mkfs.c revision 1.84 1 /* $NetBSD: mkfs.c,v 1.84 2003/10/29 08:14:13 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1980, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2002 Networks Associates Technology, Inc.
34 * All rights reserved.
35 *
36 * This software was developed for the FreeBSD Project by Marshall
37 * Kirk McKusick and Network Associates Laboratories, the Security
38 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 * research program
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 */
70
71 #include <sys/cdefs.h>
72 #ifndef lint
73 #if 0
74 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
75 #else
76 __RCSID("$NetBSD: mkfs.c,v 1.84 2003/10/29 08:14:13 lukem Exp $");
77 #endif
78 #endif /* not lint */
79
80 #include <sys/param.h>
81 #include <sys/mman.h>
82 #include <sys/time.h>
83 #include <sys/resource.h>
84 #include <ufs/ufs/dinode.h>
85 #include <ufs/ufs/dir.h>
86 #include <ufs/ufs/ufs_bswap.h>
87 #include <ufs/ffs/fs.h>
88 #include <ufs/ffs/ffs_extern.h>
89 #include <sys/disklabel.h>
90
91 #include <err.h>
92 #include <errno.h>
93 #include <string.h>
94 #include <unistd.h>
95 #include <stdlib.h>
96 #include <stddef.h>
97
98 #ifndef STANDALONE
99 #include <stdio.h>
100 #endif
101
102 #include "extern.h"
103
104 union dinode {
105 struct ufs1_dinode dp1;
106 struct ufs2_dinode dp2;
107 };
108
109 static void initcg(int, const struct timeval *);
110 static int fsinit(const struct timeval *, mode_t, uid_t, gid_t);
111 static int makedir(struct direct *, int);
112 static daddr_t alloc(int, int);
113 static void iput(union dinode *, ino_t);
114 static void rdfs(daddr_t, int, void *);
115 static void wtfs(daddr_t, int, void *);
116 static int isblock(struct fs *, unsigned char *, int);
117 static void clrblock(struct fs *, unsigned char *, int);
118 static void setblock(struct fs *, unsigned char *, int);
119 static int ilog2(int);
120 static void zap_old_sblock(int);
121 #ifdef MFS
122 static void calc_memfree(void);
123 static void *mkfs_malloc(size_t size);
124 #endif
125
126 static int count_digits(uint64_t);
127
128 /*
129 * make file system for cylinder-group style file systems
130 */
131 #define UMASK 0755
132 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
133
134 union {
135 struct fs fs;
136 char pad[SBLOCKSIZE];
137 } fsun;
138 #define sblock fsun.fs
139
140 struct csum *fscs_0; /* first block of cylinder summaries */
141 struct csum *fscs_next; /* place for next summary */
142 struct csum *fscs_end; /* end of summary buffer */
143 struct csum *fscs_reset; /* place for next summary after write */
144 uint fs_csaddr; /* fragment number to write to */
145
146 union {
147 struct cg cg;
148 char pad[MAXBSIZE];
149 } cgun;
150 #define acg cgun.cg
151
152 #define DIP(dp, field) \
153 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \
154 (dp)->dp1.di_##field : (dp)->dp2.di_##field)
155
156 char *iobuf;
157 int iobufsize;
158
159 int fsi, fso;
160
161 void
162 mkfs(struct partition *pp, const char *fsys, int fi, int fo,
163 mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
164 {
165 uint fragsperinodeblk, ncg;
166 uint cgzero;
167 uint64_t inodeblks, cgall;
168 int32_t cylno, i, csfrags;
169 struct timeval tv;
170 long long sizepb;
171 int nprintcols, printcolwidth;
172
173 #ifndef STANDALONE
174 gettimeofday(&tv, NULL);
175 #endif
176 #ifdef MFS
177 if (mfs) {
178 calc_memfree();
179 if (fssize * sectorsize > memleft)
180 fssize = memleft / sectorsize;
181 if ((membase = mkfs_malloc(fssize * sectorsize)) == 0)
182 exit(12);
183 }
184 #endif
185 fsi = fi;
186 fso = fo;
187 if (Oflag == 0) {
188 sblock.fs_old_inodefmt = FS_42INODEFMT;
189 sblock.fs_maxsymlinklen = 0;
190 sblock.fs_old_flags = 0;
191 } else {
192 sblock.fs_old_inodefmt = FS_44INODEFMT;
193 sblock.fs_maxsymlinklen = (Oflag == 1 ? MAXSYMLINKLEN_UFS1 :
194 MAXSYMLINKLEN_UFS2);
195 sblock.fs_old_flags = FS_FLAGS_UPDATED;
196 sblock.fs_flags = 0;
197 }
198
199 /*
200 * collect and verify the filesystem density info
201 */
202 sblock.fs_avgfilesize = avgfilesize;
203 sblock.fs_avgfpdir = avgfpdir;
204 if (sblock.fs_avgfilesize <= 0) {
205 printf("illegal expected average file size %d\n",
206 sblock.fs_avgfilesize);
207 exit(14);
208 }
209 if (sblock.fs_avgfpdir <= 0) {
210 printf("illegal expected number of files per directory %d\n",
211 sblock.fs_avgfpdir);
212 exit(15);
213 }
214 /*
215 * collect and verify the block and fragment sizes
216 */
217 sblock.fs_bsize = bsize;
218 sblock.fs_fsize = fsize;
219 if (!POWEROF2(sblock.fs_bsize)) {
220 printf("block size must be a power of 2, not %d\n",
221 sblock.fs_bsize);
222 exit(16);
223 }
224 if (!POWEROF2(sblock.fs_fsize)) {
225 printf("fragment size must be a power of 2, not %d\n",
226 sblock.fs_fsize);
227 exit(17);
228 }
229 if (sblock.fs_fsize < sectorsize) {
230 printf("fragment size %d is too small, minimum is %d\n",
231 sblock.fs_fsize, sectorsize);
232 exit(18);
233 }
234 if (sblock.fs_bsize < MINBSIZE) {
235 printf("block size %d is too small, minimum is %d\n",
236 sblock.fs_bsize, MINBSIZE);
237 exit(19);
238 }
239 if (sblock.fs_bsize > MAXBSIZE) {
240 printf("block size %d is too large, maximum is %d\n",
241 sblock.fs_bsize, MAXBSIZE);
242 exit(19);
243 }
244 if (sblock.fs_bsize < sblock.fs_fsize) {
245 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
246 sblock.fs_bsize, sblock.fs_fsize);
247 exit(20);
248 }
249
250 if (maxbsize < bsize || !POWEROF2(maxbsize)) {
251 sblock.fs_maxbsize = sblock.fs_bsize;
252 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
253 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
254 } else {
255 sblock.fs_maxbsize = maxbsize;
256 }
257 sblock.fs_maxcontig = maxcontig;
258 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
259 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
260 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
261 }
262 if (sblock.fs_maxcontig > 1)
263 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
264
265 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
266 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
267 sblock.fs_qbmask = ~sblock.fs_bmask;
268 sblock.fs_qfmask = ~sblock.fs_fmask;
269 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
270 sblock.fs_bshift++;
271 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
272 sblock.fs_fshift++;
273 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
274 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
275 sblock.fs_fragshift++;
276 if (sblock.fs_frag > MAXFRAG) {
277 printf("fragment size %d is too small, "
278 "minimum with block size %d is %d\n",
279 sblock.fs_fsize, sblock.fs_bsize,
280 sblock.fs_bsize / MAXFRAG);
281 exit(21);
282 }
283 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
284 sblock.fs_size = dbtofsb(&sblock, fssize);
285 if (Oflag <= 1) {
286 if (sblock.fs_size >= 1ull << 31) {
287 printf("Too many fragments (0x%" PRIx64
288 ") for a UFS1 filesystem\n", sblock.fs_size);
289 exit(22);
290 }
291 sblock.fs_magic = FS_UFS1_MAGIC;
292 sblock.fs_sblockloc = SBLOCK_UFS1;
293 sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t);
294 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
295 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
296 sizeof (int32_t));
297 sblock.fs_old_inodefmt = FS_44INODEFMT;
298 sblock.fs_old_cgoffset = 0;
299 sblock.fs_old_cgmask = 0xffffffff;
300 sblock.fs_old_size = sblock.fs_size;
301 sblock.fs_old_rotdelay = 0;
302 sblock.fs_old_rps = 60;
303 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
304 sblock.fs_old_cpg = 1;
305 sblock.fs_old_interleave = 1;
306 sblock.fs_old_trackskew = 0;
307 sblock.fs_old_cpc = 0;
308 sblock.fs_old_postblformat = FS_DYNAMICPOSTBLFMT;
309 sblock.fs_old_nrpos = 1;
310 } else {
311 sblock.fs_magic = FS_UFS2_MAGIC;
312 sblock.fs_sblockloc = SBLOCK_UFS2;
313 sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t);
314 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
315 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
316 sizeof (int64_t));
317 }
318
319 sblock.fs_sblkno =
320 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
321 sblock.fs_frag);
322 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
323 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag));
324 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
325 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
326 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
327 sizepb *= NINDIR(&sblock);
328 sblock.fs_maxfilesize += sizepb;
329 }
330
331 /*
332 * Calculate the number of blocks to put into each cylinder group.
333 *
334 * The cylinder group size is limited because the data structure
335 * must fit into a single block.
336 * We try to have as few cylinder groups as possible, with a proviso
337 * that we create at least MINCYLGRPS (==4) except for small
338 * filesystems.
339 *
340 * This algorithm works out how many blocks of inodes would be
341 * needed to fill the entire volume at the specified density.
342 * It then looks at how big the 'cylinder block' would have to
343 * be and, assuming that it is linearly related to the number
344 * of inodes and blocks how many cylinder groups are needed to
345 * keep the cylinder block below the filesystem block size.
346 *
347 * The cylinder groups are then all created with the average size.
348 *
349 * Space taken by the red tape on cylinder groups other than the
350 * first is ignored.
351 */
352
353 /* There must be space for 1 inode block and 2 data blocks */
354 if (sblock.fs_size < sblock.fs_iblkno + 3 * sblock.fs_frag) {
355 printf("Filesystem size %lld < minimum size of %d\n",
356 (long long)sblock.fs_size, sblock.fs_iblkno + 3 * sblock.fs_frag);
357 exit(23);
358 }
359 if (num_inodes != 0)
360 inodeblks = howmany(num_inodes, INOPB(&sblock));
361 else {
362 /*
363 * Calculate 'per inode block' so we can allocate less than
364 * 1 fragment per inode - useful for /dev.
365 */
366 fragsperinodeblk = MAX(numfrags(&sblock,
367 density * INOPB(&sblock)), 1);
368 inodeblks = (sblock.fs_size - sblock.fs_iblkno) /
369 (sblock.fs_frag + fragsperinodeblk);
370 }
371 if (inodeblks == 0)
372 inodeblks = 1;
373 /* Ensure that there are at least 2 data blocks (or we fail below) */
374 if (inodeblks > (sblock.fs_size - sblock.fs_iblkno)/sblock.fs_frag - 2)
375 inodeblks = (sblock.fs_size-sblock.fs_iblkno)/sblock.fs_frag-2;
376 /* Even UFS2 limits number of inodes to 2^31 (fs_ipg is int32_t) */
377 if (inodeblks * INOPB(&sblock) >= 1ull << 31)
378 inodeblks = ((1ull << 31) - NBBY) / INOPB(&sblock);
379 /*
380 * See what would happen if we tried to use 1 cylinder group.
381 * Assume space linear, so work out number of cylinder groups needed.
382 * Subtract one from the allowed size to compensate for rounding
383 * a number of bits up to a complete byte.
384 */
385 cgzero = CGSIZE_IF(&sblock, 0, 0);
386 cgall = CGSIZE_IF(&sblock, inodeblks * INOPB(&sblock), sblock.fs_size);
387 ncg = howmany(cgall - cgzero, sblock.fs_bsize - cgzero - 1);
388 if (ncg < MINCYLGRPS) {
389 /*
390 * We would like to allocate MINCLYGRPS cylinder groups,
391 * but for small file sytems (especially ones with a lot
392 * of inodes) this is not desirable (or possible).
393 */
394 i = sblock.fs_size / 2 / (sblock.fs_iblkno +
395 inodeblks * sblock.fs_frag);
396 if (i > ncg)
397 ncg = i;
398 if (ncg > MINCYLGRPS)
399 ncg = MINCYLGRPS;
400 if (ncg > inodeblks)
401 ncg = inodeblks;
402 }
403 /*
404 * Put an equal number of blocks in each cylinder group.
405 * Round up so we don't have more fragments in the last CG than
406 * the earlier ones (does that matter?), but kill a block if the
407 * CGSIZE becomes too big (only happens if there are a lot of CGs).
408 */
409 sblock.fs_fpg = roundup(howmany(sblock.fs_size, ncg), sblock.fs_frag);
410 i = CGSIZE_IF(&sblock, inodeblks * INOPB(&sblock) / ncg, sblock.fs_fpg);
411 if (i > sblock.fs_bsize)
412 sblock.fs_fpg -= (i - sblock.fs_bsize) * NBBY;
413 /* ... and recalculate how many cylinder groups we now need */
414 ncg = howmany(sblock.fs_size, sblock.fs_fpg);
415 inodeblks /= ncg;
416 if (inodeblks == 0)
417 inodeblks = 1;
418 sblock.fs_ipg = inodeblks * INOPB(&sblock);
419 /* Sanity check on our sums... */
420 if (CGSIZE(&sblock) > sblock.fs_bsize) {
421 printf("CGSIZE miscalculated %d > %d\n",
422 (int)CGSIZE(&sblock), sblock.fs_bsize);
423 exit(24);
424 }
425 /* Check that the last cylinder group has enough space for the inodes */
426 i = sblock.fs_size - sblock.fs_fpg * (ncg - 1ull);
427 if (i < sblock.fs_iblkno + inodeblks * sblock.fs_frag) {
428 /*
429 * Since we make all the cylinder groups the same size, the
430 * last will only be small if there are a large number of
431 * cylinder groups. If we pull even a fragment from each
432 * of the other groups then the last CG will be overfull.
433 * So we just kill the last CG.
434 */
435 ncg--;
436 sblock.fs_size -= i;
437 }
438 sblock.fs_ncg = ncg;
439
440 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
441 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
442 if (Oflag <= 1) {
443 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
444 sblock.fs_old_nsect = sblock.fs_old_spc;
445 sblock.fs_old_npsect = sblock.fs_old_spc;
446 sblock.fs_old_ncyl = sblock.fs_ncg;
447 }
448
449 /*
450 * Cylinder group summary information for each cylinder is written
451 * into the first cylinder group.
452 * Write this fragment by fragment, but doing the first CG last
453 * (after we've taken stuff off for the structure itself and the
454 * root directory.
455 */
456 sblock.fs_csaddr = cgdmin(&sblock, 0);
457 sblock.fs_cssize =
458 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
459 if (512 % sizeof *fscs_0)
460 errx(1, "cylinder group summary doesn't fit in sectors");
461 fscs_0 = calloc(1, 2 * sblock.fs_fsize);
462 if (fscs_0 == NULL)
463 exit(39);
464 fs_csaddr = sblock.fs_csaddr;
465 fscs_next = fscs_0;
466 fscs_end = (void *)((char *)fscs_0 + 2 * sblock.fs_fsize);
467 fscs_reset = (void *)((char *)fscs_0 + sblock.fs_fsize);
468 /*
469 * fill in remaining fields of the super block
470 */
471 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
472 if (sblock.fs_sbsize > SBLOCKSIZE)
473 sblock.fs_sbsize = SBLOCKSIZE;
474 sblock.fs_minfree = minfree;
475 sblock.fs_maxcontig = maxcontig;
476 sblock.fs_maxbpg = maxbpg;
477 sblock.fs_optim = opt;
478 sblock.fs_cgrotor = 0;
479 sblock.fs_pendingblocks = 0;
480 sblock.fs_pendinginodes = 0;
481 sblock.fs_cstotal.cs_ndir = 0;
482 sblock.fs_cstotal.cs_nbfree = 0;
483 sblock.fs_cstotal.cs_nifree = 0;
484 sblock.fs_cstotal.cs_nffree = 0;
485 sblock.fs_fmod = 0;
486 sblock.fs_ronly = 0;
487 sblock.fs_state = 0;
488 sblock.fs_clean = FS_ISCLEAN;
489 sblock.fs_ronly = 0;
490 sblock.fs_id[0] = (long)tv.tv_sec; /* XXXfvdl huh? */
491 sblock.fs_id[1] = arc4random() & INT32_MAX;
492 sblock.fs_fsmnt[0] = '\0';
493 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
494 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
495 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
496 sblock.fs_cstotal.cs_nbfree =
497 fragstoblks(&sblock, sblock.fs_dsize) -
498 howmany(csfrags, sblock.fs_frag);
499 sblock.fs_cstotal.cs_nffree =
500 fragnum(&sblock, sblock.fs_size) +
501 (fragnum(&sblock, csfrags) > 0 ?
502 sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
503 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
504 sblock.fs_cstotal.cs_ndir = 0;
505 sblock.fs_dsize -= csfrags;
506 sblock.fs_time = tv.tv_sec;
507 if (Oflag <= 1) {
508 sblock.fs_old_time = tv.tv_sec;
509 sblock.fs_old_dsize = sblock.fs_dsize;
510 sblock.fs_old_csaddr = sblock.fs_csaddr;
511 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
512 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
513 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
514 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
515 }
516 /*
517 * Dump out summary information about file system.
518 */
519 if (!mfs) {
520 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
521 printf("%s: %.1fMB (%lld sectors) block size %d, "
522 "fragment size %d\n",
523 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
524 (long long)fsbtodb(&sblock, sblock.fs_size),
525 sblock.fs_bsize, sblock.fs_fsize);
526 printf("\tusing %d cylinder groups of %.2fMB, %d blks, "
527 "%d inodes.\n",
528 sblock.fs_ncg,
529 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
530 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
531 #undef B2MBFACTOR
532 }
533 /*
534 * Now determine how wide each column will be, and calculate how
535 * many columns will fit in a 80 char line.
536 */
537 printcolwidth = count_digits(
538 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
539 nprintcols = 80 / (printcolwidth + 2);
540
541 /*
542 * allocate space for superblock, cylinder group map, and
543 * two sets of inode blocks.
544 */
545 if (sblock.fs_bsize < SBLOCKSIZE)
546 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
547 else
548 iobufsize = 4 * sblock.fs_bsize;
549 if ((iobuf = malloc(iobufsize)) == 0) {
550 printf("Cannot allocate I/O buffer\n");
551 exit(38);
552 }
553 memset(iobuf, 0, iobufsize);
554
555 /*
556 * We now start writing to the filesystem
557 */
558
559 /*
560 * Validate the given file system size.
561 * Verify that its last block can actually be accessed.
562 * Convert to file system fragment sized units.
563 */
564 if (fssize <= 0) {
565 printf("preposterous size %lld\n", (long long)fssize);
566 exit(13);
567 }
568 wtfs(fssize - 1, sectorsize, iobuf);
569
570 /*
571 * Ensure there is nothing that looks like a filesystem
572 * superbock anywhere other than where ours will be.
573 * If fsck finds the wrong one all hell breaks loose!
574 */
575 for (i = 0; ; i++) {
576 static const int sblocklist[] = SBLOCKSEARCH;
577 int sblkoff = sblocklist[i];
578 int sz;
579 if (sblkoff == -1)
580 break;
581 /* Remove main superblock */
582 zap_old_sblock(sblkoff);
583 /* and all possible locations for the first alternate */
584 sblkoff += SBLOCKSIZE;
585 for (sz = SBLOCKSIZE; sz <= 0x10000; sz <<= 1)
586 zap_old_sblock(roundup(sblkoff, sz));
587 }
588
589 if (isappleufs) {
590 struct appleufslabel appleufs;
591 ffs_appleufs_set(&appleufs, appleufs_volname, tv.tv_sec);
592 wtfs(APPLEUFS_LABEL_OFFSET/sectorsize, APPLEUFS_LABEL_SIZE,
593 &appleufs);
594 }
595
596 /*
597 * Make a copy of the superblock into the buffer that we will be
598 * writing out in each cylinder group.
599 */
600 memcpy(iobuf, &sblock, sizeof sblock);
601 if (needswap)
602 ffs_sb_swap(&sblock, (struct fs *)iobuf);
603
604 if (!mfs)
605 printf("super-block backups (for fsck -b #) at:");
606 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
607 initcg(cylno, &tv);
608 if (mfs)
609 continue;
610 if (cylno % nprintcols == 0)
611 printf("\n");
612 printf(" %*lld,", printcolwidth,
613 (long long)fsbtodb(&sblock, cgsblock(&sblock, cylno)));
614 fflush(stdout);
615 }
616 if (!mfs)
617 printf("\n");
618 if (Nflag && !mfs)
619 exit(0);
620
621 /*
622 * Now construct the initial file system,
623 */
624 if (fsinit(&tv, mfsmode, mfsuid, mfsgid) == 0 && mfs)
625 errx(1, "Error making filesystem");
626 sblock.fs_time = tv.tv_sec;
627 if (Oflag <= 1) {
628 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
629 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
630 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
631 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
632 }
633 /*
634 * Write out the super-block and zeros until the first cg info
635 */
636 memset(iobuf, 0, iobufsize);
637 memcpy(iobuf, &sblock, sizeof sblock);
638 if (needswap)
639 ffs_sb_swap(&sblock, (struct fs *)iobuf);
640 wtfs(sblock.fs_sblockloc / sectorsize,
641 cgsblock(&sblock, 0) * sblock.fs_fsize - sblock.fs_sblockloc,
642 iobuf);
643
644 /* Write out first and last cylinder summary sectors */
645 if (needswap)
646 ffs_csum_swap(fscs_0, fscs_0, sblock.fs_fsize);
647 wtfs(fsbtodb(&sblock, sblock.fs_csaddr), sblock.fs_fsize, fscs_0);
648
649 if (fscs_next > fscs_reset) {
650 if (needswap)
651 ffs_csum_swap(fscs_reset, fscs_reset, sblock.fs_fsize);
652 fs_csaddr++;
653 wtfs(fsbtodb(&sblock, fs_csaddr), sblock.fs_fsize, fscs_reset);
654 }
655
656 /*
657 * Update information about this partion in pack
658 * label, to that it may be updated on disk.
659 */
660 if (pp == NULL)
661 return;
662 if (isappleufs)
663 pp->p_fstype = FS_APPLEUFS;
664 else
665 pp->p_fstype = FS_BSDFFS;
666 pp->p_fsize = sblock.fs_fsize;
667 pp->p_frag = sblock.fs_frag;
668 pp->p_cpg = sblock.fs_fpg;
669 }
670
671 /*
672 * Initialize a cylinder group.
673 */
674 void
675 initcg(int cylno, const struct timeval *tv)
676 {
677 daddr_t cbase, dmax;
678 int32_t i, j, d, dlower, dupper, blkno;
679 struct ufs1_dinode *dp1;
680 struct ufs2_dinode *dp2;
681 int start;
682
683 /*
684 * Determine block bounds for cylinder group.
685 * Allow space for super block summary information in first
686 * cylinder group.
687 */
688 cbase = cgbase(&sblock, cylno);
689 dmax = cbase + sblock.fs_fpg;
690 if (dmax > sblock.fs_size)
691 dmax = sblock.fs_size;
692 dlower = cgsblock(&sblock, cylno) - cbase;
693 dupper = cgdmin(&sblock, cylno) - cbase;
694 if (cylno == 0) {
695 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
696 if (dupper >= cgstart(&sblock, cylno + 1)) {
697 printf("\rToo many cylinder groups to fit summary "
698 "information into first cylinder group\n");
699 exit(40);
700 }
701 }
702 memset(&acg, 0, sblock.fs_cgsize);
703 acg.cg_magic = CG_MAGIC;
704 acg.cg_cgx = cylno;
705 acg.cg_ndblk = dmax - cbase;
706 if (sblock.fs_contigsumsize > 0)
707 acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
708 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
709 if (Oflag == 2) {
710 acg.cg_time = tv->tv_sec;
711 acg.cg_niblk = sblock.fs_ipg;
712 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
713 sblock.fs_ipg : 2 * INOPB(&sblock);
714 acg.cg_iusedoff = start;
715 } else {
716 acg.cg_old_ncyl = sblock.fs_old_cpg;
717 acg.cg_old_time = tv->tv_sec;
718 acg.cg_old_niblk = sblock.fs_ipg;
719 acg.cg_old_btotoff = start;
720 acg.cg_old_boff = acg.cg_old_btotoff +
721 sblock.fs_old_cpg * sizeof(int32_t);
722 acg.cg_iusedoff = acg.cg_old_boff +
723 sblock.fs_old_cpg * sizeof(u_int16_t);
724 }
725 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
726 if (sblock.fs_contigsumsize <= 0) {
727 acg.cg_nextfreeoff = acg.cg_freeoff +
728 howmany(sblock.fs_fpg, CHAR_BIT);
729 } else {
730 acg.cg_clustersumoff = acg.cg_freeoff +
731 howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t);
732 if (isappleufs) {
733 /* Apple PR2216969 gives rationale for this change.
734 * I believe they were mistaken, but we need to
735 * duplicate it for compatibility. -- dbj (at) NetBSD.org
736 */
737 acg.cg_clustersumoff += sizeof(int32_t);
738 }
739 acg.cg_clustersumoff =
740 roundup(acg.cg_clustersumoff, sizeof(int32_t));
741 acg.cg_clusteroff = acg.cg_clustersumoff +
742 (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
743 acg.cg_nextfreeoff = acg.cg_clusteroff +
744 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
745 }
746 if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
747 printf("Panic: cylinder group too big\n");
748 exit(37);
749 }
750 acg.cg_cs.cs_nifree += sblock.fs_ipg;
751 if (cylno == 0)
752 for (i = 0; i < ROOTINO; i++) {
753 setbit(cg_inosused(&acg, 0), i);
754 acg.cg_cs.cs_nifree--;
755 }
756 if (cylno > 0) {
757 /*
758 * In cylno 0, beginning space is reserved
759 * for boot and super blocks.
760 */
761 for (d = 0, blkno = 0; d < dlower;) {
762 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
763 if (sblock.fs_contigsumsize > 0)
764 setbit(cg_clustersfree(&acg, 0), blkno);
765 acg.cg_cs.cs_nbfree++;
766 d += sblock.fs_frag;
767 blkno++;
768 }
769 }
770 if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
771 acg.cg_frsum[sblock.fs_frag - i]++;
772 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
773 setbit(cg_blksfree(&acg, 0), dupper);
774 acg.cg_cs.cs_nffree++;
775 }
776 }
777 for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
778 d + sblock.fs_frag <= acg.cg_ndblk; ) {
779 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
780 if (sblock.fs_contigsumsize > 0)
781 setbit(cg_clustersfree(&acg, 0), blkno);
782 acg.cg_cs.cs_nbfree++;
783 d += sblock.fs_frag;
784 blkno++;
785 }
786 if (d < acg.cg_ndblk) {
787 acg.cg_frsum[acg.cg_ndblk - d]++;
788 for (; d < acg.cg_ndblk; d++) {
789 setbit(cg_blksfree(&acg, 0), d);
790 acg.cg_cs.cs_nffree++;
791 }
792 }
793 if (sblock.fs_contigsumsize > 0) {
794 int32_t *sump = cg_clustersum(&acg, 0);
795 u_char *mapp = cg_clustersfree(&acg, 0);
796 int map = *mapp++;
797 int bit = 1;
798 int run = 0;
799
800 for (i = 0; i < acg.cg_nclusterblks; i++) {
801 if ((map & bit) != 0) {
802 run++;
803 } else if (run != 0) {
804 if (run > sblock.fs_contigsumsize)
805 run = sblock.fs_contigsumsize;
806 sump[run]++;
807 run = 0;
808 }
809 if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) {
810 bit <<= 1;
811 } else {
812 map = *mapp++;
813 bit = 1;
814 }
815 }
816 if (run != 0) {
817 if (run > sblock.fs_contigsumsize)
818 run = sblock.fs_contigsumsize;
819 sump[run]++;
820 }
821 }
822 *fscs_next++ = acg.cg_cs;
823 if (fscs_next == fscs_end) {
824 if (needswap)
825 ffs_csum_swap(fscs_reset, fscs_reset, sblock.fs_fsize);
826 fs_csaddr++;
827 wtfs(fsbtodb(&sblock, fs_csaddr), sblock.fs_fsize, fscs_reset);
828 fscs_next = fscs_reset;
829 memset(fscs_next, 0, sblock.fs_fsize);
830 }
831 /*
832 * Write out the duplicate super block, the cylinder group map
833 * and two blocks worth of inodes in a single write.
834 */
835 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
836 memcpy(&iobuf[start], &acg, sblock.fs_cgsize);
837 if (needswap)
838 ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock);
839 start += sblock.fs_bsize;
840 dp1 = (struct ufs1_dinode *)(&iobuf[start]);
841 dp2 = (struct ufs2_dinode *)(&iobuf[start]);
842 for (i = MIN(sblock.fs_ipg, 2) * INOPB(&sblock); i != 0; i--) {
843 if (sblock.fs_magic == FS_UFS1_MAGIC) {
844 /* No need to swap, it'll stay random */
845 dp1->di_gen = arc4random() & INT32_MAX;
846 dp1++;
847 } else {
848 dp2->di_gen = arc4random() & INT32_MAX;
849 dp2++;
850 }
851 }
852 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
853 /*
854 * For the old file system, we have to initialize all the inodes.
855 */
856 if (Oflag <= 1) {
857 for (i = 2 * sblock.fs_frag;
858 i < sblock.fs_ipg / INOPF(&sblock);
859 i += sblock.fs_frag) {
860 dp1 = (struct ufs1_dinode *)(&iobuf[start]);
861 for (j = 0; j < INOPB(&sblock); j++) {
862 dp1->di_gen = arc4random() & INT32_MAX;
863 dp1++;
864 }
865 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
866 sblock.fs_bsize, &iobuf[start]);
867 }
868 }
869 }
870
871 /*
872 * initialize the file system
873 */
874
875 #ifdef LOSTDIR
876 #define PREDEFDIR 3
877 #else
878 #define PREDEFDIR 2
879 #endif
880
881 struct direct root_dir[] = {
882 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
883 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
884 #ifdef LOSTDIR
885 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
886 #endif
887 };
888 struct odirect {
889 u_int32_t d_ino;
890 u_int16_t d_reclen;
891 u_int16_t d_namlen;
892 u_char d_name[MAXNAMLEN + 1];
893 } oroot_dir[] = {
894 { ROOTINO, sizeof(struct direct), 1, "." },
895 { ROOTINO, sizeof(struct direct), 2, ".." },
896 #ifdef LOSTDIR
897 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
898 #endif
899 };
900 #ifdef LOSTDIR
901 struct direct lost_found_dir[] = {
902 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
903 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
904 { 0, DIRBLKSIZ, 0, 0, 0 },
905 };
906 struct odirect olost_found_dir[] = {
907 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
908 { ROOTINO, sizeof(struct direct), 2, ".." },
909 { 0, DIRBLKSIZ, 0, 0 },
910 };
911 #endif
912 char buf[MAXBSIZE];
913 static void copy_dir(struct direct *, struct direct *);
914
915 int
916 fsinit(const struct timeval *tv, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
917 {
918 union dinode node;
919 #ifdef LOSTDIR
920 int i;
921 int dirblksiz = DIRBLKSIZ;
922 if (isappleufs)
923 dirblksiz = APPLEUFS_DIRBLKSIZ;
924 #endif
925
926 /*
927 * initialize the node
928 */
929
930 #ifdef LOSTDIR
931 /*
932 * create the lost+found directory
933 */
934 memset(&node, 0, sizeof(node));
935 if (Oflag == 0) {
936 (void)makedir((struct direct *)olost_found_dir, 2);
937 for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
938 copy_dir((struct direct*)&olost_found_dir[2],
939 (struct direct*)&buf[i]);
940 } else {
941 (void)makedir(lost_found_dir, 2);
942 for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
943 copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
944 }
945 if (sblock.fs_magic == FS_UFS1_MAGIC) {
946 node.dp1.di_atime = tv->tv_sec;
947 node.dp1.di_atimensec = tv->tv_usec * 1000;
948 node.dp1.di_mtime = tv->tv_sec;
949 node.dp1.di_mtimensec = tv->tv_usec * 1000;
950 node.dp1.di_ctime = tv->tv_sec;
951 node.dp1.di_ctimensec = tv->tv_usec * 1000;
952 node.dp1.di_mode = IFDIR | UMASK;
953 node.dp1.di_nlink = 2;
954 node.dp1.di_size = sblock.fs_bsize;
955 node.dp1.di_db[0] = alloc(node.dp1.di_size, node.dp1.di_mode);
956 if (node.dp1.di_db[0] == 0)
957 return (0);
958 node.dp1.di_blocks = btodb(fragroundup(&sblock,
959 node.dp1.di_size));
960 node.dp1.di_uid = geteuid();
961 node.dp1.di_gid = getegid();
962 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), node.dp1.di_size,
963 buf);
964 } else {
965 node.dp2.di_atime = tv->tv_sec;
966 node.dp2.di_atimensec = tv->tv_usec * 1000;
967 node.dp2.di_mtime = tv->tv_sec;
968 node.dp2.di_mtimensec = tv->tv_usec * 1000;
969 node.dp2.di_ctime = tv->tv_sec;
970 node.dp2.di_ctimensec = tv->tv_usec * 1000;
971 node.dp2.di_birthtime = tv->tv_sec;
972 node.dp2.di_birthnsec = tv->tv_usec * 1000;
973 node.dp2.di_mode = IFDIR | UMASK;
974 node.dp2.di_nlink = 2;
975 node.dp2.di_size = sblock.fs_bsize;
976 node.dp2.di_db[0] = alloc(node.dp2.di_size, node.dp2.di_mode);
977 if (node.dp2.di_db[0] == 0)
978 return (0);
979 node.dp2.di_blocks = btodb(fragroundup(&sblock,
980 node.dp2.di_size));
981 node.dp2.di_uid = geteuid();
982 node.dp2.di_gid = getegid();
983 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), node.dp2.di_size,
984 buf);
985 }
986 iput(&node, LOSTFOUNDINO);
987 #endif
988 /*
989 * create the root directory
990 */
991 memset(&node, 0, sizeof(node));
992 if (Oflag <= 1) {
993 if (mfs) {
994 node.dp1.di_mode = IFDIR | mfsmode;
995 node.dp1.di_uid = mfsuid;
996 node.dp1.di_gid = mfsgid;
997 } else {
998 node.dp1.di_mode = IFDIR | UMASK;
999 node.dp1.di_uid = geteuid();
1000 node.dp1.di_gid = getegid();
1001 }
1002 node.dp1.di_nlink = PREDEFDIR;
1003 if (Oflag == 0)
1004 node.dp1.di_size = makedir((struct direct *)oroot_dir,
1005 PREDEFDIR);
1006 else
1007 node.dp1.di_size = makedir(root_dir, PREDEFDIR);
1008 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
1009 if (node.dp1.di_db[0] == 0)
1010 return (0);
1011 node.dp1.di_blocks = btodb(fragroundup(&sblock,
1012 node.dp1.di_size));
1013 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, buf);
1014 } else {
1015 if (mfs) {
1016 node.dp2.di_mode = IFDIR | mfsmode;
1017 node.dp2.di_uid = mfsuid;
1018 node.dp2.di_gid = mfsgid;
1019 } else {
1020 node.dp2.di_mode = IFDIR | UMASK;
1021 node.dp2.di_uid = geteuid();
1022 node.dp2.di_gid = getegid();
1023 }
1024 node.dp2.di_atime = tv->tv_sec;
1025 node.dp2.di_atimensec = tv->tv_usec * 1000;
1026 node.dp2.di_mtime = tv->tv_sec;
1027 node.dp2.di_mtimensec = tv->tv_usec * 1000;
1028 node.dp2.di_ctime = tv->tv_sec;
1029 node.dp2.di_ctimensec = tv->tv_usec * 1000;
1030 node.dp2.di_birthtime = tv->tv_sec;
1031 node.dp2.di_birthnsec = tv->tv_usec * 1000;
1032 node.dp2.di_nlink = PREDEFDIR;
1033 node.dp2.di_size = makedir(root_dir, PREDEFDIR);
1034 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
1035 if (node.dp2.di_db[0] == 0)
1036 return (0);
1037 node.dp2.di_blocks = btodb(fragroundup(&sblock,
1038 node.dp2.di_size));
1039 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, buf);
1040 }
1041 iput(&node, ROOTINO);
1042 return (1);
1043 }
1044
1045 /*
1046 * construct a set of directory entries in "buf".
1047 * return size of directory.
1048 */
1049 int
1050 makedir(struct direct *protodir, int entries)
1051 {
1052 char *cp;
1053 int i, spcleft;
1054 int dirblksiz = DIRBLKSIZ;
1055 if (isappleufs)
1056 dirblksiz = APPLEUFS_DIRBLKSIZ;
1057
1058 memset(buf, 0, DIRBLKSIZ);
1059 spcleft = dirblksiz;
1060 for (cp = buf, i = 0; i < entries - 1; i++) {
1061 protodir[i].d_reclen = DIRSIZ(Oflag == 0, &protodir[i], 0);
1062 copy_dir(&protodir[i], (struct direct*)cp);
1063 cp += protodir[i].d_reclen;
1064 spcleft -= protodir[i].d_reclen;
1065 }
1066 protodir[i].d_reclen = spcleft;
1067 copy_dir(&protodir[i], (struct direct*)cp);
1068 return (dirblksiz);
1069 }
1070
1071 /*
1072 * allocate a block or frag
1073 */
1074 daddr_t
1075 alloc(int size, int mode)
1076 {
1077 int i, frag;
1078 daddr_t d, blkno;
1079
1080 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1081 /* fs -> host byte order */
1082 if (needswap)
1083 ffs_cg_swap(&acg, &acg, &sblock);
1084 if (acg.cg_magic != CG_MAGIC) {
1085 printf("cg 0: bad magic number\n");
1086 return (0);
1087 }
1088 if (acg.cg_cs.cs_nbfree == 0) {
1089 printf("first cylinder group ran out of space\n");
1090 return (0);
1091 }
1092 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
1093 if (isblock(&sblock, cg_blksfree(&acg, 0),
1094 d >> sblock.fs_fragshift))
1095 goto goth;
1096 printf("internal error: can't find block in cyl 0\n");
1097 return (0);
1098 goth:
1099 blkno = fragstoblks(&sblock, d);
1100 clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
1101 if (sblock.fs_contigsumsize > 0)
1102 clrbit(cg_clustersfree(&acg, 0), blkno);
1103 acg.cg_cs.cs_nbfree--;
1104 sblock.fs_cstotal.cs_nbfree--;
1105 fscs_0->cs_nbfree--;
1106 if (mode & IFDIR) {
1107 acg.cg_cs.cs_ndir++;
1108 sblock.fs_cstotal.cs_ndir++;
1109 fscs_0->cs_ndir++;
1110 }
1111 if (size != sblock.fs_bsize) {
1112 frag = howmany(size, sblock.fs_fsize);
1113 fscs_0->cs_nffree += sblock.fs_frag - frag;
1114 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1115 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1116 acg.cg_frsum[sblock.fs_frag - frag]++;
1117 for (i = frag; i < sblock.fs_frag; i++)
1118 setbit(cg_blksfree(&acg, 0), d + i);
1119 }
1120 /* host -> fs byte order */
1121 if (needswap)
1122 ffs_cg_swap(&acg, &acg, &sblock);
1123 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1124 return (d);
1125 }
1126
1127 /*
1128 * Allocate an inode on the disk
1129 */
1130 static void
1131 iput(union dinode *ip, ino_t ino)
1132 {
1133 daddr_t d;
1134 int c, i;
1135 struct ufs1_dinode *dp1;
1136 struct ufs2_dinode *dp2;
1137
1138 c = ino_to_cg(&sblock, ino);
1139 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1140 /* fs -> host byte order */
1141 if (needswap)
1142 ffs_cg_swap(&acg, &acg, &sblock);
1143 if (acg.cg_magic != CG_MAGIC) {
1144 printf("cg 0: bad magic number\n");
1145 exit(31);
1146 }
1147 acg.cg_cs.cs_nifree--;
1148 setbit(cg_inosused(&acg, 0), ino);
1149 /* host -> fs byte order */
1150 if (needswap)
1151 ffs_cg_swap(&acg, &acg, &sblock);
1152 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1153 sblock.fs_cstotal.cs_nifree--;
1154 fscs_0->cs_nifree--;
1155 if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1156 printf("fsinit: inode value out of range (%d).\n", ino);
1157 exit(32);
1158 }
1159 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1160 rdfs(d, sblock.fs_bsize, (char *)iobuf);
1161 if (sblock.fs_magic == FS_UFS1_MAGIC) {
1162 dp1 = (struct ufs1_dinode *)iobuf;
1163 dp1 += ino_to_fsbo(&sblock, ino);
1164 if (needswap) {
1165 ffs_dinode1_swap(&ip->dp1, dp1);
1166 /* ffs_dinode1_swap() doesn't swap blocks addrs */
1167 for (i=0; i<NDADDR + NIADDR; i++)
1168 dp1->di_db[i] = bswap32(ip->dp1.di_db[i]);
1169 } else
1170 *dp1 = ip->dp1;
1171 dp1->di_gen = arc4random() & INT32_MAX;
1172 } else {
1173 dp2 = (struct ufs2_dinode *)iobuf;
1174 dp2 += ino_to_fsbo(&sblock, ino);
1175 if (needswap) {
1176 ffs_dinode2_swap(&ip->dp2, dp2);
1177 for (i=0; i<NDADDR + NIADDR; i++)
1178 dp2->di_db[i] = bswap32(ip->dp2.di_db[i]);
1179 } else
1180 *dp2 = ip->dp2;
1181 dp2->di_gen = arc4random() & INT32_MAX;
1182 }
1183 wtfs(d, sblock.fs_bsize, iobuf);
1184 }
1185
1186 /*
1187 * read a block from the file system
1188 */
1189 void
1190 rdfs(daddr_t bno, int size, void *bf)
1191 {
1192 int n;
1193 off_t offset;
1194
1195 #ifdef MFS
1196 if (mfs) {
1197 memmove(bf, membase + bno * sectorsize, size);
1198 return;
1199 }
1200 #endif
1201 offset = bno;
1202 n = pread(fsi, bf, size, offset * sectorsize);
1203 if (n != size) {
1204 printf("rdfs: read error for sector %lld: %s\n",
1205 (long long)bno, strerror(errno));
1206 exit(34);
1207 }
1208 }
1209
1210 /*
1211 * write a block to the file system
1212 */
1213 void
1214 wtfs(daddr_t bno, int size, void *bf)
1215 {
1216 int n;
1217 off_t offset;
1218
1219 #ifdef MFS
1220 if (mfs) {
1221 memmove(membase + bno * sectorsize, bf, size);
1222 return;
1223 }
1224 #endif
1225 if (Nflag)
1226 return;
1227 offset = bno;
1228 n = pwrite(fso, bf, size, offset * sectorsize);
1229 if (n != size) {
1230 printf("wtfs: write error for sector %lld: %s\n",
1231 (long long)bno, strerror(errno));
1232 exit(36);
1233 }
1234 }
1235
1236 /*
1237 * check if a block is available
1238 */
1239 int
1240 isblock(struct fs *fs, unsigned char *cp, int h)
1241 {
1242 unsigned char mask;
1243
1244 switch (fs->fs_fragshift) {
1245 case 3:
1246 return (cp[h] == 0xff);
1247 case 2:
1248 mask = 0x0f << ((h & 0x1) << 2);
1249 return ((cp[h >> 1] & mask) == mask);
1250 case 1:
1251 mask = 0x03 << ((h & 0x3) << 1);
1252 return ((cp[h >> 2] & mask) == mask);
1253 case 0:
1254 mask = 0x01 << (h & 0x7);
1255 return ((cp[h >> 3] & mask) == mask);
1256 default:
1257 #ifdef STANDALONE
1258 printf("isblock bad fs_fragshift %d\n", fs->fs_fragshift);
1259 #else
1260 fprintf(stderr, "isblock bad fs_fragshift %d\n",
1261 fs->fs_fragshift);
1262 #endif
1263 return (0);
1264 }
1265 }
1266
1267 /*
1268 * take a block out of the map
1269 */
1270 void
1271 clrblock(struct fs *fs, unsigned char *cp, int h)
1272 {
1273 switch ((fs)->fs_fragshift) {
1274 case 3:
1275 cp[h] = 0;
1276 return;
1277 case 2:
1278 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1279 return;
1280 case 1:
1281 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1282 return;
1283 case 0:
1284 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1285 return;
1286 default:
1287 #ifdef STANDALONE
1288 printf("clrblock bad fs_fragshift %d\n", fs->fs_fragshift);
1289 #else
1290 fprintf(stderr, "clrblock bad fs_fragshift %d\n",
1291 fs->fs_fragshift);
1292 #endif
1293 return;
1294 }
1295 }
1296
1297 /*
1298 * put a block into the map
1299 */
1300 void
1301 setblock(struct fs *fs, unsigned char *cp, int h)
1302 {
1303 switch (fs->fs_fragshift) {
1304 case 3:
1305 cp[h] = 0xff;
1306 return;
1307 case 2:
1308 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1309 return;
1310 case 1:
1311 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1312 return;
1313 case 0:
1314 cp[h >> 3] |= (0x01 << (h & 0x7));
1315 return;
1316 default:
1317 #ifdef STANDALONE
1318 printf("setblock bad fs_frag %d\n", fs->fs_fragshift);
1319 #else
1320 fprintf(stderr, "setblock bad fs_fragshift %d\n",
1321 fs->fs_fragshift);
1322 #endif
1323 return;
1324 }
1325 }
1326
1327 /* copy a direntry to a buffer, in fs byte order */
1328 static void
1329 copy_dir(struct direct *dir, struct direct *dbuf)
1330 {
1331 memcpy(dbuf, dir, DIRSIZ(Oflag == 0, dir, 0));
1332 if (needswap) {
1333 dbuf->d_ino = bswap32(dir->d_ino);
1334 dbuf->d_reclen = bswap16(dir->d_reclen);
1335 if (Oflag == 0)
1336 ((struct odirect*)dbuf)->d_namlen =
1337 bswap16(((struct odirect*)dir)->d_namlen);
1338 }
1339 }
1340
1341 /* Determine how many digits are needed to print a given integer */
1342 static int
1343 count_digits(uint64_t num)
1344 {
1345 int ndig;
1346
1347 for (ndig = 1; num > 9; num /= 10, ndig++);
1348
1349 return (ndig);
1350 }
1351
1352 static int
1353 ilog2(int val)
1354 {
1355 u_int n;
1356
1357 for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1358 if (1 << n == val)
1359 return (n);
1360 errx(1, "ilog2: %d is not a power of 2\n", val);
1361 }
1362
1363 static void
1364 zap_old_sblock(int sblkoff)
1365 {
1366 static int cg0_data;
1367 uint32_t oldfs[SBLOCKSIZE / 4];
1368 static const struct fsm {
1369 uint32_t offset;
1370 uint32_t magic;
1371 uint32_t mask;
1372 } fs_magics[] = {
1373 {offsetof(struct fs, fs_magic)/4, FS_UFS1_MAGIC, ~0u},
1374 {offsetof(struct fs, fs_magic)/4, FS_UFS2_MAGIC, ~0u},
1375 {0, 0x70162, ~0u}, /* LFS_MAGIC */
1376 {14, 0xef53, 0xffff}, /* EXT2FS (little) */
1377 {14, 0xef530000, 0xffff0000}, /* EXT2FS (big) */
1378 {~0u},
1379 };
1380 const struct fsm *fsm;
1381
1382 if (Nflag)
1383 return;
1384
1385 if (sblkoff == 0) /* Why did UFS2 add support for this? sigh. */
1386 return;
1387
1388 if (cg0_data == 0)
1389 /* For FFSv1 this could include all the inodes. */
1390 cg0_data = cgsblock(&sblock, 0) * sblock.fs_fsize + iobufsize;
1391
1392 /* Ignore anything that is beyond our filesystem */
1393 if ((sblkoff + SBLOCKSIZE)/sectorsize >= fssize)
1394 return;
1395 /* Zero anything inside our filesystem... */
1396 if (sblkoff >= sblock.fs_sblockloc) {
1397 /* ...unless we will write that area anyway */
1398 if (sblkoff >= cg0_data)
1399 wtfs(sblkoff / sectorsize,
1400 roundup(sizeof sblock, sectorsize), iobuf);
1401 return;
1402 }
1403
1404 /* The sector might contain boot code, so we must validate it */
1405 rdfs(sblkoff/sectorsize, sizeof oldfs, &oldfs);
1406 for (fsm = fs_magics; ; fsm++) {
1407 uint32_t v;
1408 if (fsm->mask == 0)
1409 return;
1410 v = oldfs[fsm->offset];
1411 if ((v & fsm->mask) == fsm->magic ||
1412 (bswap32(v) & fsm->mask) == fsm->magic)
1413 break;
1414 }
1415
1416 /* Just zap the magic number */
1417 oldfs[fsm->offset] = 0;
1418 wtfs(sblkoff/sectorsize, sizeof oldfs, &oldfs);
1419 }
1420
1421
1422 #ifdef MFS
1423 /*
1424 * XXX!
1425 * Attempt to guess how much more space is available for process data. The
1426 * heuristic we use is
1427 *
1428 * max_data_limit - (sbrk(0) - etext) - 128kB
1429 *
1430 * etext approximates that start address of the data segment, and the 128kB
1431 * allows some slop for both segment gap between text and data, and for other
1432 * (libc) malloc usage.
1433 */
1434 static void
1435 calc_memfree(void)
1436 {
1437 extern char etext;
1438 struct rlimit rlp;
1439 u_long base;
1440
1441 base = (u_long)sbrk(0) - (u_long)&etext;
1442 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1443 perror("getrlimit");
1444 rlp.rlim_cur = rlp.rlim_max;
1445 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1446 perror("setrlimit");
1447 memleft = rlp.rlim_max - base - (128 * 1024);
1448 }
1449
1450 /*
1451 * Internal version of malloc that trims the requested size if not enough
1452 * memory is available.
1453 */
1454 static void *
1455 mkfs_malloc(size_t size)
1456 {
1457 u_long pgsz;
1458
1459 if (size == 0)
1460 return (NULL);
1461 if (memleft == 0)
1462 calc_memfree();
1463
1464 pgsz = getpagesize() - 1;
1465 size = (size + pgsz) &~ pgsz;
1466 if (size > memleft)
1467 size = memleft;
1468 memleft -= size;
1469 return (mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
1470 -1, 0));
1471 }
1472 #endif /* MFS */
1473