mkfs.c revision 1.9 1 /*
2 * Copyright (c) 1980, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #ifndef lint
35 /*static char sccsid[] = "from: @(#)mkfs.c 8.3 (Berkeley) 2/3/94";*/
36 static char *rcsid = "$Id: mkfs.c,v 1.9 1994/06/08 19:30:26 mycroft Exp $";
37 #endif /* not lint */
38
39 #include <unistd.h>
40 #include <sys/param.h>
41 #include <sys/time.h>
42 #include <sys/wait.h>
43 #include <sys/resource.h>
44 #include <ufs/ufs/dinode.h>
45 #include <ufs/ufs/dir.h>
46 #include <ufs/ffs/fs.h>
47 #include <sys/disklabel.h>
48
49 #ifndef STANDALONE
50 #include <a.out.h>
51 #include <stdio.h>
52 #endif
53
54 /*
55 * make file system for cylinder-group style file systems
56 */
57
58 /*
59 * We limit the size of the inode map to be no more than a
60 * third of the cylinder group space, since we must leave at
61 * least an equal amount of space for the block map.
62 *
63 * N.B.: MAXIPG must be a multiple of INOPB(fs).
64 */
65 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
66
67 #define UMASK 0755
68 #define MAXINOPB (MAXBSIZE / sizeof(struct dinode))
69 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
70
71 /*
72 * variables set up by front end.
73 */
74 extern int mfs; /* run as the memory based filesystem */
75 extern int Nflag; /* run mkfs without writing file system */
76 extern int Oflag; /* format as an 4.3BSD file system */
77 extern int fssize; /* file system size */
78 extern int ntracks; /* # tracks/cylinder */
79 extern int nsectors; /* # sectors/track */
80 extern int nphyssectors; /* # sectors/track including spares */
81 extern int secpercyl; /* sectors per cylinder */
82 extern int sectorsize; /* bytes/sector */
83 extern int rpm; /* revolutions/minute of drive */
84 extern int interleave; /* hardware sector interleave */
85 extern int trackskew; /* sector 0 skew, per track */
86 extern int headswitch; /* head switch time, usec */
87 extern int trackseek; /* track-to-track seek, usec */
88 extern int fsize; /* fragment size */
89 extern int bsize; /* block size */
90 extern int cpg; /* cylinders/cylinder group */
91 extern int cpgflg; /* cylinders/cylinder group flag was given */
92 extern int minfree; /* free space threshold */
93 extern int opt; /* optimization preference (space or time) */
94 extern int density; /* number of bytes per inode */
95 extern int maxcontig; /* max contiguous blocks to allocate */
96 extern int rotdelay; /* rotational delay between blocks */
97 extern int maxbpg; /* maximum blocks per file in a cyl group */
98 extern int nrpos; /* # of distinguished rotational positions */
99 extern int bbsize; /* boot block size */
100 extern int sbsize; /* superblock size */
101 extern u_long memleft; /* virtual memory available */
102 extern caddr_t membase; /* start address of memory based filesystem */
103 extern caddr_t malloc(), calloc();
104
105 union {
106 struct fs fs;
107 char pad[SBSIZE];
108 } fsun;
109 #define sblock fsun.fs
110 struct csum *fscs;
111
112 union {
113 struct cg cg;
114 char pad[MAXBSIZE];
115 } cgun;
116 #define acg cgun.cg
117
118 struct dinode zino[MAXBSIZE / sizeof(struct dinode)];
119
120 int fsi, fso;
121 daddr_t alloc();
122
123 mkfs(pp, fsys, fi, fo)
124 struct partition *pp;
125 char *fsys;
126 int fi, fo;
127 {
128 register long i, mincpc, mincpg, inospercg;
129 long cylno, rpos, blk, j, warn = 0;
130 long used, mincpgcnt, bpcg;
131 long mapcramped, inodecramped;
132 long postblsize, rotblsize, totalsbsize;
133 int ppid, status;
134 time_t utime;
135 quad_t sizepb;
136 void started();
137
138 #ifndef STANDALONE
139 time(&utime);
140 #endif
141 if (mfs) {
142 ppid = getpid();
143 (void) signal(SIGUSR1, started);
144 if (i = fork()) {
145 if (i == -1) {
146 perror("mfs");
147 exit(10);
148 }
149 if (waitpid(i, &status, 0) != -1 && WIFEXITED(status))
150 exit(WEXITSTATUS(status));
151 exit(11);
152 /* NOTREACHED */
153 }
154 (void)malloc(0);
155 if (fssize * sectorsize > memleft)
156 fssize = (memleft - 16384) / sectorsize;
157 if ((membase = malloc(fssize * sectorsize)) == 0)
158 exit(12);
159 }
160 fsi = fi;
161 fso = fo;
162 if (Oflag) {
163 sblock.fs_inodefmt = FS_42INODEFMT;
164 sblock.fs_maxsymlinklen = 0;
165 } else {
166 sblock.fs_inodefmt = FS_44INODEFMT;
167 sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
168 }
169 /*
170 * Validate the given file system size.
171 * Verify that its last block can actually be accessed.
172 */
173 if (fssize <= 0)
174 printf("preposterous size %d\n", fssize), exit(13);
175 wtfs(fssize - 1, sectorsize, (char *)&sblock);
176 /*
177 * collect and verify the sector and track info
178 */
179 sblock.fs_nsect = nsectors;
180 sblock.fs_ntrak = ntracks;
181 if (sblock.fs_ntrak <= 0)
182 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
183 if (sblock.fs_nsect <= 0)
184 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
185 /*
186 * collect and verify the block and fragment sizes
187 */
188 sblock.fs_bsize = bsize;
189 sblock.fs_fsize = fsize;
190 if (!POWEROF2(sblock.fs_bsize)) {
191 printf("block size must be a power of 2, not %d\n",
192 sblock.fs_bsize);
193 exit(16);
194 }
195 if (!POWEROF2(sblock.fs_fsize)) {
196 printf("fragment size must be a power of 2, not %d\n",
197 sblock.fs_fsize);
198 exit(17);
199 }
200 if (sblock.fs_fsize < sectorsize) {
201 printf("fragment size %d is too small, minimum is %d\n",
202 sblock.fs_fsize, sectorsize);
203 exit(18);
204 }
205 if (sblock.fs_bsize < MINBSIZE) {
206 printf("block size %d is too small, minimum is %d\n",
207 sblock.fs_bsize, MINBSIZE);
208 exit(19);
209 }
210 if (sblock.fs_bsize < sblock.fs_fsize) {
211 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
212 sblock.fs_bsize, sblock.fs_fsize);
213 exit(20);
214 }
215 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
216 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
217 sblock.fs_qbmask = ~sblock.fs_bmask;
218 sblock.fs_qfmask = ~sblock.fs_fmask;
219 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
220 sblock.fs_bshift++;
221 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
222 sblock.fs_fshift++;
223 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
224 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
225 sblock.fs_fragshift++;
226 if (sblock.fs_frag > MAXFRAG) {
227 printf("fragment size %d is too small, minimum with block size %d is %d\n",
228 sblock.fs_fsize, sblock.fs_bsize,
229 sblock.fs_bsize / MAXFRAG);
230 exit(21);
231 }
232 sblock.fs_nrpos = nrpos;
233 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
234 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode);
235 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
236 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
237 sblock.fs_fsbtodb++;
238 sblock.fs_sblkno =
239 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
240 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
241 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
242 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
243 sblock.fs_cgoffset = roundup(
244 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
245 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
246 sblock.fs_cgmask <<= 1;
247 if (!POWEROF2(sblock.fs_ntrak))
248 sblock.fs_cgmask <<= 1;
249 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
250 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
251 sizepb *= NINDIR(&sblock);
252 sblock.fs_maxfilesize += sizepb;
253 }
254 /*
255 * Validate specified/determined secpercyl
256 * and calculate minimum cylinders per group.
257 */
258 sblock.fs_spc = secpercyl;
259 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
260 sblock.fs_cpc > 1 && (i & 1) == 0;
261 sblock.fs_cpc >>= 1, i >>= 1)
262 /* void */;
263 mincpc = sblock.fs_cpc;
264 bpcg = sblock.fs_spc * sectorsize;
265 inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock));
266 if (inospercg > MAXIPG(&sblock))
267 inospercg = MAXIPG(&sblock);
268 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
269 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
270 sblock.fs_spc);
271 mincpg = roundup(mincpgcnt, mincpc);
272 /*
273 * Ensure that cylinder group with mincpg has enough space
274 * for block maps.
275 */
276 sblock.fs_cpg = mincpg;
277 sblock.fs_ipg = inospercg;
278 if (maxcontig > 1)
279 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
280 mapcramped = 0;
281 while (CGSIZE(&sblock) > sblock.fs_bsize) {
282 mapcramped = 1;
283 if (sblock.fs_bsize < MAXBSIZE) {
284 sblock.fs_bsize <<= 1;
285 if ((i & 1) == 0) {
286 i >>= 1;
287 } else {
288 sblock.fs_cpc <<= 1;
289 mincpc <<= 1;
290 mincpg = roundup(mincpgcnt, mincpc);
291 sblock.fs_cpg = mincpg;
292 }
293 sblock.fs_frag <<= 1;
294 sblock.fs_fragshift += 1;
295 if (sblock.fs_frag <= MAXFRAG)
296 continue;
297 }
298 if (sblock.fs_fsize == sblock.fs_bsize) {
299 printf("There is no block size that");
300 printf(" can support this disk\n");
301 exit(22);
302 }
303 sblock.fs_frag >>= 1;
304 sblock.fs_fragshift -= 1;
305 sblock.fs_fsize <<= 1;
306 sblock.fs_nspf <<= 1;
307 }
308 /*
309 * Ensure that cylinder group with mincpg has enough space for inodes.
310 */
311 inodecramped = 0;
312 used *= sectorsize;
313 inospercg = roundup((mincpg * bpcg - used) / density, INOPB(&sblock));
314 sblock.fs_ipg = inospercg;
315 while (inospercg > MAXIPG(&sblock)) {
316 inodecramped = 1;
317 if (mincpc == 1 || sblock.fs_frag == 1 ||
318 sblock.fs_bsize == MINBSIZE)
319 break;
320 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
321 "minimum bytes per inode is",
322 (mincpg * bpcg - used) / MAXIPG(&sblock) + 1);
323 sblock.fs_bsize >>= 1;
324 sblock.fs_frag >>= 1;
325 sblock.fs_fragshift -= 1;
326 mincpc >>= 1;
327 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
328 if (CGSIZE(&sblock) > sblock.fs_bsize) {
329 sblock.fs_bsize <<= 1;
330 break;
331 }
332 mincpg = sblock.fs_cpg;
333 inospercg =
334 roundup((mincpg * bpcg - used) / density, INOPB(&sblock));
335 sblock.fs_ipg = inospercg;
336 }
337 if (inodecramped) {
338 if (inospercg > MAXIPG(&sblock)) {
339 printf("Minimum bytes per inode is %d\n",
340 (mincpg * bpcg - used) / MAXIPG(&sblock) + 1);
341 } else if (!mapcramped) {
342 printf("With %d bytes per inode, ", density);
343 printf("minimum cylinders per group is %d\n", mincpg);
344 }
345 }
346 if (mapcramped) {
347 printf("With %d sectors per cylinder, ", sblock.fs_spc);
348 printf("minimum cylinders per group is %d\n", mincpg);
349 }
350 if (inodecramped || mapcramped) {
351 if (sblock.fs_bsize != bsize)
352 printf("%s to be changed from %d to %d\n",
353 "This requires the block size",
354 bsize, sblock.fs_bsize);
355 if (sblock.fs_fsize != fsize)
356 printf("\t%s to be changed from %d to %d\n",
357 "and the fragment size",
358 fsize, sblock.fs_fsize);
359 exit(23);
360 }
361 /*
362 * Calculate the number of cylinders per group
363 */
364 sblock.fs_cpg = cpg;
365 if (sblock.fs_cpg % mincpc != 0) {
366 printf("%s groups must have a multiple of %d cylinders\n",
367 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
368 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
369 if (!cpgflg)
370 cpg = sblock.fs_cpg;
371 }
372 /*
373 * Must ensure there is enough space for inodes.
374 */
375 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
376 INOPB(&sblock));
377 while (sblock.fs_ipg > MAXIPG(&sblock)) {
378 inodecramped = 1;
379 sblock.fs_cpg -= mincpc;
380 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
381 INOPB(&sblock));
382 }
383 /*
384 * Must ensure there is enough space to hold block map.
385 */
386 while (CGSIZE(&sblock) > sblock.fs_bsize) {
387 mapcramped = 1;
388 sblock.fs_cpg -= mincpc;
389 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
390 INOPB(&sblock));
391 }
392 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
393 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
394 printf("panic (fs_cpg * fs_spc) % NSPF != 0");
395 exit(24);
396 }
397 if (sblock.fs_cpg < mincpg) {
398 printf("cylinder groups must have at least %d cylinders\n",
399 mincpg);
400 exit(25);
401 } else if (sblock.fs_cpg != cpg) {
402 if (!cpgflg)
403 printf("Warning: ");
404 else if (!mapcramped && !inodecramped)
405 exit(26);
406 if (mapcramped && inodecramped)
407 printf("Block size and bytes per inode restrict");
408 else if (mapcramped)
409 printf("Block size restricts");
410 else
411 printf("Bytes per inode restrict");
412 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
413 if (cpgflg)
414 exit(27);
415 }
416 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
417 /*
418 * Now have size for file system and nsect and ntrak.
419 * Determine number of cylinders and blocks in the file system.
420 */
421 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
422 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
423 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
424 sblock.fs_ncyl++;
425 warn = 1;
426 }
427 if (sblock.fs_ncyl < 1) {
428 printf("file systems must have at least one cylinder\n");
429 exit(28);
430 }
431 /*
432 * Determine feasability/values of rotational layout tables.
433 *
434 * The size of the rotational layout tables is limited by the
435 * size of the superblock, SBSIZE. The amount of space available
436 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
437 * The size of these tables is inversely proportional to the block
438 * size of the file system. The size increases if sectors per track
439 * are not powers of two, because more cylinders must be described
440 * by the tables before the rotational pattern repeats (fs_cpc).
441 */
442 sblock.fs_interleave = interleave;
443 sblock.fs_trackskew = trackskew;
444 sblock.fs_npsect = nphyssectors;
445 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
446 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
447 if (sblock.fs_ntrak == 1) {
448 sblock.fs_cpc = 0;
449 goto next;
450 }
451 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(short);
452 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
453 totalsbsize = sizeof(struct fs) + rotblsize;
454 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
455 /* use old static table space */
456 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
457 (char *)(&sblock.fs_link);
458 sblock.fs_rotbloff = &sblock.fs_space[0] -
459 (u_char *)(&sblock.fs_link);
460 } else {
461 /* use dynamic table space */
462 sblock.fs_postbloff = &sblock.fs_space[0] -
463 (u_char *)(&sblock.fs_link);
464 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
465 totalsbsize += postblsize;
466 }
467 if (totalsbsize > SBSIZE ||
468 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
469 printf("%s %s %d %s %d.%s",
470 "Warning: insufficient space in super block for\n",
471 "rotational layout tables with nsect", sblock.fs_nsect,
472 "and ntrak", sblock.fs_ntrak,
473 "\nFile system performance may be impaired.\n");
474 sblock.fs_cpc = 0;
475 goto next;
476 }
477 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
478 /*
479 * calculate the available blocks for each rotational position
480 */
481 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
482 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
483 fs_postbl(&sblock, cylno)[rpos] = -1;
484 for (i = (rotblsize - 1) * sblock.fs_frag;
485 i >= 0; i -= sblock.fs_frag) {
486 cylno = cbtocylno(&sblock, i);
487 rpos = cbtorpos(&sblock, i);
488 blk = fragstoblks(&sblock, i);
489 if (fs_postbl(&sblock, cylno)[rpos] == -1)
490 fs_rotbl(&sblock)[blk] = 0;
491 else
492 fs_rotbl(&sblock)[blk] =
493 fs_postbl(&sblock, cylno)[rpos] - blk;
494 fs_postbl(&sblock, cylno)[rpos] = blk;
495 }
496 next:
497 /*
498 * Compute/validate number of cylinder groups.
499 */
500 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
501 if (sblock.fs_ncyl % sblock.fs_cpg)
502 sblock.fs_ncg++;
503 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
504 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
505 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
506 printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
507 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
508 sblock.fs_fpg / sblock.fs_frag);
509 printf("number of cylinders per cylinder group (%d) %s.\n",
510 sblock.fs_cpg, "must be increased");
511 exit(29);
512 }
513 j = sblock.fs_ncg - 1;
514 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
515 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
516 if (j == 0) {
517 printf("Filesystem must have at least %d sectors\n",
518 NSPF(&sblock) *
519 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
520 exit(30);
521 }
522 printf("Warning: inode blocks/cyl group (%d) >= data blocks (%d) in last\n",
523 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
524 i / sblock.fs_frag);
525 printf(" cylinder group. This implies %d sector(s) cannot be allocated.\n",
526 i * NSPF(&sblock));
527 sblock.fs_ncg--;
528 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
529 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
530 NSPF(&sblock);
531 warn = 0;
532 }
533 if (warn && !mfs) {
534 printf("Warning: %d sector(s) in last cylinder unallocated\n",
535 sblock.fs_spc -
536 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
537 * sblock.fs_spc));
538 }
539 /*
540 * fill in remaining fields of the super block
541 */
542 sblock.fs_csaddr = cgdmin(&sblock, 0);
543 sblock.fs_cssize =
544 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
545 i = sblock.fs_bsize / sizeof(struct csum);
546 sblock.fs_csmask = ~(i - 1);
547 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
548 sblock.fs_csshift++;
549 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
550 sblock.fs_magic = FS_MAGIC;
551 sblock.fs_rotdelay = rotdelay;
552 sblock.fs_minfree = minfree;
553 sblock.fs_maxcontig = maxcontig;
554 sblock.fs_headswitch = headswitch;
555 sblock.fs_trkseek = trackseek;
556 sblock.fs_maxbpg = maxbpg;
557 sblock.fs_rps = rpm / 60;
558 sblock.fs_optim = opt;
559 sblock.fs_cgrotor = 0;
560 sblock.fs_cstotal.cs_ndir = 0;
561 sblock.fs_cstotal.cs_nbfree = 0;
562 sblock.fs_cstotal.cs_nifree = 0;
563 sblock.fs_cstotal.cs_nffree = 0;
564 sblock.fs_fmod = 0;
565 sblock.fs_ronly = 0;
566 /*
567 * Dump out summary information about file system.
568 */
569 if (!mfs) {
570 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
571 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
572 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
573 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
574 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
575 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
576 sblock.fs_ncg, sblock.fs_cpg,
577 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
578 sblock.fs_ipg);
579 #undef B2MBFACTOR
580 }
581 /*
582 * Now build the cylinders group blocks and
583 * then print out indices of cylinder groups.
584 */
585 if (!mfs)
586 printf("super-block backups (for fsck -b #) at:");
587 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
588 initcg(cylno, utime);
589 if (mfs)
590 continue;
591 if (cylno % 9 == 0)
592 printf("\n");
593 printf(" %d,", fsbtodb(&sblock, cgsblock(&sblock, cylno)));
594 }
595 if (!mfs)
596 printf("\n");
597 if (Nflag && !mfs)
598 exit(0);
599 /*
600 * Now construct the initial file system,
601 * then write out the super-block.
602 */
603 fsinit(utime);
604 sblock.fs_time = utime;
605 wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
606 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
607 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
608 sblock.fs_cssize - i < sblock.fs_bsize ?
609 sblock.fs_cssize - i : sblock.fs_bsize,
610 ((char *)fscs) + i);
611 /*
612 * Write out the duplicate super blocks
613 */
614 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
615 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
616 sbsize, (char *)&sblock);
617 /*
618 * Update information about this partion in pack
619 * label, to that it may be updated on disk.
620 */
621 pp->p_fstype = FS_BSDFFS;
622 pp->p_fsize = sblock.fs_fsize;
623 pp->p_frag = sblock.fs_frag;
624 pp->p_cpg = sblock.fs_cpg;
625 /*
626 * Notify parent process of success.
627 * Dissociate from session and tty.
628 */
629 if (mfs) {
630 kill(ppid, SIGUSR1);
631 (void) setsid();
632 (void) close(0);
633 (void) close(1);
634 (void) close(2);
635 (void) chdir("/");
636 }
637 }
638
639 /*
640 * Initialize a cylinder group.
641 */
642 initcg(cylno, utime)
643 int cylno;
644 time_t utime;
645 {
646 daddr_t cbase, d, dlower, dupper, dmax, blkno;
647 long i, j, s;
648 register struct csum *cs;
649
650 /*
651 * Determine block bounds for cylinder group.
652 * Allow space for super block summary information in first
653 * cylinder group.
654 */
655 cbase = cgbase(&sblock, cylno);
656 dmax = cbase + sblock.fs_fpg;
657 if (dmax > sblock.fs_size)
658 dmax = sblock.fs_size;
659 dlower = cgsblock(&sblock, cylno) - cbase;
660 dupper = cgdmin(&sblock, cylno) - cbase;
661 if (cylno == 0)
662 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
663 cs = fscs + cylno;
664 bzero(&acg, sblock.fs_cgsize);
665 acg.cg_time = utime;
666 acg.cg_magic = CG_MAGIC;
667 acg.cg_cgx = cylno;
668 if (cylno == sblock.fs_ncg - 1)
669 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
670 else
671 acg.cg_ncyl = sblock.fs_cpg;
672 acg.cg_niblk = sblock.fs_ipg;
673 acg.cg_ndblk = dmax - cbase;
674 if (sblock.fs_contigsumsize > 0)
675 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
676 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_link);
677 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(long);
678 acg.cg_iusedoff = acg.cg_boff +
679 sblock.fs_cpg * sblock.fs_nrpos * sizeof(short);
680 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
681 if (sblock.fs_contigsumsize <= 0) {
682 acg.cg_nextfreeoff = acg.cg_freeoff +
683 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
684 } else {
685 acg.cg_clustersumoff = acg.cg_freeoff + howmany
686 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
687 sizeof(long);
688 acg.cg_clustersumoff =
689 roundup(acg.cg_clustersumoff, sizeof(long));
690 acg.cg_clusteroff = acg.cg_clustersumoff +
691 (sblock.fs_contigsumsize + 1) * sizeof(long);
692 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
693 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
694 }
695 if (acg.cg_nextfreeoff - (long)(&acg.cg_link) > sblock.fs_cgsize) {
696 printf("Panic: cylinder group too big\n");
697 exit(37);
698 }
699 acg.cg_cs.cs_nifree += sblock.fs_ipg;
700 if (cylno == 0)
701 for (i = 0; i < ROOTINO; i++) {
702 setbit(cg_inosused(&acg), i);
703 acg.cg_cs.cs_nifree--;
704 }
705 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
706 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
707 sblock.fs_bsize, (char *)zino);
708 if (cylno > 0) {
709 /*
710 * In cylno 0, beginning space is reserved
711 * for boot and super blocks.
712 */
713 for (d = 0; d < dlower; d += sblock.fs_frag) {
714 blkno = d / sblock.fs_frag;
715 setblock(&sblock, cg_blksfree(&acg), blkno);
716 if (sblock.fs_contigsumsize > 0)
717 setbit(cg_clustersfree(&acg), blkno);
718 acg.cg_cs.cs_nbfree++;
719 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
720 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
721 [cbtorpos(&sblock, d)]++;
722 }
723 sblock.fs_dsize += dlower;
724 }
725 sblock.fs_dsize += acg.cg_ndblk - dupper;
726 if (i = dupper % sblock.fs_frag) {
727 acg.cg_frsum[sblock.fs_frag - i]++;
728 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
729 setbit(cg_blksfree(&acg), dupper);
730 acg.cg_cs.cs_nffree++;
731 }
732 }
733 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
734 blkno = d / sblock.fs_frag;
735 setblock(&sblock, cg_blksfree(&acg), blkno);
736 if (sblock.fs_contigsumsize > 0)
737 setbit(cg_clustersfree(&acg), blkno);
738 acg.cg_cs.cs_nbfree++;
739 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
740 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
741 [cbtorpos(&sblock, d)]++;
742 d += sblock.fs_frag;
743 }
744 if (d < dmax - cbase) {
745 acg.cg_frsum[dmax - cbase - d]++;
746 for (; d < dmax - cbase; d++) {
747 setbit(cg_blksfree(&acg), d);
748 acg.cg_cs.cs_nffree++;
749 }
750 }
751 if (sblock.fs_contigsumsize > 0) {
752 long *sump = cg_clustersum(&acg);
753 u_char *mapp = cg_clustersfree(&acg);
754 int map = *mapp++;
755 int bit = 1;
756 int run = 0;
757
758 for (i = 0; i < acg.cg_nclusterblks; i++) {
759 if ((map & bit) != 0) {
760 run++;
761 } else if (run != 0) {
762 if (run > sblock.fs_contigsumsize)
763 run = sblock.fs_contigsumsize;
764 sump[run]++;
765 run = 0;
766 }
767 if ((i & (NBBY - 1)) != (NBBY - 1)) {
768 bit <<= 1;
769 } else {
770 map = *mapp++;
771 bit = 1;
772 }
773 }
774 if (run != 0) {
775 if (run > sblock.fs_contigsumsize)
776 run = sblock.fs_contigsumsize;
777 sump[run]++;
778 }
779 }
780 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
781 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
782 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
783 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
784 *cs = acg.cg_cs;
785 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
786 sblock.fs_bsize, (char *)&acg);
787 }
788
789 /*
790 * initialize the file system
791 */
792 struct dinode node;
793
794 #ifdef LOSTDIR
795 #define PREDEFDIR 3
796 #else
797 #define PREDEFDIR 2
798 #endif
799
800 struct direct root_dir[] = {
801 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
802 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
803 #ifdef LOSTDIR
804 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
805 #endif
806 };
807 struct odirect {
808 u_long d_ino;
809 u_short d_reclen;
810 u_short d_namlen;
811 u_char d_name[MAXNAMLEN + 1];
812 } oroot_dir[] = {
813 { ROOTINO, sizeof(struct direct), 1, "." },
814 { ROOTINO, sizeof(struct direct), 2, ".." },
815 #ifdef LOSTDIR
816 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
817 #endif
818 };
819 #ifdef LOSTDIR
820 struct direct lost_found_dir[] = {
821 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
822 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
823 { 0, DIRBLKSIZ, 0, 0, 0 },
824 };
825 struct odirect olost_found_dir[] = {
826 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
827 { ROOTINO, sizeof(struct direct), 2, ".." },
828 { 0, DIRBLKSIZ, 0, 0 },
829 };
830 #endif
831 char buf[MAXBSIZE];
832
833 fsinit(utime)
834 time_t utime;
835 {
836 int i;
837
838 /*
839 * initialize the node
840 */
841 node.di_atime.ts_sec = utime;
842 node.di_mtime.ts_sec = utime;
843 node.di_ctime.ts_sec = utime;
844 #ifdef LOSTDIR
845 /*
846 * create the lost+found directory
847 */
848 if (Oflag) {
849 (void)makedir((struct direct *)olost_found_dir, 2);
850 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
851 bcopy(&olost_found_dir[2], &buf[i],
852 DIRSIZ(0, &olost_found_dir[2]));
853 } else {
854 (void)makedir(lost_found_dir, 2);
855 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
856 bcopy(&lost_found_dir[2], &buf[i],
857 DIRSIZ(0, &lost_found_dir[2]));
858 }
859 node.di_mode = IFDIR | UMASK;
860 node.di_nlink = 2;
861 node.di_size = sblock.fs_bsize;
862 node.di_db[0] = alloc(node.di_size, node.di_mode);
863 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
864 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
865 iput(&node, LOSTFOUNDINO);
866 #endif
867 /*
868 * create the root directory
869 */
870 if (mfs)
871 node.di_mode = IFDIR | 01777;
872 else
873 node.di_mode = IFDIR | UMASK;
874 node.di_nlink = PREDEFDIR;
875 if (Oflag)
876 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
877 else
878 node.di_size = makedir(root_dir, PREDEFDIR);
879 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
880 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
881 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
882 iput(&node, ROOTINO);
883 }
884
885 /*
886 * construct a set of directory entries in "buf".
887 * return size of directory.
888 */
889 makedir(protodir, entries)
890 register struct direct *protodir;
891 int entries;
892 {
893 char *cp;
894 int i, spcleft;
895
896 spcleft = DIRBLKSIZ;
897 for (cp = buf, i = 0; i < entries - 1; i++) {
898 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
899 bcopy(&protodir[i], cp, protodir[i].d_reclen);
900 cp += protodir[i].d_reclen;
901 spcleft -= protodir[i].d_reclen;
902 }
903 protodir[i].d_reclen = spcleft;
904 bcopy(&protodir[i], cp, DIRSIZ(0, &protodir[i]));
905 return (DIRBLKSIZ);
906 }
907
908 /*
909 * allocate a block or frag
910 */
911 daddr_t
912 alloc(size, mode)
913 int size;
914 int mode;
915 {
916 int i, frag;
917 daddr_t d, blkno;
918
919 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
920 (char *)&acg);
921 if (acg.cg_magic != CG_MAGIC) {
922 printf("cg 0: bad magic number\n");
923 return (0);
924 }
925 if (acg.cg_cs.cs_nbfree == 0) {
926 printf("first cylinder group ran out of space\n");
927 return (0);
928 }
929 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
930 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
931 goto goth;
932 printf("internal error: can't find block in cyl 0\n");
933 return (0);
934 goth:
935 blkno = fragstoblks(&sblock, d);
936 clrblock(&sblock, cg_blksfree(&acg), blkno);
937 clrbit(cg_clustersfree(&acg), blkno);
938 acg.cg_cs.cs_nbfree--;
939 sblock.fs_cstotal.cs_nbfree--;
940 fscs[0].cs_nbfree--;
941 if (mode & IFDIR) {
942 acg.cg_cs.cs_ndir++;
943 sblock.fs_cstotal.cs_ndir++;
944 fscs[0].cs_ndir++;
945 }
946 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
947 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
948 if (size != sblock.fs_bsize) {
949 frag = howmany(size, sblock.fs_fsize);
950 fscs[0].cs_nffree += sblock.fs_frag - frag;
951 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
952 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
953 acg.cg_frsum[sblock.fs_frag - frag]++;
954 for (i = frag; i < sblock.fs_frag; i++)
955 setbit(cg_blksfree(&acg), d + i);
956 }
957 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
958 (char *)&acg);
959 return (d);
960 }
961
962 /*
963 * Allocate an inode on the disk
964 */
965 iput(ip, ino)
966 register struct dinode *ip;
967 register ino_t ino;
968 {
969 struct dinode buf[MAXINOPB];
970 daddr_t d;
971 int c;
972
973 c = ino_to_cg(&sblock, ino);
974 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
975 (char *)&acg);
976 if (acg.cg_magic != CG_MAGIC) {
977 printf("cg 0: bad magic number\n");
978 exit(31);
979 }
980 acg.cg_cs.cs_nifree--;
981 setbit(cg_inosused(&acg), ino);
982 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
983 (char *)&acg);
984 sblock.fs_cstotal.cs_nifree--;
985 fscs[0].cs_nifree--;
986 if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
987 printf("fsinit: inode value out of range (%d).\n", ino);
988 exit(32);
989 }
990 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
991 rdfs(d, sblock.fs_bsize, buf);
992 buf[ino_to_fsbo(&sblock, ino)] = *ip;
993 wtfs(d, sblock.fs_bsize, buf);
994 }
995
996 /*
997 * Notify parent process that the filesystem has created itself successfully.
998 */
999 void
1000 started()
1001 {
1002
1003 exit(0);
1004 }
1005
1006 /*
1007 * Replace libc function with one suited to our needs.
1008 */
1009 caddr_t
1010 malloc(size)
1011 register u_long size;
1012 {
1013 char *base, *i;
1014 static u_long pgsz;
1015 struct rlimit rlp;
1016
1017 if (pgsz == 0) {
1018 base = sbrk(0);
1019 pgsz = getpagesize() - 1;
1020 i = (char *)((u_long)(base + pgsz) &~ pgsz);
1021 base = sbrk(i - base);
1022 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1023 perror("getrlimit");
1024 rlp.rlim_cur = rlp.rlim_max;
1025 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1026 perror("setrlimit");
1027 memleft = rlp.rlim_max - (u_long)base;
1028 }
1029 size = (size + pgsz) &~ pgsz;
1030 if (size > memleft)
1031 size = memleft;
1032 memleft -= size;
1033 if (size == 0)
1034 return (0);
1035 return ((caddr_t)sbrk(size));
1036 }
1037
1038 /*
1039 * Replace libc function with one suited to our needs.
1040 */
1041 caddr_t
1042 realloc(ptr, size)
1043 char *ptr;
1044 u_long size;
1045 {
1046 void *p;
1047
1048 if ((p = malloc(size)) == NULL)
1049 return (NULL);
1050 bcopy(ptr, p, size);
1051 free(ptr);
1052 return (p);
1053 }
1054
1055 /*
1056 * Replace libc function with one suited to our needs.
1057 */
1058 char *
1059 calloc(size, numelm)
1060 u_long size, numelm;
1061 {
1062 caddr_t base;
1063
1064 size *= numelm;
1065 base = malloc(size);
1066 bzero(base, size);
1067 return (base);
1068 }
1069
1070 /*
1071 * Replace libc function with one suited to our needs.
1072 */
1073 free(ptr)
1074 char *ptr;
1075 {
1076
1077 /* do not worry about it for now */
1078 }
1079
1080 /*
1081 * read a block from the file system
1082 */
1083 rdfs(bno, size, bf)
1084 daddr_t bno;
1085 int size;
1086 char *bf;
1087 {
1088 int n;
1089
1090 if (mfs) {
1091 bcopy(membase + bno * sectorsize, bf, size);
1092 return;
1093 }
1094 if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) {
1095 printf("seek error: %ld\n", bno);
1096 perror("rdfs");
1097 exit(33);
1098 }
1099 n = read(fsi, bf, size);
1100 if (n != size) {
1101 printf("read error: %ld\n", bno);
1102 perror("rdfs");
1103 exit(34);
1104 }
1105 }
1106
1107 /*
1108 * write a block to the file system
1109 */
1110 wtfs(bno, size, bf)
1111 daddr_t bno;
1112 int size;
1113 char *bf;
1114 {
1115 int n;
1116
1117 if (mfs) {
1118 bcopy(bf, membase + bno * sectorsize, size);
1119 return;
1120 }
1121 if (Nflag)
1122 return;
1123 if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
1124 printf("seek error: %ld\n", bno);
1125 perror("wtfs");
1126 exit(35);
1127 }
1128 n = write(fso, bf, size);
1129 if (n != size) {
1130 printf("write error: %ld\n", bno);
1131 perror("wtfs");
1132 exit(36);
1133 }
1134 }
1135
1136 /*
1137 * check if a block is available
1138 */
1139 isblock(fs, cp, h)
1140 struct fs *fs;
1141 unsigned char *cp;
1142 int h;
1143 {
1144 unsigned char mask;
1145
1146 switch (fs->fs_frag) {
1147 case 8:
1148 return (cp[h] == 0xff);
1149 case 4:
1150 mask = 0x0f << ((h & 0x1) << 2);
1151 return ((cp[h >> 1] & mask) == mask);
1152 case 2:
1153 mask = 0x03 << ((h & 0x3) << 1);
1154 return ((cp[h >> 2] & mask) == mask);
1155 case 1:
1156 mask = 0x01 << (h & 0x7);
1157 return ((cp[h >> 3] & mask) == mask);
1158 default:
1159 #ifdef STANDALONE
1160 printf("isblock bad fs_frag %d\n", fs->fs_frag);
1161 #else
1162 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1163 #endif
1164 return (0);
1165 }
1166 }
1167
1168 /*
1169 * take a block out of the map
1170 */
1171 clrblock(fs, cp, h)
1172 struct fs *fs;
1173 unsigned char *cp;
1174 int h;
1175 {
1176 switch ((fs)->fs_frag) {
1177 case 8:
1178 cp[h] = 0;
1179 return;
1180 case 4:
1181 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1182 return;
1183 case 2:
1184 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1185 return;
1186 case 1:
1187 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1188 return;
1189 default:
1190 #ifdef STANDALONE
1191 printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1192 #else
1193 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1194 #endif
1195 return;
1196 }
1197 }
1198
1199 /*
1200 * put a block into the map
1201 */
1202 setblock(fs, cp, h)
1203 struct fs *fs;
1204 unsigned char *cp;
1205 int h;
1206 {
1207 switch (fs->fs_frag) {
1208 case 8:
1209 cp[h] = 0xff;
1210 return;
1211 case 4:
1212 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1213 return;
1214 case 2:
1215 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1216 return;
1217 case 1:
1218 cp[h >> 3] |= (0x01 << (h & 0x7));
1219 return;
1220 default:
1221 #ifdef STANDALONE
1222 printf("setblock bad fs_frag %d\n", fs->fs_frag);
1223 #else
1224 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1225 #endif
1226 return;
1227 }
1228 }
1229