1 1.58 chs /* $NetBSD: resize_ffs.c,v 1.58 2023/01/07 19:41:30 chs Exp $ */ 2 1.1 jtk /* From sources sent on February 17, 2003 */ 3 1.1 jtk /*- 4 1.1 jtk * As its sole author, I explicitly place this code in the public 5 1.1 jtk * domain. Anyone may use it for any purpose (though I would 6 1.1 jtk * appreciate credit where it is due). 7 1.1 jtk * 8 1.1 jtk * der Mouse 9 1.1 jtk * 10 1.1 jtk * mouse (at) rodents.montreal.qc.ca 11 1.1 jtk * 7D C8 61 52 5D E7 2D 39 4E F1 31 3E E8 B3 27 4B 12 1.1 jtk */ 13 1.1 jtk /* 14 1.3 wiz * resize_ffs: 15 1.1 jtk * 16 1.24 wiz * Resize a file system. Is capable of both growing and shrinking. 17 1.1 jtk * 18 1.24 wiz * Usage: resize_ffs [-s newsize] [-y] file_system 19 1.1 jtk * 20 1.15 riz * Example: resize_ffs -s 29574 /dev/rsd1e 21 1.1 jtk * 22 1.1 jtk * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes 23 1.1 jtk * each). 24 1.1 jtk * 25 1.1 jtk * Note: this currently requires gcc to build, since it is written 26 1.1 jtk * depending on gcc-specific features, notably nested function 27 1.1 jtk * definitions (which in at least a few cases depend on the lexical 28 1.1 jtk * scoping gcc provides, so they can't be trivially moved outside). 29 1.1 jtk * 30 1.5 salo * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the 31 1.1 jtk * one responsible for the "realloccgblk: can't find blk in cyl" 32 1.1 jtk * problem and a more minor one which left fs_dsize wrong when 33 1.1 jtk * shrinking. (These actually indicate bugs in fsck too - it should 34 1.1 jtk * have caught and fixed them.) 35 1.1 jtk * 36 1.1 jtk */ 37 1.1 jtk 38 1.11 perry #include <sys/cdefs.h> 39 1.58 chs __RCSID("$NetBSD: resize_ffs.c,v 1.58 2023/01/07 19:41:30 chs Exp $"); 40 1.29 dholland 41 1.13 haad #include <sys/disk.h> 42 1.13 haad #include <sys/disklabel.h> 43 1.13 haad #include <sys/dkio.h> 44 1.13 haad #include <sys/ioctl.h> 45 1.1 jtk #include <sys/stat.h> 46 1.1 jtk #include <sys/mman.h> 47 1.1 jtk #include <sys/param.h> /* MAXFRAG */ 48 1.1 jtk #include <ufs/ffs/fs.h> 49 1.25 riz #include <ufs/ffs/ffs_extern.h> 50 1.1 jtk #include <ufs/ufs/dir.h> 51 1.1 jtk #include <ufs/ufs/dinode.h> 52 1.1 jtk #include <ufs/ufs/ufs_bswap.h> /* ufs_rw32 */ 53 1.1 jtk 54 1.15 riz #include <err.h> 55 1.15 riz #include <errno.h> 56 1.15 riz #include <fcntl.h> 57 1.15 riz #include <stdio.h> 58 1.15 riz #include <stdlib.h> 59 1.15 riz #include <strings.h> 60 1.15 riz #include <unistd.h> 61 1.55 jmcneill #include <util.h> 62 1.15 riz 63 1.44 jmcneill #include "progress.h" 64 1.44 jmcneill 65 1.24 wiz /* new size of file system, in sectors */ 66 1.30 dholland static int64_t newsize; 67 1.1 jtk 68 1.23 riz /* fd open onto disk device or file */ 69 1.1 jtk static int fd; 70 1.1 jtk 71 1.44 jmcneill /* disk device or file path */ 72 1.55 jmcneill const char *special; 73 1.44 jmcneill 74 1.1 jtk /* must we break up big I/O operations - see checksmallio() */ 75 1.1 jtk static int smallio; 76 1.1 jtk 77 1.1 jtk /* size of a cg, in bytes, rounded up to a frag boundary */ 78 1.1 jtk static int cgblksz; 79 1.1 jtk 80 1.4 christos /* possible superblock localtions */ 81 1.4 christos static int search[] = SBLOCKSEARCH; 82 1.4 christos /* location of the superblock */ 83 1.4 christos static off_t where; 84 1.4 christos 85 1.1 jtk /* Superblocks. */ 86 1.1 jtk static struct fs *oldsb; /* before we started */ 87 1.1 jtk static struct fs *newsb; /* copy to work with */ 88 1.1 jtk /* Buffer to hold the above. Make sure it's aligned correctly. */ 89 1.15 riz static char sbbuf[2 * SBLOCKSIZE] 90 1.15 riz __attribute__((__aligned__(__alignof__(struct fs)))); 91 1.1 jtk 92 1.25 riz union dinode { 93 1.25 riz struct ufs1_dinode dp1; 94 1.25 riz struct ufs2_dinode dp2; 95 1.25 riz }; 96 1.25 riz #define DIP(dp, field) \ 97 1.25 riz ((is_ufs2) ? \ 98 1.25 riz (dp)->dp2.field : (dp)->dp1.field) 99 1.25 riz 100 1.25 riz #define DIP_ASSIGN(dp, field, value) \ 101 1.25 riz do { \ 102 1.25 riz if (is_ufs2) \ 103 1.25 riz (dp)->dp2.field = (value); \ 104 1.25 riz else \ 105 1.25 riz (dp)->dp1.field = (value); \ 106 1.25 riz } while (0) 107 1.25 riz 108 1.1 jtk /* a cg's worth of brand new squeaky-clean inodes */ 109 1.47 dholland static struct ufs1_dinode *zinodes1; 110 1.47 dholland static struct ufs2_dinode *zinodes2; 111 1.1 jtk 112 1.1 jtk /* pointers to the in-core cgs, read off disk and possibly modified */ 113 1.1 jtk static struct cg **cgs; 114 1.1 jtk 115 1.1 jtk /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */ 116 1.1 jtk static struct csum *csums; 117 1.1 jtk 118 1.1 jtk /* per-cg flags, indexed by cg number */ 119 1.1 jtk static unsigned char *cgflags; 120 1.1 jtk #define CGF_DIRTY 0x01 /* needs to be written to disk */ 121 1.1 jtk #define CGF_BLKMAPS 0x02 /* block bitmaps need rebuilding */ 122 1.1 jtk #define CGF_INOMAPS 0x04 /* inode bitmaps need rebuilding */ 123 1.1 jtk 124 1.1 jtk /* when shrinking, these two arrays record how we want blocks to move. */ 125 1.1 jtk /* if blkmove[i] is j, the frag that started out as frag #i should end */ 126 1.1 jtk /* up as frag #j. inomove[i]=j means, similarly, that the inode that */ 127 1.1 jtk /* started out as inode i should end up as inode j. */ 128 1.1 jtk static unsigned int *blkmove; 129 1.1 jtk static unsigned int *inomove; 130 1.1 jtk 131 1.1 jtk /* in-core copies of all inodes in the fs, indexed by inumber */ 132 1.25 riz union dinode *inodes; 133 1.25 riz 134 1.25 riz void *ibuf; /* ptr to fs block-sized buffer for reading/writing inodes */ 135 1.25 riz 136 1.25 riz /* byteswapped inodes */ 137 1.25 riz union dinode *sinodes; 138 1.1 jtk 139 1.1 jtk /* per-inode flags, indexed by inumber */ 140 1.1 jtk static unsigned char *iflags; 141 1.1 jtk #define IF_DIRTY 0x01 /* needs to be written to disk */ 142 1.1 jtk #define IF_BDIRTY 0x02 /* like DIRTY, but is set on first inode in a 143 1.1 jtk * block of inodes, and applies to the whole 144 1.1 jtk * block. */ 145 1.1 jtk 146 1.15 riz /* resize_ffs works directly on dinodes, adapt blksize() */ 147 1.30 dholland #define dblksize(fs, dip, lbn, filesize) \ 148 1.37 dholland (((lbn) >= UFS_NDADDR || (uint64_t)(filesize) >= ffs_lblktosize(fs, (lbn) + 1)) \ 149 1.25 riz ? (fs)->fs_bsize \ 150 1.37 dholland : (ffs_fragroundup(fs, ffs_blkoff(fs, (filesize))))) 151 1.4 christos 152 1.4 christos 153 1.4 christos /* 154 1.25 riz * Number of disk sectors per block/fragment 155 1.28 dholland */ 156 1.36 dholland #define NSPB(fs) (FFS_FSBTODB((fs),1) << (fs)->fs_fragshift) 157 1.36 dholland #define NSPF(fs) (FFS_FSBTODB((fs),1)) 158 1.4 christos 159 1.23 riz /* global flags */ 160 1.23 riz int is_ufs2 = 0; 161 1.23 riz int needswap = 0; 162 1.41 chopps int verbose = 0; 163 1.44 jmcneill int progress = 0; 164 1.23 riz 165 1.13 haad static void usage(void) __dead; 166 1.13 haad 167 1.1 jtk /* 168 1.1 jtk * See if we need to break up large I/O operations. This should never 169 1.1 jtk * be needed, but under at least one <version,platform> combination, 170 1.1 jtk * large enough disk transfers to the raw device hang. So if we're 171 1.1 jtk * talking to a character special device, play it safe; in this case, 172 1.1 jtk * readat() and writeat() break everything up into pieces no larger 173 1.1 jtk * than 8K, doing multiple syscalls for larger operations. 174 1.1 jtk */ 175 1.1 jtk static void 176 1.1 jtk checksmallio(void) 177 1.1 jtk { 178 1.1 jtk struct stat stb; 179 1.1 jtk 180 1.1 jtk fstat(fd, &stb); 181 1.1 jtk smallio = ((stb.st_mode & S_IFMT) == S_IFCHR); 182 1.1 jtk } 183 1.19 riz 184 1.19 riz static int 185 1.19 riz isplainfile(void) 186 1.19 riz { 187 1.19 riz struct stat stb; 188 1.19 riz 189 1.19 riz fstat(fd, &stb); 190 1.19 riz return S_ISREG(stb.st_mode); 191 1.19 riz } 192 1.1 jtk /* 193 1.1 jtk * Read size bytes starting at blkno into buf. blkno is in DEV_BSIZE 194 1.36 dholland * units, ie, after FFS_FSBTODB(); size is in bytes. 195 1.1 jtk */ 196 1.1 jtk static void 197 1.1 jtk readat(off_t blkno, void *buf, int size) 198 1.1 jtk { 199 1.1 jtk /* Seek to the correct place. */ 200 1.4 christos if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0) 201 1.15 riz err(EXIT_FAILURE, "lseek failed"); 202 1.4 christos 203 1.1 jtk /* See if we have to break up the transfer... */ 204 1.1 jtk if (smallio) { 205 1.1 jtk char *bp; /* pointer into buf */ 206 1.1 jtk int left; /* bytes left to go */ 207 1.1 jtk int n; /* number to do this time around */ 208 1.1 jtk int rv; /* syscall return value */ 209 1.1 jtk bp = buf; 210 1.1 jtk left = size; 211 1.1 jtk while (left > 0) { 212 1.1 jtk n = (left > 8192) ? 8192 : left; 213 1.1 jtk rv = read(fd, bp, n); 214 1.4 christos if (rv < 0) 215 1.13 haad err(EXIT_FAILURE, "read failed"); 216 1.4 christos if (rv != n) 217 1.15 riz errx(EXIT_FAILURE, 218 1.15 riz "read: wanted %d, got %d", n, rv); 219 1.1 jtk bp += n; 220 1.1 jtk left -= n; 221 1.1 jtk } 222 1.1 jtk } else { 223 1.1 jtk int rv; 224 1.1 jtk rv = read(fd, buf, size); 225 1.4 christos if (rv < 0) 226 1.13 haad err(EXIT_FAILURE, "read failed"); 227 1.4 christos if (rv != size) 228 1.25 riz errx(EXIT_FAILURE, "read: wanted %d, got %d", 229 1.25 riz size, rv); 230 1.1 jtk } 231 1.1 jtk } 232 1.1 jtk /* 233 1.1 jtk * Write size bytes from buf starting at blkno. blkno is in DEV_BSIZE 234 1.36 dholland * units, ie, after FFS_FSBTODB(); size is in bytes. 235 1.1 jtk */ 236 1.1 jtk static void 237 1.1 jtk writeat(off_t blkno, const void *buf, int size) 238 1.1 jtk { 239 1.1 jtk /* Seek to the correct place. */ 240 1.4 christos if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0) 241 1.13 haad err(EXIT_FAILURE, "lseek failed"); 242 1.1 jtk /* See if we have to break up the transfer... */ 243 1.1 jtk if (smallio) { 244 1.1 jtk const char *bp; /* pointer into buf */ 245 1.1 jtk int left; /* bytes left to go */ 246 1.1 jtk int n; /* number to do this time around */ 247 1.1 jtk int rv; /* syscall return value */ 248 1.1 jtk bp = buf; 249 1.1 jtk left = size; 250 1.1 jtk while (left > 0) { 251 1.1 jtk n = (left > 8192) ? 8192 : left; 252 1.1 jtk rv = write(fd, bp, n); 253 1.4 christos if (rv < 0) 254 1.13 haad err(EXIT_FAILURE, "write failed"); 255 1.4 christos if (rv != n) 256 1.15 riz errx(EXIT_FAILURE, 257 1.15 riz "write: wanted %d, got %d", n, rv); 258 1.1 jtk bp += n; 259 1.1 jtk left -= n; 260 1.1 jtk } 261 1.1 jtk } else { 262 1.1 jtk int rv; 263 1.1 jtk rv = write(fd, buf, size); 264 1.4 christos if (rv < 0) 265 1.13 haad err(EXIT_FAILURE, "write failed"); 266 1.4 christos if (rv != size) 267 1.15 riz errx(EXIT_FAILURE, 268 1.15 riz "write: wanted %d, got %d", size, rv); 269 1.1 jtk } 270 1.1 jtk } 271 1.1 jtk /* 272 1.1 jtk * Never-fail versions of malloc() and realloc(), and an allocation 273 1.1 jtk * routine (which also never fails) for allocating memory that will 274 1.1 jtk * never be freed until exit. 275 1.1 jtk */ 276 1.1 jtk 277 1.1 jtk /* 278 1.1 jtk * Never-fail malloc. 279 1.1 jtk */ 280 1.1 jtk static void * 281 1.1 jtk nfmalloc(size_t nb, const char *tag) 282 1.1 jtk { 283 1.1 jtk void *rv; 284 1.1 jtk 285 1.1 jtk rv = malloc(nb); 286 1.1 jtk if (rv) 287 1.1 jtk return (rv); 288 1.13 haad err(EXIT_FAILURE, "Can't allocate %lu bytes for %s", 289 1.4 christos (unsigned long int) nb, tag); 290 1.1 jtk } 291 1.1 jtk /* 292 1.1 jtk * Never-fail realloc. 293 1.1 jtk */ 294 1.1 jtk static void * 295 1.1 jtk nfrealloc(void *blk, size_t nb, const char *tag) 296 1.1 jtk { 297 1.1 jtk void *rv; 298 1.1 jtk 299 1.1 jtk rv = realloc(blk, nb); 300 1.1 jtk if (rv) 301 1.1 jtk return (rv); 302 1.13 haad err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s", 303 1.4 christos (unsigned long int) nb, tag); 304 1.1 jtk } 305 1.1 jtk /* 306 1.1 jtk * Allocate memory that will never be freed or reallocated. Arguably 307 1.1 jtk * this routine should handle small allocations by chopping up pages, 308 1.1 jtk * but that's not worth the bother; it's not called more than a 309 1.1 jtk * handful of times per run, and if the allocations are that small the 310 1.1 jtk * waste in giving each one its own page is ignorable. 311 1.1 jtk */ 312 1.1 jtk static void * 313 1.1 jtk alloconce(size_t nb, const char *tag) 314 1.1 jtk { 315 1.1 jtk void *rv; 316 1.1 jtk 317 1.1 jtk rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); 318 1.1 jtk if (rv != MAP_FAILED) 319 1.1 jtk return (rv); 320 1.13 haad err(EXIT_FAILURE, "Can't map %lu bytes for %s", 321 1.4 christos (unsigned long int) nb, tag); 322 1.1 jtk } 323 1.1 jtk /* 324 1.1 jtk * Load the cgs and csums off disk. Also allocates the space to load 325 1.1 jtk * them into and initializes the per-cg flags. 326 1.1 jtk */ 327 1.1 jtk static void 328 1.1 jtk loadcgs(void) 329 1.1 jtk { 330 1.58 chs uint32_t cg; 331 1.1 jtk char *cgp; 332 1.1 jtk 333 1.1 jtk cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize); 334 1.32 christos cgs = nfmalloc(oldsb->fs_ncg * sizeof(*cgs), "cg pointers"); 335 1.1 jtk cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs"); 336 1.1 jtk cgflags = nfmalloc(oldsb->fs_ncg, "cg flags"); 337 1.1 jtk csums = nfmalloc(oldsb->fs_cssize, "cg summary"); 338 1.1 jtk for (cg = 0; cg < oldsb->fs_ncg; cg++) { 339 1.1 jtk cgs[cg] = (struct cg *) cgp; 340 1.36 dholland readat(FFS_FSBTODB(oldsb, cgtod(oldsb, cg)), cgp, cgblksz); 341 1.25 riz if (needswap) 342 1.25 riz ffs_cg_swap(cgs[cg],cgs[cg],oldsb); 343 1.1 jtk cgflags[cg] = 0; 344 1.1 jtk cgp += cgblksz; 345 1.1 jtk } 346 1.36 dholland readat(FFS_FSBTODB(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize); 347 1.25 riz if (needswap) 348 1.25 riz ffs_csum_swap(csums,csums,oldsb->fs_cssize); 349 1.1 jtk } 350 1.1 jtk /* 351 1.1 jtk * Set n bits, starting with bit #base, in the bitmap pointed to by 352 1.1 jtk * bitvec (which is assumed to be large enough to include bits base 353 1.1 jtk * through base+n-1). 354 1.1 jtk */ 355 1.1 jtk static void 356 1.1 jtk set_bits(unsigned char *bitvec, unsigned int base, unsigned int n) 357 1.1 jtk { 358 1.1 jtk if (n < 1) 359 1.1 jtk return; /* nothing to do */ 360 1.1 jtk if (base & 7) { /* partial byte at beginning */ 361 1.1 jtk if (n <= 8 - (base & 7)) { /* entirely within one byte */ 362 1.1 jtk bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7); 363 1.1 jtk return; 364 1.1 jtk } 365 1.1 jtk bitvec[base >> 3] |= (~0U) << (base & 7); 366 1.1 jtk n -= 8 - (base & 7); 367 1.1 jtk base = (base & ~7) + 8; 368 1.1 jtk } 369 1.1 jtk if (n >= 8) { /* do full bytes */ 370 1.1 jtk memset(bitvec + (base >> 3), 0xff, n >> 3); 371 1.1 jtk base += n & ~7; 372 1.1 jtk n &= 7; 373 1.1 jtk } 374 1.1 jtk if (n) { /* partial byte at end */ 375 1.1 jtk bitvec[base >> 3] |= ~((~0U) << n); 376 1.1 jtk } 377 1.1 jtk } 378 1.1 jtk /* 379 1.1 jtk * Clear n bits, starting with bit #base, in the bitmap pointed to by 380 1.1 jtk * bitvec (which is assumed to be large enough to include bits base 381 1.1 jtk * through base+n-1). Code parallels set_bits(). 382 1.1 jtk */ 383 1.1 jtk static void 384 1.1 jtk clr_bits(unsigned char *bitvec, int base, int n) 385 1.1 jtk { 386 1.1 jtk if (n < 1) 387 1.1 jtk return; 388 1.1 jtk if (base & 7) { 389 1.1 jtk if (n <= 8 - (base & 7)) { 390 1.1 jtk bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7)); 391 1.1 jtk return; 392 1.1 jtk } 393 1.1 jtk bitvec[base >> 3] &= ~((~0U) << (base & 7)); 394 1.1 jtk n -= 8 - (base & 7); 395 1.1 jtk base = (base & ~7) + 8; 396 1.1 jtk } 397 1.1 jtk if (n >= 8) { 398 1.25 riz memset(bitvec + (base >> 3), 0, n >> 3); 399 1.1 jtk base += n & ~7; 400 1.1 jtk n &= 7; 401 1.1 jtk } 402 1.1 jtk if (n) { 403 1.1 jtk bitvec[base >> 3] &= (~0U) << n; 404 1.1 jtk } 405 1.1 jtk } 406 1.1 jtk /* 407 1.1 jtk * Test whether bit #bit is set in the bitmap pointed to by bitvec. 408 1.1 jtk */ 409 1.13 haad static int 410 1.1 jtk bit_is_set(unsigned char *bitvec, int bit) 411 1.1 jtk { 412 1.1 jtk return (bitvec[bit >> 3] & (1 << (bit & 7))); 413 1.1 jtk } 414 1.1 jtk /* 415 1.1 jtk * Test whether bit #bit is clear in the bitmap pointed to by bitvec. 416 1.1 jtk */ 417 1.13 haad static int 418 1.1 jtk bit_is_clr(unsigned char *bitvec, int bit) 419 1.1 jtk { 420 1.1 jtk return (!bit_is_set(bitvec, bit)); 421 1.1 jtk } 422 1.1 jtk /* 423 1.1 jtk * Test whether a whole block of bits is set in a bitmap. This is 424 1.1 jtk * designed for testing (aligned) disk blocks in a bit-per-frag 425 1.1 jtk * bitmap; it has assumptions wired into it based on that, essentially 426 1.1 jtk * that the entire block fits into a single byte. This returns true 427 1.1 jtk * iff _all_ the bits are set; it is not just the complement of 428 1.1 jtk * blk_is_clr on the same arguments (unless blkfrags==1). 429 1.1 jtk */ 430 1.13 haad static int 431 1.1 jtk blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags) 432 1.1 jtk { 433 1.1 jtk unsigned int mask; 434 1.1 jtk 435 1.1 jtk mask = (~((~0U) << blkfrags)) << (blkbase & 7); 436 1.1 jtk return ((bitvec[blkbase >> 3] & mask) == mask); 437 1.1 jtk } 438 1.1 jtk /* 439 1.1 jtk * Test whether a whole block of bits is clear in a bitmap. See 440 1.1 jtk * blk_is_set (above) for assumptions. This returns true iff _all_ 441 1.1 jtk * the bits are clear; it is not just the complement of blk_is_set on 442 1.1 jtk * the same arguments (unless blkfrags==1). 443 1.1 jtk */ 444 1.13 haad static int 445 1.1 jtk blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags) 446 1.1 jtk { 447 1.1 jtk unsigned int mask; 448 1.1 jtk 449 1.1 jtk mask = (~((~0U) << blkfrags)) << (blkbase & 7); 450 1.1 jtk return ((bitvec[blkbase >> 3] & mask) == 0); 451 1.1 jtk } 452 1.1 jtk /* 453 1.1 jtk * Initialize a new cg. Called when growing. Assumes memory has been 454 1.1 jtk * allocated but not otherwise set up. This code sets the fields of 455 1.1 jtk * the cg, initializes the bitmaps (and cluster summaries, if 456 1.1 jtk * applicable), updates both per-cylinder summary info and the global 457 1.1 jtk * summary info in newsb; it also writes out new inodes for the cg. 458 1.1 jtk * 459 1.1 jtk * This code knows it can never be called for cg 0, which makes it a 460 1.1 jtk * bit simpler than it would otherwise be. 461 1.1 jtk */ 462 1.1 jtk static void 463 1.58 chs initcg(uint32_t cgn) 464 1.1 jtk { 465 1.1 jtk struct cg *cg; /* The in-core cg, of course */ 466 1.48 sborrill int64_t base; /* Disk address of cg base */ 467 1.48 sborrill int64_t dlow; /* Size of pre-cg data area */ 468 1.48 sborrill int64_t dhigh; /* Offset of post-inode data area, from base */ 469 1.48 sborrill int64_t dmax; /* Offset of end of post-inode data area */ 470 1.1 jtk int i; /* Generic loop index */ 471 1.1 jtk int n; /* Generic count */ 472 1.25 riz int start; /* start of cg maps */ 473 1.1 jtk 474 1.1 jtk cg = cgs[cgn]; 475 1.1 jtk /* Place the data areas */ 476 1.1 jtk base = cgbase(newsb, cgn); 477 1.1 jtk dlow = cgsblock(newsb, cgn) - base; 478 1.1 jtk dhigh = cgdmin(newsb, cgn) - base; 479 1.1 jtk dmax = newsb->fs_size - base; 480 1.1 jtk if (dmax > newsb->fs_fpg) 481 1.1 jtk dmax = newsb->fs_fpg; 482 1.51 mlelstv start = (unsigned char *)&cg->cg_space[0] - (unsigned char *) cg; 483 1.1 jtk /* 484 1.1 jtk * Clear out the cg - assumes all-0-bytes is the correct way 485 1.1 jtk * to initialize fields we don't otherwise touch, which is 486 1.1 jtk * perhaps not the right thing to do, but it's what fsck and 487 1.1 jtk * mkfs do. 488 1.1 jtk */ 489 1.25 riz memset(cg, 0, newsb->fs_cgsize); 490 1.20 mhitch if (newsb->fs_old_flags & FS_FLAGS_UPDATED) 491 1.20 mhitch cg->cg_time = newsb->fs_time; 492 1.1 jtk cg->cg_magic = CG_MAGIC; 493 1.1 jtk cg->cg_cgx = cgn; 494 1.25 riz cg->cg_niblk = newsb->fs_ipg; 495 1.25 riz cg->cg_ndblk = dmax; 496 1.25 riz 497 1.25 riz if (is_ufs2) { 498 1.25 riz cg->cg_time = newsb->fs_time; 499 1.35 dholland cg->cg_initediblk = newsb->fs_ipg < 2 * FFS_INOPB(newsb) ? 500 1.35 dholland newsb->fs_ipg : 2 * FFS_INOPB(newsb); 501 1.25 riz cg->cg_iusedoff = start; 502 1.25 riz } else { 503 1.25 riz cg->cg_old_time = newsb->fs_time; 504 1.25 riz cg->cg_old_niblk = cg->cg_niblk; 505 1.25 riz cg->cg_niblk = 0; 506 1.25 riz cg->cg_initediblk = 0; 507 1.28 dholland 508 1.28 dholland 509 1.25 riz cg->cg_old_ncyl = newsb->fs_old_cpg; 510 1.25 riz /* Update the cg_old_ncyl value for the last cylinder. */ 511 1.25 riz if (cgn == newsb->fs_ncg - 1) { 512 1.25 riz if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) 513 1.25 riz cg->cg_old_ncyl = newsb->fs_old_ncyl % 514 1.25 riz newsb->fs_old_cpg; 515 1.25 riz } 516 1.25 riz 517 1.25 riz /* Set up the bitmap pointers. We have to be careful 518 1.25 riz * to lay out the cg _exactly_ the way mkfs and fsck 519 1.25 riz * do it, since fsck compares the _entire_ cg against 520 1.25 riz * a recomputed cg, and whines if there is any 521 1.25 riz * mismatch, including the bitmap offsets. */ 522 1.25 riz /* XXX update this comment when fsck is fixed */ 523 1.25 riz cg->cg_old_btotoff = start; 524 1.25 riz cg->cg_old_boff = cg->cg_old_btotoff 525 1.25 riz + (newsb->fs_old_cpg * sizeof(int32_t)); 526 1.25 riz cg->cg_iusedoff = cg->cg_old_boff + 527 1.25 riz (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t)); 528 1.1 jtk } 529 1.1 jtk cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY); 530 1.1 jtk if (newsb->fs_contigsumsize > 0) { 531 1.1 jtk cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag; 532 1.1 jtk cg->cg_clustersumoff = cg->cg_freeoff + 533 1.25 riz howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t); 534 1.1 jtk cg->cg_clustersumoff = 535 1.1 jtk roundup(cg->cg_clustersumoff, sizeof(int32_t)); 536 1.1 jtk cg->cg_clusteroff = cg->cg_clustersumoff + 537 1.1 jtk ((newsb->fs_contigsumsize + 1) * sizeof(int32_t)); 538 1.1 jtk cg->cg_nextfreeoff = cg->cg_clusteroff + 539 1.38 dholland howmany(ffs_fragstoblks(newsb,newsb->fs_fpg), NBBY); 540 1.1 jtk n = dlow / newsb->fs_frag; 541 1.1 jtk if (n > 0) { 542 1.1 jtk set_bits(cg_clustersfree(cg, 0), 0, n); 543 1.1 jtk cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ? 544 1.1 jtk newsb->fs_contigsumsize : n]++; 545 1.1 jtk } 546 1.1 jtk } else { 547 1.1 jtk cg->cg_nextfreeoff = cg->cg_freeoff + 548 1.25 riz howmany(newsb->fs_fpg, NBBY); 549 1.1 jtk } 550 1.1 jtk /* Mark the data areas as free; everything else is marked busy by the 551 1.25 riz * memset() up at the top. */ 552 1.1 jtk set_bits(cg_blksfree(cg, 0), 0, dlow); 553 1.1 jtk set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh); 554 1.1 jtk /* Initialize summary info */ 555 1.1 jtk cg->cg_cs.cs_ndir = 0; 556 1.1 jtk cg->cg_cs.cs_nifree = newsb->fs_ipg; 557 1.1 jtk cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag; 558 1.1 jtk cg->cg_cs.cs_nffree = 0; 559 1.28 dholland 560 1.25 riz /* This is the simplest way of doing this; we perhaps could 561 1.25 riz * compute the correct cg_blktot()[] and cg_blks()[] values 562 1.25 riz * other ways, but it would be complicated and hardly seems 563 1.25 riz * worth the effort. (The reason there isn't 564 1.25 riz * frag-at-beginning and frag-at-end code here, like the code 565 1.25 riz * below for the post-inode data area, is that the pre-sb data 566 1.25 riz * area always starts at 0, and thus is block-aligned, and 567 1.25 riz * always ends at the sb, which is block-aligned.) */ 568 1.50 kre if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 569 1.49 riastrad int64_t di; 570 1.50 kre 571 1.49 riastrad for (di = 0; di < dlow; di += newsb->fs_frag) { 572 1.49 riastrad old_cg_blktot(cg, 0)[old_cbtocylno(newsb, di)]++; 573 1.25 riz old_cg_blks(newsb, cg, 574 1.49 riastrad old_cbtocylno(newsb, di), 575 1.49 riastrad 0)[old_cbtorpos(newsb, di)]++; 576 1.25 riz } 577 1.50 kre } 578 1.1 jtk 579 1.1 jtk /* Deal with a partial block at the beginning of the post-inode area. 580 1.1 jtk * I'm not convinced this can happen - I think the inodes are always 581 1.1 jtk * block-aligned and always an integral number of blocks - but it's 582 1.1 jtk * cheap to do the right thing just in case. */ 583 1.1 jtk if (dhigh % newsb->fs_frag) { 584 1.1 jtk n = newsb->fs_frag - (dhigh % newsb->fs_frag); 585 1.1 jtk cg->cg_frsum[n]++; 586 1.1 jtk cg->cg_cs.cs_nffree += n; 587 1.1 jtk dhigh += n; 588 1.1 jtk } 589 1.1 jtk n = (dmax - dhigh) / newsb->fs_frag; 590 1.1 jtk /* We have n full-size blocks in the post-inode data area. */ 591 1.1 jtk if (n > 0) { 592 1.1 jtk cg->cg_cs.cs_nbfree += n; 593 1.1 jtk if (newsb->fs_contigsumsize > 0) { 594 1.1 jtk i = dhigh / newsb->fs_frag; 595 1.1 jtk set_bits(cg_clustersfree(cg, 0), i, n); 596 1.1 jtk cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ? 597 1.1 jtk newsb->fs_contigsumsize : n]++; 598 1.1 jtk } 599 1.53 mlelstv for (i = n; i > 0; i--) { 600 1.53 mlelstv if (is_ufs2 == 0) { 601 1.25 riz old_cg_blktot(cg, 0)[old_cbtocylno(newsb, 602 1.25 riz dhigh)]++; 603 1.25 riz old_cg_blks(newsb, cg, 604 1.25 riz old_cbtocylno(newsb, dhigh), 605 1.25 riz 0)[old_cbtorpos(newsb, 606 1.25 riz dhigh)]++; 607 1.25 riz } 608 1.53 mlelstv dhigh += newsb->fs_frag; 609 1.53 mlelstv } 610 1.25 riz } 611 1.51 mlelstv /* Deal with any leftover frag at the end of the cg. */ 612 1.51 mlelstv i = dmax - dhigh; 613 1.51 mlelstv if (i) { 614 1.51 mlelstv cg->cg_frsum[i]++; 615 1.51 mlelstv cg->cg_cs.cs_nffree += i; 616 1.1 jtk } 617 1.1 jtk /* Update the csum info. */ 618 1.1 jtk csums[cgn] = cg->cg_cs; 619 1.1 jtk newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree; 620 1.1 jtk newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree; 621 1.1 jtk newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree; 622 1.47 dholland if (is_ufs2) { 623 1.47 dholland /* Write out the cleared inodes. */ 624 1.47 dholland writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes2, 625 1.47 dholland cg->cg_initediblk * sizeof(*zinodes2)); 626 1.47 dholland } else { 627 1.25 riz /* Write out the cleared inodes. */ 628 1.47 dholland writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes1, 629 1.47 dholland newsb->fs_ipg * sizeof(*zinodes1)); 630 1.47 dholland } 631 1.1 jtk /* Dirty the cg. */ 632 1.1 jtk cgflags[cgn] |= CGF_DIRTY; 633 1.1 jtk } 634 1.1 jtk /* 635 1.1 jtk * Find free space, at least nfrags consecutive frags of it. Pays no 636 1.1 jtk * attention to block boundaries, but refuses to straddle cg 637 1.1 jtk * boundaries, even if the disk blocks involved are in fact 638 1.1 jtk * consecutive. Return value is the frag number of the first frag of 639 1.1 jtk * the block, or -1 if no space was found. Uses newsb for sb values, 640 1.1 jtk * and assumes the cgs[] structures correctly describe the area to be 641 1.1 jtk * searched. 642 1.1 jtk * 643 1.1 jtk * XXX is there a bug lurking in the ignoring of block boundaries by 644 1.1 jtk * the routine used by fragmove() in evict_data()? Can an end-of-file 645 1.1 jtk * frag legally straddle a block boundary? If not, this should be 646 1.1 jtk * cloned and fixed to stop at block boundaries for that use. The 647 1.1 jtk * current one may still be needed for csum info motion, in case that 648 1.1 jtk * takes up more than a whole block (is the csum info allowed to begin 649 1.1 jtk * partway through a block and continue into the following block?). 650 1.1 jtk * 651 1.24 wiz * If we wrap off the end of the file system back to the beginning, we 652 1.24 wiz * can end up searching the end of the file system twice. I ignore 653 1.1 jtk * this inefficiency, since if that happens we're going to croak with 654 1.1 jtk * a no-space error anyway, so it happens at most once. 655 1.1 jtk */ 656 1.1 jtk static int 657 1.1 jtk find_freespace(unsigned int nfrags) 658 1.1 jtk { 659 1.1 jtk static int hand = 0; /* hand rotates through all frags in the fs */ 660 1.1 jtk int cgsize; /* size of the cg hand currently points into */ 661 1.58 chs uint32_t cgn; /* number of cg hand currently points into */ 662 1.1 jtk int fwc; /* frag-within-cg number of frag hand points 663 1.1 jtk * to */ 664 1.30 dholland unsigned int run; /* length of run of free frags seen so far */ 665 1.1 jtk int secondpass; /* have we wrapped from end of fs to 666 1.1 jtk * beginning? */ 667 1.1 jtk unsigned char *bits; /* cg_blksfree()[] for cg hand points into */ 668 1.1 jtk 669 1.1 jtk cgn = dtog(newsb, hand); 670 1.1 jtk fwc = dtogd(newsb, hand); 671 1.1 jtk secondpass = (hand == 0); 672 1.1 jtk run = 0; 673 1.1 jtk bits = cg_blksfree(cgs[cgn], 0); 674 1.1 jtk cgsize = cgs[cgn]->cg_ndblk; 675 1.1 jtk while (1) { 676 1.1 jtk if (bit_is_set(bits, fwc)) { 677 1.1 jtk run++; 678 1.1 jtk if (run >= nfrags) 679 1.1 jtk return (hand + 1 - run); 680 1.1 jtk } else { 681 1.1 jtk run = 0; 682 1.1 jtk } 683 1.1 jtk hand++; 684 1.1 jtk fwc++; 685 1.1 jtk if (fwc >= cgsize) { 686 1.1 jtk fwc = 0; 687 1.1 jtk cgn++; 688 1.1 jtk if (cgn >= newsb->fs_ncg) { 689 1.1 jtk hand = 0; 690 1.1 jtk if (secondpass) 691 1.1 jtk return (-1); 692 1.1 jtk secondpass = 1; 693 1.1 jtk cgn = 0; 694 1.1 jtk } 695 1.1 jtk bits = cg_blksfree(cgs[cgn], 0); 696 1.1 jtk cgsize = cgs[cgn]->cg_ndblk; 697 1.1 jtk run = 0; 698 1.1 jtk } 699 1.1 jtk } 700 1.1 jtk } 701 1.1 jtk /* 702 1.1 jtk * Find a free block of disk space. Finds an entire block of frags, 703 1.1 jtk * all of which are free. Return value is the frag number of the 704 1.1 jtk * first frag of the block, or -1 if no space was found. Uses newsb 705 1.1 jtk * for sb values, and assumes the cgs[] structures correctly describe 706 1.1 jtk * the area to be searched. 707 1.1 jtk * 708 1.1 jtk * See find_freespace(), above, for remarks about hand wrapping around. 709 1.1 jtk */ 710 1.1 jtk static int 711 1.1 jtk find_freeblock(void) 712 1.1 jtk { 713 1.1 jtk static int hand = 0; /* hand rotates through all frags in fs */ 714 1.58 chs uint32_t cgn; /* cg number of cg hand points into */ 715 1.1 jtk int fwc; /* frag-within-cg number of frag hand points 716 1.1 jtk * to */ 717 1.1 jtk int cgsize; /* size of cg hand points into */ 718 1.1 jtk int secondpass; /* have we wrapped from end to beginning? */ 719 1.1 jtk unsigned char *bits; /* cg_blksfree()[] for cg hand points into */ 720 1.1 jtk 721 1.1 jtk cgn = dtog(newsb, hand); 722 1.1 jtk fwc = dtogd(newsb, hand); 723 1.1 jtk secondpass = (hand == 0); 724 1.1 jtk bits = cg_blksfree(cgs[cgn], 0); 725 1.38 dholland cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk); 726 1.1 jtk while (1) { 727 1.1 jtk if (blk_is_set(bits, fwc, newsb->fs_frag)) 728 1.1 jtk return (hand); 729 1.1 jtk fwc += newsb->fs_frag; 730 1.1 jtk hand += newsb->fs_frag; 731 1.1 jtk if (fwc >= cgsize) { 732 1.1 jtk fwc = 0; 733 1.1 jtk cgn++; 734 1.1 jtk if (cgn >= newsb->fs_ncg) { 735 1.1 jtk hand = 0; 736 1.1 jtk if (secondpass) 737 1.1 jtk return (-1); 738 1.1 jtk secondpass = 1; 739 1.1 jtk cgn = 0; 740 1.1 jtk } 741 1.1 jtk bits = cg_blksfree(cgs[cgn], 0); 742 1.38 dholland cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk); 743 1.1 jtk } 744 1.1 jtk } 745 1.1 jtk } 746 1.1 jtk /* 747 1.1 jtk * Find a free inode, returning its inumber or -1 if none was found. 748 1.1 jtk * Uses newsb for sb values, and assumes the cgs[] structures 749 1.1 jtk * correctly describe the area to be searched. 750 1.1 jtk * 751 1.1 jtk * See find_freespace(), above, for remarks about hand wrapping around. 752 1.1 jtk */ 753 1.1 jtk static int 754 1.1 jtk find_freeinode(void) 755 1.1 jtk { 756 1.1 jtk static int hand = 0; /* hand rotates through all inodes in fs */ 757 1.58 chs uint32_t cgn; /* cg number of cg hand points into */ 758 1.58 chs uint32_t iwc; /* inode-within-cg number of inode hand points 759 1.1 jtk * to */ 760 1.1 jtk int secondpass; /* have we wrapped from end to beginning? */ 761 1.1 jtk unsigned char *bits; /* cg_inosused()[] for cg hand points into */ 762 1.1 jtk 763 1.1 jtk cgn = hand / newsb->fs_ipg; 764 1.1 jtk iwc = hand % newsb->fs_ipg; 765 1.1 jtk secondpass = (hand == 0); 766 1.1 jtk bits = cg_inosused(cgs[cgn], 0); 767 1.1 jtk while (1) { 768 1.1 jtk if (bit_is_clr(bits, iwc)) 769 1.1 jtk return (hand); 770 1.1 jtk hand++; 771 1.1 jtk iwc++; 772 1.1 jtk if (iwc >= newsb->fs_ipg) { 773 1.1 jtk iwc = 0; 774 1.1 jtk cgn++; 775 1.1 jtk if (cgn >= newsb->fs_ncg) { 776 1.1 jtk hand = 0; 777 1.1 jtk if (secondpass) 778 1.1 jtk return (-1); 779 1.1 jtk secondpass = 1; 780 1.1 jtk cgn = 0; 781 1.1 jtk } 782 1.1 jtk bits = cg_inosused(cgs[cgn], 0); 783 1.1 jtk } 784 1.1 jtk } 785 1.1 jtk } 786 1.1 jtk /* 787 1.1 jtk * Mark a frag as free. Sets the frag's bit in the cg_blksfree bitmap 788 1.1 jtk * for the appropriate cg, and marks the cg as dirty. 789 1.1 jtk */ 790 1.1 jtk static void 791 1.1 jtk free_frag(int fno) 792 1.1 jtk { 793 1.1 jtk int cgn; 794 1.1 jtk 795 1.1 jtk cgn = dtog(newsb, fno); 796 1.1 jtk set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1); 797 1.1 jtk cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS; 798 1.1 jtk } 799 1.1 jtk /* 800 1.1 jtk * Allocate a frag. Clears the frag's bit in the cg_blksfree bitmap 801 1.1 jtk * for the appropriate cg, and marks the cg as dirty. 802 1.1 jtk */ 803 1.1 jtk static void 804 1.1 jtk alloc_frag(int fno) 805 1.1 jtk { 806 1.1 jtk int cgn; 807 1.1 jtk 808 1.1 jtk cgn = dtog(newsb, fno); 809 1.1 jtk clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1); 810 1.1 jtk cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS; 811 1.1 jtk } 812 1.1 jtk /* 813 1.1 jtk * Fix up the csum array. If shrinking, this involves freeing zero or 814 1.1 jtk * more frags; if growing, it involves allocating them, or if the 815 1.1 jtk * frags being grown into aren't free, finding space elsewhere for the 816 1.1 jtk * csum info. (If the number of occupied frags doesn't change, 817 1.1 jtk * nothing happens here.) 818 1.1 jtk */ 819 1.1 jtk static void 820 1.1 jtk csum_fixup(void) 821 1.1 jtk { 822 1.1 jtk int nold; /* # frags in old csum info */ 823 1.1 jtk int ntot; /* # frags in new csum info */ 824 1.1 jtk int nnew; /* ntot-nold */ 825 1.1 jtk int newloc; /* new location for csum info, if necessary */ 826 1.1 jtk int i; /* generic loop index */ 827 1.1 jtk int j; /* generic loop index */ 828 1.1 jtk int f; /* "from" frag number, if moving */ 829 1.1 jtk int t; /* "to" frag number, if moving */ 830 1.1 jtk int cgn; /* cg number, used when shrinking */ 831 1.1 jtk 832 1.1 jtk ntot = howmany(newsb->fs_cssize, newsb->fs_fsize); 833 1.1 jtk nold = howmany(oldsb->fs_cssize, newsb->fs_fsize); 834 1.1 jtk nnew = ntot - nold; 835 1.1 jtk /* First, if there's no change in frag counts, it's easy. */ 836 1.1 jtk if (nnew == 0) 837 1.1 jtk return; 838 1.1 jtk /* Next, if we're shrinking, it's almost as easy. Just free up any 839 1.1 jtk * frags in the old area we no longer need. */ 840 1.1 jtk if (nnew < 0) { 841 1.1 jtk for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew); 842 1.1 jtk j < 0; 843 1.1 jtk i--, j++) { 844 1.1 jtk free_frag(i); 845 1.1 jtk } 846 1.1 jtk return; 847 1.1 jtk } 848 1.1 jtk /* We must be growing. Check to see that the new csum area fits 849 1.24 wiz * within the file system. I think this can never happen, since for 850 1.1 jtk * the csum area to grow, we must be adding at least one cg, so the 851 1.24 wiz * old csum area can't be this close to the end of the new file system. 852 1.1 jtk * But it's a cheap check. */ 853 1.1 jtk /* XXX what if csum info is at end of cg and grows into next cg, what 854 1.1 jtk * if it spills over onto the next cg's backup superblock? Can this 855 1.1 jtk * happen? */ 856 1.1 jtk if (newsb->fs_csaddr + ntot <= newsb->fs_size) { 857 1.1 jtk /* Okay, it fits - now, see if the space we want is free. */ 858 1.1 jtk for ((i = newsb->fs_csaddr + nold), (j = nnew); 859 1.1 jtk j > 0; 860 1.1 jtk i++, j--) { 861 1.1 jtk cgn = dtog(newsb, i); 862 1.1 jtk if (bit_is_clr(cg_blksfree(cgs[cgn], 0), 863 1.1 jtk dtogd(newsb, i))) 864 1.1 jtk break; 865 1.1 jtk } 866 1.1 jtk if (j <= 0) { 867 1.1 jtk /* Win win - all the frags we want are free. Allocate 868 1.1 jtk * 'em and we're all done. */ 869 1.25 riz for ((i = newsb->fs_csaddr + ntot - nnew), 870 1.25 riz (j = nnew); j > 0; i++, j--) { 871 1.1 jtk alloc_frag(i); 872 1.1 jtk } 873 1.1 jtk return; 874 1.1 jtk } 875 1.1 jtk } 876 1.1 jtk /* We have to move the csum info, sigh. Look for new space, free old 877 1.1 jtk * space, and allocate new. Update fs_csaddr. We don't copy anything 878 1.1 jtk * on disk at this point; the csum info will be written to the 879 1.1 jtk * then-current fs_csaddr as part of the final flush. */ 880 1.1 jtk newloc = find_freespace(ntot); 881 1.32 christos if (newloc < 0) 882 1.32 christos errx(EXIT_FAILURE, "Sorry, no space available for new csums"); 883 1.1 jtk for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) { 884 1.1 jtk if (i < nold) { 885 1.1 jtk free_frag(f); 886 1.1 jtk } 887 1.1 jtk alloc_frag(t); 888 1.1 jtk } 889 1.1 jtk newsb->fs_csaddr = newloc; 890 1.1 jtk } 891 1.1 jtk /* 892 1.1 jtk * Recompute newsb->fs_dsize. Just scans all cgs, adding the number of 893 1.1 jtk * data blocks in that cg to the total. 894 1.1 jtk */ 895 1.1 jtk static void 896 1.1 jtk recompute_fs_dsize(void) 897 1.1 jtk { 898 1.58 chs uint32_t i; 899 1.1 jtk 900 1.1 jtk newsb->fs_dsize = 0; 901 1.1 jtk for (i = 0; i < newsb->fs_ncg; i++) { 902 1.48 sborrill int64_t dlow; /* size of before-sb data area */ 903 1.48 sborrill int64_t dhigh; /* offset of post-inode data area */ 904 1.48 sborrill int64_t dmax; /* total size of cg */ 905 1.48 sborrill int64_t base; /* base of cg, since cgsblock() etc add it in */ 906 1.1 jtk base = cgbase(newsb, i); 907 1.1 jtk dlow = cgsblock(newsb, i) - base; 908 1.1 jtk dhigh = cgdmin(newsb, i) - base; 909 1.1 jtk dmax = newsb->fs_size - base; 910 1.1 jtk if (dmax > newsb->fs_fpg) 911 1.1 jtk dmax = newsb->fs_fpg; 912 1.1 jtk newsb->fs_dsize += dlow + dmax - dhigh; 913 1.1 jtk } 914 1.1 jtk /* Space in cg 0 before cgsblock is boot area, not free space! */ 915 1.1 jtk newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0); 916 1.1 jtk /* And of course the csum info takes up space. */ 917 1.1 jtk newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize); 918 1.1 jtk } 919 1.1 jtk /* 920 1.1 jtk * Return the current time. We call this and assign, rather than 921 1.1 jtk * calling time() directly, as insulation against OSes where fs_time 922 1.1 jtk * is not a time_t. 923 1.1 jtk */ 924 1.1 jtk static time_t 925 1.1 jtk timestamp(void) 926 1.1 jtk { 927 1.1 jtk time_t t; 928 1.1 jtk 929 1.1 jtk time(&t); 930 1.1 jtk return (t); 931 1.1 jtk } 932 1.43 mlelstv 933 1.1 jtk /* 934 1.43 mlelstv * Calculate new filesystem geometry 935 1.43 mlelstv * return 0 if geometry actually changed 936 1.1 jtk */ 937 1.43 mlelstv static int 938 1.43 mlelstv makegeometry(int chatter) 939 1.1 jtk { 940 1.1 jtk 941 1.1 jtk /* Update the size. */ 942 1.36 dholland newsb->fs_size = FFS_DBTOFSB(newsb, newsize); 943 1.25 riz if (is_ufs2) 944 1.25 riz newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg); 945 1.25 riz else { 946 1.25 riz /* Update fs_old_ncyl and fs_ncg. */ 947 1.25 riz newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb), 948 1.25 riz newsb->fs_old_spc); 949 1.25 riz newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg); 950 1.25 riz } 951 1.28 dholland 952 1.1 jtk /* Does the last cg end before the end of its inode area? There is no 953 1.1 jtk * reason why this couldn't be handled, but it would complicate a lot 954 1.24 wiz * of code (in all file system code - fsck, kernel, etc) because of the 955 1.1 jtk * potential partial inode area, and the gain in space would be 956 1.1 jtk * minimal, at most the pre-sb data area. */ 957 1.1 jtk if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) { 958 1.1 jtk newsb->fs_ncg--; 959 1.42 mlelstv if (is_ufs2) 960 1.42 mlelstv newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg; 961 1.42 mlelstv else { 962 1.42 mlelstv newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg; 963 1.42 mlelstv newsb->fs_size = (newsb->fs_old_ncyl * 964 1.42 mlelstv newsb->fs_old_spc) / NSPF(newsb); 965 1.42 mlelstv } 966 1.43 mlelstv if (chatter || verbose) { 967 1.43 mlelstv printf("Warning: last cylinder group is too small;\n"); 968 1.43 mlelstv printf(" dropping it. New size = %lu.\n", 969 1.43 mlelstv (unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size)); 970 1.43 mlelstv } 971 1.43 mlelstv } 972 1.43 mlelstv 973 1.43 mlelstv /* Did we actually not grow? (This can happen if newsize is less than 974 1.43 mlelstv * a frag larger than the old size - unlikely, but no excuse to 975 1.43 mlelstv * misbehave if it happens.) */ 976 1.43 mlelstv if (newsb->fs_size == oldsb->fs_size) 977 1.43 mlelstv return 1; 978 1.43 mlelstv 979 1.43 mlelstv return 0; 980 1.43 mlelstv } 981 1.43 mlelstv 982 1.43 mlelstv 983 1.43 mlelstv /* 984 1.43 mlelstv * Grow the file system. 985 1.43 mlelstv */ 986 1.43 mlelstv static void 987 1.43 mlelstv grow(void) 988 1.43 mlelstv { 989 1.58 chs uint32_t i; 990 1.43 mlelstv 991 1.43 mlelstv if (makegeometry(1)) { 992 1.43 mlelstv printf("New fs size %"PRIu64" = old fs size %"PRIu64 993 1.43 mlelstv ", not growing.\n", newsb->fs_size, oldsb->fs_size); 994 1.43 mlelstv return; 995 1.1 jtk } 996 1.43 mlelstv 997 1.43 mlelstv if (verbose) { 998 1.43 mlelstv printf("Growing fs from %"PRIu64" blocks to %"PRIu64 999 1.43 mlelstv " blocks.\n", oldsb->fs_size, newsb->fs_size); 1000 1.43 mlelstv } 1001 1.43 mlelstv 1002 1.43 mlelstv /* Update the timestamp. */ 1003 1.43 mlelstv newsb->fs_time = timestamp(); 1004 1.43 mlelstv /* Allocate and clear the new-inode area, in case we add any cgs. */ 1005 1.47 dholland if (is_ufs2) { 1006 1.47 dholland zinodes2 = alloconce(newsb->fs_ipg * sizeof(*zinodes2), 1007 1.47 dholland "zeroed inodes"); 1008 1.47 dholland memset(zinodes2, 0, newsb->fs_ipg * sizeof(*zinodes2)); 1009 1.47 dholland } else { 1010 1.47 dholland zinodes1 = alloconce(newsb->fs_ipg * sizeof(*zinodes1), 1011 1.47 dholland "zeroed inodes"); 1012 1.47 dholland memset(zinodes1, 0, newsb->fs_ipg * sizeof(*zinodes1)); 1013 1.47 dholland } 1014 1.43 mlelstv 1015 1.43 mlelstv /* Check that the new last sector (frag, actually) is writable. Since 1016 1.43 mlelstv * it's at least one frag larger than it used to be, we know we aren't 1017 1.43 mlelstv * overwriting anything important by this. (The choice of sbbuf as 1018 1.43 mlelstv * what to write is irrelevant; it's just something handy that's known 1019 1.43 mlelstv * to be at least one frag in size.) */ 1020 1.43 mlelstv writeat(FFS_FSBTODB(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize); 1021 1.43 mlelstv 1022 1.1 jtk /* Find out how big the csum area is, and realloc csums if bigger. */ 1023 1.37 dholland newsb->fs_cssize = ffs_fragroundup(newsb, 1024 1.1 jtk newsb->fs_ncg * sizeof(struct csum)); 1025 1.1 jtk if (newsb->fs_cssize > oldsb->fs_cssize) 1026 1.1 jtk csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary"); 1027 1.25 riz /* If we're adding any cgs, realloc structures and set up the new 1028 1.25 riz cgs. */ 1029 1.1 jtk if (newsb->fs_ncg > oldsb->fs_ncg) { 1030 1.1 jtk char *cgp; 1031 1.32 christos cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(*cgs), 1032 1.1 jtk "cg pointers"); 1033 1.1 jtk cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags"); 1034 1.25 riz memset(cgflags + oldsb->fs_ncg, 0, 1035 1.25 riz newsb->fs_ncg - oldsb->fs_ncg); 1036 1.1 jtk cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz, 1037 1.1 jtk "cgs"); 1038 1.1 jtk for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) { 1039 1.1 jtk cgs[i] = (struct cg *) cgp; 1040 1.44 jmcneill progress_bar(special, "grow cg", 1041 1.44 jmcneill i - oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg); 1042 1.1 jtk initcg(i); 1043 1.1 jtk cgp += cgblksz; 1044 1.1 jtk } 1045 1.4 christos cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg; 1046 1.1 jtk cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY; 1047 1.1 jtk } 1048 1.1 jtk /* If the old fs ended partway through a cg, we have to update the old 1049 1.1 jtk * last cg (though possibly not to a full cg!). */ 1050 1.1 jtk if (oldsb->fs_size % oldsb->fs_fpg) { 1051 1.1 jtk struct cg *cg; 1052 1.51 mlelstv int64_t newcgsize; 1053 1.51 mlelstv int64_t prevcgtop; 1054 1.51 mlelstv int64_t oldcgsize; 1055 1.1 jtk cg = cgs[oldsb->fs_ncg - 1]; 1056 1.1 jtk cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS; 1057 1.1 jtk prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1); 1058 1.1 jtk newcgsize = newsb->fs_size - prevcgtop; 1059 1.1 jtk if (newcgsize > newsb->fs_fpg) 1060 1.1 jtk newcgsize = newsb->fs_fpg; 1061 1.1 jtk oldcgsize = oldsb->fs_size % oldsb->fs_fpg; 1062 1.1 jtk set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize); 1063 1.20 mhitch cg->cg_old_ncyl = oldsb->fs_old_cpg; 1064 1.1 jtk cg->cg_ndblk = newcgsize; 1065 1.1 jtk } 1066 1.1 jtk /* Fix up the csum info, if necessary. */ 1067 1.1 jtk csum_fixup(); 1068 1.1 jtk /* Make fs_dsize match the new reality. */ 1069 1.1 jtk recompute_fs_dsize(); 1070 1.44 jmcneill 1071 1.44 jmcneill progress_done(); 1072 1.1 jtk } 1073 1.1 jtk /* 1074 1.1 jtk * Call (*fn)() for each inode, passing the inode and its inumber. The 1075 1.56 andvar * number of cylinder groups is passed in, so this can be used to map 1076 1.24 wiz * over either the old or the new file system's set of inodes. 1077 1.1 jtk */ 1078 1.1 jtk static void 1079 1.25 riz map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg), 1080 1.15 riz int ncg, void *cbarg) { 1081 1.1 jtk int i; 1082 1.1 jtk int ni; 1083 1.1 jtk 1084 1.1 jtk ni = oldsb->fs_ipg * ncg; 1085 1.1 jtk for (i = 0; i < ni; i++) 1086 1.1 jtk (*fn) (inodes + i, i, cbarg); 1087 1.1 jtk } 1088 1.1 jtk /* Values for the third argument to the map function for 1089 1.1 jtk * map_inode_data_blocks. MDB_DATA indicates the block is contains 1090 1.1 jtk * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an 1091 1.1 jtk * indirect block. The MDB_INDIR_PRE call is made before the indirect 1092 1.1 jtk * block pointers are followed and the pointed-to blocks scanned, 1093 1.1 jtk * MDB_INDIR_POST after. 1094 1.1 jtk */ 1095 1.1 jtk #define MDB_DATA 1 1096 1.1 jtk #define MDB_INDIR_PRE 2 1097 1.1 jtk #define MDB_INDIR_POST 3 1098 1.1 jtk 1099 1.30 dholland typedef void (*mark_callback_t) (off_t blocknum, unsigned int nfrags, 1100 1.15 riz unsigned int blksize, int opcode); 1101 1.1 jtk 1102 1.1 jtk /* Helper function - handles a data block. Calls the callback 1103 1.1 jtk * function and returns number of bytes occupied in file (actually, 1104 1.1 jtk * rounded up to a frag boundary). The name is historical. */ 1105 1.1 jtk static int 1106 1.30 dholland markblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o) 1107 1.1 jtk { 1108 1.1 jtk int sz; 1109 1.1 jtk int nb; 1110 1.30 dholland off_t filesize; 1111 1.26 dholland 1112 1.30 dholland filesize = DIP(di,di_size); 1113 1.30 dholland if (o >= filesize) 1114 1.1 jtk return (0); 1115 1.37 dholland sz = dblksize(newsb, di, ffs_lblkno(newsb, o), filesize); 1116 1.30 dholland nb = (sz > filesize - o) ? filesize - o : sz; 1117 1.1 jtk if (bn) 1118 1.37 dholland (*fn) (bn, ffs_numfrags(newsb, sz), nb, MDB_DATA); 1119 1.1 jtk return (sz); 1120 1.1 jtk } 1121 1.1 jtk /* Helper function - handles an indirect block. Makes the 1122 1.1 jtk * MDB_INDIR_PRE callback for the indirect block, loops over the 1123 1.1 jtk * pointers and recurses, and makes the MDB_INDIR_POST callback. 1124 1.1 jtk * Returns the number of bytes occupied in file, as does markblk(). 1125 1.1 jtk * For the sake of update_for_data_move(), we read the indirect block 1126 1.1 jtk * _after_ making the _PRE callback. The name is historical. */ 1127 1.51 mlelstv static off_t 1128 1.30 dholland markiblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o, int lev) 1129 1.1 jtk { 1130 1.1 jtk int i; 1131 1.30 dholland unsigned k; 1132 1.51 mlelstv off_t j, tot; 1133 1.2 martin static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))]; 1134 1.2 martin static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))]; 1135 1.2 martin static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))]; 1136 1.2 martin static int32_t *indirblks[3] = { 1137 1.1 jtk &indirblk1[0], &indirblk2[0], &indirblk3[0] 1138 1.1 jtk }; 1139 1.26 dholland 1140 1.1 jtk if (lev < 0) 1141 1.1 jtk return (markblk(fn, di, bn, o)); 1142 1.1 jtk if (bn == 0) { 1143 1.51 mlelstv for (j = newsb->fs_bsize; 1144 1.1 jtk lev >= 0; 1145 1.51 mlelstv j *= FFS_NINDIR(newsb), lev--); 1146 1.51 mlelstv return (j); 1147 1.1 jtk } 1148 1.1 jtk (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE); 1149 1.36 dholland readat(FFS_FSBTODB(newsb, bn), indirblks[lev], newsb->fs_bsize); 1150 1.25 riz if (needswap) 1151 1.30 dholland for (k = 0; k < howmany(MAXBSIZE, sizeof(int32_t)); k++) 1152 1.30 dholland indirblks[lev][k] = bswap32(indirblks[lev][k]); 1153 1.1 jtk tot = 0; 1154 1.35 dholland for (i = 0; i < FFS_NINDIR(newsb); i++) { 1155 1.1 jtk j = markiblk(fn, di, indirblks[lev][i], o, lev - 1); 1156 1.1 jtk if (j == 0) 1157 1.1 jtk break; 1158 1.1 jtk o += j; 1159 1.1 jtk tot += j; 1160 1.1 jtk } 1161 1.1 jtk (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST); 1162 1.1 jtk return (tot); 1163 1.1 jtk } 1164 1.1 jtk 1165 1.1 jtk 1166 1.1 jtk /* 1167 1.1 jtk * Call (*fn)() for each data block for an inode. This routine assumes 1168 1.1 jtk * the inode is known to be of a type that has data blocks (file, 1169 1.1 jtk * directory, or non-fast symlink). The called function is: 1170 1.1 jtk * 1171 1.1 jtk * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op) 1172 1.1 jtk * 1173 1.1 jtk * where blkno is the frag number, nf is the number of frags starting 1174 1.1 jtk * at blkno (always <= fs_frag), nb is the number of bytes that belong 1175 1.1 jtk * to the file (usually nf*fs_frag, often less for the last block/frag 1176 1.1 jtk * of a file). 1177 1.1 jtk */ 1178 1.1 jtk static void 1179 1.25 riz map_inode_data_blocks(union dinode * di, mark_callback_t fn) 1180 1.1 jtk { 1181 1.1 jtk off_t o; /* offset within inode */ 1182 1.51 mlelstv off_t inc; /* increment for o */ 1183 1.1 jtk int b; /* index within di_db[] and di_ib[] arrays */ 1184 1.1 jtk 1185 1.1 jtk /* Scan the direct blocks... */ 1186 1.1 jtk o = 0; 1187 1.34 dholland for (b = 0; b < UFS_NDADDR; b++) { 1188 1.25 riz inc = markblk(fn, di, DIP(di,di_db[b]), o); 1189 1.1 jtk if (inc == 0) 1190 1.1 jtk break; 1191 1.1 jtk o += inc; 1192 1.1 jtk } 1193 1.1 jtk /* ...and the indirect blocks. */ 1194 1.1 jtk if (inc) { 1195 1.34 dholland for (b = 0; b < UFS_NIADDR; b++) { 1196 1.25 riz inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b); 1197 1.1 jtk if (inc == 0) 1198 1.1 jtk return; 1199 1.1 jtk o += inc; 1200 1.1 jtk } 1201 1.1 jtk } 1202 1.1 jtk } 1203 1.1 jtk 1204 1.1 jtk static void 1205 1.25 riz dblk_callback(union dinode * di, unsigned int inum, void *arg) 1206 1.1 jtk { 1207 1.1 jtk mark_callback_t fn; 1208 1.30 dholland off_t filesize; 1209 1.26 dholland 1210 1.30 dholland filesize = DIP(di,di_size); 1211 1.1 jtk fn = (mark_callback_t) arg; 1212 1.25 riz switch (DIP(di,di_mode) & IFMT) { 1213 1.1 jtk case IFLNK: 1214 1.31 dholland if (filesize <= newsb->fs_maxsymlinklen) { 1215 1.31 dholland break; 1216 1.31 dholland } 1217 1.31 dholland /* FALLTHROUGH */ 1218 1.1 jtk case IFDIR: 1219 1.1 jtk case IFREG: 1220 1.31 dholland map_inode_data_blocks(di, fn); 1221 1.1 jtk break; 1222 1.1 jtk } 1223 1.1 jtk } 1224 1.1 jtk /* 1225 1.1 jtk * Make a callback call, a la map_inode_data_blocks, for all data 1226 1.1 jtk * blocks in the entire fs. This is used only once, in 1227 1.1 jtk * update_for_data_move, but it's out at top level because the complex 1228 1.1 jtk * downward-funarg nesting that would otherwise result seems to give 1229 1.1 jtk * gcc gastric distress. 1230 1.1 jtk */ 1231 1.1 jtk static void 1232 1.1 jtk map_data_blocks(mark_callback_t fn, int ncg) 1233 1.1 jtk { 1234 1.1 jtk map_inodes(&dblk_callback, ncg, (void *) fn); 1235 1.1 jtk } 1236 1.1 jtk /* 1237 1.1 jtk * Initialize the blkmove array. 1238 1.1 jtk */ 1239 1.1 jtk static void 1240 1.1 jtk blkmove_init(void) 1241 1.1 jtk { 1242 1.1 jtk int i; 1243 1.1 jtk 1244 1.1 jtk blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove"); 1245 1.1 jtk for (i = 0; i < oldsb->fs_size; i++) 1246 1.1 jtk blkmove[i] = i; 1247 1.1 jtk } 1248 1.1 jtk /* 1249 1.1 jtk * Load the inodes off disk. Allocates the structures and initializes 1250 1.1 jtk * them - the inodes from disk, the flags to zero. 1251 1.1 jtk */ 1252 1.1 jtk static void 1253 1.1 jtk loadinodes(void) 1254 1.1 jtk { 1255 1.58 chs int imax, ino, j; 1256 1.58 chs uint32_t i; 1257 1.25 riz struct ufs1_dinode *dp1 = NULL; 1258 1.25 riz struct ufs2_dinode *dp2 = NULL; 1259 1.28 dholland 1260 1.25 riz /* read inodes one fs block at a time and copy them */ 1261 1.1 jtk 1262 1.15 riz inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg * 1263 1.25 riz sizeof(union dinode), "inodes"); 1264 1.1 jtk iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags"); 1265 1.25 riz memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg); 1266 1.28 dholland 1267 1.25 riz ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf"); 1268 1.25 riz if (is_ufs2) 1269 1.25 riz dp2 = (struct ufs2_dinode *)ibuf; 1270 1.25 riz else 1271 1.25 riz dp1 = (struct ufs1_dinode *)ibuf; 1272 1.28 dholland 1273 1.25 riz for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) { 1274 1.36 dholland readat(FFS_FSBTODB(oldsb, ino_to_fsba(oldsb, ino)), ibuf, 1275 1.25 riz oldsb->fs_bsize); 1276 1.25 riz 1277 1.25 riz for (i = 0; i < oldsb->fs_inopb; i++) { 1278 1.25 riz if (is_ufs2) { 1279 1.25 riz if (needswap) { 1280 1.25 riz ffs_dinode2_swap(&(dp2[i]), &(dp2[i])); 1281 1.45 christos for (j = 0; j < UFS_NDADDR; j++) 1282 1.25 riz dp2[i].di_db[j] = 1283 1.25 riz bswap32(dp2[i].di_db[j]); 1284 1.45 christos for (j = 0; j < UFS_NIADDR; j++) 1285 1.45 christos dp2[i].di_ib[j] = 1286 1.45 christos bswap32(dp2[i].di_ib[j]); 1287 1.25 riz } 1288 1.25 riz memcpy(&inodes[ino].dp2, &dp2[i], 1289 1.32 christos sizeof(inodes[ino].dp2)); 1290 1.25 riz } else { 1291 1.25 riz if (needswap) { 1292 1.25 riz ffs_dinode1_swap(&(dp1[i]), &(dp1[i])); 1293 1.46 christos for (j = 0; j < UFS_NDADDR; j++) 1294 1.25 riz dp1[i].di_db[j] = 1295 1.25 riz bswap32(dp1[i].di_db[j]); 1296 1.45 christos for (j = 0; j < UFS_NIADDR; j++) 1297 1.45 christos dp1[i].di_ib[j] = 1298 1.45 christos bswap32(dp1[i].di_ib[j]); 1299 1.25 riz } 1300 1.25 riz memcpy(&inodes[ino].dp1, &dp1[i], 1301 1.32 christos sizeof(inodes[ino].dp1)); 1302 1.25 riz } 1303 1.25 riz if (++ino > imax) 1304 1.25 riz errx(EXIT_FAILURE, 1305 1.25 riz "Exceeded number of inodes"); 1306 1.25 riz } 1307 1.25 riz 1308 1.1 jtk } 1309 1.1 jtk } 1310 1.1 jtk /* 1311 1.24 wiz * Report a file-system-too-full problem. 1312 1.1 jtk */ 1313 1.32 christos __dead static void 1314 1.1 jtk toofull(void) 1315 1.1 jtk { 1316 1.32 christos errx(EXIT_FAILURE, "Sorry, would run out of data blocks"); 1317 1.1 jtk } 1318 1.1 jtk /* 1319 1.1 jtk * Record a desire to move "n" frags from "from" to "to". 1320 1.1 jtk */ 1321 1.1 jtk static void 1322 1.1 jtk mark_move(unsigned int from, unsigned int to, unsigned int n) 1323 1.1 jtk { 1324 1.1 jtk for (; n > 0; n--) 1325 1.1 jtk blkmove[from++] = to++; 1326 1.1 jtk } 1327 1.1 jtk /* Helper function - evict n frags, starting with start (cg-relative). 1328 1.1 jtk * The free bitmap is scanned, unallocated frags are ignored, and 1329 1.1 jtk * each block of consecutive allocated frags is moved as a unit. 1330 1.1 jtk */ 1331 1.1 jtk static void 1332 1.51 mlelstv fragmove(struct cg * cg, int64_t base, unsigned int start, unsigned int n) 1333 1.1 jtk { 1334 1.30 dholland unsigned int i; 1335 1.1 jtk int run; 1336 1.26 dholland 1337 1.1 jtk run = 0; 1338 1.1 jtk for (i = 0; i <= n; i++) { 1339 1.1 jtk if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) { 1340 1.1 jtk run++; 1341 1.1 jtk } else { 1342 1.1 jtk if (run > 0) { 1343 1.1 jtk int off; 1344 1.1 jtk off = find_freespace(run); 1345 1.1 jtk if (off < 0) 1346 1.1 jtk toofull(); 1347 1.1 jtk mark_move(base + start + i - run, off, run); 1348 1.1 jtk set_bits(cg_blksfree(cg, 0), start + i - run, 1349 1.1 jtk run); 1350 1.1 jtk clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0), 1351 1.1 jtk dtogd(oldsb, off), run); 1352 1.1 jtk } 1353 1.1 jtk run = 0; 1354 1.1 jtk } 1355 1.1 jtk } 1356 1.1 jtk } 1357 1.1 jtk /* 1358 1.1 jtk * Evict all data blocks from the given cg, starting at minfrag (based 1359 1.1 jtk * at the beginning of the cg), for length nfrag. The eviction is 1360 1.1 jtk * assumed to be entirely data-area; this should not be called with a 1361 1.1 jtk * range overlapping the metadata structures in the cg. It also 1362 1.1 jtk * assumes minfrag points into the given cg; it will misbehave if this 1363 1.1 jtk * is not true. 1364 1.1 jtk * 1365 1.1 jtk * See the comment header on find_freespace() for one possible bug 1366 1.1 jtk * lurking here. 1367 1.1 jtk */ 1368 1.1 jtk static void 1369 1.30 dholland evict_data(struct cg * cg, unsigned int minfrag, int nfrag) 1370 1.1 jtk { 1371 1.48 sborrill int64_t base; /* base of cg (in frags from beginning of fs) */ 1372 1.1 jtk 1373 1.1 jtk base = cgbase(oldsb, cg->cg_cgx); 1374 1.25 riz /* Does the boundary fall in the middle of a block? To avoid 1375 1.25 riz * breaking between frags allocated as consecutive, we always 1376 1.25 riz * evict the whole block in this case, though one could argue 1377 1.25 riz * we should check to see if the frag before or after the 1378 1.25 riz * break is unallocated. */ 1379 1.1 jtk if (minfrag % oldsb->fs_frag) { 1380 1.1 jtk int n; 1381 1.1 jtk n = minfrag % oldsb->fs_frag; 1382 1.1 jtk minfrag -= n; 1383 1.1 jtk nfrag += n; 1384 1.1 jtk } 1385 1.25 riz /* Do whole blocks. If a block is wholly free, skip it; if 1386 1.25 riz * wholly allocated, move it in toto. If neither, call 1387 1.25 riz * fragmove() to move the frags to new locations. */ 1388 1.1 jtk while (nfrag >= oldsb->fs_frag) { 1389 1.1 jtk if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) { 1390 1.1 jtk if (blk_is_clr(cg_blksfree(cg, 0), minfrag, 1391 1.1 jtk oldsb->fs_frag)) { 1392 1.1 jtk int off; 1393 1.1 jtk off = find_freeblock(); 1394 1.1 jtk if (off < 0) 1395 1.1 jtk toofull(); 1396 1.1 jtk mark_move(base + minfrag, off, oldsb->fs_frag); 1397 1.1 jtk set_bits(cg_blksfree(cg, 0), minfrag, 1398 1.1 jtk oldsb->fs_frag); 1399 1.1 jtk clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0), 1400 1.1 jtk dtogd(oldsb, off), oldsb->fs_frag); 1401 1.1 jtk } else { 1402 1.1 jtk fragmove(cg, base, minfrag, oldsb->fs_frag); 1403 1.1 jtk } 1404 1.1 jtk } 1405 1.1 jtk minfrag += oldsb->fs_frag; 1406 1.1 jtk nfrag -= oldsb->fs_frag; 1407 1.1 jtk } 1408 1.1 jtk /* Clean up any sub-block amount left over. */ 1409 1.1 jtk if (nfrag) { 1410 1.1 jtk fragmove(cg, base, minfrag, nfrag); 1411 1.1 jtk } 1412 1.1 jtk } 1413 1.1 jtk /* 1414 1.1 jtk * Move all data blocks according to blkmove. We have to be careful, 1415 1.1 jtk * because we may be updating indirect blocks that will themselves be 1416 1.2 martin * getting moved, or inode int32_t arrays that point to indirect 1417 1.1 jtk * blocks that will be moved. We call this before 1418 1.1 jtk * update_for_data_move, and update_for_data_move does inodes first, 1419 1.1 jtk * then indirect blocks in preorder, so as to make sure that the 1420 1.24 wiz * file system is self-consistent at all points, for better crash 1421 1.1 jtk * tolerance. (We can get away with this only because all the writes 1422 1.1 jtk * done by perform_data_move() are writing into space that's not used 1423 1.24 wiz * by the old file system.) If we crash, some things may point to the 1424 1.1 jtk * old data and some to the new, but both copies are the same. The 1425 1.1 jtk * only wrong things should be csum info and free bitmaps, which fsck 1426 1.1 jtk * is entirely capable of cleaning up. 1427 1.1 jtk * 1428 1.1 jtk * Since blkmove_init() initializes all blocks to move to their current 1429 1.1 jtk * locations, we can have two blocks marked as wanting to move to the 1430 1.1 jtk * same location, but only two and only when one of them is the one 1431 1.1 jtk * that was already there. So if blkmove[i]==i, we ignore that entry 1432 1.1 jtk * entirely - for unallocated blocks, we don't want it (and may be 1433 1.1 jtk * putting something else there), and for allocated blocks, we don't 1434 1.1 jtk * want to copy it anywhere. 1435 1.1 jtk */ 1436 1.1 jtk static void 1437 1.1 jtk perform_data_move(void) 1438 1.1 jtk { 1439 1.1 jtk int i; 1440 1.1 jtk int run; 1441 1.1 jtk int maxrun; 1442 1.1 jtk char buf[65536]; 1443 1.1 jtk 1444 1.1 jtk maxrun = sizeof(buf) / newsb->fs_fsize; 1445 1.1 jtk run = 0; 1446 1.1 jtk for (i = 0; i < oldsb->fs_size; i++) { 1447 1.30 dholland if ((blkmove[i] == (unsigned)i /*XXX cast*/) || 1448 1.1 jtk (run >= maxrun) || 1449 1.1 jtk ((run > 0) && 1450 1.1 jtk (blkmove[i] != blkmove[i - 1] + 1))) { 1451 1.1 jtk if (run > 0) { 1452 1.36 dholland readat(FFS_FSBTODB(oldsb, i - run), &buf[0], 1453 1.1 jtk run << oldsb->fs_fshift); 1454 1.36 dholland writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), 1455 1.1 jtk &buf[0], run << oldsb->fs_fshift); 1456 1.1 jtk } 1457 1.1 jtk run = 0; 1458 1.1 jtk } 1459 1.30 dholland if (blkmove[i] != (unsigned)i /*XXX cast*/) 1460 1.1 jtk run++; 1461 1.1 jtk } 1462 1.1 jtk if (run > 0) { 1463 1.36 dholland readat(FFS_FSBTODB(oldsb, i - run), &buf[0], 1464 1.1 jtk run << oldsb->fs_fshift); 1465 1.36 dholland writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), &buf[0], 1466 1.1 jtk run << oldsb->fs_fshift); 1467 1.1 jtk } 1468 1.1 jtk } 1469 1.1 jtk /* 1470 1.2 martin * This modifies an array of int32_t, according to blkmove. This is 1471 1.1 jtk * used to update inode block arrays and indirect blocks to point to 1472 1.1 jtk * the new locations of data blocks. 1473 1.1 jtk * 1474 1.2 martin * Return value is the number of int32_ts that needed updating; in 1475 1.1 jtk * particular, the return value is zero iff nothing was modified. 1476 1.1 jtk */ 1477 1.1 jtk static int 1478 1.2 martin movemap_blocks(int32_t * vec, int n) 1479 1.1 jtk { 1480 1.1 jtk int rv; 1481 1.26 dholland 1482 1.1 jtk rv = 0; 1483 1.1 jtk for (; n > 0; n--, vec++) { 1484 1.30 dholland if (blkmove[*vec] != (unsigned)*vec /*XXX cast*/) { 1485 1.1 jtk *vec = blkmove[*vec]; 1486 1.1 jtk rv++; 1487 1.1 jtk } 1488 1.1 jtk } 1489 1.1 jtk return (rv); 1490 1.1 jtk } 1491 1.1 jtk static void 1492 1.25 riz moveblocks_callback(union dinode * di, unsigned int inum, void *arg) 1493 1.1 jtk { 1494 1.30 dholland int32_t *dblkptr, *iblkptr; 1495 1.26 dholland 1496 1.25 riz switch (DIP(di,di_mode) & IFMT) { 1497 1.1 jtk case IFLNK: 1498 1.30 dholland if ((off_t)DIP(di,di_size) <= oldsb->fs_maxsymlinklen) { 1499 1.27 dholland break; 1500 1.27 dholland } 1501 1.27 dholland /* FALLTHROUGH */ 1502 1.1 jtk case IFDIR: 1503 1.1 jtk case IFREG: 1504 1.25 riz if (is_ufs2) { 1505 1.30 dholland /* XXX these are not int32_t and this is WRONG! */ 1506 1.30 dholland dblkptr = (void *) &(di->dp2.di_db[0]); 1507 1.30 dholland iblkptr = (void *) &(di->dp2.di_ib[0]); 1508 1.25 riz } else { 1509 1.25 riz dblkptr = &(di->dp1.di_db[0]); 1510 1.25 riz iblkptr = &(di->dp1.di_ib[0]); 1511 1.25 riz } 1512 1.26 dholland /* 1513 1.26 dholland * Don't || these two calls; we need their 1514 1.26 dholland * side-effects. 1515 1.26 dholland */ 1516 1.34 dholland if (movemap_blocks(dblkptr, UFS_NDADDR)) { 1517 1.28 dholland iflags[inum] |= IF_DIRTY; 1518 1.28 dholland } 1519 1.34 dholland if (movemap_blocks(iblkptr, UFS_NIADDR)) { 1520 1.28 dholland iflags[inum] |= IF_DIRTY; 1521 1.28 dholland } 1522 1.1 jtk break; 1523 1.1 jtk } 1524 1.1 jtk } 1525 1.1 jtk 1526 1.1 jtk static void 1527 1.30 dholland moveindir_callback(off_t off, unsigned int nfrag, unsigned int nbytes, 1528 1.15 riz int kind) 1529 1.1 jtk { 1530 1.30 dholland unsigned int i; 1531 1.26 dholland 1532 1.1 jtk if (kind == MDB_INDIR_PRE) { 1533 1.2 martin int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))]; 1534 1.36 dholland readat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize); 1535 1.25 riz if (needswap) 1536 1.25 riz for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++) 1537 1.25 riz blk[i] = bswap32(blk[i]); 1538 1.35 dholland if (movemap_blocks(&blk[0], FFS_NINDIR(oldsb))) { 1539 1.25 riz if (needswap) 1540 1.25 riz for (i = 0; i < howmany(MAXBSIZE, 1541 1.25 riz sizeof(int32_t)); i++) 1542 1.25 riz blk[i] = bswap32(blk[i]); 1543 1.36 dholland writeat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize); 1544 1.1 jtk } 1545 1.1 jtk } 1546 1.1 jtk } 1547 1.1 jtk /* 1548 1.1 jtk * Update all inode data arrays and indirect blocks to point to the new 1549 1.1 jtk * locations of data blocks. See the comment header on 1550 1.1 jtk * perform_data_move for some ordering considerations. 1551 1.1 jtk */ 1552 1.1 jtk static void 1553 1.1 jtk update_for_data_move(void) 1554 1.1 jtk { 1555 1.1 jtk map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL); 1556 1.1 jtk map_data_blocks(&moveindir_callback, oldsb->fs_ncg); 1557 1.1 jtk } 1558 1.1 jtk /* 1559 1.1 jtk * Initialize the inomove array. 1560 1.1 jtk */ 1561 1.1 jtk static void 1562 1.1 jtk inomove_init(void) 1563 1.1 jtk { 1564 1.1 jtk int i; 1565 1.1 jtk 1566 1.1 jtk inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove), 1567 1.1 jtk "inomove"); 1568 1.1 jtk for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--) 1569 1.1 jtk inomove[i] = i; 1570 1.1 jtk } 1571 1.1 jtk /* 1572 1.1 jtk * Flush all dirtied inodes to disk. Scans the inode flags array; for 1573 1.1 jtk * each dirty inode, it sets the BDIRTY bit on the first inode in the 1574 1.1 jtk * block containing the dirty inode. Then it scans by blocks, and for 1575 1.1 jtk * each marked block, writes it. 1576 1.1 jtk */ 1577 1.1 jtk static void 1578 1.1 jtk flush_inodes(void) 1579 1.1 jtk { 1580 1.45 christos int i, j, k, ni, m; 1581 1.25 riz struct ufs1_dinode *dp1 = NULL; 1582 1.25 riz struct ufs2_dinode *dp2 = NULL; 1583 1.1 jtk 1584 1.1 jtk ni = newsb->fs_ipg * newsb->fs_ncg; 1585 1.35 dholland m = FFS_INOPB(newsb) - 1; 1586 1.1 jtk for (i = 0; i < ni; i++) { 1587 1.1 jtk if (iflags[i] & IF_DIRTY) { 1588 1.1 jtk iflags[i & ~m] |= IF_BDIRTY; 1589 1.1 jtk } 1590 1.1 jtk } 1591 1.1 jtk m++; 1592 1.25 riz 1593 1.25 riz if (is_ufs2) 1594 1.25 riz dp2 = (struct ufs2_dinode *)ibuf; 1595 1.25 riz else 1596 1.25 riz dp1 = (struct ufs1_dinode *)ibuf; 1597 1.28 dholland 1598 1.1 jtk for (i = 0; i < ni; i += m) { 1599 1.45 christos if ((iflags[i] & IF_BDIRTY) == 0) 1600 1.45 christos continue; 1601 1.45 christos if (is_ufs2) 1602 1.45 christos for (j = 0; j < m; j++) { 1603 1.45 christos dp2[j] = inodes[i + j].dp2; 1604 1.45 christos if (needswap) { 1605 1.45 christos for (k = 0; k < UFS_NDADDR; k++) 1606 1.45 christos dp2[j].di_db[k] = 1607 1.45 christos bswap32(dp2[j].di_db[k]); 1608 1.45 christos for (k = 0; k < UFS_NIADDR; k++) 1609 1.45 christos dp2[j].di_ib[k] = 1610 1.45 christos bswap32(dp2[j].di_ib[k]); 1611 1.45 christos ffs_dinode2_swap(&dp2[j], 1612 1.45 christos &dp2[j]); 1613 1.25 riz } 1614 1.45 christos } 1615 1.45 christos else 1616 1.45 christos for (j = 0; j < m; j++) { 1617 1.45 christos dp1[j] = inodes[i + j].dp1; 1618 1.45 christos if (needswap) { 1619 1.45 christos for (k = 0; k < UFS_NDADDR; k++) 1620 1.45 christos dp1[j].di_db[k]= 1621 1.45 christos bswap32(dp1[j].di_db[k]); 1622 1.45 christos for (k = 0; k < UFS_NIADDR; k++) 1623 1.45 christos dp1[j].di_ib[k]= 1624 1.45 christos bswap32(dp1[j].di_ib[k]); 1625 1.45 christos ffs_dinode1_swap(&dp1[j], 1626 1.45 christos &dp1[j]); 1627 1.25 riz } 1628 1.45 christos } 1629 1.28 dholland 1630 1.45 christos writeat(FFS_FSBTODB(newsb, ino_to_fsba(newsb, i)), 1631 1.45 christos ibuf, newsb->fs_bsize); 1632 1.1 jtk } 1633 1.1 jtk } 1634 1.1 jtk /* 1635 1.1 jtk * Evict all inodes from the specified cg. shrink() already checked 1636 1.1 jtk * that there were enough free inodes, so the no-free-inodes check is 1637 1.24 wiz * a can't-happen. If it does trip, the file system should be in good 1638 1.1 jtk * enough shape for fsck to fix; see the comment on perform_data_move 1639 1.1 jtk * for the considerations in question. 1640 1.1 jtk */ 1641 1.1 jtk static void 1642 1.1 jtk evict_inodes(struct cg * cg) 1643 1.1 jtk { 1644 1.1 jtk int inum; 1645 1.1 jtk int fi; 1646 1.58 chs uint32_t i; 1647 1.1 jtk 1648 1.1 jtk inum = newsb->fs_ipg * cg->cg_cgx; 1649 1.1 jtk for (i = 0; i < newsb->fs_ipg; i++, inum++) { 1650 1.25 riz if (DIP(inodes + inum,di_mode) != 0) { 1651 1.1 jtk fi = find_freeinode(); 1652 1.32 christos if (fi < 0) 1653 1.32 christos errx(EXIT_FAILURE, "Sorry, inodes evaporated - " 1654 1.32 christos "file system probably needs fsck"); 1655 1.1 jtk inomove[inum] = fi; 1656 1.1 jtk clr_bits(cg_inosused(cg, 0), i, 1); 1657 1.1 jtk set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0), 1658 1.1 jtk fi % newsb->fs_ipg, 1); 1659 1.1 jtk } 1660 1.1 jtk } 1661 1.1 jtk } 1662 1.1 jtk /* 1663 1.1 jtk * Move inodes from old locations to new. Does not actually write 1664 1.1 jtk * anything to disk; just copies in-core and sets dirty bits. 1665 1.1 jtk * 1666 1.1 jtk * We have to be careful here for reasons similar to those mentioned in 1667 1.1 jtk * the comment header on perform_data_move, above: for the sake of 1668 1.1 jtk * crash tolerance, we want to make sure everything is present at both 1669 1.1 jtk * old and new locations before we update pointers. So we call this 1670 1.1 jtk * first, then flush_inodes() to get them out on disk, then update 1671 1.1 jtk * directories to match. 1672 1.1 jtk */ 1673 1.1 jtk static void 1674 1.1 jtk perform_inode_move(void) 1675 1.1 jtk { 1676 1.30 dholland unsigned int i; 1677 1.30 dholland unsigned int ni; 1678 1.1 jtk 1679 1.1 jtk ni = oldsb->fs_ipg * oldsb->fs_ncg; 1680 1.1 jtk for (i = 0; i < ni; i++) { 1681 1.1 jtk if (inomove[i] != i) { 1682 1.1 jtk inodes[inomove[i]] = inodes[i]; 1683 1.1 jtk iflags[inomove[i]] = iflags[i] | IF_DIRTY; 1684 1.1 jtk } 1685 1.1 jtk } 1686 1.1 jtk } 1687 1.1 jtk /* 1688 1.1 jtk * Update the directory contained in the nb bytes at buf, to point to 1689 1.1 jtk * inodes' new locations. 1690 1.1 jtk */ 1691 1.1 jtk static int 1692 1.1 jtk update_dirents(char *buf, int nb) 1693 1.1 jtk { 1694 1.1 jtk int rv; 1695 1.1 jtk #define d ((struct direct *)buf) 1696 1.25 riz #define s32(x) (needswap?bswap32((x)):(x)) 1697 1.25 riz #define s16(x) (needswap?bswap16((x)):(x)) 1698 1.28 dholland 1699 1.1 jtk rv = 0; 1700 1.1 jtk while (nb > 0) { 1701 1.25 riz if (inomove[s32(d->d_ino)] != s32(d->d_ino)) { 1702 1.1 jtk rv++; 1703 1.25 riz d->d_ino = s32(inomove[s32(d->d_ino)]); 1704 1.1 jtk } 1705 1.25 riz nb -= s16(d->d_reclen); 1706 1.25 riz buf += s16(d->d_reclen); 1707 1.1 jtk } 1708 1.1 jtk return (rv); 1709 1.1 jtk #undef d 1710 1.25 riz #undef s32 1711 1.25 riz #undef s16 1712 1.1 jtk } 1713 1.1 jtk /* 1714 1.1 jtk * Callback function for map_inode_data_blocks, for updating a 1715 1.1 jtk * directory to point to new inode locations. 1716 1.1 jtk */ 1717 1.1 jtk static void 1718 1.30 dholland update_dir_data(off_t bn, unsigned int size, unsigned int nb, int kind) 1719 1.1 jtk { 1720 1.1 jtk if (kind == MDB_DATA) { 1721 1.1 jtk union { 1722 1.1 jtk struct direct d; 1723 1.1 jtk char ch[MAXBSIZE]; 1724 1.1 jtk } buf; 1725 1.36 dholland readat(FFS_FSBTODB(oldsb, bn), &buf, size << oldsb->fs_fshift); 1726 1.1 jtk if (update_dirents((char *) &buf, nb)) { 1727 1.36 dholland writeat(FFS_FSBTODB(oldsb, bn), &buf, 1728 1.1 jtk size << oldsb->fs_fshift); 1729 1.1 jtk } 1730 1.1 jtk } 1731 1.1 jtk } 1732 1.1 jtk static void 1733 1.25 riz dirmove_callback(union dinode * di, unsigned int inum, void *arg) 1734 1.1 jtk { 1735 1.25 riz switch (DIP(di,di_mode) & IFMT) { 1736 1.1 jtk case IFDIR: 1737 1.1 jtk map_inode_data_blocks(di, &update_dir_data); 1738 1.1 jtk break; 1739 1.1 jtk } 1740 1.1 jtk } 1741 1.1 jtk /* 1742 1.1 jtk * Update directory entries to point to new inode locations. 1743 1.1 jtk */ 1744 1.1 jtk static void 1745 1.1 jtk update_for_inode_move(void) 1746 1.1 jtk { 1747 1.1 jtk map_inodes(&dirmove_callback, newsb->fs_ncg, NULL); 1748 1.1 jtk } 1749 1.1 jtk /* 1750 1.24 wiz * Shrink the file system. 1751 1.1 jtk */ 1752 1.1 jtk static void 1753 1.1 jtk shrink(void) 1754 1.1 jtk { 1755 1.58 chs uint32_t i; 1756 1.1 jtk 1757 1.43 mlelstv if (makegeometry(1)) { 1758 1.43 mlelstv printf("New fs size %"PRIu64" = old fs size %"PRIu64 1759 1.43 mlelstv ", not shrinking.\n", newsb->fs_size, oldsb->fs_size); 1760 1.43 mlelstv return; 1761 1.25 riz } 1762 1.42 mlelstv 1763 1.1 jtk /* Let's make sure we're not being shrunk into oblivion. */ 1764 1.32 christos if (newsb->fs_ncg < 1) 1765 1.32 christos errx(EXIT_FAILURE, "Size too small - file system would " 1766 1.32 christos "have no cylinders"); 1767 1.43 mlelstv 1768 1.43 mlelstv if (verbose) { 1769 1.43 mlelstv printf("Shrinking fs from %"PRIu64" blocks to %"PRIu64 1770 1.43 mlelstv " blocks.\n", oldsb->fs_size, newsb->fs_size); 1771 1.43 mlelstv } 1772 1.43 mlelstv 1773 1.43 mlelstv /* Load the inodes off disk - we'll need 'em. */ 1774 1.43 mlelstv loadinodes(); 1775 1.43 mlelstv 1776 1.43 mlelstv /* Update the timestamp. */ 1777 1.43 mlelstv newsb->fs_time = timestamp(); 1778 1.43 mlelstv 1779 1.1 jtk /* Initialize for block motion. */ 1780 1.1 jtk blkmove_init(); 1781 1.1 jtk /* Update csum size, then fix up for the new size */ 1782 1.37 dholland newsb->fs_cssize = ffs_fragroundup(newsb, 1783 1.1 jtk newsb->fs_ncg * sizeof(struct csum)); 1784 1.1 jtk csum_fixup(); 1785 1.8 snj /* Evict data from any cgs being wholly eliminated */ 1786 1.1 jtk for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) { 1787 1.48 sborrill int64_t base; 1788 1.48 sborrill int64_t dlow; 1789 1.48 sborrill int64_t dhigh; 1790 1.48 sborrill int64_t dmax; 1791 1.1 jtk base = cgbase(oldsb, i); 1792 1.1 jtk dlow = cgsblock(oldsb, i) - base; 1793 1.1 jtk dhigh = cgdmin(oldsb, i) - base; 1794 1.1 jtk dmax = oldsb->fs_size - base; 1795 1.1 jtk if (dmax > cgs[i]->cg_ndblk) 1796 1.1 jtk dmax = cgs[i]->cg_ndblk; 1797 1.1 jtk evict_data(cgs[i], 0, dlow); 1798 1.1 jtk evict_data(cgs[i], dhigh, dmax - dhigh); 1799 1.1 jtk newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir; 1800 1.1 jtk newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree; 1801 1.1 jtk newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree; 1802 1.1 jtk newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree; 1803 1.1 jtk } 1804 1.1 jtk /* Update the new last cg. */ 1805 1.1 jtk cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size - 1806 1.1 jtk ((newsb->fs_ncg - 1) * newsb->fs_fpg); 1807 1.1 jtk /* Is the new last cg partial? If so, evict any data from the part 1808 1.1 jtk * being shrunken away. */ 1809 1.1 jtk if (newsb->fs_size % newsb->fs_fpg) { 1810 1.1 jtk struct cg *cg; 1811 1.1 jtk int oldcgsize; 1812 1.1 jtk int newcgsize; 1813 1.1 jtk cg = cgs[newsb->fs_ncg - 1]; 1814 1.1 jtk newcgsize = newsb->fs_size % newsb->fs_fpg; 1815 1.15 riz oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) & 1816 1.15 riz oldsb->fs_fpg); 1817 1.1 jtk if (oldcgsize > oldsb->fs_fpg) 1818 1.1 jtk oldcgsize = oldsb->fs_fpg; 1819 1.1 jtk evict_data(cg, newcgsize, oldcgsize - newcgsize); 1820 1.1 jtk clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize); 1821 1.1 jtk } 1822 1.25 riz /* Find out whether we would run out of inodes. (Note we 1823 1.25 riz * haven't actually done anything to the file system yet; all 1824 1.25 riz * those evict_data calls just update blkmove.) */ 1825 1.1 jtk { 1826 1.1 jtk int slop; 1827 1.1 jtk slop = 0; 1828 1.1 jtk for (i = 0; i < newsb->fs_ncg; i++) 1829 1.1 jtk slop += cgs[i]->cg_cs.cs_nifree; 1830 1.1 jtk for (; i < oldsb->fs_ncg; i++) 1831 1.1 jtk slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree; 1832 1.32 christos if (slop < 0) 1833 1.32 christos errx(EXIT_FAILURE, "Sorry, would run out of inodes"); 1834 1.1 jtk } 1835 1.25 riz /* Copy data, then update pointers to data. See the comment 1836 1.25 riz * header on perform_data_move for ordering considerations. */ 1837 1.1 jtk perform_data_move(); 1838 1.1 jtk update_for_data_move(); 1839 1.25 riz /* Now do inodes. Initialize, evict, move, update - see the 1840 1.25 riz * comment header on perform_inode_move. */ 1841 1.1 jtk inomove_init(); 1842 1.1 jtk for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) 1843 1.1 jtk evict_inodes(cgs[i]); 1844 1.1 jtk perform_inode_move(); 1845 1.1 jtk flush_inodes(); 1846 1.1 jtk update_for_inode_move(); 1847 1.1 jtk /* Recompute all the bitmaps; most of them probably need it anyway, 1848 1.1 jtk * the rest are just paranoia and not wanting to have to bother 1849 1.1 jtk * keeping track of exactly which ones require it. */ 1850 1.1 jtk for (i = 0; i < newsb->fs_ncg; i++) 1851 1.1 jtk cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS; 1852 1.14 riz /* Update the cg_old_ncyl value for the last cylinder. */ 1853 1.20 mhitch if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) 1854 1.14 riz cgs[newsb->fs_ncg - 1]->cg_old_ncyl = 1855 1.20 mhitch newsb->fs_old_ncyl % newsb->fs_old_cpg; 1856 1.1 jtk /* Make fs_dsize match the new reality. */ 1857 1.1 jtk recompute_fs_dsize(); 1858 1.1 jtk } 1859 1.1 jtk /* 1860 1.1 jtk * Recompute the block totals, block cluster summaries, and rotational 1861 1.1 jtk * position summaries, for a given cg (specified by number), based on 1862 1.1 jtk * its free-frag bitmap (cg_blksfree()[]). 1863 1.1 jtk */ 1864 1.1 jtk static void 1865 1.1 jtk rescan_blkmaps(int cgn) 1866 1.1 jtk { 1867 1.1 jtk struct cg *cg; 1868 1.58 chs uint32_t f; 1869 1.1 jtk int b; 1870 1.1 jtk int blkfree; 1871 1.1 jtk int blkrun; 1872 1.1 jtk int fragrun; 1873 1.1 jtk int fwb; 1874 1.1 jtk 1875 1.1 jtk cg = cgs[cgn]; 1876 1.1 jtk /* Subtract off the current totals from the sb's summary info */ 1877 1.1 jtk newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree; 1878 1.1 jtk newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree; 1879 1.1 jtk /* Clear counters and bitmaps. */ 1880 1.1 jtk cg->cg_cs.cs_nffree = 0; 1881 1.1 jtk cg->cg_cs.cs_nbfree = 0; 1882 1.25 riz memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0])); 1883 1.25 riz memset(&old_cg_blktot(cg, 0)[0], 0, 1884 1.15 riz newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0])); 1885 1.25 riz memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0, 1886 1.4 christos newsb->fs_old_cpg * newsb->fs_old_nrpos * 1887 1.15 riz sizeof(old_cg_blks(newsb, cg, 0, 0)[0])); 1888 1.1 jtk if (newsb->fs_contigsumsize > 0) { 1889 1.1 jtk cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag; 1890 1.25 riz memset(&cg_clustersum(cg, 0)[1], 0, 1891 1.1 jtk newsb->fs_contigsumsize * 1892 1.1 jtk sizeof(cg_clustersum(cg, 0)[1])); 1893 1.25 riz if (is_ufs2) 1894 1.25 riz memset(&cg_clustersfree(cg, 0)[0], 0, 1895 1.25 riz howmany(newsb->fs_fpg / NSPB(newsb), NBBY)); 1896 1.25 riz else 1897 1.25 riz memset(&cg_clustersfree(cg, 0)[0], 0, 1898 1.25 riz howmany((newsb->fs_old_cpg * newsb->fs_old_spc) / 1899 1.25 riz NSPB(newsb), NBBY)); 1900 1.25 riz } 1901 1.25 riz /* Scan the free-frag bitmap. Runs of free frags are kept 1902 1.25 riz * track of with fragrun, and recorded into cg_frsum[] and 1903 1.25 riz * cg_cs.cs_nffree; on each block boundary, entire free blocks 1904 1.25 riz * are recorded as well. */ 1905 1.1 jtk blkfree = 1; 1906 1.1 jtk blkrun = 0; 1907 1.1 jtk fragrun = 0; 1908 1.1 jtk f = 0; 1909 1.1 jtk b = 0; 1910 1.1 jtk fwb = 0; 1911 1.1 jtk while (f < cg->cg_ndblk) { 1912 1.1 jtk if (bit_is_set(cg_blksfree(cg, 0), f)) { 1913 1.1 jtk fragrun++; 1914 1.1 jtk } else { 1915 1.1 jtk blkfree = 0; 1916 1.1 jtk if (fragrun > 0) { 1917 1.1 jtk cg->cg_frsum[fragrun]++; 1918 1.1 jtk cg->cg_cs.cs_nffree += fragrun; 1919 1.1 jtk } 1920 1.1 jtk fragrun = 0; 1921 1.1 jtk } 1922 1.1 jtk f++; 1923 1.1 jtk fwb++; 1924 1.1 jtk if (fwb >= newsb->fs_frag) { 1925 1.1 jtk if (blkfree) { 1926 1.1 jtk cg->cg_cs.cs_nbfree++; 1927 1.1 jtk if (newsb->fs_contigsumsize > 0) 1928 1.1 jtk set_bits(cg_clustersfree(cg, 0), b, 1); 1929 1.25 riz if (is_ufs2 == 0) { 1930 1.25 riz old_cg_blktot(cg, 0)[ 1931 1.25 riz old_cbtocylno(newsb, 1932 1.25 riz f - newsb->fs_frag)]++; 1933 1.25 riz old_cg_blks(newsb, cg, 1934 1.25 riz old_cbtocylno(newsb, 1935 1.25 riz f - newsb->fs_frag), 1936 1.25 riz 0)[old_cbtorpos(newsb, 1937 1.25 riz f - newsb->fs_frag)]++; 1938 1.25 riz } 1939 1.1 jtk blkrun++; 1940 1.1 jtk } else { 1941 1.1 jtk if (fragrun > 0) { 1942 1.1 jtk cg->cg_frsum[fragrun]++; 1943 1.1 jtk cg->cg_cs.cs_nffree += fragrun; 1944 1.1 jtk } 1945 1.1 jtk if (newsb->fs_contigsumsize > 0) { 1946 1.1 jtk if (blkrun > 0) { 1947 1.15 riz cg_clustersum(cg, 0)[(blkrun 1948 1.15 riz > newsb->fs_contigsumsize) 1949 1.15 riz ? newsb->fs_contigsumsize 1950 1.15 riz : blkrun]++; 1951 1.1 jtk } 1952 1.1 jtk } 1953 1.1 jtk blkrun = 0; 1954 1.1 jtk } 1955 1.1 jtk fwb = 0; 1956 1.1 jtk b++; 1957 1.1 jtk blkfree = 1; 1958 1.1 jtk fragrun = 0; 1959 1.1 jtk } 1960 1.1 jtk } 1961 1.1 jtk if (fragrun > 0) { 1962 1.1 jtk cg->cg_frsum[fragrun]++; 1963 1.1 jtk cg->cg_cs.cs_nffree += fragrun; 1964 1.1 jtk } 1965 1.1 jtk if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) { 1966 1.1 jtk cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ? 1967 1.1 jtk newsb->fs_contigsumsize : blkrun]++; 1968 1.1 jtk } 1969 1.1 jtk /* 1970 1.1 jtk * Put the updated summary info back into csums, and add it 1971 1.1 jtk * back into the sb's summary info. Then mark the cg dirty. 1972 1.1 jtk */ 1973 1.1 jtk csums[cgn] = cg->cg_cs; 1974 1.1 jtk newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree; 1975 1.1 jtk newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree; 1976 1.1 jtk cgflags[cgn] |= CGF_DIRTY; 1977 1.1 jtk } 1978 1.1 jtk /* 1979 1.1 jtk * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir 1980 1.1 jtk * values, for a cg, based on the in-core inodes for that cg. 1981 1.1 jtk */ 1982 1.1 jtk static void 1983 1.1 jtk rescan_inomaps(int cgn) 1984 1.1 jtk { 1985 1.1 jtk struct cg *cg; 1986 1.1 jtk int inum; 1987 1.58 chs uint32_t iwc; 1988 1.1 jtk 1989 1.1 jtk cg = cgs[cgn]; 1990 1.1 jtk newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir; 1991 1.1 jtk newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree; 1992 1.1 jtk cg->cg_cs.cs_ndir = 0; 1993 1.1 jtk cg->cg_cs.cs_nifree = 0; 1994 1.25 riz memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY)); 1995 1.1 jtk inum = cgn * newsb->fs_ipg; 1996 1.1 jtk if (cgn == 0) { 1997 1.1 jtk set_bits(cg_inosused(cg, 0), 0, 2); 1998 1.1 jtk iwc = 2; 1999 1.1 jtk inum += 2; 2000 1.1 jtk } else { 2001 1.1 jtk iwc = 0; 2002 1.1 jtk } 2003 1.1 jtk for (; iwc < newsb->fs_ipg; iwc++, inum++) { 2004 1.25 riz switch (DIP(inodes + inum, di_mode) & IFMT) { 2005 1.1 jtk case 0: 2006 1.1 jtk cg->cg_cs.cs_nifree++; 2007 1.1 jtk break; 2008 1.1 jtk case IFDIR: 2009 1.1 jtk cg->cg_cs.cs_ndir++; 2010 1.31 dholland /* FALLTHROUGH */ 2011 1.1 jtk default: 2012 1.1 jtk set_bits(cg_inosused(cg, 0), iwc, 1); 2013 1.1 jtk break; 2014 1.1 jtk } 2015 1.1 jtk } 2016 1.1 jtk csums[cgn] = cg->cg_cs; 2017 1.1 jtk newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir; 2018 1.1 jtk newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree; 2019 1.1 jtk cgflags[cgn] |= CGF_DIRTY; 2020 1.1 jtk } 2021 1.1 jtk /* 2022 1.1 jtk * Flush cgs to disk, recomputing anything they're marked as needing. 2023 1.1 jtk */ 2024 1.1 jtk static void 2025 1.1 jtk flush_cgs(void) 2026 1.1 jtk { 2027 1.58 chs uint32_t i; 2028 1.1 jtk 2029 1.1 jtk for (i = 0; i < newsb->fs_ncg; i++) { 2030 1.44 jmcneill progress_bar(special, "flush cg", 2031 1.44 jmcneill i, newsb->fs_ncg - 1); 2032 1.1 jtk if (cgflags[i] & CGF_BLKMAPS) { 2033 1.1 jtk rescan_blkmaps(i); 2034 1.1 jtk } 2035 1.1 jtk if (cgflags[i] & CGF_INOMAPS) { 2036 1.1 jtk rescan_inomaps(i); 2037 1.1 jtk } 2038 1.1 jtk if (cgflags[i] & CGF_DIRTY) { 2039 1.1 jtk cgs[i]->cg_rotor = 0; 2040 1.1 jtk cgs[i]->cg_frotor = 0; 2041 1.1 jtk cgs[i]->cg_irotor = 0; 2042 1.25 riz if (needswap) 2043 1.25 riz ffs_cg_swap(cgs[i],cgs[i],newsb); 2044 1.36 dholland writeat(FFS_FSBTODB(newsb, cgtod(newsb, i)), cgs[i], 2045 1.1 jtk cgblksz); 2046 1.1 jtk } 2047 1.1 jtk } 2048 1.25 riz if (needswap) 2049 1.25 riz ffs_csum_swap(csums,csums,newsb->fs_cssize); 2050 1.36 dholland writeat(FFS_FSBTODB(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize); 2051 1.44 jmcneill 2052 1.44 jmcneill progress_done(); 2053 1.1 jtk } 2054 1.1 jtk /* 2055 1.1 jtk * Write the superblock, both to the main superblock and to each cg's 2056 1.1 jtk * alternative superblock. 2057 1.1 jtk */ 2058 1.1 jtk static void 2059 1.1 jtk write_sbs(void) 2060 1.1 jtk { 2061 1.58 chs uint32_t i; 2062 1.1 jtk 2063 1.20 mhitch if (newsb->fs_magic == FS_UFS1_MAGIC && 2064 1.20 mhitch (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2065 1.20 mhitch newsb->fs_old_time = newsb->fs_time; 2066 1.20 mhitch newsb->fs_old_size = newsb->fs_size; 2067 1.20 mhitch /* we don't update fs_csaddr */ 2068 1.20 mhitch newsb->fs_old_dsize = newsb->fs_dsize; 2069 1.20 mhitch newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir; 2070 1.20 mhitch newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree; 2071 1.20 mhitch newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree; 2072 1.20 mhitch newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree; 2073 1.20 mhitch /* fill fs_old_postbl_start with 256 bytes of 0xff? */ 2074 1.20 mhitch } 2075 1.25 riz /* copy newsb back to oldsb, so we can use it for offsets if 2076 1.25 riz newsb has been swapped for writing to disk */ 2077 1.25 riz memcpy(oldsb, newsb, SBLOCKSIZE); 2078 1.25 riz if (needswap) 2079 1.25 riz ffs_sb_swap(newsb,newsb); 2080 1.10 bouyer writeat(where / DEV_BSIZE, newsb, SBLOCKSIZE); 2081 1.25 riz for (i = 0; i < oldsb->fs_ncg; i++) { 2082 1.44 jmcneill progress_bar(special, "write sb", 2083 1.44 jmcneill i, oldsb->fs_ncg - 1); 2084 1.36 dholland writeat(FFS_FSBTODB(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE); 2085 1.1 jtk } 2086 1.44 jmcneill 2087 1.44 jmcneill progress_done(); 2088 1.1 jtk } 2089 1.13 haad 2090 1.43 mlelstv /* 2091 1.54 maya * Check to see whether new size changes the filesystem 2092 1.43 mlelstv * return exit code 2093 1.43 mlelstv */ 2094 1.43 mlelstv static int 2095 1.43 mlelstv checkonly(void) 2096 1.43 mlelstv { 2097 1.43 mlelstv if (makegeometry(0)) { 2098 1.43 mlelstv if (verbose) { 2099 1.43 mlelstv printf("Wouldn't change: already %" PRId64 2100 1.43 mlelstv " blocks\n", (int64_t)oldsb->fs_size); 2101 1.43 mlelstv } 2102 1.43 mlelstv return 1; 2103 1.43 mlelstv } 2104 1.43 mlelstv 2105 1.43 mlelstv if (verbose) { 2106 1.43 mlelstv printf("Would change: newsize: %" PRId64 " oldsize: %" 2107 1.43 mlelstv PRId64 " fsdb: %" PRId64 "\n", FFS_DBTOFSB(oldsb, newsize), 2108 1.43 mlelstv (int64_t)oldsb->fs_size, 2109 1.43 mlelstv (int64_t)oldsb->fs_fsbtodb); 2110 1.43 mlelstv } 2111 1.43 mlelstv return 0; 2112 1.43 mlelstv } 2113 1.43 mlelstv 2114 1.30 dholland static off_t 2115 1.55 jmcneill get_dev_size(const char *dev_name) 2116 1.13 haad { 2117 1.13 haad struct dkwedge_info dkw; 2118 1.13 haad struct partition *pp; 2119 1.13 haad struct disklabel lp; 2120 1.39 riastrad struct stat st; 2121 1.13 haad size_t ptn; 2122 1.28 dholland 2123 1.13 haad /* Get info about partition/wedge */ 2124 1.40 riastrad if (ioctl(fd, DIOCGWEDGEINFO, &dkw) != -1) 2125 1.39 riastrad return dkw.dkw_size; 2126 1.40 riastrad if (ioctl(fd, DIOCGDINFO, &lp) != -1) { 2127 1.13 haad ptn = strchr(dev_name, '\0')[-1] - 'a'; 2128 1.13 haad if (ptn >= lp.d_npartitions) 2129 1.13 haad return 0; 2130 1.13 haad pp = &lp.d_partitions[ptn]; 2131 1.13 haad return pp->p_size; 2132 1.13 haad } 2133 1.40 riastrad if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode)) 2134 1.41 chopps return st.st_size / DEV_BSIZE; 2135 1.13 haad 2136 1.39 riastrad return 0; 2137 1.13 haad } 2138 1.13 haad 2139 1.1 jtk /* 2140 1.1 jtk * main(). 2141 1.1 jtk */ 2142 1.1 jtk int 2143 1.13 haad main(int argc, char **argv) 2144 1.1 jtk { 2145 1.13 haad int ch; 2146 1.41 chopps int CheckOnlyFlag; 2147 1.13 haad int ExpertFlag; 2148 1.13 haad int SFlag; 2149 1.4 christos size_t i; 2150 1.55 jmcneill char specname[MAXPATHLEN]; 2151 1.55 jmcneill char rawname[MAXPATHLEN]; 2152 1.55 jmcneill const char *raw; 2153 1.13 haad 2154 1.13 haad char reply[5]; 2155 1.28 dholland 2156 1.13 haad newsize = 0; 2157 1.13 haad ExpertFlag = 0; 2158 1.13 haad SFlag = 0; 2159 1.41 chopps CheckOnlyFlag = 0; 2160 1.28 dholland 2161 1.44 jmcneill while ((ch = getopt(argc, argv, "cps:vy")) != -1) { 2162 1.13 haad switch (ch) { 2163 1.41 chopps case 'c': 2164 1.41 chopps CheckOnlyFlag = 1; 2165 1.41 chopps break; 2166 1.44 jmcneill case 'p': 2167 1.44 jmcneill progress = 1; 2168 1.44 jmcneill break; 2169 1.13 haad case 's': 2170 1.13 haad SFlag = 1; 2171 1.30 dholland newsize = strtoll(optarg, NULL, 10); 2172 1.13 haad if(newsize < 1) { 2173 1.13 haad usage(); 2174 1.13 haad } 2175 1.13 haad break; 2176 1.41 chopps case 'v': 2177 1.41 chopps verbose = 1; 2178 1.41 chopps break; 2179 1.13 haad case 'y': 2180 1.13 haad ExpertFlag = 1; 2181 1.13 haad break; 2182 1.13 haad case '?': 2183 1.13 haad /* FALLTHROUGH */ 2184 1.13 haad default: 2185 1.13 haad usage(); 2186 1.13 haad } 2187 1.13 haad } 2188 1.13 haad argc -= optind; 2189 1.13 haad argv += optind; 2190 1.13 haad 2191 1.13 haad if (argc != 1) { 2192 1.13 haad usage(); 2193 1.13 haad } 2194 1.13 haad 2195 1.55 jmcneill special = getfsspecname(specname, sizeof(specname), argv[0]); 2196 1.55 jmcneill if (special == NULL) 2197 1.55 jmcneill err(EXIT_FAILURE, "%s: %s", argv[0], specname); 2198 1.55 jmcneill raw = getdiskrawname(rawname, sizeof(rawname), special); 2199 1.55 jmcneill if (raw != NULL) 2200 1.55 jmcneill special = raw; 2201 1.13 haad 2202 1.41 chopps if (ExpertFlag == 0 && CheckOnlyFlag == 0) { 2203 1.24 wiz printf("It's required to manually run fsck on file system " 2204 1.13 haad "before you can resize it\n\n" 2205 1.13 haad " Did you run fsck on your disk (Yes/No) ? "); 2206 1.13 haad fgets(reply, (int)sizeof(reply), stdin); 2207 1.13 haad if (strcasecmp(reply, "Yes\n")) { 2208 1.13 haad printf("\n Nothing done \n"); 2209 1.13 haad exit(EXIT_SUCCESS); 2210 1.13 haad } 2211 1.1 jtk } 2212 1.28 dholland 2213 1.23 riz fd = open(special, O_RDWR, 0); 2214 1.4 christos if (fd < 0) 2215 1.23 riz err(EXIT_FAILURE, "Can't open `%s'", special); 2216 1.1 jtk checksmallio(); 2217 1.13 haad 2218 1.13 haad if (SFlag == 0) { 2219 1.23 riz newsize = get_dev_size(special); 2220 1.13 haad if (newsize == 0) 2221 1.15 riz err(EXIT_FAILURE, 2222 1.24 wiz "Can't resize file system, newsize not known."); 2223 1.13 haad } 2224 1.28 dholland 2225 1.1 jtk oldsb = (struct fs *) & sbbuf; 2226 1.4 christos newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf); 2227 1.4 christos for (where = search[i = 0]; search[i] != -1; where = search[++i]) { 2228 1.9 bouyer readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE); 2229 1.23 riz switch (oldsb->fs_magic) { 2230 1.23 riz case FS_UFS2_MAGIC: 2231 1.57 chs case FS_UFS2EA_MAGIC: 2232 1.31 dholland is_ufs2 = 1; 2233 1.23 riz /* FALLTHROUGH */ 2234 1.23 riz case FS_UFS1_MAGIC: 2235 1.23 riz needswap = 0; 2236 1.23 riz break; 2237 1.23 riz case FS_UFS2_MAGIC_SWAPPED: 2238 1.57 chs case FS_UFS2EA_MAGIC_SWAPPED: 2239 1.23 riz is_ufs2 = 1; 2240 1.23 riz /* FALLTHROUGH */ 2241 1.23 riz case FS_UFS1_MAGIC_SWAPPED: 2242 1.23 riz needswap = 1; 2243 1.23 riz break; 2244 1.23 riz default: 2245 1.23 riz continue; 2246 1.23 riz } 2247 1.23 riz if (!is_ufs2 && where == SBLOCK_UFS2) 2248 1.16 riz continue; 2249 1.23 riz break; 2250 1.1 jtk } 2251 1.4 christos if (where == (off_t)-1) 2252 1.13 haad errx(EXIT_FAILURE, "Bad magic number"); 2253 1.25 riz if (needswap) 2254 1.25 riz ffs_sb_swap(oldsb,oldsb); 2255 1.20 mhitch if (oldsb->fs_magic == FS_UFS1_MAGIC && 2256 1.20 mhitch (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2257 1.20 mhitch oldsb->fs_csaddr = oldsb->fs_old_csaddr; 2258 1.20 mhitch oldsb->fs_size = oldsb->fs_old_size; 2259 1.20 mhitch oldsb->fs_dsize = oldsb->fs_old_dsize; 2260 1.20 mhitch oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir; 2261 1.20 mhitch oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree; 2262 1.20 mhitch oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree; 2263 1.20 mhitch oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree; 2264 1.20 mhitch /* any others? */ 2265 1.20 mhitch printf("Resizing with ffsv1 superblock\n"); 2266 1.20 mhitch } 2267 1.25 riz 2268 1.1 jtk oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask; 2269 1.1 jtk oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask; 2270 1.35 dholland if (oldsb->fs_ipg % FFS_INOPB(oldsb)) 2271 1.35 dholland errx(EXIT_FAILURE, "ipg[%d] %% FFS_INOPB[%d] != 0", 2272 1.35 dholland (int) oldsb->fs_ipg, (int) FFS_INOPB(oldsb)); 2273 1.25 riz /* The superblock is bigger than struct fs (there are trailing 2274 1.25 riz * tables, of non-fixed size); make sure we copy the whole 2275 1.25 riz * thing. SBLOCKSIZE may be an over-estimate, but we do this 2276 1.25 riz * just once, so being generous is cheap. */ 2277 1.25 riz memcpy(newsb, oldsb, SBLOCKSIZE); 2278 1.44 jmcneill 2279 1.44 jmcneill if (progress) { 2280 1.44 jmcneill progress_ttywidth(0); 2281 1.44 jmcneill signal(SIGWINCH, progress_ttywidth); 2282 1.44 jmcneill } 2283 1.44 jmcneill 2284 1.1 jtk loadcgs(); 2285 1.41 chopps 2286 1.44 jmcneill if (progress && !CheckOnlyFlag) { 2287 1.44 jmcneill progress_switch(progress); 2288 1.44 jmcneill progress_init(); 2289 1.44 jmcneill } 2290 1.44 jmcneill 2291 1.36 dholland if (newsize > FFS_FSBTODB(oldsb, oldsb->fs_size)) { 2292 1.43 mlelstv if (CheckOnlyFlag) 2293 1.43 mlelstv exit(checkonly()); 2294 1.1 jtk grow(); 2295 1.36 dholland } else if (newsize < FFS_FSBTODB(oldsb, oldsb->fs_size)) { 2296 1.25 riz if (is_ufs2) 2297 1.25 riz errx(EXIT_FAILURE,"shrinking not supported for ufs2"); 2298 1.43 mlelstv if (CheckOnlyFlag) 2299 1.43 mlelstv exit(checkonly()); 2300 1.1 jtk shrink(); 2301 1.43 mlelstv } else { 2302 1.43 mlelstv if (CheckOnlyFlag) 2303 1.43 mlelstv exit(checkonly()); 2304 1.43 mlelstv if (verbose) 2305 1.43 mlelstv printf("No change requested: already %" PRId64 2306 1.43 mlelstv " blocks\n", (int64_t)oldsb->fs_size); 2307 1.1 jtk } 2308 1.43 mlelstv 2309 1.1 jtk flush_cgs(); 2310 1.1 jtk write_sbs(); 2311 1.19 riz if (isplainfile()) 2312 1.19 riz ftruncate(fd,newsize * DEV_BSIZE); 2313 1.13 haad return 0; 2314 1.13 haad } 2315 1.13 haad 2316 1.13 haad static void 2317 1.13 haad usage(void) 2318 1.13 haad { 2319 1.13 haad 2320 1.52 christos (void)fprintf(stderr, "usage: %s [-cpvy] [-s size] special\n", 2321 1.25 riz getprogname()); 2322 1.13 haad exit(EXIT_FAILURE); 2323 1.1 jtk } 2324