Home | History | Annotate | Line # | Download | only in resize_ffs
resize_ffs.c revision 1.14
      1  1.14       riz /*	$NetBSD: resize_ffs.c,v 1.14 2010/11/29 19:54:10 riz Exp $	*/
      2   1.1       jtk /* From sources sent on February 17, 2003 */
      3   1.1       jtk /*-
      4   1.1       jtk  * As its sole author, I explicitly place this code in the public
      5   1.1       jtk  *  domain.  Anyone may use it for any purpose (though I would
      6   1.1       jtk  *  appreciate credit where it is due).
      7   1.1       jtk  *
      8   1.1       jtk  *					der Mouse
      9   1.1       jtk  *
     10   1.1       jtk  *			       mouse (at) rodents.montreal.qc.ca
     11   1.1       jtk  *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
     12   1.1       jtk  */
     13   1.1       jtk /*
     14   1.3       wiz  * resize_ffs:
     15   1.1       jtk  *
     16   1.1       jtk  * Resize a filesystem.  Is capable of both growing and shrinking.
     17   1.1       jtk  *
     18   1.3       wiz  * Usage: resize_ffs filesystem newsize
     19   1.1       jtk  *
     20   1.3       wiz  * Example: resize_ffs /dev/rsd1e 29574
     21   1.1       jtk  *
     22   1.1       jtk  * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
     23   1.1       jtk  *  each).
     24   1.1       jtk  *
     25   1.1       jtk  * Note: this currently requires gcc to build, since it is written
     26   1.1       jtk  *  depending on gcc-specific features, notably nested function
     27   1.1       jtk  *  definitions (which in at least a few cases depend on the lexical
     28   1.1       jtk  *  scoping gcc provides, so they can't be trivially moved outside).
     29   1.1       jtk  *
     30   1.1       jtk  * It will not do anything useful with filesystems in other than
     31   1.1       jtk  *  host-native byte order.  This really should be fixed (it's largely
     32   1.1       jtk  *  a historical accident; the original version of this program is
     33   1.1       jtk  *  older than bi-endian support in FFS).
     34   1.1       jtk  *
     35   1.5      salo  * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
     36   1.1       jtk  *  one responsible for the "realloccgblk: can't find blk in cyl"
     37   1.1       jtk  *  problem and a more minor one which left fs_dsize wrong when
     38   1.1       jtk  *  shrinking.  (These actually indicate bugs in fsck too - it should
     39   1.1       jtk  *  have caught and fixed them.)
     40   1.1       jtk  *
     41   1.1       jtk  */
     42   1.1       jtk 
     43  1.11     perry #include <sys/cdefs.h>
     44   1.1       jtk #include <stdio.h>
     45   1.1       jtk #include <errno.h>
     46   1.1       jtk #include <fcntl.h>
     47   1.1       jtk #include <stdlib.h>
     48   1.1       jtk #include <unistd.h>
     49   1.1       jtk #include <strings.h>
     50   1.4  christos #include <err.h>
     51  1.13      haad #include <sys/disk.h>
     52  1.13      haad #include <sys/disklabel.h>
     53  1.13      haad #include <sys/dkio.h>
     54  1.13      haad #include <sys/ioctl.h>
     55   1.1       jtk #include <sys/stat.h>
     56   1.1       jtk #include <sys/mman.h>
     57   1.1       jtk #include <sys/param.h>		/* MAXFRAG */
     58   1.1       jtk #include <ufs/ffs/fs.h>
     59   1.1       jtk #include <ufs/ufs/dir.h>
     60   1.1       jtk #include <ufs/ufs/dinode.h>
     61   1.1       jtk #include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */
     62   1.1       jtk 
     63   1.1       jtk /* new size of filesystem, in sectors */
     64  1.13      haad static uint32_t newsize;
     65   1.1       jtk 
     66   1.1       jtk /* fd open onto disk device */
     67   1.1       jtk static int fd;
     68   1.1       jtk 
     69   1.1       jtk /* must we break up big I/O operations - see checksmallio() */
     70   1.1       jtk static int smallio;
     71   1.1       jtk 
     72   1.1       jtk /* size of a cg, in bytes, rounded up to a frag boundary */
     73   1.1       jtk static int cgblksz;
     74   1.1       jtk 
     75   1.4  christos /* possible superblock localtions */
     76   1.4  christos static int search[] = SBLOCKSEARCH;
     77   1.4  christos /* location of the superblock */
     78   1.4  christos static off_t where;
     79   1.4  christos 
     80   1.1       jtk /* Superblocks. */
     81   1.1       jtk static struct fs *oldsb;	/* before we started */
     82   1.1       jtk static struct fs *newsb;	/* copy to work with */
     83   1.1       jtk /* Buffer to hold the above.  Make sure it's aligned correctly. */
     84   1.4  christos static char sbbuf[2 * SBLOCKSIZE] __attribute__((__aligned__(__alignof__(struct fs))));
     85   1.1       jtk 
     86   1.1       jtk /* a cg's worth of brand new squeaky-clean inodes */
     87   1.4  christos static struct ufs1_dinode *zinodes;
     88   1.1       jtk 
     89   1.1       jtk /* pointers to the in-core cgs, read off disk and possibly modified */
     90   1.1       jtk static struct cg **cgs;
     91   1.1       jtk 
     92   1.1       jtk /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
     93   1.1       jtk static struct csum *csums;
     94   1.1       jtk 
     95   1.1       jtk /* per-cg flags, indexed by cg number */
     96   1.1       jtk static unsigned char *cgflags;
     97   1.1       jtk #define CGF_DIRTY   0x01	/* needs to be written to disk */
     98   1.1       jtk #define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
     99   1.1       jtk #define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */
    100   1.1       jtk 
    101   1.1       jtk /* when shrinking, these two arrays record how we want blocks to move.	 */
    102   1.1       jtk /*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
    103   1.1       jtk /*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
    104   1.1       jtk /*  started out as inode i should end up as inode j.			 */
    105   1.1       jtk static unsigned int *blkmove;
    106   1.1       jtk static unsigned int *inomove;
    107   1.1       jtk 
    108   1.1       jtk /* in-core copies of all inodes in the fs, indexed by inumber */
    109   1.4  christos static struct ufs1_dinode *inodes;
    110   1.1       jtk 
    111   1.1       jtk /* per-inode flags, indexed by inumber */
    112   1.1       jtk static unsigned char *iflags;
    113   1.1       jtk #define IF_DIRTY  0x01		/* needs to be written to disk */
    114   1.1       jtk #define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
    115   1.1       jtk 				 * block of inodes, and applies to the whole
    116   1.1       jtk 				 * block. */
    117   1.1       jtk 
    118   1.4  christos /* Old FFS1 macros */
    119   1.4  christos #define cg_blktot(cgp, ns) \
    120   1.4  christos     (cg_chkmagic(cgp, ns) ? \
    121   1.4  christos     ((int32_t *)((u_int8_t *)(cgp) + ufs_rw32((cgp)->cg_old_btotoff, (ns)))) \
    122   1.4  christos     : (((struct ocg *)(cgp))->cg_btot))
    123   1.4  christos #define cg_blks(fs, cgp, cylno, ns) \
    124   1.4  christos     (cg_chkmagic(cgp, ns) ? \
    125   1.4  christos     ((int16_t *)((u_int8_t *)(cgp) + ufs_rw32((cgp)->cg_old_boff, (ns))) + \
    126   1.4  christos 	(cylno) * (fs)->fs_old_nrpos) \
    127   1.4  christos     : (((struct ocg *)(cgp))->cg_b[cylno]))
    128   1.4  christos #define cbtocylno(fs, bno) \
    129   1.4  christos    (fsbtodb(fs, bno) / (fs)->fs_old_spc)
    130   1.4  christos #define cbtorpos(fs, bno) \
    131   1.4  christos     ((fs)->fs_old_nrpos <= 1 ? 0 : \
    132   1.4  christos      (fsbtodb(fs, bno) % (fs)->fs_old_spc / \
    133   1.4  christos       (fs)->fs_old_nsect * (fs)->fs_old_trackskew + \
    134   1.4  christos       fsbtodb(fs, bno) % (fs)->fs_old_spc % \
    135   1.4  christos       (fs)->fs_old_nsect * (fs)->fs_old_interleave) %\
    136   1.4  christos     (fs)->fs_old_nsect * (fs)->fs_old_nrpos / (fs)->fs_old_npsect)
    137   1.4  christos #define dblksize(fs, dip, lbn) \
    138   1.4  christos     (((lbn) >= NDADDR || (dip)->di_size >= lblktosize(fs, (lbn) + 1)) \
    139   1.4  christos     ? (fs)->fs_bsize \
    140   1.4  christos     : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
    141   1.4  christos 
    142   1.4  christos 
    143   1.4  christos /*
    144   1.4  christos  * Number of disk sectors per block/fragment; assumes DEV_BSIZE byte
    145   1.4  christos  * sector size.
    146   1.4  christos  */
    147   1.4  christos #define NSPB(fs)	((fs)->fs_old_nspf << (fs)->fs_fragshift)
    148   1.4  christos #define NSPF(fs)	((fs)->fs_old_nspf)
    149   1.4  christos 
    150  1.13      haad static void usage(void) __dead;
    151  1.13      haad 
    152   1.1       jtk /*
    153   1.1       jtk  * See if we need to break up large I/O operations.  This should never
    154   1.1       jtk  *  be needed, but under at least one <version,platform> combination,
    155   1.1       jtk  *  large enough disk transfers to the raw device hang.  So if we're
    156   1.1       jtk  *  talking to a character special device, play it safe; in this case,
    157   1.1       jtk  *  readat() and writeat() break everything up into pieces no larger
    158   1.1       jtk  *  than 8K, doing multiple syscalls for larger operations.
    159   1.1       jtk  */
    160   1.1       jtk static void
    161   1.1       jtk checksmallio(void)
    162   1.1       jtk {
    163   1.1       jtk 	struct stat stb;
    164   1.1       jtk 
    165   1.1       jtk 	fstat(fd, &stb);
    166   1.1       jtk 	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
    167   1.1       jtk }
    168   1.1       jtk /*
    169   1.1       jtk  * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
    170   1.1       jtk  *  units, ie, after fsbtodb(); size is in bytes.
    171   1.1       jtk  */
    172   1.1       jtk static void
    173   1.1       jtk readat(off_t blkno, void *buf, int size)
    174   1.1       jtk {
    175   1.1       jtk 	/* Seek to the correct place. */
    176   1.4  christos 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    177   1.4  christos 		err(1, "lseek failed");
    178   1.4  christos 
    179   1.1       jtk 	/* See if we have to break up the transfer... */
    180   1.1       jtk 	if (smallio) {
    181   1.1       jtk 		char *bp;	/* pointer into buf */
    182   1.1       jtk 		int left;	/* bytes left to go */
    183   1.1       jtk 		int n;		/* number to do this time around */
    184   1.1       jtk 		int rv;		/* syscall return value */
    185   1.1       jtk 		bp = buf;
    186   1.1       jtk 		left = size;
    187   1.1       jtk 		while (left > 0) {
    188   1.1       jtk 			n = (left > 8192) ? 8192 : left;
    189   1.1       jtk 			rv = read(fd, bp, n);
    190   1.4  christos 			if (rv < 0)
    191  1.13      haad 				err(EXIT_FAILURE, "read failed");
    192   1.4  christos 			if (rv != n)
    193   1.4  christos 				errx(1, "read: wanted %d, got %d", n, rv);
    194   1.1       jtk 			bp += n;
    195   1.1       jtk 			left -= n;
    196   1.1       jtk 		}
    197   1.1       jtk 	} else {
    198   1.1       jtk 		int rv;
    199   1.1       jtk 		rv = read(fd, buf, size);
    200   1.4  christos 		if (rv < 0)
    201  1.13      haad 			err(EXIT_FAILURE, "read failed");
    202   1.4  christos 		if (rv != size)
    203   1.4  christos 			errx(1, "read: wanted %d, got %d", size, rv);
    204   1.1       jtk 	}
    205   1.1       jtk }
    206   1.1       jtk /*
    207   1.1       jtk  * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
    208   1.1       jtk  *  units, ie, after fsbtodb(); size is in bytes.
    209   1.1       jtk  */
    210   1.1       jtk static void
    211   1.1       jtk writeat(off_t blkno, const void *buf, int size)
    212   1.1       jtk {
    213   1.1       jtk 	/* Seek to the correct place. */
    214   1.4  christos 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    215  1.13      haad 		err(EXIT_FAILURE, "lseek failed");
    216   1.1       jtk 	/* See if we have to break up the transfer... */
    217   1.1       jtk 	if (smallio) {
    218   1.1       jtk 		const char *bp;	/* pointer into buf */
    219   1.1       jtk 		int left;	/* bytes left to go */
    220   1.1       jtk 		int n;		/* number to do this time around */
    221   1.1       jtk 		int rv;		/* syscall return value */
    222   1.1       jtk 		bp = buf;
    223   1.1       jtk 		left = size;
    224   1.1       jtk 		while (left > 0) {
    225   1.1       jtk 			n = (left > 8192) ? 8192 : left;
    226   1.1       jtk 			rv = write(fd, bp, n);
    227   1.4  christos 			if (rv < 0)
    228  1.13      haad 				err(EXIT_FAILURE, "write failed");
    229   1.4  christos 			if (rv != n)
    230   1.4  christos 				errx(1, "write: wanted %d, got %d", n, rv);
    231   1.1       jtk 			bp += n;
    232   1.1       jtk 			left -= n;
    233   1.1       jtk 		}
    234   1.1       jtk 	} else {
    235   1.1       jtk 		int rv;
    236   1.1       jtk 		rv = write(fd, buf, size);
    237   1.4  christos 		if (rv < 0)
    238  1.13      haad 			err(EXIT_FAILURE, "write failed");
    239   1.4  christos 		if (rv != size)
    240   1.4  christos 			errx(1, "write: wanted %d, got %d", size, rv);
    241   1.1       jtk 	}
    242   1.1       jtk }
    243   1.1       jtk /*
    244   1.1       jtk  * Never-fail versions of malloc() and realloc(), and an allocation
    245   1.1       jtk  *  routine (which also never fails) for allocating memory that will
    246   1.1       jtk  *  never be freed until exit.
    247   1.1       jtk  */
    248   1.1       jtk 
    249   1.1       jtk /*
    250   1.1       jtk  * Never-fail malloc.
    251   1.1       jtk  */
    252   1.1       jtk static void *
    253   1.1       jtk nfmalloc(size_t nb, const char *tag)
    254   1.1       jtk {
    255   1.1       jtk 	void *rv;
    256   1.1       jtk 
    257   1.1       jtk 	rv = malloc(nb);
    258   1.1       jtk 	if (rv)
    259   1.1       jtk 		return (rv);
    260  1.13      haad 	err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
    261   1.4  christos 	    (unsigned long int) nb, tag);
    262   1.1       jtk }
    263   1.1       jtk /*
    264   1.1       jtk  * Never-fail realloc.
    265   1.1       jtk  */
    266   1.1       jtk static void *
    267   1.1       jtk nfrealloc(void *blk, size_t nb, const char *tag)
    268   1.1       jtk {
    269   1.1       jtk 	void *rv;
    270   1.1       jtk 
    271   1.1       jtk 	rv = realloc(blk, nb);
    272   1.1       jtk 	if (rv)
    273   1.1       jtk 		return (rv);
    274  1.13      haad 	err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
    275   1.4  christos 	    (unsigned long int) nb, tag);
    276   1.1       jtk }
    277   1.1       jtk /*
    278   1.1       jtk  * Allocate memory that will never be freed or reallocated.  Arguably
    279   1.1       jtk  *  this routine should handle small allocations by chopping up pages,
    280   1.1       jtk  *  but that's not worth the bother; it's not called more than a
    281   1.1       jtk  *  handful of times per run, and if the allocations are that small the
    282   1.1       jtk  *  waste in giving each one its own page is ignorable.
    283   1.1       jtk  */
    284   1.1       jtk static void *
    285   1.1       jtk alloconce(size_t nb, const char *tag)
    286   1.1       jtk {
    287   1.1       jtk 	void *rv;
    288   1.1       jtk 
    289   1.1       jtk 	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
    290   1.1       jtk 	if (rv != MAP_FAILED)
    291   1.1       jtk 		return (rv);
    292  1.13      haad 	err(EXIT_FAILURE, "Can't map %lu bytes for %s",
    293   1.4  christos 	    (unsigned long int) nb, tag);
    294   1.1       jtk }
    295   1.1       jtk /*
    296   1.1       jtk  * Load the cgs and csums off disk.  Also allocates the space to load
    297   1.1       jtk  *  them into and initializes the per-cg flags.
    298   1.1       jtk  */
    299   1.1       jtk static void
    300   1.1       jtk loadcgs(void)
    301   1.1       jtk {
    302   1.1       jtk 	int cg;
    303   1.1       jtk 	char *cgp;
    304   1.1       jtk 
    305   1.1       jtk 	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
    306   1.1       jtk 	cgs = nfmalloc(oldsb->fs_ncg * sizeof(struct cg *), "cg pointers");
    307   1.1       jtk 	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
    308   1.1       jtk 	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
    309   1.1       jtk 	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
    310   1.1       jtk 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
    311   1.1       jtk 		cgs[cg] = (struct cg *) cgp;
    312   1.1       jtk 		readat(fsbtodb(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
    313   1.1       jtk 		cgflags[cg] = 0;
    314   1.1       jtk 		cgp += cgblksz;
    315   1.1       jtk 	}
    316   1.1       jtk 	readat(fsbtodb(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
    317   1.1       jtk }
    318   1.1       jtk /*
    319   1.1       jtk  * Set n bits, starting with bit #base, in the bitmap pointed to by
    320   1.1       jtk  *  bitvec (which is assumed to be large enough to include bits base
    321   1.1       jtk  *  through base+n-1).
    322   1.1       jtk  */
    323   1.1       jtk static void
    324   1.1       jtk set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
    325   1.1       jtk {
    326   1.1       jtk 	if (n < 1)
    327   1.1       jtk 		return;		/* nothing to do */
    328   1.1       jtk 	if (base & 7) {		/* partial byte at beginning */
    329   1.1       jtk 		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
    330   1.1       jtk 			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
    331   1.1       jtk 			return;
    332   1.1       jtk 		}
    333   1.1       jtk 		bitvec[base >> 3] |= (~0U) << (base & 7);
    334   1.1       jtk 		n -= 8 - (base & 7);
    335   1.1       jtk 		base = (base & ~7) + 8;
    336   1.1       jtk 	}
    337   1.1       jtk 	if (n >= 8) {		/* do full bytes */
    338   1.1       jtk 		memset(bitvec + (base >> 3), 0xff, n >> 3);
    339   1.1       jtk 		base += n & ~7;
    340   1.1       jtk 		n &= 7;
    341   1.1       jtk 	}
    342   1.1       jtk 	if (n) {		/* partial byte at end */
    343   1.1       jtk 		bitvec[base >> 3] |= ~((~0U) << n);
    344   1.1       jtk 	}
    345   1.1       jtk }
    346   1.1       jtk /*
    347   1.1       jtk  * Clear n bits, starting with bit #base, in the bitmap pointed to by
    348   1.1       jtk  *  bitvec (which is assumed to be large enough to include bits base
    349   1.1       jtk  *  through base+n-1).  Code parallels set_bits().
    350   1.1       jtk  */
    351   1.1       jtk static void
    352   1.1       jtk clr_bits(unsigned char *bitvec, int base, int n)
    353   1.1       jtk {
    354   1.1       jtk 	if (n < 1)
    355   1.1       jtk 		return;
    356   1.1       jtk 	if (base & 7) {
    357   1.1       jtk 		if (n <= 8 - (base & 7)) {
    358   1.1       jtk 			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
    359   1.1       jtk 			return;
    360   1.1       jtk 		}
    361   1.1       jtk 		bitvec[base >> 3] &= ~((~0U) << (base & 7));
    362   1.1       jtk 		n -= 8 - (base & 7);
    363   1.1       jtk 		base = (base & ~7) + 8;
    364   1.1       jtk 	}
    365   1.1       jtk 	if (n >= 8) {
    366   1.1       jtk 		bzero(bitvec + (base >> 3), n >> 3);
    367   1.1       jtk 		base += n & ~7;
    368   1.1       jtk 		n &= 7;
    369   1.1       jtk 	}
    370   1.1       jtk 	if (n) {
    371   1.1       jtk 		bitvec[base >> 3] &= (~0U) << n;
    372   1.1       jtk 	}
    373   1.1       jtk }
    374   1.1       jtk /*
    375   1.1       jtk  * Test whether bit #bit is set in the bitmap pointed to by bitvec.
    376   1.1       jtk  */
    377  1.13      haad static int
    378   1.1       jtk bit_is_set(unsigned char *bitvec, int bit)
    379   1.1       jtk {
    380   1.1       jtk 	return (bitvec[bit >> 3] & (1 << (bit & 7)));
    381   1.1       jtk }
    382   1.1       jtk /*
    383   1.1       jtk  * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
    384   1.1       jtk  */
    385  1.13      haad static int
    386   1.1       jtk bit_is_clr(unsigned char *bitvec, int bit)
    387   1.1       jtk {
    388   1.1       jtk 	return (!bit_is_set(bitvec, bit));
    389   1.1       jtk }
    390   1.1       jtk /*
    391   1.1       jtk  * Test whether a whole block of bits is set in a bitmap.  This is
    392   1.1       jtk  *  designed for testing (aligned) disk blocks in a bit-per-frag
    393   1.1       jtk  *  bitmap; it has assumptions wired into it based on that, essentially
    394   1.1       jtk  *  that the entire block fits into a single byte.  This returns true
    395   1.1       jtk  *  iff _all_ the bits are set; it is not just the complement of
    396   1.1       jtk  *  blk_is_clr on the same arguments (unless blkfrags==1).
    397   1.1       jtk  */
    398  1.13      haad static int
    399   1.1       jtk blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
    400   1.1       jtk {
    401   1.1       jtk 	unsigned int mask;
    402   1.1       jtk 
    403   1.1       jtk 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    404   1.1       jtk 	return ((bitvec[blkbase >> 3] & mask) == mask);
    405   1.1       jtk }
    406   1.1       jtk /*
    407   1.1       jtk  * Test whether a whole block of bits is clear in a bitmap.  See
    408   1.1       jtk  *  blk_is_set (above) for assumptions.  This returns true iff _all_
    409   1.1       jtk  *  the bits are clear; it is not just the complement of blk_is_set on
    410   1.1       jtk  *  the same arguments (unless blkfrags==1).
    411   1.1       jtk  */
    412  1.13      haad static int
    413   1.1       jtk blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
    414   1.1       jtk {
    415   1.1       jtk 	unsigned int mask;
    416   1.1       jtk 
    417   1.1       jtk 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    418   1.1       jtk 	return ((bitvec[blkbase >> 3] & mask) == 0);
    419   1.1       jtk }
    420   1.1       jtk /*
    421   1.1       jtk  * Initialize a new cg.  Called when growing.  Assumes memory has been
    422   1.1       jtk  *  allocated but not otherwise set up.  This code sets the fields of
    423   1.1       jtk  *  the cg, initializes the bitmaps (and cluster summaries, if
    424   1.1       jtk  *  applicable), updates both per-cylinder summary info and the global
    425   1.1       jtk  *  summary info in newsb; it also writes out new inodes for the cg.
    426   1.1       jtk  *
    427   1.1       jtk  * This code knows it can never be called for cg 0, which makes it a
    428   1.1       jtk  *  bit simpler than it would otherwise be.
    429   1.1       jtk  */
    430   1.1       jtk static void
    431   1.1       jtk initcg(int cgn)
    432   1.1       jtk {
    433   1.1       jtk 	struct cg *cg;		/* The in-core cg, of course */
    434   1.1       jtk 	int base;		/* Disk address of cg base */
    435   1.1       jtk 	int dlow;		/* Size of pre-cg data area */
    436   1.1       jtk 	int dhigh;		/* Offset of post-inode data area, from base */
    437   1.1       jtk 	int dmax;		/* Offset of end of post-inode data area */
    438   1.1       jtk 	int i;			/* Generic loop index */
    439   1.1       jtk 	int n;			/* Generic count */
    440   1.1       jtk 
    441   1.1       jtk 	cg = cgs[cgn];
    442   1.1       jtk 	/* Place the data areas */
    443   1.1       jtk 	base = cgbase(newsb, cgn);
    444   1.1       jtk 	dlow = cgsblock(newsb, cgn) - base;
    445   1.1       jtk 	dhigh = cgdmin(newsb, cgn) - base;
    446   1.1       jtk 	dmax = newsb->fs_size - base;
    447   1.1       jtk 	if (dmax > newsb->fs_fpg)
    448   1.1       jtk 		dmax = newsb->fs_fpg;
    449   1.1       jtk 	/*
    450   1.1       jtk          * Clear out the cg - assumes all-0-bytes is the correct way
    451   1.1       jtk          * to initialize fields we don't otherwise touch, which is
    452   1.1       jtk          * perhaps not the right thing to do, but it's what fsck and
    453   1.1       jtk          * mkfs do.
    454   1.1       jtk          */
    455   1.1       jtk 	bzero(cg, newsb->fs_cgsize);
    456   1.1       jtk 	cg->cg_time = newsb->fs_time;
    457   1.1       jtk 	cg->cg_magic = CG_MAGIC;
    458   1.1       jtk 	cg->cg_cgx = cgn;
    459   1.4  christos 	cg->cg_old_ncyl = newsb->fs_old_cpg;
    460  1.14       riz 	/* Update the cg_old_ncyl value for the last cylinder. */
    461  1.14       riz 	if ((cgn == newsb->fs_ncg - 1) && (newsb->fs_old_ncyl % newsb->fs_old_cpg) ) {
    462   1.4  christos 		cg->cg_old_ncyl = newsb->fs_old_ncyl % newsb->fs_old_cpg;
    463   1.1       jtk 	}
    464  1.14       riz 	cg->cg_old_niblk = newsb->fs_ipg;
    465   1.1       jtk 	cg->cg_ndblk = dmax;
    466   1.1       jtk 	/* Set up the bitmap pointers.  We have to be careful to lay out the
    467   1.1       jtk 	 * cg _exactly_ the way mkfs and fsck do it, since fsck compares the
    468   1.1       jtk 	 * _entire_ cg against a recomputed cg, and whines if there is any
    469   1.1       jtk 	 * mismatch, including the bitmap offsets. */
    470   1.1       jtk 	/* XXX update this comment when fsck is fixed */
    471   1.4  christos 	cg->cg_old_btotoff = &cg->cg_space[0] - (unsigned char *) cg;
    472   1.4  christos 	cg->cg_old_boff = cg->cg_old_btotoff
    473   1.4  christos 	    + (newsb->fs_old_cpg * sizeof(int32_t));
    474   1.4  christos 	cg->cg_iusedoff = cg->cg_old_boff +
    475   1.4  christos 	    (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
    476   1.1       jtk 	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
    477   1.1       jtk 	if (newsb->fs_contigsumsize > 0) {
    478   1.1       jtk 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
    479   1.1       jtk 		cg->cg_clustersumoff = cg->cg_freeoff +
    480   1.4  christos 		    howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb),
    481   1.1       jtk 		    NBBY) - sizeof(int32_t);
    482   1.1       jtk 		cg->cg_clustersumoff =
    483   1.1       jtk 		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
    484   1.1       jtk 		cg->cg_clusteroff = cg->cg_clustersumoff +
    485   1.1       jtk 		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
    486   1.1       jtk 		cg->cg_nextfreeoff = cg->cg_clusteroff +
    487   1.4  christos 		    howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPB(newsb),
    488   1.1       jtk 		    NBBY);
    489   1.1       jtk 		n = dlow / newsb->fs_frag;
    490   1.1       jtk 		if (n > 0) {
    491   1.1       jtk 			set_bits(cg_clustersfree(cg, 0), 0, n);
    492   1.1       jtk 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    493   1.1       jtk 			    newsb->fs_contigsumsize : n]++;
    494   1.1       jtk 		}
    495   1.1       jtk 	} else {
    496   1.1       jtk 		cg->cg_nextfreeoff = cg->cg_freeoff +
    497   1.4  christos 		    howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb),
    498   1.1       jtk 		    NBBY);
    499   1.1       jtk 	}
    500   1.1       jtk 	/* Mark the data areas as free; everything else is marked busy by the
    501   1.1       jtk 	 * bzero up at the top. */
    502   1.1       jtk 	set_bits(cg_blksfree(cg, 0), 0, dlow);
    503   1.1       jtk 	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
    504   1.1       jtk 	/* Initialize summary info */
    505   1.1       jtk 	cg->cg_cs.cs_ndir = 0;
    506   1.1       jtk 	cg->cg_cs.cs_nifree = newsb->fs_ipg;
    507   1.1       jtk 	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
    508   1.1       jtk 	cg->cg_cs.cs_nffree = 0;
    509   1.1       jtk 
    510   1.1       jtk 	/* This is the simplest way of doing this; we perhaps could compute
    511   1.1       jtk 	 * the correct cg_blktot()[] and cg_blks()[] values other ways, but it
    512   1.1       jtk 	 * would be complicated and hardly seems worth the effort.  (The
    513   1.1       jtk 	 * reason there isn't frag-at-beginning and frag-at-end code here,
    514   1.1       jtk 	 * like the code below for the post-inode data area, is that the
    515   1.1       jtk 	 * pre-sb data area always starts at 0, and thus is block-aligned, and
    516   1.1       jtk 	 * always ends at the sb, which is block-aligned.) */
    517   1.1       jtk 	for (i = 0; i < dlow; i += newsb->fs_frag) {
    518   1.1       jtk 		cg_blktot(cg, 0)[cbtocylno(newsb, i)]++;
    519   1.1       jtk 		cg_blks(newsb, cg, cbtocylno(newsb, i), 0)[cbtorpos(newsb, i)]++;
    520   1.1       jtk 	}
    521   1.1       jtk 	/* Deal with a partial block at the beginning of the post-inode area.
    522   1.1       jtk 	 * I'm not convinced this can happen - I think the inodes are always
    523   1.1       jtk 	 * block-aligned and always an integral number of blocks - but it's
    524   1.1       jtk 	 * cheap to do the right thing just in case. */
    525   1.1       jtk 	if (dhigh % newsb->fs_frag) {
    526   1.1       jtk 		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
    527   1.1       jtk 		cg->cg_frsum[n]++;
    528   1.1       jtk 		cg->cg_cs.cs_nffree += n;
    529   1.1       jtk 		dhigh += n;
    530   1.1       jtk 	}
    531   1.1       jtk 	n = (dmax - dhigh) / newsb->fs_frag;
    532   1.1       jtk 	/* We have n full-size blocks in the post-inode data area. */
    533   1.1       jtk 	if (n > 0) {
    534   1.1       jtk 		cg->cg_cs.cs_nbfree += n;
    535   1.1       jtk 		if (newsb->fs_contigsumsize > 0) {
    536   1.1       jtk 			i = dhigh / newsb->fs_frag;
    537   1.1       jtk 			set_bits(cg_clustersfree(cg, 0), i, n);
    538   1.1       jtk 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    539   1.1       jtk 			    newsb->fs_contigsumsize : n]++;
    540   1.1       jtk 		}
    541   1.1       jtk 		for (i = n; i > 0; i--) {
    542   1.1       jtk 			cg_blktot(cg, 0)[cbtocylno(newsb, dhigh)]++;
    543   1.1       jtk 			cg_blks(newsb, cg,
    544   1.1       jtk 			    cbtocylno(newsb, dhigh), 0)[cbtorpos(newsb,
    545   1.1       jtk 				dhigh)]++;
    546   1.1       jtk 			dhigh += newsb->fs_frag;
    547   1.1       jtk 		}
    548   1.1       jtk 	}
    549   1.1       jtk 	/* Deal with any leftover frag at the end of the cg. */
    550   1.1       jtk 	i = dmax - dhigh;
    551   1.1       jtk 	if (i) {
    552   1.1       jtk 		cg->cg_frsum[i]++;
    553   1.1       jtk 		cg->cg_cs.cs_nffree += i;
    554   1.1       jtk 	}
    555   1.1       jtk 	/* Update the csum info. */
    556   1.1       jtk 	csums[cgn] = cg->cg_cs;
    557   1.1       jtk 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
    558   1.1       jtk 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
    559   1.1       jtk 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
    560   1.1       jtk 	/* Write out the cleared inodes. */
    561   1.1       jtk 	writeat(fsbtodb(newsb, cgimin(newsb, cgn)), zinodes,
    562   1.4  christos 	    newsb->fs_ipg * sizeof(struct ufs1_dinode));
    563   1.1       jtk 	/* Dirty the cg. */
    564   1.1       jtk 	cgflags[cgn] |= CGF_DIRTY;
    565   1.1       jtk }
    566   1.1       jtk /*
    567   1.1       jtk  * Find free space, at least nfrags consecutive frags of it.  Pays no
    568   1.1       jtk  *  attention to block boundaries, but refuses to straddle cg
    569   1.1       jtk  *  boundaries, even if the disk blocks involved are in fact
    570   1.1       jtk  *  consecutive.  Return value is the frag number of the first frag of
    571   1.1       jtk  *  the block, or -1 if no space was found.  Uses newsb for sb values,
    572   1.1       jtk  *  and assumes the cgs[] structures correctly describe the area to be
    573   1.1       jtk  *  searched.
    574   1.1       jtk  *
    575   1.1       jtk  * XXX is there a bug lurking in the ignoring of block boundaries by
    576   1.1       jtk  *  the routine used by fragmove() in evict_data()?  Can an end-of-file
    577   1.1       jtk  *  frag legally straddle a block boundary?  If not, this should be
    578   1.1       jtk  *  cloned and fixed to stop at block boundaries for that use.  The
    579   1.1       jtk  *  current one may still be needed for csum info motion, in case that
    580   1.1       jtk  *  takes up more than a whole block (is the csum info allowed to begin
    581   1.1       jtk  *  partway through a block and continue into the following block?).
    582   1.1       jtk  *
    583   1.1       jtk  * If we wrap off the end of the filesystem back to the beginning, we
    584   1.1       jtk  *  can end up searching the end of the filesystem twice.  I ignore
    585   1.1       jtk  *  this inefficiency, since if that happens we're going to croak with
    586   1.1       jtk  *  a no-space error anyway, so it happens at most once.
    587   1.1       jtk  */
    588   1.1       jtk static int
    589   1.1       jtk find_freespace(unsigned int nfrags)
    590   1.1       jtk {
    591   1.1       jtk 	static int hand = 0;	/* hand rotates through all frags in the fs */
    592   1.1       jtk 	int cgsize;		/* size of the cg hand currently points into */
    593   1.1       jtk 	int cgn;		/* number of cg hand currently points into */
    594   1.1       jtk 	int fwc;		/* frag-within-cg number of frag hand points
    595   1.1       jtk 				 * to */
    596   1.1       jtk 	int run;		/* length of run of free frags seen so far */
    597   1.1       jtk 	int secondpass;		/* have we wrapped from end of fs to
    598   1.1       jtk 				 * beginning? */
    599   1.1       jtk 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    600   1.1       jtk 
    601   1.1       jtk 	cgn = dtog(newsb, hand);
    602   1.1       jtk 	fwc = dtogd(newsb, hand);
    603   1.1       jtk 	secondpass = (hand == 0);
    604   1.1       jtk 	run = 0;
    605   1.1       jtk 	bits = cg_blksfree(cgs[cgn], 0);
    606   1.1       jtk 	cgsize = cgs[cgn]->cg_ndblk;
    607   1.1       jtk 	while (1) {
    608   1.1       jtk 		if (bit_is_set(bits, fwc)) {
    609   1.1       jtk 			run++;
    610   1.1       jtk 			if (run >= nfrags)
    611   1.1       jtk 				return (hand + 1 - run);
    612   1.1       jtk 		} else {
    613   1.1       jtk 			run = 0;
    614   1.1       jtk 		}
    615   1.1       jtk 		hand++;
    616   1.1       jtk 		fwc++;
    617   1.1       jtk 		if (fwc >= cgsize) {
    618   1.1       jtk 			fwc = 0;
    619   1.1       jtk 			cgn++;
    620   1.1       jtk 			if (cgn >= newsb->fs_ncg) {
    621   1.1       jtk 				hand = 0;
    622   1.1       jtk 				if (secondpass)
    623   1.1       jtk 					return (-1);
    624   1.1       jtk 				secondpass = 1;
    625   1.1       jtk 				cgn = 0;
    626   1.1       jtk 			}
    627   1.1       jtk 			bits = cg_blksfree(cgs[cgn], 0);
    628   1.1       jtk 			cgsize = cgs[cgn]->cg_ndblk;
    629   1.1       jtk 			run = 0;
    630   1.1       jtk 		}
    631   1.1       jtk 	}
    632   1.1       jtk }
    633   1.1       jtk /*
    634   1.1       jtk  * Find a free block of disk space.  Finds an entire block of frags,
    635   1.1       jtk  *  all of which are free.  Return value is the frag number of the
    636   1.1       jtk  *  first frag of the block, or -1 if no space was found.  Uses newsb
    637   1.1       jtk  *  for sb values, and assumes the cgs[] structures correctly describe
    638   1.1       jtk  *  the area to be searched.
    639   1.1       jtk  *
    640   1.1       jtk  * See find_freespace(), above, for remarks about hand wrapping around.
    641   1.1       jtk  */
    642   1.1       jtk static int
    643   1.1       jtk find_freeblock(void)
    644   1.1       jtk {
    645   1.1       jtk 	static int hand = 0;	/* hand rotates through all frags in fs */
    646   1.1       jtk 	int cgn;		/* cg number of cg hand points into */
    647   1.1       jtk 	int fwc;		/* frag-within-cg number of frag hand points
    648   1.1       jtk 				 * to */
    649   1.1       jtk 	int cgsize;		/* size of cg hand points into */
    650   1.1       jtk 	int secondpass;		/* have we wrapped from end to beginning? */
    651   1.1       jtk 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    652   1.1       jtk 
    653   1.1       jtk 	cgn = dtog(newsb, hand);
    654   1.1       jtk 	fwc = dtogd(newsb, hand);
    655   1.1       jtk 	secondpass = (hand == 0);
    656   1.1       jtk 	bits = cg_blksfree(cgs[cgn], 0);
    657   1.1       jtk 	cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
    658   1.1       jtk 	while (1) {
    659   1.1       jtk 		if (blk_is_set(bits, fwc, newsb->fs_frag))
    660   1.1       jtk 			return (hand);
    661   1.1       jtk 		fwc += newsb->fs_frag;
    662   1.1       jtk 		hand += newsb->fs_frag;
    663   1.1       jtk 		if (fwc >= cgsize) {
    664   1.1       jtk 			fwc = 0;
    665   1.1       jtk 			cgn++;
    666   1.1       jtk 			if (cgn >= newsb->fs_ncg) {
    667   1.1       jtk 				hand = 0;
    668   1.1       jtk 				if (secondpass)
    669   1.1       jtk 					return (-1);
    670   1.1       jtk 				secondpass = 1;
    671   1.1       jtk 				cgn = 0;
    672   1.1       jtk 			}
    673   1.1       jtk 			bits = cg_blksfree(cgs[cgn], 0);
    674   1.1       jtk 			cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
    675   1.1       jtk 		}
    676   1.1       jtk 	}
    677   1.1       jtk }
    678   1.1       jtk /*
    679   1.1       jtk  * Find a free inode, returning its inumber or -1 if none was found.
    680   1.1       jtk  *  Uses newsb for sb values, and assumes the cgs[] structures
    681   1.1       jtk  *  correctly describe the area to be searched.
    682   1.1       jtk  *
    683   1.1       jtk  * See find_freespace(), above, for remarks about hand wrapping around.
    684   1.1       jtk  */
    685   1.1       jtk static int
    686   1.1       jtk find_freeinode(void)
    687   1.1       jtk {
    688   1.1       jtk 	static int hand = 0;	/* hand rotates through all inodes in fs */
    689   1.1       jtk 	int cgn;		/* cg number of cg hand points into */
    690   1.1       jtk 	int iwc;		/* inode-within-cg number of inode hand points
    691   1.1       jtk 				 * to */
    692   1.1       jtk 	int secondpass;		/* have we wrapped from end to beginning? */
    693   1.1       jtk 	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */
    694   1.1       jtk 
    695   1.1       jtk 	cgn = hand / newsb->fs_ipg;
    696   1.1       jtk 	iwc = hand % newsb->fs_ipg;
    697   1.1       jtk 	secondpass = (hand == 0);
    698   1.1       jtk 	bits = cg_inosused(cgs[cgn], 0);
    699   1.1       jtk 	while (1) {
    700   1.1       jtk 		if (bit_is_clr(bits, iwc))
    701   1.1       jtk 			return (hand);
    702   1.1       jtk 		hand++;
    703   1.1       jtk 		iwc++;
    704   1.1       jtk 		if (iwc >= newsb->fs_ipg) {
    705   1.1       jtk 			iwc = 0;
    706   1.1       jtk 			cgn++;
    707   1.1       jtk 			if (cgn >= newsb->fs_ncg) {
    708   1.1       jtk 				hand = 0;
    709   1.1       jtk 				if (secondpass)
    710   1.1       jtk 					return (-1);
    711   1.1       jtk 				secondpass = 1;
    712   1.1       jtk 				cgn = 0;
    713   1.1       jtk 			}
    714   1.1       jtk 			bits = cg_inosused(cgs[cgn], 0);
    715   1.1       jtk 		}
    716   1.1       jtk 	}
    717   1.1       jtk }
    718   1.1       jtk /*
    719   1.1       jtk  * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
    720   1.1       jtk  *  for the appropriate cg, and marks the cg as dirty.
    721   1.1       jtk  */
    722   1.1       jtk static void
    723   1.1       jtk free_frag(int fno)
    724   1.1       jtk {
    725   1.1       jtk 	int cgn;
    726   1.1       jtk 
    727   1.1       jtk 	cgn = dtog(newsb, fno);
    728   1.1       jtk 	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    729   1.1       jtk 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    730   1.1       jtk }
    731   1.1       jtk /*
    732   1.1       jtk  * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
    733   1.1       jtk  *  for the appropriate cg, and marks the cg as dirty.
    734   1.1       jtk  */
    735   1.1       jtk static void
    736   1.1       jtk alloc_frag(int fno)
    737   1.1       jtk {
    738   1.1       jtk 	int cgn;
    739   1.1       jtk 
    740   1.1       jtk 	cgn = dtog(newsb, fno);
    741   1.1       jtk 	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    742   1.1       jtk 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    743   1.1       jtk }
    744   1.1       jtk /*
    745   1.1       jtk  * Fix up the csum array.  If shrinking, this involves freeing zero or
    746   1.1       jtk  *  more frags; if growing, it involves allocating them, or if the
    747   1.1       jtk  *  frags being grown into aren't free, finding space elsewhere for the
    748   1.1       jtk  *  csum info.  (If the number of occupied frags doesn't change,
    749   1.1       jtk  *  nothing happens here.)
    750   1.1       jtk  */
    751   1.1       jtk static void
    752   1.1       jtk csum_fixup(void)
    753   1.1       jtk {
    754   1.1       jtk 	int nold;		/* # frags in old csum info */
    755   1.1       jtk 	int ntot;		/* # frags in new csum info */
    756   1.1       jtk 	int nnew;		/* ntot-nold */
    757   1.1       jtk 	int newloc;		/* new location for csum info, if necessary */
    758   1.1       jtk 	int i;			/* generic loop index */
    759   1.1       jtk 	int j;			/* generic loop index */
    760   1.1       jtk 	int f;			/* "from" frag number, if moving */
    761   1.1       jtk 	int t;			/* "to" frag number, if moving */
    762   1.1       jtk 	int cgn;		/* cg number, used when shrinking */
    763   1.1       jtk 
    764   1.1       jtk 	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
    765   1.1       jtk 	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
    766   1.1       jtk 	nnew = ntot - nold;
    767   1.1       jtk 	/* First, if there's no change in frag counts, it's easy. */
    768   1.1       jtk 	if (nnew == 0)
    769   1.1       jtk 		return;
    770   1.1       jtk 	/* Next, if we're shrinking, it's almost as easy.  Just free up any
    771   1.1       jtk 	 * frags in the old area we no longer need. */
    772   1.1       jtk 	if (nnew < 0) {
    773   1.1       jtk 		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
    774   1.1       jtk 		    j < 0;
    775   1.1       jtk 		    i--, j++) {
    776   1.1       jtk 			free_frag(i);
    777   1.1       jtk 		}
    778   1.1       jtk 		return;
    779   1.1       jtk 	}
    780   1.1       jtk 	/* We must be growing.  Check to see that the new csum area fits
    781   1.1       jtk 	 * within the filesystem.  I think this can never happen, since for
    782   1.1       jtk 	 * the csum area to grow, we must be adding at least one cg, so the
    783   1.1       jtk 	 * old csum area can't be this close to the end of the new filesystem.
    784   1.1       jtk 	 * But it's a cheap check. */
    785   1.1       jtk 	/* XXX what if csum info is at end of cg and grows into next cg, what
    786   1.1       jtk 	 * if it spills over onto the next cg's backup superblock?  Can this
    787   1.1       jtk 	 * happen? */
    788   1.1       jtk 	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
    789   1.1       jtk 		/* Okay, it fits - now,  see if the space we want is free. */
    790   1.1       jtk 		for ((i = newsb->fs_csaddr + nold), (j = nnew);
    791   1.1       jtk 		    j > 0;
    792   1.1       jtk 		    i++, j--) {
    793   1.1       jtk 			cgn = dtog(newsb, i);
    794   1.1       jtk 			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
    795   1.1       jtk 				dtogd(newsb, i)))
    796   1.1       jtk 				break;
    797   1.1       jtk 		}
    798   1.1       jtk 		if (j <= 0) {
    799   1.1       jtk 			/* Win win - all the frags we want are free. Allocate
    800   1.1       jtk 			 * 'em and we're all done.  */
    801   1.1       jtk 			for ((i = newsb->fs_csaddr + ntot - nnew), (j = nnew); j > 0; i++, j--) {
    802   1.1       jtk 				alloc_frag(i);
    803   1.1       jtk 			}
    804   1.1       jtk 			return;
    805   1.1       jtk 		}
    806   1.1       jtk 	}
    807   1.1       jtk 	/* We have to move the csum info, sigh.  Look for new space, free old
    808   1.1       jtk 	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
    809   1.1       jtk 	 * on disk at this point; the csum info will be written to the
    810   1.1       jtk 	 * then-current fs_csaddr as part of the final flush. */
    811   1.1       jtk 	newloc = find_freespace(ntot);
    812   1.1       jtk 	if (newloc < 0) {
    813   1.1       jtk 		printf("Sorry, no space available for new csums\n");
    814   1.1       jtk 		exit(1);
    815   1.1       jtk 	}
    816   1.1       jtk 	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
    817   1.1       jtk 		if (i < nold) {
    818   1.1       jtk 			free_frag(f);
    819   1.1       jtk 		}
    820   1.1       jtk 		alloc_frag(t);
    821   1.1       jtk 	}
    822   1.1       jtk 	newsb->fs_csaddr = newloc;
    823   1.1       jtk }
    824   1.1       jtk /*
    825   1.1       jtk  * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
    826   1.1       jtk  *  data blocks in that cg to the total.
    827   1.1       jtk  */
    828   1.1       jtk static void
    829   1.1       jtk recompute_fs_dsize(void)
    830   1.1       jtk {
    831   1.1       jtk 	int i;
    832   1.1       jtk 
    833   1.1       jtk 	newsb->fs_dsize = 0;
    834   1.1       jtk 	for (i = 0; i < newsb->fs_ncg; i++) {
    835   1.1       jtk 		int dlow;	/* size of before-sb data area */
    836   1.1       jtk 		int dhigh;	/* offset of post-inode data area */
    837   1.1       jtk 		int dmax;	/* total size of cg */
    838   1.1       jtk 		int base;	/* base of cg, since cgsblock() etc add it in */
    839   1.1       jtk 		base = cgbase(newsb, i);
    840   1.1       jtk 		dlow = cgsblock(newsb, i) - base;
    841   1.1       jtk 		dhigh = cgdmin(newsb, i) - base;
    842   1.1       jtk 		dmax = newsb->fs_size - base;
    843   1.1       jtk 		if (dmax > newsb->fs_fpg)
    844   1.1       jtk 			dmax = newsb->fs_fpg;
    845   1.1       jtk 		newsb->fs_dsize += dlow + dmax - dhigh;
    846   1.1       jtk 	}
    847   1.1       jtk 	/* Space in cg 0 before cgsblock is boot area, not free space! */
    848   1.1       jtk 	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
    849   1.1       jtk 	/* And of course the csum info takes up space. */
    850   1.1       jtk 	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
    851   1.1       jtk }
    852   1.1       jtk /*
    853   1.1       jtk  * Return the current time.  We call this and assign, rather than
    854   1.1       jtk  *  calling time() directly, as insulation against OSes where fs_time
    855   1.1       jtk  *  is not a time_t.
    856   1.1       jtk  */
    857   1.1       jtk static time_t
    858   1.1       jtk timestamp(void)
    859   1.1       jtk {
    860   1.1       jtk 	time_t t;
    861   1.1       jtk 
    862   1.1       jtk 	time(&t);
    863   1.1       jtk 	return (t);
    864   1.1       jtk }
    865   1.1       jtk /*
    866   1.1       jtk  * Grow the filesystem.
    867   1.1       jtk  */
    868   1.1       jtk static void
    869   1.1       jtk grow(void)
    870   1.1       jtk {
    871   1.1       jtk 	int i;
    872   1.1       jtk 
    873   1.1       jtk 	/* Update the timestamp. */
    874   1.1       jtk 	newsb->fs_time = timestamp();
    875   1.1       jtk 	/* Allocate and clear the new-inode area, in case we add any cgs. */
    876   1.4  christos 	zinodes = alloconce(newsb->fs_ipg * sizeof(struct ufs1_dinode),
    877   1.1       jtk                             "zeroed inodes");
    878   1.4  christos 	bzero(zinodes, newsb->fs_ipg * sizeof(struct ufs1_dinode));
    879   1.1       jtk 	/* Update the size. */
    880   1.1       jtk 	newsb->fs_size = dbtofsb(newsb, newsize);
    881   1.1       jtk 	/* Did we actually not grow?  (This can happen if newsize is less than
    882   1.1       jtk 	 * a frag larger than the old size - unlikely, but no excuse to
    883   1.1       jtk 	 * misbehave if it happens.) */
    884  1.13      haad 	if (newsb->fs_size == oldsb->fs_size) {
    885  1.13      haad 		printf("New fs size %"PRIu64" = odl fs size %"PRIu64", not growing.\n", newsb->fs_size, oldsb->fs_size);
    886   1.1       jtk 		return;
    887  1.13      haad 	}
    888   1.1       jtk 	/* Check that the new last sector (frag, actually) is writable.  Since
    889   1.1       jtk 	 * it's at least one frag larger than it used to be, we know we aren't
    890   1.1       jtk 	 * overwriting anything important by this.  (The choice of sbbuf as
    891   1.1       jtk 	 * what to write is irrelevant; it's just something handy that's known
    892   1.1       jtk 	 * to be at least one frag in size.) */
    893   1.1       jtk 	writeat(newsb->fs_size - 1, &sbbuf, newsb->fs_fsize);
    894   1.4  christos 	/* Update fs_old_ncyl and fs_ncg. */
    895   1.4  christos 	newsb->fs_old_ncyl = (newsb->fs_size * NSPF(newsb)) / newsb->fs_old_spc;
    896   1.4  christos 	newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
    897   1.1       jtk 	/* Does the last cg end before the end of its inode area? There is no
    898   1.1       jtk 	 * reason why this couldn't be handled, but it would complicate a lot
    899   1.1       jtk 	 * of code (in all filesystem code - fsck, kernel, etc) because of the
    900   1.1       jtk 	 * potential partial inode area, and the gain in space would be
    901   1.1       jtk 	 * minimal, at most the pre-sb data area. */
    902   1.1       jtk 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
    903   1.1       jtk 		newsb->fs_ncg--;
    904   1.4  christos 		newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
    905   1.4  christos 		newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc) / NSPF(newsb);
    906   1.1       jtk 		printf("Warning: last cylinder group is too small;\n");
    907   1.1       jtk 		printf("    dropping it.  New size = %lu.\n",
    908   1.1       jtk 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
    909   1.1       jtk 	}
    910   1.1       jtk 	/* Find out how big the csum area is, and realloc csums if bigger. */
    911   1.1       jtk 	newsb->fs_cssize = fragroundup(newsb,
    912   1.1       jtk 	    newsb->fs_ncg * sizeof(struct csum));
    913   1.1       jtk 	if (newsb->fs_cssize > oldsb->fs_cssize)
    914   1.1       jtk 		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
    915   1.1       jtk 	/* If we're adding any cgs, realloc structures and set up the new cgs. */
    916   1.1       jtk 	if (newsb->fs_ncg > oldsb->fs_ncg) {
    917   1.1       jtk 		char *cgp;
    918   1.1       jtk 		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(struct cg *),
    919   1.1       jtk                                 "cg pointers");
    920   1.1       jtk 		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
    921   1.1       jtk 		bzero(cgflags + oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
    922   1.1       jtk 		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
    923   1.1       jtk                                 "cgs");
    924   1.1       jtk 		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
    925   1.1       jtk 			cgs[i] = (struct cg *) cgp;
    926   1.1       jtk 			initcg(i);
    927   1.1       jtk 			cgp += cgblksz;
    928   1.1       jtk 		}
    929   1.4  christos 		cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
    930   1.1       jtk 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
    931   1.1       jtk 	}
    932   1.1       jtk 	/* If the old fs ended partway through a cg, we have to update the old
    933   1.1       jtk 	 * last cg (though possibly not to a full cg!). */
    934   1.1       jtk 	if (oldsb->fs_size % oldsb->fs_fpg) {
    935   1.1       jtk 		struct cg *cg;
    936   1.1       jtk 		int newcgsize;
    937   1.1       jtk 		int prevcgtop;
    938   1.1       jtk 		int oldcgsize;
    939   1.1       jtk 		cg = cgs[oldsb->fs_ncg - 1];
    940   1.1       jtk 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
    941   1.1       jtk 		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
    942   1.1       jtk 		newcgsize = newsb->fs_size - prevcgtop;
    943   1.1       jtk 		if (newcgsize > newsb->fs_fpg)
    944   1.1       jtk 			newcgsize = newsb->fs_fpg;
    945   1.1       jtk 		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
    946   1.1       jtk 		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
    947   1.4  christos 		cg->cg_old_ncyl = howmany(newcgsize * NSPF(newsb), newsb->fs_old_spc);
    948   1.1       jtk 		cg->cg_ndblk = newcgsize;
    949   1.1       jtk 	}
    950   1.1       jtk 	/* Fix up the csum info, if necessary. */
    951   1.1       jtk 	csum_fixup();
    952   1.1       jtk 	/* Make fs_dsize match the new reality. */
    953   1.1       jtk 	recompute_fs_dsize();
    954   1.1       jtk }
    955   1.1       jtk /*
    956   1.1       jtk  * Call (*fn)() for each inode, passing the inode and its inumber.  The
    957   1.1       jtk  *  number of cylinder groups is pased in, so this can be used to map
    958   1.1       jtk  *  over either the old or the new filesystem's set of inodes.
    959   1.1       jtk  */
    960   1.1       jtk static void
    961  1.13      haad map_inodes(void (*fn) (struct ufs1_dinode * di, unsigned int, void *arg), int ncg, void *cbarg) {
    962   1.1       jtk 	int i;
    963   1.1       jtk 	int ni;
    964   1.1       jtk 
    965   1.1       jtk 	ni = oldsb->fs_ipg * ncg;
    966   1.1       jtk 	for (i = 0; i < ni; i++)
    967   1.1       jtk 		(*fn) (inodes + i, i, cbarg);
    968   1.1       jtk }
    969   1.1       jtk /* Values for the third argument to the map function for
    970   1.1       jtk  * map_inode_data_blocks.  MDB_DATA indicates the block is contains
    971   1.1       jtk  * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
    972   1.1       jtk  * indirect block.  The MDB_INDIR_PRE call is made before the indirect
    973   1.1       jtk  * block pointers are followed and the pointed-to blocks scanned,
    974   1.1       jtk  * MDB_INDIR_POST after.
    975   1.1       jtk  */
    976   1.1       jtk #define MDB_DATA       1
    977   1.1       jtk #define MDB_INDIR_PRE  2
    978   1.1       jtk #define MDB_INDIR_POST 3
    979   1.1       jtk 
    980   1.1       jtk typedef void (*mark_callback_t) (unsigned int blocknum, unsigned int nfrags, unsigned int blksize, int opcode);
    981   1.1       jtk 
    982   1.1       jtk /* Helper function - handles a data block.  Calls the callback
    983   1.1       jtk  * function and returns number of bytes occupied in file (actually,
    984   1.1       jtk  * rounded up to a frag boundary).  The name is historical.  */
    985   1.1       jtk static int
    986   1.4  christos markblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o)
    987   1.1       jtk {
    988   1.1       jtk 	int sz;
    989   1.1       jtk 	int nb;
    990   1.1       jtk 	if (o >= di->di_size)
    991   1.1       jtk 		return (0);
    992   1.1       jtk 	sz = dblksize(newsb, di, lblkno(newsb, o));
    993   1.1       jtk 	nb = (sz > di->di_size - o) ? di->di_size - o : sz;
    994   1.1       jtk 	if (bn)
    995   1.1       jtk 		(*fn) (bn, numfrags(newsb, sz), nb, MDB_DATA);
    996   1.1       jtk 	return (sz);
    997   1.1       jtk }
    998   1.1       jtk /* Helper function - handles an indirect block.  Makes the
    999   1.1       jtk  * MDB_INDIR_PRE callback for the indirect block, loops over the
   1000   1.1       jtk  * pointers and recurses, and makes the MDB_INDIR_POST callback.
   1001   1.1       jtk  * Returns the number of bytes occupied in file, as does markblk().
   1002   1.1       jtk  * For the sake of update_for_data_move(), we read the indirect block
   1003   1.1       jtk  * _after_ making the _PRE callback.  The name is historical.  */
   1004   1.1       jtk static int
   1005   1.4  christos markiblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o, int lev)
   1006   1.1       jtk {
   1007   1.1       jtk 	int i;
   1008   1.1       jtk 	int j;
   1009   1.1       jtk 	int tot;
   1010   1.2    martin 	static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
   1011   1.2    martin 	static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
   1012   1.2    martin 	static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
   1013   1.2    martin 	static int32_t *indirblks[3] = {
   1014   1.1       jtk 		&indirblk1[0], &indirblk2[0], &indirblk3[0]
   1015   1.1       jtk 	};
   1016   1.1       jtk 	if (lev < 0)
   1017   1.1       jtk 		return (markblk(fn, di, bn, o));
   1018   1.1       jtk 	if (bn == 0) {
   1019   1.1       jtk 		for (i = newsb->fs_bsize;
   1020   1.1       jtk 		    lev >= 0;
   1021   1.1       jtk 		    i *= NINDIR(newsb), lev--);
   1022   1.1       jtk 		return (i);
   1023   1.1       jtk 	}
   1024   1.1       jtk 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
   1025   1.1       jtk 	readat(fsbtodb(newsb, bn), indirblks[lev], newsb->fs_bsize);
   1026   1.1       jtk 	tot = 0;
   1027   1.1       jtk 	for (i = 0; i < NINDIR(newsb); i++) {
   1028   1.1       jtk 		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
   1029   1.1       jtk 		if (j == 0)
   1030   1.1       jtk 			break;
   1031   1.1       jtk 		o += j;
   1032   1.1       jtk 		tot += j;
   1033   1.1       jtk 	}
   1034   1.1       jtk 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
   1035   1.1       jtk 	return (tot);
   1036   1.1       jtk }
   1037   1.1       jtk 
   1038   1.1       jtk 
   1039   1.1       jtk /*
   1040   1.1       jtk  * Call (*fn)() for each data block for an inode.  This routine assumes
   1041   1.1       jtk  *  the inode is known to be of a type that has data blocks (file,
   1042   1.1       jtk  *  directory, or non-fast symlink).  The called function is:
   1043   1.1       jtk  *
   1044   1.1       jtk  * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
   1045   1.1       jtk  *
   1046   1.1       jtk  *  where blkno is the frag number, nf is the number of frags starting
   1047   1.1       jtk  *  at blkno (always <= fs_frag), nb is the number of bytes that belong
   1048   1.1       jtk  *  to the file (usually nf*fs_frag, often less for the last block/frag
   1049   1.1       jtk  *  of a file).
   1050   1.1       jtk  */
   1051   1.1       jtk static void
   1052   1.4  christos map_inode_data_blocks(struct ufs1_dinode * di, mark_callback_t fn)
   1053   1.1       jtk {
   1054   1.1       jtk 	off_t o;		/* offset within  inode */
   1055   1.1       jtk 	int inc;		/* increment for o - maybe should be off_t? */
   1056   1.1       jtk 	int b;			/* index within di_db[] and di_ib[] arrays */
   1057   1.1       jtk 
   1058   1.1       jtk 	/* Scan the direct blocks... */
   1059   1.1       jtk 	o = 0;
   1060   1.1       jtk 	for (b = 0; b < NDADDR; b++) {
   1061   1.1       jtk 		inc = markblk(fn, di, di->di_db[b], o);
   1062   1.1       jtk 		if (inc == 0)
   1063   1.1       jtk 			break;
   1064   1.1       jtk 		o += inc;
   1065   1.1       jtk 	}
   1066   1.1       jtk 	/* ...and the indirect blocks. */
   1067   1.1       jtk 	if (inc) {
   1068   1.1       jtk 		for (b = 0; b < NIADDR; b++) {
   1069   1.1       jtk 			inc = markiblk(fn, di, di->di_ib[b], o, b);
   1070   1.1       jtk 			if (inc == 0)
   1071   1.1       jtk 				return;
   1072   1.1       jtk 			o += inc;
   1073   1.1       jtk 		}
   1074   1.1       jtk 	}
   1075   1.1       jtk }
   1076   1.1       jtk 
   1077   1.1       jtk static void
   1078   1.4  christos dblk_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
   1079   1.1       jtk {
   1080   1.1       jtk 	mark_callback_t fn;
   1081   1.1       jtk 	fn = (mark_callback_t) arg;
   1082   1.1       jtk 	switch (di->di_mode & IFMT) {
   1083   1.1       jtk 	case IFLNK:
   1084   1.1       jtk 		if (di->di_size > newsb->fs_maxsymlinklen) {
   1085   1.1       jtk 	case IFDIR:
   1086   1.1       jtk 	case IFREG:
   1087   1.1       jtk 			map_inode_data_blocks(di, fn);
   1088   1.1       jtk 		}
   1089   1.1       jtk 		break;
   1090   1.1       jtk 	}
   1091   1.1       jtk }
   1092   1.1       jtk /*
   1093   1.1       jtk  * Make a callback call, a la map_inode_data_blocks, for all data
   1094   1.1       jtk  *  blocks in the entire fs.  This is used only once, in
   1095   1.1       jtk  *  update_for_data_move, but it's out at top level because the complex
   1096   1.1       jtk  *  downward-funarg nesting that would otherwise result seems to give
   1097   1.1       jtk  *  gcc gastric distress.
   1098   1.1       jtk  */
   1099   1.1       jtk static void
   1100   1.1       jtk map_data_blocks(mark_callback_t fn, int ncg)
   1101   1.1       jtk {
   1102   1.1       jtk 	map_inodes(&dblk_callback, ncg, (void *) fn);
   1103   1.1       jtk }
   1104   1.1       jtk /*
   1105   1.1       jtk  * Initialize the blkmove array.
   1106   1.1       jtk  */
   1107   1.1       jtk static void
   1108   1.1       jtk blkmove_init(void)
   1109   1.1       jtk {
   1110   1.1       jtk 	int i;
   1111   1.1       jtk 
   1112   1.1       jtk 	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
   1113   1.1       jtk 	for (i = 0; i < oldsb->fs_size; i++)
   1114   1.1       jtk 		blkmove[i] = i;
   1115   1.1       jtk }
   1116   1.1       jtk /*
   1117   1.1       jtk  * Load the inodes off disk.  Allocates the structures and initializes
   1118   1.1       jtk  *  them - the inodes from disk, the flags to zero.
   1119   1.1       jtk  */
   1120   1.1       jtk static void
   1121   1.1       jtk loadinodes(void)
   1122   1.1       jtk {
   1123   1.1       jtk 	int cg;
   1124   1.4  christos 	struct ufs1_dinode *iptr;
   1125   1.1       jtk 
   1126   1.4  christos 	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg * sizeof(struct ufs1_dinode), "inodes");
   1127   1.1       jtk 	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
   1128   1.1       jtk 	bzero(iflags, oldsb->fs_ncg * oldsb->fs_ipg);
   1129   1.1       jtk 	iptr = inodes;
   1130   1.1       jtk 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
   1131   1.1       jtk 		readat(fsbtodb(oldsb, cgimin(oldsb, cg)), iptr,
   1132   1.4  christos 		    oldsb->fs_ipg * sizeof(struct ufs1_dinode));
   1133   1.1       jtk 		iptr += oldsb->fs_ipg;
   1134   1.1       jtk 	}
   1135   1.1       jtk }
   1136   1.1       jtk /*
   1137   1.1       jtk  * Report a filesystem-too-full problem.
   1138   1.1       jtk  */
   1139   1.1       jtk static void
   1140   1.1       jtk toofull(void)
   1141   1.1       jtk {
   1142   1.1       jtk 	printf("Sorry, would run out of data blocks\n");
   1143   1.1       jtk 	exit(1);
   1144   1.1       jtk }
   1145   1.1       jtk /*
   1146   1.1       jtk  * Record a desire to move "n" frags from "from" to "to".
   1147   1.1       jtk  */
   1148   1.1       jtk static void
   1149   1.1       jtk mark_move(unsigned int from, unsigned int to, unsigned int n)
   1150   1.1       jtk {
   1151   1.1       jtk 	for (; n > 0; n--)
   1152   1.1       jtk 		blkmove[from++] = to++;
   1153   1.1       jtk }
   1154   1.1       jtk /* Helper function - evict n frags, starting with start (cg-relative).
   1155   1.1       jtk  * The free bitmap is scanned, unallocated frags are ignored, and
   1156   1.1       jtk  * each block of consecutive allocated frags is moved as a unit.
   1157   1.1       jtk  */
   1158   1.1       jtk static void
   1159   1.1       jtk fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
   1160   1.1       jtk {
   1161   1.1       jtk 	int i;
   1162   1.1       jtk 	int run;
   1163   1.1       jtk 	run = 0;
   1164   1.1       jtk 	for (i = 0; i <= n; i++) {
   1165   1.1       jtk 		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
   1166   1.1       jtk 			run++;
   1167   1.1       jtk 		} else {
   1168   1.1       jtk 			if (run > 0) {
   1169   1.1       jtk 				int off;
   1170   1.1       jtk 				off = find_freespace(run);
   1171   1.1       jtk 				if (off < 0)
   1172   1.1       jtk 					toofull();
   1173   1.1       jtk 				mark_move(base + start + i - run, off, run);
   1174   1.1       jtk 				set_bits(cg_blksfree(cg, 0), start + i - run,
   1175   1.1       jtk 				    run);
   1176   1.1       jtk 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1177   1.1       jtk 				    dtogd(oldsb, off), run);
   1178   1.1       jtk 			}
   1179   1.1       jtk 			run = 0;
   1180   1.1       jtk 		}
   1181   1.1       jtk 	}
   1182   1.1       jtk }
   1183   1.1       jtk /*
   1184   1.1       jtk  * Evict all data blocks from the given cg, starting at minfrag (based
   1185   1.1       jtk  *  at the beginning of the cg), for length nfrag.  The eviction is
   1186   1.1       jtk  *  assumed to be entirely data-area; this should not be called with a
   1187   1.1       jtk  *  range overlapping the metadata structures in the cg.  It also
   1188   1.1       jtk  *  assumes minfrag points into the given cg; it will misbehave if this
   1189   1.1       jtk  *  is not true.
   1190   1.1       jtk  *
   1191   1.1       jtk  * See the comment header on find_freespace() for one possible bug
   1192   1.1       jtk  *  lurking here.
   1193   1.1       jtk  */
   1194   1.1       jtk static void
   1195   1.1       jtk evict_data(struct cg * cg, unsigned int minfrag, unsigned int nfrag)
   1196   1.1       jtk {
   1197   1.1       jtk 	int base;		/* base of cg (in frags from beginning of fs) */
   1198   1.1       jtk 
   1199   1.1       jtk 
   1200   1.1       jtk 	base = cgbase(oldsb, cg->cg_cgx);
   1201   1.1       jtk 	/* Does the boundary fall in the middle of a block?  To avoid breaking
   1202   1.1       jtk 	 * between frags allocated as consecutive, we always evict the whole
   1203   1.1       jtk 	 * block in this case, though one could argue we should check to see
   1204   1.1       jtk 	 * if the frag before or after the break is unallocated. */
   1205   1.1       jtk 	if (minfrag % oldsb->fs_frag) {
   1206   1.1       jtk 		int n;
   1207   1.1       jtk 		n = minfrag % oldsb->fs_frag;
   1208   1.1       jtk 		minfrag -= n;
   1209   1.1       jtk 		nfrag += n;
   1210   1.1       jtk 	}
   1211   1.1       jtk 	/* Do whole blocks.  If a block is wholly free, skip it; if wholly
   1212   1.1       jtk 	 * allocated, move it in toto.  If neither, call fragmove() to move
   1213   1.1       jtk 	 * the frags to new locations. */
   1214   1.1       jtk 	while (nfrag >= oldsb->fs_frag) {
   1215   1.1       jtk 		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
   1216   1.1       jtk 			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
   1217   1.1       jtk 				oldsb->fs_frag)) {
   1218   1.1       jtk 				int off;
   1219   1.1       jtk 				off = find_freeblock();
   1220   1.1       jtk 				if (off < 0)
   1221   1.1       jtk 					toofull();
   1222   1.1       jtk 				mark_move(base + minfrag, off, oldsb->fs_frag);
   1223   1.1       jtk 				set_bits(cg_blksfree(cg, 0), minfrag,
   1224   1.1       jtk 				    oldsb->fs_frag);
   1225   1.1       jtk 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1226   1.1       jtk 				    dtogd(oldsb, off), oldsb->fs_frag);
   1227   1.1       jtk 			} else {
   1228   1.1       jtk 				fragmove(cg, base, minfrag, oldsb->fs_frag);
   1229   1.1       jtk 			}
   1230   1.1       jtk 		}
   1231   1.1       jtk 		minfrag += oldsb->fs_frag;
   1232   1.1       jtk 		nfrag -= oldsb->fs_frag;
   1233   1.1       jtk 	}
   1234   1.1       jtk 	/* Clean up any sub-block amount left over. */
   1235   1.1       jtk 	if (nfrag) {
   1236   1.1       jtk 		fragmove(cg, base, minfrag, nfrag);
   1237   1.1       jtk 	}
   1238   1.1       jtk }
   1239   1.1       jtk /*
   1240   1.1       jtk  * Move all data blocks according to blkmove.  We have to be careful,
   1241   1.1       jtk  *  because we may be updating indirect blocks that will themselves be
   1242   1.2    martin  *  getting moved, or inode int32_t arrays that point to indirect
   1243   1.1       jtk  *  blocks that will be moved.  We call this before
   1244   1.1       jtk  *  update_for_data_move, and update_for_data_move does inodes first,
   1245   1.1       jtk  *  then indirect blocks in preorder, so as to make sure that the
   1246   1.1       jtk  *  filesystem is self-consistent at all points, for better crash
   1247   1.1       jtk  *  tolerance.  (We can get away with this only because all the writes
   1248   1.1       jtk  *  done by perform_data_move() are writing into space that's not used
   1249   1.1       jtk  *  by the old filesystem.)  If we crash, some things may point to the
   1250   1.1       jtk  *  old data and some to the new, but both copies are the same.  The
   1251   1.1       jtk  *  only wrong things should be csum info and free bitmaps, which fsck
   1252   1.1       jtk  *  is entirely capable of cleaning up.
   1253   1.1       jtk  *
   1254   1.1       jtk  * Since blkmove_init() initializes all blocks to move to their current
   1255   1.1       jtk  *  locations, we can have two blocks marked as wanting to move to the
   1256   1.1       jtk  *  same location, but only two and only when one of them is the one
   1257   1.1       jtk  *  that was already there.  So if blkmove[i]==i, we ignore that entry
   1258   1.1       jtk  *  entirely - for unallocated blocks, we don't want it (and may be
   1259   1.1       jtk  *  putting something else there), and for allocated blocks, we don't
   1260   1.1       jtk  *  want to copy it anywhere.
   1261   1.1       jtk  */
   1262   1.1       jtk static void
   1263   1.1       jtk perform_data_move(void)
   1264   1.1       jtk {
   1265   1.1       jtk 	int i;
   1266   1.1       jtk 	int run;
   1267   1.1       jtk 	int maxrun;
   1268   1.1       jtk 	char buf[65536];
   1269   1.1       jtk 
   1270   1.1       jtk 	maxrun = sizeof(buf) / newsb->fs_fsize;
   1271   1.1       jtk 	run = 0;
   1272   1.1       jtk 	for (i = 0; i < oldsb->fs_size; i++) {
   1273   1.1       jtk 		if ((blkmove[i] == i) ||
   1274   1.1       jtk 		    (run >= maxrun) ||
   1275   1.1       jtk 		    ((run > 0) &&
   1276   1.1       jtk 			(blkmove[i] != blkmove[i - 1] + 1))) {
   1277   1.1       jtk 			if (run > 0) {
   1278   1.1       jtk 				readat(fsbtodb(oldsb, i - run), &buf[0],
   1279   1.1       jtk 				    run << oldsb->fs_fshift);
   1280   1.1       jtk 				writeat(fsbtodb(oldsb, blkmove[i - run]),
   1281   1.1       jtk 				    &buf[0], run << oldsb->fs_fshift);
   1282   1.1       jtk 			}
   1283   1.1       jtk 			run = 0;
   1284   1.1       jtk 		}
   1285   1.1       jtk 		if (blkmove[i] != i)
   1286   1.1       jtk 			run++;
   1287   1.1       jtk 	}
   1288   1.1       jtk 	if (run > 0) {
   1289   1.1       jtk 		readat(fsbtodb(oldsb, i - run), &buf[0],
   1290   1.1       jtk 		    run << oldsb->fs_fshift);
   1291   1.1       jtk 		writeat(fsbtodb(oldsb, blkmove[i - run]), &buf[0],
   1292   1.1       jtk 		    run << oldsb->fs_fshift);
   1293   1.1       jtk 	}
   1294   1.1       jtk }
   1295   1.1       jtk /*
   1296   1.2    martin  * This modifies an array of int32_t, according to blkmove.  This is
   1297   1.1       jtk  *  used to update inode block arrays and indirect blocks to point to
   1298   1.1       jtk  *  the new locations of data blocks.
   1299   1.1       jtk  *
   1300   1.2    martin  * Return value is the number of int32_ts that needed updating; in
   1301   1.1       jtk  *  particular, the return value is zero iff nothing was modified.
   1302   1.1       jtk  */
   1303   1.1       jtk static int
   1304   1.2    martin movemap_blocks(int32_t * vec, int n)
   1305   1.1       jtk {
   1306   1.1       jtk 	int rv;
   1307   1.1       jtk 
   1308   1.1       jtk 	rv = 0;
   1309   1.1       jtk 	for (; n > 0; n--, vec++) {
   1310   1.1       jtk 		if (blkmove[*vec] != *vec) {
   1311   1.1       jtk 			*vec = blkmove[*vec];
   1312   1.1       jtk 			rv++;
   1313   1.1       jtk 		}
   1314   1.1       jtk 	}
   1315   1.1       jtk 	return (rv);
   1316   1.1       jtk }
   1317   1.1       jtk static void
   1318   1.4  christos moveblocks_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
   1319   1.1       jtk {
   1320   1.1       jtk 	switch (di->di_mode & IFMT) {
   1321   1.1       jtk 	case IFLNK:
   1322   1.1       jtk 		if (di->di_size > oldsb->fs_maxsymlinklen) {
   1323   1.1       jtk 	case IFDIR:
   1324   1.1       jtk 	case IFREG:
   1325   1.1       jtk 			/* don't || these two calls; we need their
   1326   1.1       jtk 			 * side-effects */
   1327   1.1       jtk 			if (movemap_blocks(&di->di_db[0], NDADDR)) {
   1328   1.1       jtk 				iflags[inum] |= IF_DIRTY;
   1329   1.1       jtk 			}
   1330   1.1       jtk 			if (movemap_blocks(&di->di_ib[0], NIADDR)) {
   1331   1.1       jtk 				iflags[inum] |= IF_DIRTY;
   1332   1.1       jtk 			}
   1333   1.1       jtk 		}
   1334   1.1       jtk 		break;
   1335   1.1       jtk 	}
   1336   1.1       jtk }
   1337   1.1       jtk 
   1338   1.1       jtk static void
   1339   1.1       jtk moveindir_callback(unsigned int off, unsigned int nfrag, unsigned int nbytes, int kind)
   1340   1.1       jtk {
   1341   1.1       jtk 	if (kind == MDB_INDIR_PRE) {
   1342   1.2    martin 		int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
   1343   1.1       jtk 		readat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
   1344   1.1       jtk 		if (movemap_blocks(&blk[0], NINDIR(oldsb))) {
   1345   1.1       jtk 			writeat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
   1346   1.1       jtk 		}
   1347   1.1       jtk 	}
   1348   1.1       jtk }
   1349   1.1       jtk /*
   1350   1.1       jtk  * Update all inode data arrays and indirect blocks to point to the new
   1351   1.1       jtk  *  locations of data blocks.  See the comment header on
   1352   1.1       jtk  *  perform_data_move for some ordering considerations.
   1353   1.1       jtk  */
   1354   1.1       jtk static void
   1355   1.1       jtk update_for_data_move(void)
   1356   1.1       jtk {
   1357   1.1       jtk 	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
   1358   1.1       jtk 	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
   1359   1.1       jtk }
   1360   1.1       jtk /*
   1361   1.1       jtk  * Initialize the inomove array.
   1362   1.1       jtk  */
   1363   1.1       jtk static void
   1364   1.1       jtk inomove_init(void)
   1365   1.1       jtk {
   1366   1.1       jtk 	int i;
   1367   1.1       jtk 
   1368   1.1       jtk 	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
   1369   1.1       jtk                             "inomove");
   1370   1.1       jtk 	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
   1371   1.1       jtk 		inomove[i] = i;
   1372   1.1       jtk }
   1373   1.1       jtk /*
   1374   1.1       jtk  * Flush all dirtied inodes to disk.  Scans the inode flags array; for
   1375   1.1       jtk  *  each dirty inode, it sets the BDIRTY bit on the first inode in the
   1376   1.1       jtk  *  block containing the dirty inode.  Then it scans by blocks, and for
   1377   1.1       jtk  *  each marked block, writes it.
   1378   1.1       jtk  */
   1379   1.1       jtk static void
   1380   1.1       jtk flush_inodes(void)
   1381   1.1       jtk {
   1382   1.1       jtk 	int i;
   1383   1.1       jtk 	int ni;
   1384   1.1       jtk 	int m;
   1385   1.1       jtk 
   1386   1.1       jtk 	ni = newsb->fs_ipg * newsb->fs_ncg;
   1387   1.1       jtk 	m = INOPB(newsb) - 1;
   1388   1.1       jtk 	for (i = 0; i < ni; i++) {
   1389   1.1       jtk 		if (iflags[i] & IF_DIRTY) {
   1390   1.1       jtk 			iflags[i & ~m] |= IF_BDIRTY;
   1391   1.1       jtk 		}
   1392   1.1       jtk 	}
   1393   1.1       jtk 	m++;
   1394   1.1       jtk 	for (i = 0; i < ni; i += m) {
   1395   1.1       jtk 		if (iflags[i] & IF_BDIRTY) {
   1396   1.1       jtk 			writeat(fsbtodb(newsb, ino_to_fsba(newsb, i)),
   1397   1.1       jtk 			    inodes + i, newsb->fs_bsize);
   1398   1.1       jtk 		}
   1399   1.1       jtk 	}
   1400   1.1       jtk }
   1401   1.1       jtk /*
   1402   1.1       jtk  * Evict all inodes from the specified cg.  shrink() already checked
   1403   1.1       jtk  *  that there were enough free inodes, so the no-free-inodes check is
   1404   1.1       jtk  *  a can't-happen.  If it does trip, the filesystem should be in good
   1405   1.1       jtk  *  enough shape for fsck to fix; see the comment on perform_data_move
   1406   1.1       jtk  *  for the considerations in question.
   1407   1.1       jtk  */
   1408   1.1       jtk static void
   1409   1.1       jtk evict_inodes(struct cg * cg)
   1410   1.1       jtk {
   1411   1.1       jtk 	int inum;
   1412   1.1       jtk 	int i;
   1413   1.1       jtk 	int fi;
   1414   1.1       jtk 
   1415   1.1       jtk 	inum = newsb->fs_ipg * cg->cg_cgx;
   1416   1.1       jtk 	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
   1417   1.1       jtk 		if (inodes[inum].di_mode != 0) {
   1418   1.1       jtk 			fi = find_freeinode();
   1419   1.1       jtk 			if (fi < 0) {
   1420   1.1       jtk 				printf("Sorry, inodes evaporated - "
   1421   1.1       jtk 				    "filesystem probably needs fsck\n");
   1422   1.1       jtk 				exit(1);
   1423   1.1       jtk 			}
   1424   1.1       jtk 			inomove[inum] = fi;
   1425   1.1       jtk 			clr_bits(cg_inosused(cg, 0), i, 1);
   1426   1.1       jtk 			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
   1427   1.1       jtk 			    fi % newsb->fs_ipg, 1);
   1428   1.1       jtk 		}
   1429   1.1       jtk 	}
   1430   1.1       jtk }
   1431   1.1       jtk /*
   1432   1.1       jtk  * Move inodes from old locations to new.  Does not actually write
   1433   1.1       jtk  *  anything to disk; just copies in-core and sets dirty bits.
   1434   1.1       jtk  *
   1435   1.1       jtk  * We have to be careful here for reasons similar to those mentioned in
   1436   1.1       jtk  *  the comment header on perform_data_move, above: for the sake of
   1437   1.1       jtk  *  crash tolerance, we want to make sure everything is present at both
   1438   1.1       jtk  *  old and new locations before we update pointers.  So we call this
   1439   1.1       jtk  *  first, then flush_inodes() to get them out on disk, then update
   1440   1.1       jtk  *  directories to match.
   1441   1.1       jtk  */
   1442   1.1       jtk static void
   1443   1.1       jtk perform_inode_move(void)
   1444   1.1       jtk {
   1445   1.1       jtk 	int i;
   1446   1.1       jtk 	int ni;
   1447   1.1       jtk 
   1448   1.1       jtk 	ni = oldsb->fs_ipg * oldsb->fs_ncg;
   1449   1.1       jtk 	for (i = 0; i < ni; i++) {
   1450   1.1       jtk 		if (inomove[i] != i) {
   1451   1.1       jtk 			inodes[inomove[i]] = inodes[i];
   1452   1.1       jtk 			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
   1453   1.1       jtk 		}
   1454   1.1       jtk 	}
   1455   1.1       jtk }
   1456   1.1       jtk /*
   1457   1.1       jtk  * Update the directory contained in the nb bytes at buf, to point to
   1458   1.1       jtk  *  inodes' new locations.
   1459   1.1       jtk  */
   1460   1.1       jtk static int
   1461   1.1       jtk update_dirents(char *buf, int nb)
   1462   1.1       jtk {
   1463   1.1       jtk 	int rv;
   1464   1.1       jtk #define d ((struct direct *)buf)
   1465   1.1       jtk 
   1466   1.1       jtk 	rv = 0;
   1467   1.1       jtk 	while (nb > 0) {
   1468   1.1       jtk 		if (inomove[d->d_ino] != d->d_ino) {
   1469   1.1       jtk 			rv++;
   1470   1.1       jtk 			d->d_ino = inomove[d->d_ino];
   1471   1.1       jtk 		}
   1472   1.1       jtk 		nb -= d->d_reclen;
   1473   1.1       jtk 		buf += d->d_reclen;
   1474   1.1       jtk 	}
   1475   1.1       jtk 	return (rv);
   1476   1.1       jtk #undef d
   1477   1.1       jtk }
   1478   1.1       jtk /*
   1479   1.1       jtk  * Callback function for map_inode_data_blocks, for updating a
   1480   1.1       jtk  *  directory to point to new inode locations.
   1481   1.1       jtk  */
   1482   1.1       jtk static void
   1483   1.1       jtk update_dir_data(unsigned int bn, unsigned int size, unsigned int nb, int kind)
   1484   1.1       jtk {
   1485   1.1       jtk 	if (kind == MDB_DATA) {
   1486   1.1       jtk 		union {
   1487   1.1       jtk 			struct direct d;
   1488   1.1       jtk 			char ch[MAXBSIZE];
   1489   1.1       jtk 		}     buf;
   1490   1.1       jtk 		readat(fsbtodb(oldsb, bn), &buf, size << oldsb->fs_fshift);
   1491   1.1       jtk 		if (update_dirents((char *) &buf, nb)) {
   1492   1.1       jtk 			writeat(fsbtodb(oldsb, bn), &buf,
   1493   1.1       jtk 			    size << oldsb->fs_fshift);
   1494   1.1       jtk 		}
   1495   1.1       jtk 	}
   1496   1.1       jtk }
   1497   1.1       jtk static void
   1498   1.4  christos dirmove_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
   1499   1.1       jtk {
   1500   1.1       jtk 	switch (di->di_mode & IFMT) {
   1501   1.1       jtk 	case IFDIR:
   1502   1.1       jtk 		map_inode_data_blocks(di, &update_dir_data);
   1503   1.1       jtk 		break;
   1504   1.1       jtk 	}
   1505   1.1       jtk }
   1506   1.1       jtk /*
   1507   1.1       jtk  * Update directory entries to point to new inode locations.
   1508   1.1       jtk  */
   1509   1.1       jtk static void
   1510   1.1       jtk update_for_inode_move(void)
   1511   1.1       jtk {
   1512   1.1       jtk 	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
   1513   1.1       jtk }
   1514   1.1       jtk /*
   1515   1.1       jtk  * Shrink the filesystem.
   1516   1.1       jtk  */
   1517   1.1       jtk static void
   1518   1.1       jtk shrink(void)
   1519   1.1       jtk {
   1520   1.1       jtk 	int i;
   1521   1.1       jtk 
   1522   1.1       jtk 	/* Load the inodes off disk - we'll need 'em. */
   1523   1.1       jtk 	loadinodes();
   1524   1.1       jtk 	/* Update the timestamp. */
   1525   1.1       jtk 	newsb->fs_time = timestamp();
   1526   1.1       jtk 	/* Update the size figures. */
   1527   1.1       jtk 	newsb->fs_size = dbtofsb(newsb, newsize);
   1528   1.4  christos 	newsb->fs_old_ncyl = (newsb->fs_size * NSPF(newsb)) / newsb->fs_old_spc;
   1529   1.4  christos 	newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
   1530   1.1       jtk 	/* Does the (new) last cg end before the end of its inode area?  See
   1531   1.1       jtk 	 * the similar code in grow() for more on this. */
   1532   1.1       jtk 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
   1533   1.1       jtk 		newsb->fs_ncg--;
   1534   1.4  christos 		newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
   1535   1.4  christos 		newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc) / NSPF(newsb);
   1536   1.1       jtk 		printf("Warning: last cylinder group is too small;\n");
   1537   1.1       jtk 		printf("    dropping it.  New size = %lu.\n",
   1538   1.1       jtk 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
   1539   1.1       jtk 	}
   1540   1.1       jtk 	/* Let's make sure we're not being shrunk into oblivion. */
   1541   1.1       jtk 	if (newsb->fs_ncg < 1) {
   1542   1.1       jtk 		printf("Size too small - filesystem would have no cylinders\n");
   1543   1.1       jtk 		exit(1);
   1544   1.1       jtk 	}
   1545   1.1       jtk 	/* Initialize for block motion. */
   1546   1.1       jtk 	blkmove_init();
   1547   1.1       jtk 	/* Update csum size, then fix up for the new size */
   1548   1.1       jtk 	newsb->fs_cssize = fragroundup(newsb,
   1549   1.1       jtk 	    newsb->fs_ncg * sizeof(struct csum));
   1550   1.1       jtk 	csum_fixup();
   1551   1.8       snj 	/* Evict data from any cgs being wholly eliminated */
   1552   1.1       jtk 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
   1553   1.1       jtk 		int base;
   1554   1.1       jtk 		int dlow;
   1555   1.1       jtk 		int dhigh;
   1556   1.1       jtk 		int dmax;
   1557   1.1       jtk 		base = cgbase(oldsb, i);
   1558   1.1       jtk 		dlow = cgsblock(oldsb, i) - base;
   1559   1.1       jtk 		dhigh = cgdmin(oldsb, i) - base;
   1560   1.1       jtk 		dmax = oldsb->fs_size - base;
   1561   1.1       jtk 		if (dmax > cgs[i]->cg_ndblk)
   1562   1.1       jtk 			dmax = cgs[i]->cg_ndblk;
   1563   1.1       jtk 		evict_data(cgs[i], 0, dlow);
   1564   1.1       jtk 		evict_data(cgs[i], dhigh, dmax - dhigh);
   1565   1.1       jtk 		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
   1566   1.1       jtk 		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
   1567   1.1       jtk 		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
   1568   1.1       jtk 		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
   1569   1.1       jtk 	}
   1570   1.1       jtk 	/* Update the new last cg. */
   1571   1.1       jtk 	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
   1572   1.1       jtk 	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
   1573   1.1       jtk 	/* Is the new last cg partial?  If so, evict any data from the part
   1574   1.1       jtk 	 * being shrunken away. */
   1575   1.1       jtk 	if (newsb->fs_size % newsb->fs_fpg) {
   1576   1.1       jtk 		struct cg *cg;
   1577   1.1       jtk 		int oldcgsize;
   1578   1.1       jtk 		int newcgsize;
   1579   1.1       jtk 		cg = cgs[newsb->fs_ncg - 1];
   1580   1.1       jtk 		newcgsize = newsb->fs_size % newsb->fs_fpg;
   1581   1.1       jtk 		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) & oldsb->fs_fpg);
   1582   1.1       jtk 		if (oldcgsize > oldsb->fs_fpg)
   1583   1.1       jtk 			oldcgsize = oldsb->fs_fpg;
   1584   1.1       jtk 		evict_data(cg, newcgsize, oldcgsize - newcgsize);
   1585   1.1       jtk 		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
   1586   1.1       jtk 	}
   1587   1.1       jtk 	/* Find out whether we would run out of inodes.  (Note we haven't
   1588   1.1       jtk 	 * actually done anything to the filesystem yet; all those evict_data
   1589   1.1       jtk 	 * calls just update blkmove.) */
   1590   1.1       jtk 	{
   1591   1.1       jtk 		int slop;
   1592   1.1       jtk 		slop = 0;
   1593   1.1       jtk 		for (i = 0; i < newsb->fs_ncg; i++)
   1594   1.1       jtk 			slop += cgs[i]->cg_cs.cs_nifree;
   1595   1.1       jtk 		for (; i < oldsb->fs_ncg; i++)
   1596   1.1       jtk 			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
   1597   1.1       jtk 		if (slop < 0) {
   1598   1.1       jtk 			printf("Sorry, would run out of inodes\n");
   1599   1.1       jtk 			exit(1);
   1600   1.1       jtk 		}
   1601   1.1       jtk 	}
   1602   1.1       jtk 	/* Copy data, then update pointers to data.  See the comment header on
   1603   1.1       jtk 	 * perform_data_move for ordering considerations. */
   1604   1.1       jtk 	perform_data_move();
   1605   1.1       jtk 	update_for_data_move();
   1606   1.1       jtk 	/* Now do inodes.  Initialize, evict, move, update - see the comment
   1607   1.1       jtk 	 * header on perform_inode_move. */
   1608   1.1       jtk 	inomove_init();
   1609   1.1       jtk 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
   1610   1.1       jtk 		evict_inodes(cgs[i]);
   1611   1.1       jtk 	perform_inode_move();
   1612   1.1       jtk 	flush_inodes();
   1613   1.1       jtk 	update_for_inode_move();
   1614   1.1       jtk 	/* Recompute all the bitmaps; most of them probably need it anyway,
   1615   1.1       jtk 	 * the rest are just paranoia and not wanting to have to bother
   1616   1.1       jtk 	 * keeping track of exactly which ones require it. */
   1617   1.1       jtk 	for (i = 0; i < newsb->fs_ncg; i++)
   1618   1.1       jtk 		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
   1619  1.14       riz 	/* Update the cg_old_ncyl value for the last cylinder. */
   1620  1.14       riz 	if (newsb->fs_old_ncyl % newsb->fs_old_cpg)
   1621  1.14       riz 		cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
   1622  1.14       riz 	    	    newsb->fs_old_ncyl % newsb->fs_old_cpg;
   1623   1.1       jtk 	/* Make fs_dsize match the new reality. */
   1624   1.1       jtk 	recompute_fs_dsize();
   1625   1.1       jtk }
   1626   1.1       jtk /*
   1627   1.1       jtk  * Recompute the block totals, block cluster summaries, and rotational
   1628   1.1       jtk  *  position summaries, for a given cg (specified by number), based on
   1629   1.1       jtk  *  its free-frag bitmap (cg_blksfree()[]).
   1630   1.1       jtk  */
   1631   1.1       jtk static void
   1632   1.1       jtk rescan_blkmaps(int cgn)
   1633   1.1       jtk {
   1634   1.1       jtk 	struct cg *cg;
   1635   1.1       jtk 	int f;
   1636   1.1       jtk 	int b;
   1637   1.1       jtk 	int blkfree;
   1638   1.1       jtk 	int blkrun;
   1639   1.1       jtk 	int fragrun;
   1640   1.1       jtk 	int fwb;
   1641   1.1       jtk 
   1642   1.1       jtk 	cg = cgs[cgn];
   1643   1.1       jtk 	/* Subtract off the current totals from the sb's summary info */
   1644   1.1       jtk 	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
   1645   1.1       jtk 	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
   1646   1.1       jtk 	/* Clear counters and bitmaps. */
   1647   1.1       jtk 	cg->cg_cs.cs_nffree = 0;
   1648   1.1       jtk 	cg->cg_cs.cs_nbfree = 0;
   1649   1.1       jtk 	bzero(&cg->cg_frsum[0], MAXFRAG * sizeof(cg->cg_frsum[0]));
   1650   1.1       jtk 	bzero(&cg_blktot(cg, 0)[0],
   1651   1.4  christos 	    newsb->fs_old_cpg * sizeof(cg_blktot(cg, 0)[0]));
   1652   1.1       jtk 	bzero(&cg_blks(newsb, cg, 0, 0)[0],
   1653   1.4  christos 	    newsb->fs_old_cpg * newsb->fs_old_nrpos *
   1654   1.1       jtk 	    sizeof(cg_blks(newsb, cg, 0, 0)[0]));
   1655   1.1       jtk 	if (newsb->fs_contigsumsize > 0) {
   1656   1.1       jtk 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
   1657   1.1       jtk 		bzero(&cg_clustersum(cg, 0)[1],
   1658   1.1       jtk 		    newsb->fs_contigsumsize *
   1659   1.1       jtk 		    sizeof(cg_clustersum(cg, 0)[1]));
   1660   1.1       jtk 		bzero(&cg_clustersfree(cg, 0)[0],
   1661   1.4  christos 		    howmany((newsb->fs_old_cpg * newsb->fs_old_spc) / NSPB(newsb),
   1662   1.1       jtk 			NBBY));
   1663   1.1       jtk 	}
   1664   1.1       jtk 	/* Scan the free-frag bitmap.  Runs of free frags are kept track of
   1665   1.1       jtk 	 * with fragrun, and recorded into cg_frsum[] and cg_cs.cs_nffree; on
   1666   1.1       jtk 	 * each block boundary, entire free blocks are recorded as well. */
   1667   1.1       jtk 	blkfree = 1;
   1668   1.1       jtk 	blkrun = 0;
   1669   1.1       jtk 	fragrun = 0;
   1670   1.1       jtk 	f = 0;
   1671   1.1       jtk 	b = 0;
   1672   1.1       jtk 	fwb = 0;
   1673   1.1       jtk 	while (f < cg->cg_ndblk) {
   1674   1.1       jtk 		if (bit_is_set(cg_blksfree(cg, 0), f)) {
   1675   1.1       jtk 			fragrun++;
   1676   1.1       jtk 		} else {
   1677   1.1       jtk 			blkfree = 0;
   1678   1.1       jtk 			if (fragrun > 0) {
   1679   1.1       jtk 				cg->cg_frsum[fragrun]++;
   1680   1.1       jtk 				cg->cg_cs.cs_nffree += fragrun;
   1681   1.1       jtk 			}
   1682   1.1       jtk 			fragrun = 0;
   1683   1.1       jtk 		}
   1684   1.1       jtk 		f++;
   1685   1.1       jtk 		fwb++;
   1686   1.1       jtk 		if (fwb >= newsb->fs_frag) {
   1687   1.1       jtk 			if (blkfree) {
   1688   1.1       jtk 				cg->cg_cs.cs_nbfree++;
   1689   1.1       jtk 				if (newsb->fs_contigsumsize > 0)
   1690   1.1       jtk 					set_bits(cg_clustersfree(cg, 0), b, 1);
   1691   1.1       jtk 				cg_blktot(cg, 0)[cbtocylno(newsb, f - newsb->fs_frag)]++;
   1692   1.1       jtk 				cg_blks(newsb, cg,
   1693   1.1       jtk 				    cbtocylno(newsb, f - newsb->fs_frag),
   1694   1.1       jtk 				    0)[cbtorpos(newsb, f - newsb->fs_frag)]++;
   1695   1.1       jtk 				blkrun++;
   1696   1.1       jtk 			} else {
   1697   1.1       jtk 				if (fragrun > 0) {
   1698   1.1       jtk 					cg->cg_frsum[fragrun]++;
   1699   1.1       jtk 					cg->cg_cs.cs_nffree += fragrun;
   1700   1.1       jtk 				}
   1701   1.1       jtk 				if (newsb->fs_contigsumsize > 0) {
   1702   1.1       jtk 					if (blkrun > 0) {
   1703   1.1       jtk 						cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ? newsb->fs_contigsumsize : blkrun]++;
   1704   1.1       jtk 					}
   1705   1.1       jtk 				}
   1706   1.1       jtk 				blkrun = 0;
   1707   1.1       jtk 			}
   1708   1.1       jtk 			fwb = 0;
   1709   1.1       jtk 			b++;
   1710   1.1       jtk 			blkfree = 1;
   1711   1.1       jtk 			fragrun = 0;
   1712   1.1       jtk 		}
   1713   1.1       jtk 	}
   1714   1.1       jtk 	if (fragrun > 0) {
   1715   1.1       jtk 		cg->cg_frsum[fragrun]++;
   1716   1.1       jtk 		cg->cg_cs.cs_nffree += fragrun;
   1717   1.1       jtk 	}
   1718   1.1       jtk 	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
   1719   1.1       jtk 		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
   1720   1.1       jtk 		    newsb->fs_contigsumsize : blkrun]++;
   1721   1.1       jtk 	}
   1722   1.1       jtk 	/*
   1723   1.1       jtk          * Put the updated summary info back into csums, and add it
   1724   1.1       jtk          * back into the sb's summary info.  Then mark the cg dirty.
   1725   1.1       jtk          */
   1726   1.1       jtk 	csums[cgn] = cg->cg_cs;
   1727   1.1       jtk 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
   1728   1.1       jtk 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
   1729   1.1       jtk 	cgflags[cgn] |= CGF_DIRTY;
   1730   1.1       jtk }
   1731   1.1       jtk /*
   1732   1.1       jtk  * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
   1733   1.1       jtk  *  values, for a cg, based on the in-core inodes for that cg.
   1734   1.1       jtk  */
   1735   1.1       jtk static void
   1736   1.1       jtk rescan_inomaps(int cgn)
   1737   1.1       jtk {
   1738   1.1       jtk 	struct cg *cg;
   1739   1.1       jtk 	int inum;
   1740   1.1       jtk 	int iwc;
   1741   1.1       jtk 
   1742   1.1       jtk 	cg = cgs[cgn];
   1743   1.1       jtk 	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
   1744   1.1       jtk 	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
   1745   1.1       jtk 	cg->cg_cs.cs_ndir = 0;
   1746   1.1       jtk 	cg->cg_cs.cs_nifree = 0;
   1747   1.1       jtk 	bzero(&cg_inosused(cg, 0)[0], howmany(newsb->fs_ipg, NBBY));
   1748   1.1       jtk 	inum = cgn * newsb->fs_ipg;
   1749   1.1       jtk 	if (cgn == 0) {
   1750   1.1       jtk 		set_bits(cg_inosused(cg, 0), 0, 2);
   1751   1.1       jtk 		iwc = 2;
   1752   1.1       jtk 		inum += 2;
   1753   1.1       jtk 	} else {
   1754   1.1       jtk 		iwc = 0;
   1755   1.1       jtk 	}
   1756   1.1       jtk 	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
   1757   1.1       jtk 		switch (inodes[inum].di_mode & IFMT) {
   1758   1.1       jtk 		case 0:
   1759   1.1       jtk 			cg->cg_cs.cs_nifree++;
   1760   1.1       jtk 			break;
   1761   1.1       jtk 		case IFDIR:
   1762   1.1       jtk 			cg->cg_cs.cs_ndir++;
   1763   1.1       jtk 			/* fall through */
   1764   1.1       jtk 		default:
   1765   1.1       jtk 			set_bits(cg_inosused(cg, 0), iwc, 1);
   1766   1.1       jtk 			break;
   1767   1.1       jtk 		}
   1768   1.1       jtk 	}
   1769   1.1       jtk 	csums[cgn] = cg->cg_cs;
   1770   1.1       jtk 	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
   1771   1.1       jtk 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
   1772   1.1       jtk 	cgflags[cgn] |= CGF_DIRTY;
   1773   1.1       jtk }
   1774   1.1       jtk /*
   1775   1.1       jtk  * Flush cgs to disk, recomputing anything they're marked as needing.
   1776   1.1       jtk  */
   1777   1.1       jtk static void
   1778   1.1       jtk flush_cgs(void)
   1779   1.1       jtk {
   1780   1.1       jtk 	int i;
   1781   1.1       jtk 
   1782   1.1       jtk 	for (i = 0; i < newsb->fs_ncg; i++) {
   1783   1.1       jtk 		if (cgflags[i] & CGF_BLKMAPS) {
   1784   1.1       jtk 			rescan_blkmaps(i);
   1785   1.1       jtk 		}
   1786   1.1       jtk 		if (cgflags[i] & CGF_INOMAPS) {
   1787   1.1       jtk 			rescan_inomaps(i);
   1788   1.1       jtk 		}
   1789   1.1       jtk 		if (cgflags[i] & CGF_DIRTY) {
   1790   1.1       jtk 			cgs[i]->cg_rotor = 0;
   1791   1.1       jtk 			cgs[i]->cg_frotor = 0;
   1792   1.1       jtk 			cgs[i]->cg_irotor = 0;
   1793   1.1       jtk 			writeat(fsbtodb(newsb, cgtod(newsb, i)), cgs[i],
   1794   1.1       jtk 			    cgblksz);
   1795   1.1       jtk 		}
   1796   1.1       jtk 	}
   1797   1.1       jtk 	writeat(fsbtodb(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
   1798   1.1       jtk }
   1799   1.1       jtk /*
   1800   1.1       jtk  * Write the superblock, both to the main superblock and to each cg's
   1801   1.1       jtk  *  alternative superblock.
   1802   1.1       jtk  */
   1803   1.1       jtk static void
   1804   1.1       jtk write_sbs(void)
   1805   1.1       jtk {
   1806   1.1       jtk 	int i;
   1807   1.1       jtk 
   1808  1.10    bouyer 	writeat(where /  DEV_BSIZE, newsb, SBLOCKSIZE);
   1809   1.1       jtk 	for (i = 0; i < newsb->fs_ncg; i++) {
   1810   1.4  christos 		writeat(fsbtodb(newsb, cgsblock(newsb, i)), newsb, SBLOCKSIZE);
   1811   1.1       jtk 	}
   1812   1.1       jtk }
   1813  1.13      haad 
   1814  1.13      haad static uint32_t
   1815  1.13      haad get_dev_size(char *dev_name)
   1816  1.13      haad {
   1817  1.13      haad 	struct dkwedge_info dkw;
   1818  1.13      haad 	struct partition *pp;
   1819  1.13      haad 	struct disklabel lp;
   1820  1.13      haad 	size_t ptn;
   1821  1.13      haad 
   1822  1.13      haad 	/* Get info about partition/wedge */
   1823  1.13      haad 	if (ioctl(fd, DIOCGWEDGEINFO, &dkw) == -1) {
   1824  1.13      haad 		if (ioctl(fd, DIOCGDINFO, &lp) == -1)
   1825  1.13      haad 			return 0;
   1826  1.13      haad 
   1827  1.13      haad 		ptn = strchr(dev_name, '\0')[-1] - 'a';
   1828  1.13      haad 		if (ptn >= lp.d_npartitions)
   1829  1.13      haad 			return 0;
   1830  1.13      haad 
   1831  1.13      haad 		pp = &lp.d_partitions[ptn];
   1832  1.13      haad 		return pp->p_size;
   1833  1.13      haad 	}
   1834  1.13      haad 
   1835  1.13      haad 	return dkw.dkw_size;
   1836  1.13      haad }
   1837  1.13      haad 
   1838   1.1       jtk /*
   1839   1.1       jtk  * main().
   1840   1.1       jtk  */
   1841   1.1       jtk int
   1842  1.13      haad main(int argc, char **argv)
   1843   1.1       jtk {
   1844  1.13      haad 	int ch;
   1845  1.13      haad 	int ExpertFlag;
   1846  1.13      haad 	int SFlag;
   1847   1.4  christos 	size_t i;
   1848  1.13      haad 
   1849  1.13      haad 	char *device;
   1850  1.13      haad 	char reply[5];
   1851  1.13      haad 
   1852  1.13      haad 	newsize = 0;
   1853  1.13      haad 	ExpertFlag = 0;
   1854  1.13      haad 	SFlag = 0;
   1855  1.13      haad 
   1856  1.13      haad 	while ((ch = getopt(argc, argv, "s:y")) != -1) {
   1857  1.13      haad 		switch (ch) {
   1858  1.13      haad 		case 's':
   1859  1.13      haad 			SFlag = 1;
   1860  1.13      haad 			newsize = (size_t)strtoul(optarg, NULL, 10);
   1861  1.13      haad 			if(newsize < 1) {
   1862  1.13      haad 				usage();
   1863  1.13      haad 			}
   1864  1.13      haad 			break;
   1865  1.13      haad 		case 'y':
   1866  1.13      haad 			ExpertFlag = 1;
   1867  1.13      haad 			break;
   1868  1.13      haad 		case '?':
   1869  1.13      haad 			/* FALLTHROUGH */
   1870  1.13      haad 		default:
   1871  1.13      haad 			usage();
   1872  1.13      haad 		}
   1873  1.13      haad 	}
   1874  1.13      haad 	argc -= optind;
   1875  1.13      haad 	argv += optind;
   1876  1.13      haad 
   1877  1.13      haad 	if (argc != 1) {
   1878  1.13      haad 		usage();
   1879  1.13      haad 	}
   1880  1.13      haad 
   1881  1.13      haad 	device = *argv;
   1882  1.13      haad 
   1883  1.13      haad 	if (ExpertFlag == 0) {
   1884  1.13      haad 		printf("It's required to manually run fsck on filesystem device "
   1885  1.13      haad 		    "before you can resize it\n\n"
   1886  1.13      haad 		    " Did you run fsck on your disk (Yes/No) ? ");
   1887  1.13      haad 		fgets(reply, (int)sizeof(reply), stdin);
   1888  1.13      haad 		if (strcasecmp(reply, "Yes\n")) {
   1889  1.13      haad 			printf("\n Nothing done \n");
   1890  1.13      haad 			exit(EXIT_SUCCESS);
   1891  1.13      haad 		}
   1892   1.1       jtk 	}
   1893  1.13      haad 
   1894  1.13      haad 	fd = open(device, O_RDWR, 0);
   1895   1.4  christos 	if (fd < 0)
   1896  1.13      haad 		err(EXIT_FAILURE, "Cannot open `%s'", device);
   1897   1.1       jtk 	checksmallio();
   1898  1.13      haad 
   1899  1.13      haad 	if (SFlag == 0) {
   1900  1.13      haad 		newsize = get_dev_size(device);
   1901  1.13      haad 		if (newsize == 0)
   1902  1.13      haad 			err(EXIT_FAILURE, "Cannot resize filesystem, newsize not known.");
   1903  1.13      haad 	}
   1904  1.13      haad 
   1905   1.1       jtk 	oldsb = (struct fs *) & sbbuf;
   1906   1.4  christos 	newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
   1907   1.4  christos 	for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
   1908   1.9    bouyer 		readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
   1909   1.4  christos 		if (oldsb->fs_magic == FS_UFS1_MAGIC)
   1910   1.4  christos 			break;
   1911   1.7       dsl 		if (where == SBLOCK_UFS2)
   1912   1.7       dsl 			continue;
   1913   1.7       dsl 		if (oldsb->fs_old_flags & FS_FLAGS_UPDATED)
   1914  1.14       riz 			err(EXIT_FAILURE, "Cannot resize ffsv2 format superblock!");
   1915   1.1       jtk 	}
   1916   1.4  christos 	if (where == (off_t)-1)
   1917  1.13      haad 		errx(EXIT_FAILURE, "Bad magic number");
   1918   1.1       jtk 	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
   1919   1.1       jtk 	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
   1920   1.1       jtk 	if (oldsb->fs_ipg % INOPB(oldsb)) {
   1921  1.13      haad 		(void)fprintf(stderr, "ipg[%d] %% INOPB[%d] != 0\n", (int) oldsb->fs_ipg,
   1922   1.1       jtk 		    (int) INOPB(oldsb));
   1923  1.13      haad 		exit(EXIT_FAILURE);
   1924   1.1       jtk 	}
   1925   1.1       jtk 	/* The superblock is bigger than struct fs (there are trailing tables,
   1926   1.4  christos 	 * of non-fixed size); make sure we copy the whole thing.  SBLOCKSIZE may
   1927   1.1       jtk 	 * be an over-estimate, but we do this just once, so being generous is
   1928   1.1       jtk 	 * cheap. */
   1929   1.4  christos 	bcopy(oldsb, newsb, SBLOCKSIZE);
   1930   1.1       jtk 	loadcgs();
   1931   1.1       jtk 	if (newsize > fsbtodb(oldsb, oldsb->fs_size)) {
   1932   1.1       jtk 		grow();
   1933   1.1       jtk 	} else if (newsize < fsbtodb(oldsb, oldsb->fs_size)) {
   1934   1.1       jtk 		shrink();
   1935   1.1       jtk 	}
   1936   1.1       jtk 	flush_cgs();
   1937   1.1       jtk 	write_sbs();
   1938  1.13      haad 	return 0;
   1939  1.13      haad }
   1940  1.13      haad 
   1941  1.13      haad static void
   1942  1.13      haad usage(void)
   1943  1.13      haad {
   1944  1.13      haad 
   1945  1.13      haad 	(void)fprintf(stderr, "usage: %s [-y] [-s size] device\n", getprogname());
   1946  1.13      haad 	exit(EXIT_FAILURE);
   1947   1.1       jtk }
   1948