mkfs.c revision 1.87 1 /* $NetBSD: mkfs.c,v 1.87 2004/03/18 20:35:55 dsl Exp $ */
2
3 /*
4 * Copyright (c) 1980, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2002 Networks Associates Technology, Inc.
34 * All rights reserved.
35 *
36 * This software was developed for the FreeBSD Project by Marshall
37 * Kirk McKusick and Network Associates Laboratories, the Security
38 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 * research program
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 */
70
71 #include <sys/cdefs.h>
72 #ifndef lint
73 #if 0
74 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
75 #else
76 __RCSID("$NetBSD: mkfs.c,v 1.87 2004/03/18 20:35:55 dsl Exp $");
77 #endif
78 #endif /* not lint */
79
80 #include <sys/param.h>
81 #include <sys/mman.h>
82 #include <sys/time.h>
83 #include <sys/resource.h>
84 #include <ufs/ufs/dinode.h>
85 #include <ufs/ufs/dir.h>
86 #include <ufs/ufs/ufs_bswap.h>
87 #include <ufs/ffs/fs.h>
88 #include <ufs/ffs/ffs_extern.h>
89 #include <sys/disklabel.h>
90
91 #include <err.h>
92 #include <errno.h>
93 #include <string.h>
94 #include <unistd.h>
95 #include <stdlib.h>
96 #include <stddef.h>
97
98 #ifndef STANDALONE
99 #include <stdio.h>
100 #endif
101
102 #include "extern.h"
103
104 union dinode {
105 struct ufs1_dinode dp1;
106 struct ufs2_dinode dp2;
107 };
108
109 static void initcg(int, const struct timeval *);
110 static int fsinit(const struct timeval *, mode_t, uid_t, gid_t);
111 static int makedir(struct direct *, int);
112 static daddr_t alloc(int, int);
113 static void iput(union dinode *, ino_t);
114 static void rdfs(daddr_t, int, void *);
115 static void wtfs(daddr_t, int, void *);
116 static int isblock(struct fs *, unsigned char *, int);
117 static void clrblock(struct fs *, unsigned char *, int);
118 static void setblock(struct fs *, unsigned char *, int);
119 static int ilog2(int);
120 static void zap_old_sblock(int);
121 #ifdef MFS
122 static void calc_memfree(void);
123 static void *mkfs_malloc(size_t size);
124 #endif
125
126 static int count_digits(uint64_t);
127
128 /*
129 * make file system for cylinder-group style file systems
130 */
131 #define UMASK 0755
132 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
133
134 union {
135 struct fs fs;
136 char pad[SBLOCKSIZE];
137 } fsun;
138 #define sblock fsun.fs
139
140 struct csum *fscs_0; /* first block of cylinder summaries */
141 struct csum *fscs_next; /* place for next summary */
142 struct csum *fscs_end; /* end of summary buffer */
143 struct csum *fscs_reset; /* place for next summary after write */
144 uint fs_csaddr; /* fragment number to write to */
145
146 union {
147 struct cg cg;
148 char pad[MAXBSIZE];
149 } cgun;
150 #define acg cgun.cg
151
152 #define DIP(dp, field) \
153 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \
154 (dp)->dp1.di_##field : (dp)->dp2.di_##field)
155
156 char *iobuf;
157 int iobufsize; /* size to end of 2nd inode block */
158 int iobuf_memsize; /* Actual buffer size */
159
160 int fsi, fso;
161
162 void
163 mkfs(struct partition *pp, const char *fsys, int fi, int fo,
164 mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
165 {
166 uint fragsperinodeblk, ncg;
167 uint cgzero;
168 uint64_t inodeblks, cgall;
169 int32_t cylno, i, csfrags;
170 struct timeval tv;
171 long long sizepb;
172 int nprintcols, printcolwidth;
173
174 #ifndef STANDALONE
175 gettimeofday(&tv, NULL);
176 #endif
177 #ifdef MFS
178 if (mfs && !Nflag) {
179 calc_memfree();
180 if (fssize * sectorsize > memleft)
181 fssize = memleft / sectorsize;
182 if ((membase = mkfs_malloc(fssize * sectorsize)) == 0)
183 exit(12);
184 }
185 #endif
186 fsi = fi;
187 fso = fo;
188 if (Oflag == 0) {
189 sblock.fs_old_inodefmt = FS_42INODEFMT;
190 sblock.fs_maxsymlinklen = 0;
191 sblock.fs_old_flags = 0;
192 } else {
193 sblock.fs_old_inodefmt = FS_44INODEFMT;
194 sblock.fs_maxsymlinklen = (Oflag == 1 ? MAXSYMLINKLEN_UFS1 :
195 MAXSYMLINKLEN_UFS2);
196 sblock.fs_old_flags = FS_FLAGS_UPDATED;
197 sblock.fs_flags = 0;
198 }
199
200 /*
201 * collect and verify the filesystem density info
202 */
203 sblock.fs_avgfilesize = avgfilesize;
204 sblock.fs_avgfpdir = avgfpdir;
205 if (sblock.fs_avgfilesize <= 0) {
206 printf("illegal expected average file size %d\n",
207 sblock.fs_avgfilesize);
208 exit(14);
209 }
210 if (sblock.fs_avgfpdir <= 0) {
211 printf("illegal expected number of files per directory %d\n",
212 sblock.fs_avgfpdir);
213 exit(15);
214 }
215 /*
216 * collect and verify the block and fragment sizes
217 */
218 sblock.fs_bsize = bsize;
219 sblock.fs_fsize = fsize;
220 if (!POWEROF2(sblock.fs_bsize)) {
221 printf("block size must be a power of 2, not %d\n",
222 sblock.fs_bsize);
223 exit(16);
224 }
225 if (!POWEROF2(sblock.fs_fsize)) {
226 printf("fragment size must be a power of 2, not %d\n",
227 sblock.fs_fsize);
228 exit(17);
229 }
230 if (sblock.fs_fsize < sectorsize) {
231 printf("fragment size %d is too small, minimum is %d\n",
232 sblock.fs_fsize, sectorsize);
233 exit(18);
234 }
235 if (sblock.fs_bsize < MINBSIZE) {
236 printf("block size %d is too small, minimum is %d\n",
237 sblock.fs_bsize, MINBSIZE);
238 exit(19);
239 }
240 if (sblock.fs_bsize > MAXBSIZE) {
241 printf("block size %d is too large, maximum is %d\n",
242 sblock.fs_bsize, MAXBSIZE);
243 exit(19);
244 }
245 if (sblock.fs_bsize < sblock.fs_fsize) {
246 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
247 sblock.fs_bsize, sblock.fs_fsize);
248 exit(20);
249 }
250
251 if (maxbsize < bsize || !POWEROF2(maxbsize)) {
252 sblock.fs_maxbsize = sblock.fs_bsize;
253 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
254 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
255 } else {
256 sblock.fs_maxbsize = maxbsize;
257 }
258 sblock.fs_maxcontig = maxcontig;
259 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
260 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
261 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
262 }
263 if (sblock.fs_maxcontig > 1)
264 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
265
266 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
267 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
268 sblock.fs_qbmask = ~sblock.fs_bmask;
269 sblock.fs_qfmask = ~sblock.fs_fmask;
270 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
271 sblock.fs_bshift++;
272 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
273 sblock.fs_fshift++;
274 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
275 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
276 sblock.fs_fragshift++;
277 if (sblock.fs_frag > MAXFRAG) {
278 printf("fragment size %d is too small, "
279 "minimum with block size %d is %d\n",
280 sblock.fs_fsize, sblock.fs_bsize,
281 sblock.fs_bsize / MAXFRAG);
282 exit(21);
283 }
284 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
285 sblock.fs_size = dbtofsb(&sblock, fssize);
286 if (Oflag <= 1) {
287 if (sblock.fs_size >= 1ull << 31) {
288 printf("Too many fragments (0x%" PRIx64
289 ") for a UFS1 filesystem\n", sblock.fs_size);
290 exit(22);
291 }
292 sblock.fs_magic = FS_UFS1_MAGIC;
293 sblock.fs_sblockloc = SBLOCK_UFS1;
294 sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t);
295 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
296 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
297 sizeof (int32_t));
298 sblock.fs_old_inodefmt = FS_44INODEFMT;
299 sblock.fs_old_cgoffset = 0;
300 sblock.fs_old_cgmask = 0xffffffff;
301 sblock.fs_old_size = sblock.fs_size;
302 sblock.fs_old_rotdelay = 0;
303 sblock.fs_old_rps = 60;
304 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
305 sblock.fs_old_cpg = 1;
306 sblock.fs_old_interleave = 1;
307 sblock.fs_old_trackskew = 0;
308 sblock.fs_old_cpc = 0;
309 sblock.fs_old_postblformat = FS_DYNAMICPOSTBLFMT;
310 sblock.fs_old_nrpos = 1;
311 } else {
312 sblock.fs_magic = FS_UFS2_MAGIC;
313 sblock.fs_sblockloc = SBLOCK_UFS2;
314 sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t);
315 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
316 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
317 sizeof (int64_t));
318 }
319
320 sblock.fs_sblkno =
321 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
322 sblock.fs_frag);
323 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
324 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag));
325 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
326 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
327 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
328 sizepb *= NINDIR(&sblock);
329 sblock.fs_maxfilesize += sizepb;
330 }
331
332 /*
333 * Calculate the number of blocks to put into each cylinder group.
334 *
335 * The cylinder group size is limited because the data structure
336 * must fit into a single block.
337 * We try to have as few cylinder groups as possible, with a proviso
338 * that we create at least MINCYLGRPS (==4) except for small
339 * filesystems.
340 *
341 * This algorithm works out how many blocks of inodes would be
342 * needed to fill the entire volume at the specified density.
343 * It then looks at how big the 'cylinder block' would have to
344 * be and, assuming that it is linearly related to the number
345 * of inodes and blocks how many cylinder groups are needed to
346 * keep the cylinder block below the filesystem block size.
347 *
348 * The cylinder groups are then all created with the average size.
349 *
350 * Space taken by the red tape on cylinder groups other than the
351 * first is ignored.
352 */
353
354 /* There must be space for 1 inode block and 2 data blocks */
355 if (sblock.fs_size < sblock.fs_iblkno + 3 * sblock.fs_frag) {
356 printf("Filesystem size %lld < minimum size of %d\n",
357 (long long)sblock.fs_size, sblock.fs_iblkno + 3 * sblock.fs_frag);
358 exit(23);
359 }
360 if (num_inodes != 0)
361 inodeblks = howmany(num_inodes, INOPB(&sblock));
362 else {
363 /*
364 * Calculate 'per inode block' so we can allocate less than
365 * 1 fragment per inode - useful for /dev.
366 */
367 fragsperinodeblk = MAX(numfrags(&sblock,
368 density * INOPB(&sblock)), 1);
369 inodeblks = (sblock.fs_size - sblock.fs_iblkno) /
370 (sblock.fs_frag + fragsperinodeblk);
371 }
372 if (inodeblks == 0)
373 inodeblks = 1;
374 /* Ensure that there are at least 2 data blocks (or we fail below) */
375 if (inodeblks > (sblock.fs_size - sblock.fs_iblkno)/sblock.fs_frag - 2)
376 inodeblks = (sblock.fs_size-sblock.fs_iblkno)/sblock.fs_frag-2;
377 /* Even UFS2 limits number of inodes to 2^31 (fs_ipg is int32_t) */
378 if (inodeblks * INOPB(&sblock) >= 1ull << 31)
379 inodeblks = ((1ull << 31) - NBBY) / INOPB(&sblock);
380 /*
381 * See what would happen if we tried to use 1 cylinder group.
382 * Assume space linear, so work out number of cylinder groups needed.
383 * Subtract one from the allowed size to compensate for rounding
384 * a number of bits up to a complete byte.
385 */
386 cgzero = CGSIZE_IF(&sblock, 0, 0);
387 cgall = CGSIZE_IF(&sblock, inodeblks * INOPB(&sblock), sblock.fs_size);
388 ncg = howmany(cgall - cgzero, sblock.fs_bsize - cgzero - 1);
389 if (ncg < MINCYLGRPS) {
390 /*
391 * We would like to allocate MINCLYGRPS cylinder groups,
392 * but for small file sytems (especially ones with a lot
393 * of inodes) this is not desirable (or possible).
394 */
395 i = sblock.fs_size / 2 / (sblock.fs_iblkno +
396 inodeblks * sblock.fs_frag);
397 if (i > ncg)
398 ncg = i;
399 if (ncg > MINCYLGRPS)
400 ncg = MINCYLGRPS;
401 if (ncg > inodeblks)
402 ncg = inodeblks;
403 }
404 /*
405 * Put an equal number of blocks in each cylinder group.
406 * Round up so we don't have more fragments in the last CG than
407 * the earlier ones (does that matter?), but kill a block if the
408 * CGSIZE becomes too big (only happens if there are a lot of CGs).
409 */
410 sblock.fs_fpg = roundup(howmany(sblock.fs_size, ncg), sblock.fs_frag);
411 i = CGSIZE_IF(&sblock, inodeblks * INOPB(&sblock) / ncg, sblock.fs_fpg);
412 if (i > sblock.fs_bsize)
413 sblock.fs_fpg -= (i - sblock.fs_bsize) * NBBY;
414 /* ... and recalculate how many cylinder groups we now need */
415 ncg = howmany(sblock.fs_size, sblock.fs_fpg);
416 inodeblks /= ncg;
417 if (inodeblks == 0)
418 inodeblks = 1;
419 sblock.fs_ipg = inodeblks * INOPB(&sblock);
420 /* Sanity check on our sums... */
421 if (CGSIZE(&sblock) > sblock.fs_bsize) {
422 printf("CGSIZE miscalculated %d > %d\n",
423 (int)CGSIZE(&sblock), sblock.fs_bsize);
424 exit(24);
425 }
426 /* Check that the last cylinder group has enough space for the inodes */
427 i = sblock.fs_size - sblock.fs_fpg * (ncg - 1ull);
428 if (i < sblock.fs_iblkno + inodeblks * sblock.fs_frag) {
429 /*
430 * Since we make all the cylinder groups the same size, the
431 * last will only be small if there are a large number of
432 * cylinder groups. If we pull even a fragment from each
433 * of the other groups then the last CG will be overfull.
434 * So we just kill the last CG.
435 */
436 ncg--;
437 sblock.fs_size -= i;
438 }
439 sblock.fs_ncg = ncg;
440
441 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
442 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
443 if (Oflag <= 1) {
444 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
445 sblock.fs_old_nsect = sblock.fs_old_spc;
446 sblock.fs_old_npsect = sblock.fs_old_spc;
447 sblock.fs_old_ncyl = sblock.fs_ncg;
448 }
449
450 /*
451 * Cylinder group summary information for each cylinder is written
452 * into the first cylinder group.
453 * Write this fragment by fragment, but doing the first CG last
454 * (after we've taken stuff off for the structure itself and the
455 * root directory.
456 */
457 sblock.fs_csaddr = cgdmin(&sblock, 0);
458 sblock.fs_cssize =
459 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
460 if (512 % sizeof *fscs_0)
461 errx(1, "cylinder group summary doesn't fit in sectors");
462 fscs_0 = mmap(0, 2 * sblock.fs_fsize, PROT_READ|PROT_WRITE,
463 MAP_ANON|MAP_PRIVATE, -1, 0);
464 if (fscs_0 == NULL)
465 exit(39);
466 memset(fscs_0, 0, 2 * sblock.fs_fsize);
467 fs_csaddr = sblock.fs_csaddr;
468 fscs_next = fscs_0;
469 fscs_end = (void *)((char *)fscs_0 + 2 * sblock.fs_fsize);
470 fscs_reset = (void *)((char *)fscs_0 + sblock.fs_fsize);
471 /*
472 * fill in remaining fields of the super block
473 */
474 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
475 if (sblock.fs_sbsize > SBLOCKSIZE)
476 sblock.fs_sbsize = SBLOCKSIZE;
477 sblock.fs_minfree = minfree;
478 sblock.fs_maxcontig = maxcontig;
479 sblock.fs_maxbpg = maxbpg;
480 sblock.fs_optim = opt;
481 sblock.fs_cgrotor = 0;
482 sblock.fs_pendingblocks = 0;
483 sblock.fs_pendinginodes = 0;
484 sblock.fs_cstotal.cs_ndir = 0;
485 sblock.fs_cstotal.cs_nbfree = 0;
486 sblock.fs_cstotal.cs_nifree = 0;
487 sblock.fs_cstotal.cs_nffree = 0;
488 sblock.fs_fmod = 0;
489 sblock.fs_ronly = 0;
490 sblock.fs_state = 0;
491 sblock.fs_clean = FS_ISCLEAN;
492 sblock.fs_ronly = 0;
493 sblock.fs_id[0] = (long)tv.tv_sec; /* XXXfvdl huh? */
494 sblock.fs_id[1] = arc4random() & INT32_MAX;
495 sblock.fs_fsmnt[0] = '\0';
496 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
497 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
498 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
499 sblock.fs_cstotal.cs_nbfree =
500 fragstoblks(&sblock, sblock.fs_dsize) -
501 howmany(csfrags, sblock.fs_frag);
502 sblock.fs_cstotal.cs_nffree =
503 fragnum(&sblock, sblock.fs_size) +
504 (fragnum(&sblock, csfrags) > 0 ?
505 sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
506 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
507 sblock.fs_cstotal.cs_ndir = 0;
508 sblock.fs_dsize -= csfrags;
509 sblock.fs_time = tv.tv_sec;
510 if (Oflag <= 1) {
511 sblock.fs_old_time = tv.tv_sec;
512 sblock.fs_old_dsize = sblock.fs_dsize;
513 sblock.fs_old_csaddr = sblock.fs_csaddr;
514 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
515 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
516 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
517 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
518 }
519 /*
520 * Dump out summary information about file system.
521 */
522 if (!mfs || Nflag) {
523 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
524 printf("%s: %.1fMB (%lld sectors) block size %d, "
525 "fragment size %d\n",
526 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
527 (long long)fsbtodb(&sblock, sblock.fs_size),
528 sblock.fs_bsize, sblock.fs_fsize);
529 printf("\tusing %d cylinder groups of %.2fMB, %d blks, "
530 "%d inodes.\n",
531 sblock.fs_ncg,
532 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
533 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
534 #undef B2MBFACTOR
535 }
536 /*
537 * Now determine how wide each column will be, and calculate how
538 * many columns will fit in a 80 char line.
539 */
540 printcolwidth = count_digits(
541 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
542 nprintcols = 80 / (printcolwidth + 2);
543
544 /*
545 * allocate space for superblock, cylinder group map, and
546 * two sets of inode blocks.
547 */
548 if (sblock.fs_bsize < SBLOCKSIZE)
549 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
550 else
551 iobufsize = 4 * sblock.fs_bsize;
552 iobuf_memsize = iobufsize;
553 if (!mfs && sblock.fs_magic == FS_UFS1_MAGIC) {
554 /* A larger buffer so we can write multiple inode blks */
555 iobuf_memsize += 14 * sblock.fs_bsize;
556 }
557 for (;;) {
558 iobuf = mmap(0, iobuf_memsize, PROT_READ|PROT_WRITE,
559 MAP_ANON|MAP_PRIVATE, -1, 0);
560 if (iobuf != NULL)
561 break;
562 if (iobuf_memsize != iobufsize) {
563 /* Try again with the smaller size */
564 iobuf_memsize = iobufsize;
565 continue;
566 }
567 printf("Cannot allocate I/O buffer\n");
568 exit(38);
569 }
570 memset(iobuf, 0, iobuf_memsize);
571
572 /*
573 * We now start writing to the filesystem
574 */
575
576 /*
577 * Validate the given file system size.
578 * Verify that its last block can actually be accessed.
579 * Convert to file system fragment sized units.
580 */
581 if (fssize <= 0) {
582 printf("preposterous size %lld\n", (long long)fssize);
583 exit(13);
584 }
585 wtfs(fssize - 1, sectorsize, iobuf);
586
587 /*
588 * Ensure there is nothing that looks like a filesystem
589 * superbock anywhere other than where ours will be.
590 * If fsck finds the wrong one all hell breaks loose!
591 */
592 for (i = 0; ; i++) {
593 static const int sblocklist[] = SBLOCKSEARCH;
594 int sblkoff = sblocklist[i];
595 int sz;
596 if (sblkoff == -1)
597 break;
598 /* Remove main superblock */
599 zap_old_sblock(sblkoff);
600 /* and all possible locations for the first alternate */
601 sblkoff += SBLOCKSIZE;
602 for (sz = SBLOCKSIZE; sz <= 0x10000; sz <<= 1)
603 zap_old_sblock(roundup(sblkoff, sz));
604 }
605
606 if (isappleufs) {
607 struct appleufslabel appleufs;
608 ffs_appleufs_set(&appleufs, appleufs_volname, tv.tv_sec, 0);
609 wtfs(APPLEUFS_LABEL_OFFSET/sectorsize, APPLEUFS_LABEL_SIZE,
610 &appleufs);
611 } else {
612 struct appleufslabel appleufs;
613 /* Look for and zap any existing valid apple ufs labels */
614 rdfs(APPLEUFS_LABEL_OFFSET/sectorsize, APPLEUFS_LABEL_SIZE,
615 &appleufs);
616 if (ffs_appleufs_validate(fsys, &appleufs, NULL) == 0) {
617 memset(&appleufs, 0, sizeof(appleufs));
618 wtfs(APPLEUFS_LABEL_OFFSET/sectorsize, APPLEUFS_LABEL_SIZE,
619 &appleufs);
620 }
621 }
622
623 /*
624 * Make a copy of the superblock into the buffer that we will be
625 * writing out in each cylinder group.
626 */
627 memcpy(iobuf, &sblock, sizeof sblock);
628 if (needswap)
629 ffs_sb_swap(&sblock, (struct fs *)iobuf);
630
631 if (!mfs || Nflag)
632 printf("super-block backups (for fsck -b #) at:");
633 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
634 initcg(cylno, &tv);
635 if (mfs && !Nflag)
636 continue;
637 if (cylno % nprintcols == 0)
638 printf("\n");
639 printf(" %*lld,", printcolwidth,
640 (long long)fsbtodb(&sblock, cgsblock(&sblock, cylno)));
641 fflush(stdout);
642 }
643 if (!mfs || Nflag)
644 printf("\n");
645 if (Nflag)
646 exit(0);
647
648 /*
649 * Now construct the initial file system,
650 */
651 if (fsinit(&tv, mfsmode, mfsuid, mfsgid) == 0 && mfs)
652 errx(1, "Error making filesystem");
653 sblock.fs_time = tv.tv_sec;
654 if (Oflag <= 1) {
655 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
656 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
657 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
658 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
659 }
660 /*
661 * Write out the super-block and zeros until the first cg info
662 */
663 i = cgsblock(&sblock, 0) * sblock.fs_fsize - sblock.fs_sblockloc,
664 memset(iobuf, 0, i);
665 memcpy(iobuf, &sblock, sizeof sblock);
666 if (needswap)
667 ffs_sb_swap(&sblock, (struct fs *)iobuf);
668 wtfs(sblock.fs_sblockloc / sectorsize, i, iobuf);
669
670 /* Write out first and last cylinder summary sectors */
671 if (needswap)
672 ffs_csum_swap(fscs_0, fscs_0, sblock.fs_fsize);
673 wtfs(fsbtodb(&sblock, sblock.fs_csaddr), sblock.fs_fsize, fscs_0);
674
675 if (fscs_next > fscs_reset) {
676 if (needswap)
677 ffs_csum_swap(fscs_reset, fscs_reset, sblock.fs_fsize);
678 fs_csaddr++;
679 wtfs(fsbtodb(&sblock, fs_csaddr), sblock.fs_fsize, fscs_reset);
680 }
681
682 /* mfs doesn't need these permanently allocated */
683 munmap(iobuf, iobuf_memsize);
684 munmap(fscs_0, 2 * sblock.fs_fsize);
685
686 /*
687 * Update information about this partion in pack
688 * label, to that it may be updated on disk.
689 */
690 if (pp == NULL)
691 return;
692 if (isappleufs)
693 pp->p_fstype = FS_APPLEUFS;
694 else
695 pp->p_fstype = FS_BSDFFS;
696 pp->p_fsize = sblock.fs_fsize;
697 pp->p_frag = sblock.fs_frag;
698 pp->p_cpg = sblock.fs_fpg;
699 }
700
701 /*
702 * Initialize a cylinder group.
703 */
704 void
705 initcg(int cylno, const struct timeval *tv)
706 {
707 daddr_t cbase, dmax;
708 int32_t i, d, dlower, dupper, blkno;
709 struct ufs1_dinode *dp1;
710 struct ufs2_dinode *dp2;
711 int start;
712
713 /*
714 * Determine block bounds for cylinder group.
715 * Allow space for super block summary information in first
716 * cylinder group.
717 */
718 cbase = cgbase(&sblock, cylno);
719 dmax = cbase + sblock.fs_fpg;
720 if (dmax > sblock.fs_size)
721 dmax = sblock.fs_size;
722 dlower = cgsblock(&sblock, cylno) - cbase;
723 dupper = cgdmin(&sblock, cylno) - cbase;
724 if (cylno == 0) {
725 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
726 if (dupper >= cgstart(&sblock, cylno + 1)) {
727 printf("\rToo many cylinder groups to fit summary "
728 "information into first cylinder group\n");
729 exit(40);
730 }
731 }
732 memset(&acg, 0, sblock.fs_cgsize);
733 acg.cg_magic = CG_MAGIC;
734 acg.cg_cgx = cylno;
735 acg.cg_ndblk = dmax - cbase;
736 if (sblock.fs_contigsumsize > 0)
737 acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
738 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
739 if (Oflag == 2) {
740 acg.cg_time = tv->tv_sec;
741 acg.cg_niblk = sblock.fs_ipg;
742 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
743 sblock.fs_ipg : 2 * INOPB(&sblock);
744 acg.cg_iusedoff = start;
745 } else {
746 acg.cg_old_ncyl = sblock.fs_old_cpg;
747 acg.cg_old_time = tv->tv_sec;
748 acg.cg_old_niblk = sblock.fs_ipg;
749 acg.cg_old_btotoff = start;
750 acg.cg_old_boff = acg.cg_old_btotoff +
751 sblock.fs_old_cpg * sizeof(int32_t);
752 acg.cg_iusedoff = acg.cg_old_boff +
753 sblock.fs_old_cpg * sizeof(u_int16_t);
754 }
755 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
756 if (sblock.fs_contigsumsize <= 0) {
757 acg.cg_nextfreeoff = acg.cg_freeoff +
758 howmany(sblock.fs_fpg, CHAR_BIT);
759 } else {
760 acg.cg_clustersumoff = acg.cg_freeoff +
761 howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t);
762 if (isappleufs) {
763 /* Apple PR2216969 gives rationale for this change.
764 * I believe they were mistaken, but we need to
765 * duplicate it for compatibility. -- dbj (at) NetBSD.org
766 */
767 acg.cg_clustersumoff += sizeof(int32_t);
768 }
769 acg.cg_clustersumoff =
770 roundup(acg.cg_clustersumoff, sizeof(int32_t));
771 acg.cg_clusteroff = acg.cg_clustersumoff +
772 (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
773 acg.cg_nextfreeoff = acg.cg_clusteroff +
774 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
775 }
776 if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
777 printf("Panic: cylinder group too big\n");
778 exit(37);
779 }
780 acg.cg_cs.cs_nifree += sblock.fs_ipg;
781 if (cylno == 0)
782 for (i = 0; i < ROOTINO; i++) {
783 setbit(cg_inosused(&acg, 0), i);
784 acg.cg_cs.cs_nifree--;
785 }
786 if (cylno > 0) {
787 /*
788 * In cylno 0, beginning space is reserved
789 * for boot and super blocks.
790 */
791 for (d = 0, blkno = 0; d < dlower;) {
792 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
793 if (sblock.fs_contigsumsize > 0)
794 setbit(cg_clustersfree(&acg, 0), blkno);
795 acg.cg_cs.cs_nbfree++;
796 d += sblock.fs_frag;
797 blkno++;
798 }
799 }
800 if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
801 acg.cg_frsum[sblock.fs_frag - i]++;
802 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
803 setbit(cg_blksfree(&acg, 0), dupper);
804 acg.cg_cs.cs_nffree++;
805 }
806 }
807 for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
808 d + sblock.fs_frag <= acg.cg_ndblk; ) {
809 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
810 if (sblock.fs_contigsumsize > 0)
811 setbit(cg_clustersfree(&acg, 0), blkno);
812 acg.cg_cs.cs_nbfree++;
813 d += sblock.fs_frag;
814 blkno++;
815 }
816 if (d < acg.cg_ndblk) {
817 acg.cg_frsum[acg.cg_ndblk - d]++;
818 for (; d < acg.cg_ndblk; d++) {
819 setbit(cg_blksfree(&acg, 0), d);
820 acg.cg_cs.cs_nffree++;
821 }
822 }
823 if (sblock.fs_contigsumsize > 0) {
824 int32_t *sump = cg_clustersum(&acg, 0);
825 u_char *mapp = cg_clustersfree(&acg, 0);
826 int map = *mapp++;
827 int bit = 1;
828 int run = 0;
829
830 for (i = 0; i < acg.cg_nclusterblks; i++) {
831 if ((map & bit) != 0) {
832 run++;
833 } else if (run != 0) {
834 if (run > sblock.fs_contigsumsize)
835 run = sblock.fs_contigsumsize;
836 sump[run]++;
837 run = 0;
838 }
839 if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) {
840 bit <<= 1;
841 } else {
842 map = *mapp++;
843 bit = 1;
844 }
845 }
846 if (run != 0) {
847 if (run > sblock.fs_contigsumsize)
848 run = sblock.fs_contigsumsize;
849 sump[run]++;
850 }
851 }
852 *fscs_next++ = acg.cg_cs;
853 if (fscs_next == fscs_end) {
854 /* write block of cylinder group summary info into cyl 0 */
855 if (needswap)
856 ffs_csum_swap(fscs_reset, fscs_reset, sblock.fs_fsize);
857 fs_csaddr++;
858 wtfs(fsbtodb(&sblock, fs_csaddr), sblock.fs_fsize, fscs_reset);
859 fscs_next = fscs_reset;
860 memset(fscs_next, 0, sblock.fs_fsize);
861 }
862 /*
863 * Write out the duplicate super block, the cylinder group map
864 * and two blocks worth of inodes in a single write.
865 */
866 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
867 memcpy(&iobuf[start], &acg, sblock.fs_cgsize);
868 if (needswap)
869 ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock);
870 start += sblock.fs_bsize;
871 dp1 = (struct ufs1_dinode *)(&iobuf[start]);
872 dp2 = (struct ufs2_dinode *)(&iobuf[start]);
873 for (i = MIN(sblock.fs_ipg, 2) * INOPB(&sblock); i != 0; i--) {
874 if (sblock.fs_magic == FS_UFS1_MAGIC) {
875 /* No need to swap, it'll stay random */
876 dp1->di_gen = arc4random() & INT32_MAX;
877 dp1++;
878 } else {
879 dp2->di_gen = arc4random() & INT32_MAX;
880 dp2++;
881 }
882 }
883 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
884 /*
885 * For the old file system, we have to initialize all the inodes.
886 */
887 if (sblock.fs_magic != FS_UFS1_MAGIC)
888 return;
889
890 /* Write 'd' (usually 16 * fs_frag) file-system fragments at once */
891 d = (iobuf_memsize - start) / sblock.fs_bsize * sblock.fs_frag;
892 dupper = sblock.fs_ipg / INOPF(&sblock);
893 for (i = 2 * sblock.fs_frag; i < dupper; i += d) {
894 if (d > dupper - i)
895 d = dupper - i;
896 dp1 = (struct ufs1_dinode *)(&iobuf[start]);
897 do
898 dp1->di_gen = arc4random() & INT32_MAX;
899 while ((char *)++dp1 < &iobuf[iobuf_memsize]);
900 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
901 d * sblock.fs_bsize / sblock.fs_frag, &iobuf[start]);
902 }
903 }
904
905 /*
906 * initialize the file system
907 */
908
909 #ifdef LOSTDIR
910 #define PREDEFDIR 3
911 #else
912 #define PREDEFDIR 2
913 #endif
914
915 struct direct root_dir[] = {
916 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
917 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
918 #ifdef LOSTDIR
919 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
920 #endif
921 };
922 struct odirect {
923 u_int32_t d_ino;
924 u_int16_t d_reclen;
925 u_int16_t d_namlen;
926 u_char d_name[MAXNAMLEN + 1];
927 } oroot_dir[] = {
928 { ROOTINO, sizeof(struct direct), 1, "." },
929 { ROOTINO, sizeof(struct direct), 2, ".." },
930 #ifdef LOSTDIR
931 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
932 #endif
933 };
934 #ifdef LOSTDIR
935 struct direct lost_found_dir[] = {
936 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
937 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
938 { 0, DIRBLKSIZ, 0, 0, 0 },
939 };
940 struct odirect olost_found_dir[] = {
941 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
942 { ROOTINO, sizeof(struct direct), 2, ".." },
943 { 0, DIRBLKSIZ, 0, 0 },
944 };
945 #endif
946 char buf[MAXBSIZE];
947 static void copy_dir(struct direct *, struct direct *);
948
949 int
950 fsinit(const struct timeval *tv, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
951 {
952 union dinode node;
953 #ifdef LOSTDIR
954 int i;
955 int dirblksiz = DIRBLKSIZ;
956 if (isappleufs)
957 dirblksiz = APPLEUFS_DIRBLKSIZ;
958 #endif
959
960 /*
961 * initialize the node
962 */
963
964 #ifdef LOSTDIR
965 /*
966 * create the lost+found directory
967 */
968 memset(&node, 0, sizeof(node));
969 if (Oflag == 0) {
970 (void)makedir((struct direct *)olost_found_dir, 2);
971 for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
972 copy_dir((struct direct*)&olost_found_dir[2],
973 (struct direct*)&buf[i]);
974 } else {
975 (void)makedir(lost_found_dir, 2);
976 for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
977 copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
978 }
979 if (sblock.fs_magic == FS_UFS1_MAGIC) {
980 node.dp1.di_atime = tv->tv_sec;
981 node.dp1.di_atimensec = tv->tv_usec * 1000;
982 node.dp1.di_mtime = tv->tv_sec;
983 node.dp1.di_mtimensec = tv->tv_usec * 1000;
984 node.dp1.di_ctime = tv->tv_sec;
985 node.dp1.di_ctimensec = tv->tv_usec * 1000;
986 node.dp1.di_mode = IFDIR | UMASK;
987 node.dp1.di_nlink = 2;
988 node.dp1.di_size = sblock.fs_bsize;
989 node.dp1.di_db[0] = alloc(node.dp1.di_size, node.dp1.di_mode);
990 if (node.dp1.di_db[0] == 0)
991 return (0);
992 node.dp1.di_blocks = btodb(fragroundup(&sblock,
993 node.dp1.di_size));
994 node.dp1.di_uid = geteuid();
995 node.dp1.di_gid = getegid();
996 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), node.dp1.di_size,
997 buf);
998 } else {
999 node.dp2.di_atime = tv->tv_sec;
1000 node.dp2.di_atimensec = tv->tv_usec * 1000;
1001 node.dp2.di_mtime = tv->tv_sec;
1002 node.dp2.di_mtimensec = tv->tv_usec * 1000;
1003 node.dp2.di_ctime = tv->tv_sec;
1004 node.dp2.di_ctimensec = tv->tv_usec * 1000;
1005 node.dp2.di_birthtime = tv->tv_sec;
1006 node.dp2.di_birthnsec = tv->tv_usec * 1000;
1007 node.dp2.di_mode = IFDIR | UMASK;
1008 node.dp2.di_nlink = 2;
1009 node.dp2.di_size = sblock.fs_bsize;
1010 node.dp2.di_db[0] = alloc(node.dp2.di_size, node.dp2.di_mode);
1011 if (node.dp2.di_db[0] == 0)
1012 return (0);
1013 node.dp2.di_blocks = btodb(fragroundup(&sblock,
1014 node.dp2.di_size));
1015 node.dp2.di_uid = geteuid();
1016 node.dp2.di_gid = getegid();
1017 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), node.dp2.di_size,
1018 buf);
1019 }
1020 iput(&node, LOSTFOUNDINO);
1021 #endif
1022 /*
1023 * create the root directory
1024 */
1025 memset(&node, 0, sizeof(node));
1026 if (Oflag <= 1) {
1027 if (mfs) {
1028 node.dp1.di_mode = IFDIR | mfsmode;
1029 node.dp1.di_uid = mfsuid;
1030 node.dp1.di_gid = mfsgid;
1031 } else {
1032 node.dp1.di_mode = IFDIR | UMASK;
1033 node.dp1.di_uid = geteuid();
1034 node.dp1.di_gid = getegid();
1035 }
1036 node.dp1.di_nlink = PREDEFDIR;
1037 if (Oflag == 0)
1038 node.dp1.di_size = makedir((struct direct *)oroot_dir,
1039 PREDEFDIR);
1040 else
1041 node.dp1.di_size = makedir(root_dir, PREDEFDIR);
1042 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
1043 if (node.dp1.di_db[0] == 0)
1044 return (0);
1045 node.dp1.di_blocks = btodb(fragroundup(&sblock,
1046 node.dp1.di_size));
1047 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, buf);
1048 } else {
1049 if (mfs) {
1050 node.dp2.di_mode = IFDIR | mfsmode;
1051 node.dp2.di_uid = mfsuid;
1052 node.dp2.di_gid = mfsgid;
1053 } else {
1054 node.dp2.di_mode = IFDIR | UMASK;
1055 node.dp2.di_uid = geteuid();
1056 node.dp2.di_gid = getegid();
1057 }
1058 node.dp2.di_atime = tv->tv_sec;
1059 node.dp2.di_atimensec = tv->tv_usec * 1000;
1060 node.dp2.di_mtime = tv->tv_sec;
1061 node.dp2.di_mtimensec = tv->tv_usec * 1000;
1062 node.dp2.di_ctime = tv->tv_sec;
1063 node.dp2.di_ctimensec = tv->tv_usec * 1000;
1064 node.dp2.di_birthtime = tv->tv_sec;
1065 node.dp2.di_birthnsec = tv->tv_usec * 1000;
1066 node.dp2.di_nlink = PREDEFDIR;
1067 node.dp2.di_size = makedir(root_dir, PREDEFDIR);
1068 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
1069 if (node.dp2.di_db[0] == 0)
1070 return (0);
1071 node.dp2.di_blocks = btodb(fragroundup(&sblock,
1072 node.dp2.di_size));
1073 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, buf);
1074 }
1075 iput(&node, ROOTINO);
1076 return (1);
1077 }
1078
1079 /*
1080 * construct a set of directory entries in "buf".
1081 * return size of directory.
1082 */
1083 int
1084 makedir(struct direct *protodir, int entries)
1085 {
1086 char *cp;
1087 int i, spcleft;
1088 int dirblksiz = DIRBLKSIZ;
1089 if (isappleufs)
1090 dirblksiz = APPLEUFS_DIRBLKSIZ;
1091
1092 memset(buf, 0, DIRBLKSIZ);
1093 spcleft = dirblksiz;
1094 for (cp = buf, i = 0; i < entries - 1; i++) {
1095 protodir[i].d_reclen = DIRSIZ(Oflag == 0, &protodir[i], 0);
1096 copy_dir(&protodir[i], (struct direct*)cp);
1097 cp += protodir[i].d_reclen;
1098 spcleft -= protodir[i].d_reclen;
1099 }
1100 protodir[i].d_reclen = spcleft;
1101 copy_dir(&protodir[i], (struct direct*)cp);
1102 return (dirblksiz);
1103 }
1104
1105 /*
1106 * allocate a block or frag
1107 */
1108 daddr_t
1109 alloc(int size, int mode)
1110 {
1111 int i, frag;
1112 daddr_t d, blkno;
1113
1114 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1115 /* fs -> host byte order */
1116 if (needswap)
1117 ffs_cg_swap(&acg, &acg, &sblock);
1118 if (acg.cg_magic != CG_MAGIC) {
1119 printf("cg 0: bad magic number\n");
1120 return (0);
1121 }
1122 if (acg.cg_cs.cs_nbfree == 0) {
1123 printf("first cylinder group ran out of space\n");
1124 return (0);
1125 }
1126 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
1127 if (isblock(&sblock, cg_blksfree(&acg, 0),
1128 d >> sblock.fs_fragshift))
1129 goto goth;
1130 printf("internal error: can't find block in cyl 0\n");
1131 return (0);
1132 goth:
1133 blkno = fragstoblks(&sblock, d);
1134 clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
1135 if (sblock.fs_contigsumsize > 0)
1136 clrbit(cg_clustersfree(&acg, 0), blkno);
1137 acg.cg_cs.cs_nbfree--;
1138 sblock.fs_cstotal.cs_nbfree--;
1139 fscs_0->cs_nbfree--;
1140 if (mode & IFDIR) {
1141 acg.cg_cs.cs_ndir++;
1142 sblock.fs_cstotal.cs_ndir++;
1143 fscs_0->cs_ndir++;
1144 }
1145 if (size != sblock.fs_bsize) {
1146 frag = howmany(size, sblock.fs_fsize);
1147 fscs_0->cs_nffree += sblock.fs_frag - frag;
1148 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1149 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1150 acg.cg_frsum[sblock.fs_frag - frag]++;
1151 for (i = frag; i < sblock.fs_frag; i++)
1152 setbit(cg_blksfree(&acg, 0), d + i);
1153 }
1154 /* host -> fs byte order */
1155 if (needswap)
1156 ffs_cg_swap(&acg, &acg, &sblock);
1157 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1158 return (d);
1159 }
1160
1161 /*
1162 * Allocate an inode on the disk
1163 */
1164 static void
1165 iput(union dinode *ip, ino_t ino)
1166 {
1167 daddr_t d;
1168 int c, i;
1169 struct ufs1_dinode *dp1;
1170 struct ufs2_dinode *dp2;
1171
1172 c = ino_to_cg(&sblock, ino);
1173 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1174 /* fs -> host byte order */
1175 if (needswap)
1176 ffs_cg_swap(&acg, &acg, &sblock);
1177 if (acg.cg_magic != CG_MAGIC) {
1178 printf("cg 0: bad magic number\n");
1179 exit(31);
1180 }
1181 acg.cg_cs.cs_nifree--;
1182 setbit(cg_inosused(&acg, 0), ino);
1183 /* host -> fs byte order */
1184 if (needswap)
1185 ffs_cg_swap(&acg, &acg, &sblock);
1186 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1187 sblock.fs_cstotal.cs_nifree--;
1188 fscs_0->cs_nifree--;
1189 if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1190 printf("fsinit: inode value out of range (%d).\n", ino);
1191 exit(32);
1192 }
1193 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1194 rdfs(d, sblock.fs_bsize, (char *)iobuf);
1195 if (sblock.fs_magic == FS_UFS1_MAGIC) {
1196 dp1 = (struct ufs1_dinode *)iobuf;
1197 dp1 += ino_to_fsbo(&sblock, ino);
1198 if (needswap) {
1199 ffs_dinode1_swap(&ip->dp1, dp1);
1200 /* ffs_dinode1_swap() doesn't swap blocks addrs */
1201 for (i=0; i<NDADDR + NIADDR; i++)
1202 dp1->di_db[i] = bswap32(ip->dp1.di_db[i]);
1203 } else
1204 *dp1 = ip->dp1;
1205 dp1->di_gen = arc4random() & INT32_MAX;
1206 } else {
1207 dp2 = (struct ufs2_dinode *)iobuf;
1208 dp2 += ino_to_fsbo(&sblock, ino);
1209 if (needswap) {
1210 ffs_dinode2_swap(&ip->dp2, dp2);
1211 for (i=0; i<NDADDR + NIADDR; i++)
1212 dp2->di_db[i] = bswap32(ip->dp2.di_db[i]);
1213 } else
1214 *dp2 = ip->dp2;
1215 dp2->di_gen = arc4random() & INT32_MAX;
1216 }
1217 wtfs(d, sblock.fs_bsize, iobuf);
1218 }
1219
1220 /*
1221 * read a block from the file system
1222 */
1223 void
1224 rdfs(daddr_t bno, int size, void *bf)
1225 {
1226 int n;
1227 off_t offset;
1228
1229 #ifdef MFS
1230 if (mfs) {
1231 if (Nflag)
1232 memset(bf, 0, size);
1233 else
1234 memmove(bf, membase + bno * sectorsize, size);
1235 return;
1236 }
1237 #endif
1238 offset = bno;
1239 n = pread(fsi, bf, size, offset * sectorsize);
1240 if (n != size) {
1241 printf("rdfs: read error for sector %lld: %s\n",
1242 (long long)bno, strerror(errno));
1243 exit(34);
1244 }
1245 }
1246
1247 /*
1248 * write a block to the file system
1249 */
1250 void
1251 wtfs(daddr_t bno, int size, void *bf)
1252 {
1253 int n;
1254 off_t offset;
1255
1256 if (Nflag)
1257 return;
1258 #ifdef MFS
1259 if (mfs) {
1260 memmove(membase + bno * sectorsize, bf, size);
1261 return;
1262 }
1263 #endif
1264 offset = bno;
1265 n = pwrite(fso, bf, size, offset * sectorsize);
1266 if (n != size) {
1267 printf("wtfs: write error for sector %lld: %s\n",
1268 (long long)bno, strerror(errno));
1269 exit(36);
1270 }
1271 }
1272
1273 /*
1274 * check if a block is available
1275 */
1276 int
1277 isblock(struct fs *fs, unsigned char *cp, int h)
1278 {
1279 unsigned char mask;
1280
1281 switch (fs->fs_fragshift) {
1282 case 3:
1283 return (cp[h] == 0xff);
1284 case 2:
1285 mask = 0x0f << ((h & 0x1) << 2);
1286 return ((cp[h >> 1] & mask) == mask);
1287 case 1:
1288 mask = 0x03 << ((h & 0x3) << 1);
1289 return ((cp[h >> 2] & mask) == mask);
1290 case 0:
1291 mask = 0x01 << (h & 0x7);
1292 return ((cp[h >> 3] & mask) == mask);
1293 default:
1294 #ifdef STANDALONE
1295 printf("isblock bad fs_fragshift %d\n", fs->fs_fragshift);
1296 #else
1297 fprintf(stderr, "isblock bad fs_fragshift %d\n",
1298 fs->fs_fragshift);
1299 #endif
1300 return (0);
1301 }
1302 }
1303
1304 /*
1305 * take a block out of the map
1306 */
1307 void
1308 clrblock(struct fs *fs, unsigned char *cp, int h)
1309 {
1310 switch ((fs)->fs_fragshift) {
1311 case 3:
1312 cp[h] = 0;
1313 return;
1314 case 2:
1315 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1316 return;
1317 case 1:
1318 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1319 return;
1320 case 0:
1321 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1322 return;
1323 default:
1324 #ifdef STANDALONE
1325 printf("clrblock bad fs_fragshift %d\n", fs->fs_fragshift);
1326 #else
1327 fprintf(stderr, "clrblock bad fs_fragshift %d\n",
1328 fs->fs_fragshift);
1329 #endif
1330 return;
1331 }
1332 }
1333
1334 /*
1335 * put a block into the map
1336 */
1337 void
1338 setblock(struct fs *fs, unsigned char *cp, int h)
1339 {
1340 switch (fs->fs_fragshift) {
1341 case 3:
1342 cp[h] = 0xff;
1343 return;
1344 case 2:
1345 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1346 return;
1347 case 1:
1348 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1349 return;
1350 case 0:
1351 cp[h >> 3] |= (0x01 << (h & 0x7));
1352 return;
1353 default:
1354 #ifdef STANDALONE
1355 printf("setblock bad fs_frag %d\n", fs->fs_fragshift);
1356 #else
1357 fprintf(stderr, "setblock bad fs_fragshift %d\n",
1358 fs->fs_fragshift);
1359 #endif
1360 return;
1361 }
1362 }
1363
1364 /* copy a direntry to a buffer, in fs byte order */
1365 static void
1366 copy_dir(struct direct *dir, struct direct *dbuf)
1367 {
1368 memcpy(dbuf, dir, DIRSIZ(Oflag == 0, dir, 0));
1369 if (needswap) {
1370 dbuf->d_ino = bswap32(dir->d_ino);
1371 dbuf->d_reclen = bswap16(dir->d_reclen);
1372 if (Oflag == 0)
1373 ((struct odirect*)dbuf)->d_namlen =
1374 bswap16(((struct odirect*)dir)->d_namlen);
1375 }
1376 }
1377
1378 /* Determine how many digits are needed to print a given integer */
1379 static int
1380 count_digits(uint64_t num)
1381 {
1382 int ndig;
1383
1384 for (ndig = 1; num > 9; num /= 10, ndig++);
1385
1386 return (ndig);
1387 }
1388
1389 static int
1390 ilog2(int val)
1391 {
1392 u_int n;
1393
1394 for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1395 if (1 << n == val)
1396 return (n);
1397 errx(1, "ilog2: %d is not a power of 2\n", val);
1398 }
1399
1400 static void
1401 zap_old_sblock(int sblkoff)
1402 {
1403 static int cg0_data;
1404 uint32_t oldfs[SBLOCKSIZE / 4];
1405 static const struct fsm {
1406 uint32_t offset;
1407 uint32_t magic;
1408 uint32_t mask;
1409 } fs_magics[] = {
1410 {offsetof(struct fs, fs_magic)/4, FS_UFS1_MAGIC, ~0u},
1411 {offsetof(struct fs, fs_magic)/4, FS_UFS2_MAGIC, ~0u},
1412 {0, 0x70162, ~0u}, /* LFS_MAGIC */
1413 {14, 0xef53, 0xffff}, /* EXT2FS (little) */
1414 {14, 0xef530000, 0xffff0000}, /* EXT2FS (big) */
1415 {~0u},
1416 };
1417 const struct fsm *fsm;
1418
1419 if (Nflag)
1420 return;
1421
1422 if (sblkoff == 0) /* Why did UFS2 add support for this? sigh. */
1423 return;
1424
1425 if (cg0_data == 0)
1426 /* For FFSv1 this could include all the inodes. */
1427 cg0_data = cgsblock(&sblock, 0) * sblock.fs_fsize + iobufsize;
1428
1429 /* Ignore anything that is beyond our filesystem */
1430 if ((sblkoff + SBLOCKSIZE)/sectorsize >= fssize)
1431 return;
1432 /* Zero anything inside our filesystem... */
1433 if (sblkoff >= sblock.fs_sblockloc) {
1434 /* ...unless we will write that area anyway */
1435 if (sblkoff >= cg0_data)
1436 wtfs(sblkoff / sectorsize,
1437 roundup(sizeof sblock, sectorsize), iobuf);
1438 return;
1439 }
1440
1441 /* The sector might contain boot code, so we must validate it */
1442 rdfs(sblkoff/sectorsize, sizeof oldfs, &oldfs);
1443 for (fsm = fs_magics; ; fsm++) {
1444 uint32_t v;
1445 if (fsm->mask == 0)
1446 return;
1447 v = oldfs[fsm->offset];
1448 if ((v & fsm->mask) == fsm->magic ||
1449 (bswap32(v) & fsm->mask) == fsm->magic)
1450 break;
1451 }
1452
1453 /* Just zap the magic number */
1454 oldfs[fsm->offset] = 0;
1455 wtfs(sblkoff/sectorsize, sizeof oldfs, &oldfs);
1456 }
1457
1458
1459 #ifdef MFS
1460 /*
1461 * XXX!
1462 * Attempt to guess how much more space is available for process data. The
1463 * heuristic we use is
1464 *
1465 * max_data_limit - (sbrk(0) - etext) - 128kB
1466 *
1467 * etext approximates that start address of the data segment, and the 128kB
1468 * allows some slop for both segment gap between text and data, and for other
1469 * (libc) malloc usage.
1470 */
1471 static void
1472 calc_memfree(void)
1473 {
1474 extern char etext;
1475 struct rlimit rlp;
1476 u_long base;
1477
1478 base = (u_long)sbrk(0) - (u_long)&etext;
1479 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1480 perror("getrlimit");
1481 rlp.rlim_cur = rlp.rlim_max;
1482 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1483 perror("setrlimit");
1484 memleft = rlp.rlim_max - base - (128 * 1024);
1485 }
1486
1487 /*
1488 * Internal version of malloc that trims the requested size if not enough
1489 * memory is available.
1490 */
1491 static void *
1492 mkfs_malloc(size_t size)
1493 {
1494 u_long pgsz;
1495
1496 if (size == 0)
1497 return (NULL);
1498 if (memleft == 0)
1499 calc_memfree();
1500
1501 pgsz = getpagesize() - 1;
1502 size = (size + pgsz) &~ pgsz;
1503 if (size > memleft)
1504 size = memleft;
1505 memleft -= size;
1506 return (mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
1507 -1, 0));
1508 }
1509 #endif /* MFS */
1510