 0)
742 for (i = 0; i < ROOTINO; i++) {
743 setbit(cg_inosused(&acg, 0), i);
744 acg.cg_cs.cs_nifree--;
745 }
746 if (cylno > 0) {
747 /*
748 * In cylno 0, beginning space is reserved
749 * for boot and super blocks.
750 */
751 for (d = 0, blkno = 0; d < dlower;) {
752 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
753 if (sblock.fs_contigsumsize > 0)
754 setbit(cg_clustersfree(&acg, 0), blkno);
755 acg.cg_cs.cs_nbfree++;
756 d += sblock.fs_frag;
757 blkno++;
758 }
759 }
760 if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
761 acg.cg_frsum[sblock.fs_frag - i]++;
762 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
763 setbit(cg_blksfree(&acg, 0), dupper);
764 acg.cg_cs.cs_nffree++;
765 }
766 }
767 for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
768 d + sblock.fs_frag <= acg.cg_ndblk; ) {
769 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
770 if (sblock.fs_contigsumsize > 0)
771 setbit(cg_clustersfree(&acg, 0), blkno);
772 acg.cg_cs.cs_nbfree++;
773 d += sblock.fs_frag;
774 blkno++;
775 }
776 if (d < acg.cg_ndblk) {
777 acg.cg_frsum[acg.cg_ndblk - d]++;
778 for (; d < acg.cg_ndblk; d++) {
779 setbit(cg_blksfree(&acg, 0), d);
780 acg.cg_cs.cs_nffree++;
781 }
782 }
783 if (sblock.fs_contigsumsize > 0) {
784 int32_t *sump = cg_clustersum(&acg, 0);
785 u_char *mapp = cg_clustersfree(&acg, 0);
786 int map = *mapp++;
787 int bit = 1;
788 int run = 0;
789
790 for (i = 0; i < acg.cg_nclusterblks; i++) {
791 if ((map & bit) != 0) {
792 run++;
793 } else if (run != 0) {
794 if (run > sblock.fs_contigsumsize)
795 run = sblock.fs_contigsumsize;
796 sump[run]++;
797 run = 0;
798 }
799 if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) {
800 bit <<= 1;
801 } else {
802 map = *mapp++;
803 bit = 1;
804 }
805 }
806 if (run != 0) {
807 if (run > sblock.fs_contigsumsize)
808 run = sblock.fs_contigsumsize;
809 sump[run]++;
810 }
811 }
812 *fscs_next++ = acg.cg_cs;
813 if (fscs_next == fscs_end) {
814 if (needswap)
815 ffs_csum_swap(fscs_reset, fscs_reset, sblock.fs_fsize);
816 fs_csaddr++;
817 wtfs(fsbtodb(&sblock, fs_csaddr), sblock.fs_fsize, fscs_reset);
818 fscs_next = fscs_reset;
819 memset(fscs_next, 0, sblock.fs_fsize);
820 }
821 /*
822 * Write out the duplicate super block, the cylinder group map
823 * and two blocks worth of inodes in a single write.
824 */
825 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
826 memcpy(&iobuf[start], &acg, sblock.fs_cgsize);
827 if (needswap)
828 ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock);
829 start += sblock.fs_bsize;
830 dp1 = (struct ufs1_dinode *)(&iobuf[start]);
831 dp2 = (struct ufs2_dinode *)(&iobuf[start]);
832 for (i = MIN(sblock.fs_ipg, 2) * INOPB(&sblock); i != 0; i--) {
833 if (sblock.fs_magic == FS_UFS1_MAGIC) {
834 /* No need to swap, it'll stay random */
835 dp1->di_gen = arc4random() & INT32_MAX;
836 dp1++;
837 } else {
838 dp2->di_gen = arc4random() & INT32_MAX;
839 dp2++;
840 }
841 }
842 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
843 /*
844 * For the old file system, we have to initialize all the inodes.
845 */
846 if (Oflag <= 1) {
847 for (i = 2 * sblock.fs_frag;
848 i < sblock.fs_ipg / INOPF(&sblock);
849 i += sblock.fs_frag) {
850 dp1 = (struct ufs1_dinode *)(&iobuf[start]);
851 for (j = 0; j < INOPB(&sblock); j++) {
852 dp1->di_gen = arc4random() & INT32_MAX;
853 dp1++;
854 }
855 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
856 sblock.fs_bsize, &iobuf[start]);
857 }
858 }
859 }
860
861 /*
862 * initialize the file system
863 */
864
865 #ifdef LOSTDIR
866 #define PREDEFDIR 3
867 #else
868 #define PREDEFDIR 2
869 #endif
870
871 struct direct root_dir[] = {
872 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
873 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
874 #ifdef LOSTDIR
875 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
876 #endif
877 };
878 struct odirect {
879 u_int32_t d_ino;
880 u_int16_t d_reclen;
881 u_int16_t d_namlen;
882 u_char d_name[MAXNAMLEN + 1];
883 } oroot_dir[] = {
884 { ROOTINO, sizeof(struct direct), 1, "." },
885 { ROOTINO, sizeof(struct direct), 2, ".." },
886 #ifdef LOSTDIR
887 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
888 #endif
889 };
890 #ifdef LOSTDIR
891 struct direct lost_found_dir[] = {
892 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
893 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
894 { 0, DIRBLKSIZ, 0, 0, 0 },
895 };
896 struct odirect olost_found_dir[] = {
897 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
898 { ROOTINO, sizeof(struct direct), 2, ".." },
899 { 0, DIRBLKSIZ, 0, 0 },
900 };
901 #endif
902 char buf[MAXBSIZE];
903 static void copy_dir(struct direct *, struct direct *);
904
905 int
906 fsinit(const struct timeval *tv, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
907 {
908 union dinode node;
909 #ifdef LOSTDIR
910 int i;
911 int dirblksiz = DIRBLKSIZ;
912 if (isappleufs)
913 dirblksiz = APPLEUFS_DIRBLKSIZ;
914 #endif
915
916 /*
917 * initialize the node
918 */
919
920 #ifdef LOSTDIR
921 /*
922 * create the lost+found directory
923 */
924 memset(&node, 0, sizeof(node));
925 if (Oflag == 0) {
926 (void)makedir((struct direct *)olost_found_dir, 2);
927 for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
928 copy_dir((struct direct*)&olost_found_dir[2],
929 (struct direct*)&buf[i]);
930 } else {
931 (void)makedir(lost_found_dir, 2);
932 for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
933 copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
934 }
935 if (sblock.fs_magic == FS_UFS1_MAGIC) {
936 node.dp1.di_atime = tv->tv_sec;
937 node.dp1.di_atimensec = tv->tv_usec * 1000;
938 node.dp1.di_mtime = tv->tv_sec;
939 node.dp1.di_mtimensec = tv->tv_usec * 1000;
940 node.dp1.di_ctime = tv->tv_sec;
941 node.dp1.di_ctimensec = tv->tv_usec * 1000;
942 node.dp1.di_mode = IFDIR | UMASK;
943 node.dp1.di_nlink = 2;
944 node.dp1.di_size = sblock.fs_bsize;
945 node.dp1.di_db[0] = alloc(node.dp1.di_size, node.dp1.di_mode);
946 if (node.dp1.di_db[0] == 0)
947 return (0);
948 node.dp1.di_blocks = btodb(fragroundup(&sblock,
949 node.dp1.di_size));
950 node.dp1.di_uid = geteuid();
951 node.dp1.di_gid = getegid();
952 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), node.dp1.di_size,
953 buf);
954 } else {
955 node.dp2.di_atime = tv->tv_sec;
956 node.dp2.di_atimensec = tv->tv_usec * 1000;
957 node.dp2.di_mtime = tv->tv_sec;
958 node.dp2.di_mtimensec = tv->tv_usec * 1000;
959 node.dp2.di_ctime = tv->tv_sec;
960 node.dp2.di_ctimensec = tv->tv_usec * 1000;
961 node.dp2.di_birthtime = tv->tv_sec;
962 node.dp2.di_birthnsec = tv->tv_usec * 1000;
963 node.dp2.di_mode = IFDIR | UMASK;
964 node.dp2.di_nlink = 2;
965 node.dp2.di_size = sblock.fs_bsize;
966 node.dp2.di_db[0] = alloc(node.dp2.di_size, node.dp2.di_mode);
967 if (node.dp2.di_db[0] == 0)
968 return (0);
969 node.dp2.di_blocks = btodb(fragroundup(&sblock,
970 node.dp2.di_size));
971 node.dp2.di_uid = geteuid();
972 node.dp2.di_gid = getegid();
973 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), node.dp2.di_size,
974 buf);
975 }
976 iput(&node, LOSTFOUNDINO);
977 #endif
978 /*
979 * create the root directory
980 */
981 memset(&node, 0, sizeof(node));
982 if (Oflag <= 1) {
983 if (mfs) {
984 node.dp1.di_mode = IFDIR | mfsmode;
985 node.dp1.di_uid = mfsuid;
986 node.dp1.di_gid = mfsgid;
987 } else {
988 node.dp1.di_mode = IFDIR | UMASK;
989 node.dp1.di_uid = geteuid();
990 node.dp1.di_gid = getegid();
991 }
992 node.dp1.di_nlink = PREDEFDIR;
993 if (Oflag == 0)
994 node.dp1.di_size = makedir((struct direct *)oroot_dir,
995 PREDEFDIR);
996 else
997 node.dp1.di_size = makedir(root_dir, PREDEFDIR);
998 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
999 if (node.dp1.di_db[0] == 0)
1000 return (0);
1001 node.dp1.di_blocks = btodb(fragroundup(&sblock,
1002 node.dp1.di_size));
1003 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, buf);
1004 } else {
1005 if (mfs) {
1006 node.dp2.di_mode = IFDIR | mfsmode;
1007 node.dp2.di_uid = mfsuid;
1008 node.dp2.di_gid = mfsgid;
1009 } else {
1010 node.dp2.di_mode = IFDIR | UMASK;
1011 node.dp2.di_uid = geteuid();
1012 node.dp2.di_gid = getegid();
1013 }
1014 node.dp2.di_atime = tv->tv_sec;
1015 node.dp2.di_atimensec = tv->tv_usec * 1000;
1016 node.dp2.di_mtime = tv->tv_sec;
1017 node.dp2.di_mtimensec = tv->tv_usec * 1000;
1018 node.dp2.di_ctime = tv->tv_sec;
1019 node.dp2.di_ctimensec = tv->tv_usec * 1000;
1020 node.dp2.di_birthtime = tv->tv_sec;
1021 node.dp2.di_birthnsec = tv->tv_usec * 1000;
1022 node.dp2.di_nlink = PREDEFDIR;
1023 node.dp2.di_size = makedir(root_dir, PREDEFDIR);
1024 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
1025 if (node.dp2.di_db[0] == 0)
1026 return (0);
1027 node.dp2.di_blocks = btodb(fragroundup(&sblock,
1028 node.dp2.di_size));
1029 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, buf);
1030 }
1031 iput(&node, ROOTINO);
1032 return (1);
1033 }
1034
1035 /*
1036 * construct a set of directory entries in "buf".
1037 * return size of directory.
1038 */
1039 int
1040 makedir(struct direct *protodir, int entries)
1041 {
1042 char *cp;
1043 int i, spcleft;
1044 int dirblksiz = DIRBLKSIZ;
1045 if (isappleufs)
1046 dirblksiz = APPLEUFS_DIRBLKSIZ;
1047
1048 memset(buf, 0, DIRBLKSIZ);
1049 spcleft = dirblksiz;
1050 for (cp = buf, i = 0; i < entries - 1; i++) {
1051 protodir[i].d_reclen = DIRSIZ(Oflag == 0, &protodir[i], 0);
1052 copy_dir(&protodir[i], (struct direct*)cp);
1053 cp += protodir[i].d_reclen;
1054 spcleft -= protodir[i].d_reclen;
1055 }
1056 protodir[i].d_reclen = spcleft;
1057 copy_dir(&protodir[i], (struct direct*)cp);
1058 return (dirblksiz);
1059 }
1060
1061 /*
1062 * allocate a block or frag
1063 */
1064 daddr_t
1065 alloc(int size, int mode)
1066 {
1067 int i, frag;
1068 daddr_t d, blkno;
1069
1070 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1071 /* fs -> host byte order */
1072 if (needswap)
1073 ffs_cg_swap(&acg, &acg, &sblock);
1074 if (acg.cg_magic != CG_MAGIC) {
1075 printf("cg 0: bad magic number\n");
1076 return (0);
1077 }
1078 if (acg.cg_cs.cs_nbfree == 0) {
1079 printf("first cylinder group ran out of space\n");
1080 return (0);
1081 }
1082 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
1083 if (isblock(&sblock, cg_blksfree(&acg, 0),
1084 d >> sblock.fs_fragshift))
1085 goto goth;
1086 printf("internal error: can't find block in cyl 0\n");
1087 return (0);
1088 goth:
1089 blkno = fragstoblks(&sblock, d);
1090 clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
1091 if (sblock.fs_contigsumsize > 0)
1092 clrbit(cg_clustersfree(&acg, 0), blkno);
1093 acg.cg_cs.cs_nbfree--;
1094 sblock.fs_cstotal.cs_nbfree--;
1095 fscs_0->cs_nbfree--;
1096 if (mode & IFDIR) {
1097 acg.cg_cs.cs_ndir++;
1098 sblock.fs_cstotal.cs_ndir++;
1099 fscs_0->cs_ndir++;
1100 }
1101 if (size != sblock.fs_bsize) {
1102 frag = howmany(size, sblock.fs_fsize);
1103 fscs_0->cs_nffree += sblock.fs_frag - frag;
1104 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1105 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1106 acg.cg_frsum[sblock.fs_frag - frag]++;
1107 for (i = frag; i < sblock.fs_frag; i++)
1108 setbit(cg_blksfree(&acg, 0), d + i);
1109 }
1110 /* host -> fs byte order */
1111 if (needswap)
1112 ffs_cg_swap(&acg, &acg, &sblock);
1113 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1114 return (d);
1115 }
1116
1117 /*
1118 * Allocate an inode on the disk
1119 */
1120 static void
1121 iput(union dinode *ip, ino_t ino)
1122 {
1123 daddr_t d;
1124 int c, i;
1125 struct ufs1_dinode *dp1;
1126 struct ufs2_dinode *dp2;
1127
1128 c = ino_to_cg(&sblock, ino);
1129 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1130 /* fs -> host byte order */
1131 if (needswap)
1132 ffs_cg_swap(&acg, &acg, &sblock);
1133 if (acg.cg_magic != CG_MAGIC) {
1134 printf("cg 0: bad magic number\n");
1135 exit(31);
1136 }
1137 acg.cg_cs.cs_nifree--;
1138 setbit(cg_inosused(&acg, 0), ino);
1139 /* host -> fs byte order */
1140 if (needswap)
1141 ffs_cg_swap(&acg, &acg, &sblock);
1142 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1143 sblock.fs_cstotal.cs_nifree--;
1144 fscs_0->cs_nifree--;
1145 if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1146 printf("fsinit: inode value out of range (%d).\n", ino);
1147 exit(32);
1148 }
1149 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1150 rdfs(d, sblock.fs_bsize, (char *)iobuf);
1151 if (sblock.fs_magic == FS_UFS1_MAGIC) {
1152 dp1 = (struct ufs1_dinode *)iobuf;
1153 dp1 += ino_to_fsbo(&sblock, ino);
1154 if (needswap) {
1155 ffs_dinode1_swap(&ip->dp1, dp1);
1156 /* ffs_dinode1_swap() doesn't swap blocks addrs */
1157 for (i=0; i<NDADDR + NIADDR; i++)
1158 dp1->di_db[i] = bswap32(ip->dp1.di_db[i]);
1159 } else
1160 *dp1 = ip->dp1;
1161 dp1->di_gen = arc4random() & INT32_MAX;
1162 } else {
1163 dp2 = (struct ufs2_dinode *)iobuf;
1164 dp2 += ino_to_fsbo(&sblock, ino);
1165 if (needswap) {
1166 ffs_dinode2_swap(&ip->dp2, dp2);
1167 for (i=0; i<NDADDR + NIADDR; i++)
1168 dp2->di_db[i] = bswap32(ip->dp2.di_db[i]);
1169 } else
1170 *dp2 = ip->dp2;
1171 dp2->di_gen = arc4random() & INT32_MAX;
1172 }
1173 wtfs(d, sblock.fs_bsize, iobuf);
1174 }
1175
1176 /*
1177 * read a block from the file system
1178 */
1179 void
1180 rdfs(daddr_t bno, int size, void *bf)
1181 {
1182 int n;
1183 off_t offset;
1184
1185 #ifdef MFS
1186 if (mfs) {
1187 memmove(bf, membase + bno * sectorsize, size);
1188 return;
1189 }
1190 #endif
1191 offset = bno;
1192 n = pread(fsi, bf, size, offset * sectorsize);
1193 if (n != size) {
1194 printf("rdfs: read error for sector %lld: %s\n",
1195 (long long)bno, strerror(errno));
1196 exit(34);
1197 }
1198 }
1199
1200 /*
1201 * write a block to the file system
1202 */
1203 void
1204 wtfs(daddr_t bno, int size, void *bf)
1205 {
1206 int n;
1207 off_t offset;
1208
1209 #ifdef MFS
1210 if (mfs) {
1211 memmove(membase + bno * sectorsize, bf, size);
1212 return;
1213 }
1214 #endif
1215 if (Nflag)
1216 return;
1217 offset = bno;
1218 n = pwrite(fso, bf, size, offset * sectorsize);
1219 if (n != size) {
1220 printf("wtfs: write error for sector %lld: %s\n",
1221 (long long)bno, strerror(errno));
1222 exit(36);
1223 }
1224 }
1225
1226 /*
1227 * check if a block is available
1228 */
1229 int
1230 isblock(struct fs *fs, unsigned char *cp, int h)
1231 {
1232 unsigned char mask;
1233
1234 switch (fs->fs_fragshift) {
1235 case 3:
1236 return (cp[h] == 0xff);
1237 case 2:
1238 mask = 0x0f << ((h & 0x1) << 2);
1239 return ((cp[h >> 1] & mask) == mask);
1240 case 1:
1241 mask = 0x03 << ((h & 0x3) << 1);
1242 return ((cp[h >> 2] & mask) == mask);
1243 case 0:
1244 mask = 0x01 << (h & 0x7);
1245 return ((cp[h >> 3] & mask) == mask);
1246 default:
1247 #ifdef STANDALONE
1248 printf("isblock bad fs_fragshift %d\n", fs->fs_fragshift);
1249 #else
1250 fprintf(stderr, "isblock bad fs_fragshift %d\n",
1251 fs->fs_fragshift);
1252 #endif
1253 return (0);
1254 }
1255 }
1256
1257 /*
1258 * take a block out of the map
1259 */
1260 void
1261 clrblock(struct fs *fs, unsigned char *cp, int h)
1262 {
1263 switch ((fs)->fs_fragshift) {
1264 case 3:
1265 cp[h] = 0;
1266 return;
1267 case 2:
1268 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1269 return;
1270 case 1:
1271 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1272 return;
1273 case 0:
1274 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1275 return;
1276 default:
1277 #ifdef STANDALONE
1278 printf("clrblock bad fs_fragshift %d\n", fs->fs_fragshift);
1279 #else
1280 fprintf(stderr, "clrblock bad fs_fragshift %d\n",
1281 fs->fs_fragshift);
1282 #endif
1283 return;
1284 }
1285 }
1286
1287 /*
1288 * put a block into the map
1289 */
1290 void
1291 setblock(struct fs *fs, unsigned char *cp, int h)
1292 {
1293 switch (fs->fs_fragshift) {
1294 case 3:
1295 cp[h] = 0xff;
1296 return;
1297 case 2:
1298 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1299 return;
1300 case 1:
1301 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1302 return;
1303 case 0:
1304 cp[h >> 3] |= (0x01 << (h & 0x7));
1305 return;
1306 default:
1307 #ifdef STANDALONE
1308 printf("setblock bad fs_frag %d\n", fs->fs_fragshift);
1309 #else
1310 fprintf(stderr, "setblock bad fs_fragshift %d\n",
1311 fs->fs_fragshift);
1312 #endif
1313 return;
1314 }
1315 }
1316
1317 /* copy a direntry to a buffer, in fs byte order */
1318 static void
1319 copy_dir(struct direct *dir, struct direct *dbuf)
1320 {
1321 memcpy(dbuf, dir, DIRSIZ(Oflag == 0, dir, 0));
1322 if (needswap) {
1323 dbuf->d_ino = bswap32(dir->d_ino);
1324 dbuf->d_reclen = bswap16(dir->d_reclen);
1325 if (Oflag == 0)
1326 ((struct odirect*)dbuf)->d_namlen =
1327 bswap16(((struct odirect*)dir)->d_namlen);
1328 }
1329 }
1330
1331 /* Determine how many digits are needed to print a given integer */
1332 static int
1333 count_digits(uint64_t num)
1334 {
1335 int ndig;
1336
1337 for (ndig = 1; num > 9; num /= 10, ndig++);
1338
1339 return (ndig);
1340 }
1341
1342 static int
1343 ilog2(int val)
1344 {
1345 u_int n;
1346
1347 for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1348 if (1 << n == val)
1349 return (n);
1350 errx(1, "ilog2: %d is not a power of 2\n", val);
1351 }
1352
1353 static void
1354 zap_old_sblock(int sblkoff)
1355 {
1356 static int cg0_data;
1357 uint32_t oldfs[SBLOCKSIZE / 4];
1358 static const struct fsm {
1359 uint32_t offset;
1360 uint32_t magic;
1361 uint32_t mask;
1362 } fs_magics[] = {
1363 {offsetof(struct fs, fs_magic)/4, FS_UFS1_MAGIC, ~0u},
1364 {offsetof(struct fs, fs_magic)/4, FS_UFS2_MAGIC, ~0u},
1365 {0, 0x70162, ~0u}, /* LFS_MAGIC */
1366 {14, 0xef53, 0xffff}, /* EXT2FS (little) */
1367 {14, 0xef530000, 0xffff0000}, /* EXT2FS (big) */
1368 {~0u},
1369 };
1370 const struct fsm *fsm;
1371
1372 if (cg0_data == 0)
1373 /* For FFSv1 this could include all the inodes. */
1374 cg0_data = cgsblock(&sblock, 0) * sblock.fs_fsize + iobufsize;
1375
1376 /* Ignore anything that is beyond our filesystem */
1377 if ((sblkoff + SBLOCKSIZE)/sectorsize >= fssize)
1378 return;
1379 /* Zero anything inside our filesystem... */
1380 if (sblkoff >= sblock.fs_sblockloc) {
1381 /* ...unless we will write that area anyway */
1382 if (sblkoff >= cg0_data)
1383 wtfs(sblkoff/sectorsize, sizeof sblock, iobuf);
1384 return;
1385 }
1386
1387 /* The sector might contain boot code, so we must validate it */
1388 rdfs(sblkoff/sectorsize, sizeof oldfs, &oldfs);
1389 for (fsm = fs_magics; ; fsm++) {
1390 uint32_t v;
1391 if (fsm->mask == 0)
1392 return;
1393 v = oldfs[fsm->offset];
1394 if ((v & fsm->mask) == fsm->magic ||
1395 (bswap32(v) & fsm->mask) == fsm->magic)
1396 break;
1397 }
1398
1399 /* Just zap the magic number */
1400 oldfs[fsm->offset] = 0;
1401 wtfs(sblkoff/sectorsize, sizeof oldfs, &oldfs);
1402 }
1403
1404
1405 #ifdef MFS
1406 /*
1407 * XXX!
1408 * Attempt to guess how much more space is available for process data. The
1409 * heuristic we use is
1410 *
1411 * max_data_limit - (sbrk(0) - etext) - 128kB
1412 *
1413 * etext approximates that start address of the data segment, and the 128kB
1414 * allows some slop for both segment gap between text and data, and for other
1415 * (libc) malloc usage.
1416 */
1417 static void
1418 calc_memfree(void)
1419 {
1420 extern char etext;
1421 struct rlimit rlp;
1422 u_long base;
1423
1424 base = (u_long)sbrk(0) - (u_long)&etext;
1425 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1426 perror("getrlimit");
1427 rlp.rlim_cur = rlp.rlim_max;
1428 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1429 perror("setrlimit");
1430 memleft = rlp.rlim_max - base - (128 * 1024);
1431 }
1432
1433 /*
1434 * Internal version of malloc that trims the requested size if not enough
1435 * memory is available.
1436 */
1437 static void *
1438 mkfs_malloc(size_t size)
1439 {
1440 u_long pgsz;
1441
1442 if (size == 0)
1443 return (NULL);
1444 if (memleft == 0)
1445 calc_memfree();
1446
1447 pgsz = getpagesize() - 1;
1448 size = (size + pgsz) &~ pgsz;
1449 if (size > memleft)
1450 size = memleft;
1451 memleft -= size;
1452 return (mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
1453 -1, 0));
1454 }
1455 #endif /* MFS */
1456