Home | History | Annotate | Line # | Download | only in resize_ffs
resize_ffs.c revision 1.26
      1  1.26  dholland /*	$NetBSD: resize_ffs.c,v 1.26 2011/08/15 00:24:19 dholland Exp $	*/
      2   1.1       jtk /* From sources sent on February 17, 2003 */
      3   1.1       jtk /*-
      4   1.1       jtk  * As its sole author, I explicitly place this code in the public
      5   1.1       jtk  *  domain.  Anyone may use it for any purpose (though I would
      6   1.1       jtk  *  appreciate credit where it is due).
      7   1.1       jtk  *
      8   1.1       jtk  *					der Mouse
      9   1.1       jtk  *
     10   1.1       jtk  *			       mouse (at) rodents.montreal.qc.ca
     11   1.1       jtk  *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
     12   1.1       jtk  */
     13   1.1       jtk /*
     14   1.3       wiz  * resize_ffs:
     15   1.1       jtk  *
     16  1.24       wiz  * Resize a file system.  Is capable of both growing and shrinking.
     17   1.1       jtk  *
     18  1.24       wiz  * Usage: resize_ffs [-s newsize] [-y] file_system
     19   1.1       jtk  *
     20  1.15       riz  * Example: resize_ffs -s 29574 /dev/rsd1e
     21   1.1       jtk  *
     22   1.1       jtk  * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
     23   1.1       jtk  *  each).
     24   1.1       jtk  *
     25   1.1       jtk  * Note: this currently requires gcc to build, since it is written
     26   1.1       jtk  *  depending on gcc-specific features, notably nested function
     27   1.1       jtk  *  definitions (which in at least a few cases depend on the lexical
     28   1.1       jtk  *  scoping gcc provides, so they can't be trivially moved outside).
     29   1.1       jtk  *
     30   1.5      salo  * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
     31   1.1       jtk  *  one responsible for the "realloccgblk: can't find blk in cyl"
     32   1.1       jtk  *  problem and a more minor one which left fs_dsize wrong when
     33   1.1       jtk  *  shrinking.  (These actually indicate bugs in fsck too - it should
     34   1.1       jtk  *  have caught and fixed them.)
     35   1.1       jtk  *
     36   1.1       jtk  */
     37   1.1       jtk 
     38  1.11     perry #include <sys/cdefs.h>
     39  1.13      haad #include <sys/disk.h>
     40  1.13      haad #include <sys/disklabel.h>
     41  1.13      haad #include <sys/dkio.h>
     42  1.13      haad #include <sys/ioctl.h>
     43   1.1       jtk #include <sys/stat.h>
     44   1.1       jtk #include <sys/mman.h>
     45   1.1       jtk #include <sys/param.h>		/* MAXFRAG */
     46   1.1       jtk #include <ufs/ffs/fs.h>
     47  1.25       riz #include <ufs/ffs/ffs_extern.h>
     48   1.1       jtk #include <ufs/ufs/dir.h>
     49   1.1       jtk #include <ufs/ufs/dinode.h>
     50   1.1       jtk #include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */
     51   1.1       jtk 
     52  1.15       riz #include <err.h>
     53  1.15       riz #include <errno.h>
     54  1.15       riz #include <fcntl.h>
     55  1.15       riz #include <stdio.h>
     56  1.15       riz #include <stdlib.h>
     57  1.15       riz #include <strings.h>
     58  1.15       riz #include <unistd.h>
     59  1.15       riz 
     60  1.24       wiz /* new size of file system, in sectors */
     61  1.25       riz static uint64_t newsize;
     62   1.1       jtk 
     63  1.23       riz /* fd open onto disk device or file */
     64   1.1       jtk static int fd;
     65   1.1       jtk 
     66   1.1       jtk /* must we break up big I/O operations - see checksmallio() */
     67   1.1       jtk static int smallio;
     68   1.1       jtk 
     69   1.1       jtk /* size of a cg, in bytes, rounded up to a frag boundary */
     70   1.1       jtk static int cgblksz;
     71   1.1       jtk 
     72   1.4  christos /* possible superblock localtions */
     73   1.4  christos static int search[] = SBLOCKSEARCH;
     74   1.4  christos /* location of the superblock */
     75   1.4  christos static off_t where;
     76   1.4  christos 
     77   1.1       jtk /* Superblocks. */
     78   1.1       jtk static struct fs *oldsb;	/* before we started */
     79   1.1       jtk static struct fs *newsb;	/* copy to work with */
     80   1.1       jtk /* Buffer to hold the above.  Make sure it's aligned correctly. */
     81  1.15       riz static char sbbuf[2 * SBLOCKSIZE]
     82  1.15       riz 	__attribute__((__aligned__(__alignof__(struct fs))));
     83   1.1       jtk 
     84  1.25       riz union dinode {
     85  1.25       riz 	struct ufs1_dinode dp1;
     86  1.25       riz 	struct ufs2_dinode dp2;
     87  1.25       riz };
     88  1.25       riz #define DIP(dp, field)							      \
     89  1.25       riz 	((is_ufs2) ?							      \
     90  1.25       riz 	    (dp)->dp2.field : (dp)->dp1.field)
     91  1.25       riz 
     92  1.25       riz #define DIP_ASSIGN(dp, field, value)					      \
     93  1.25       riz 	do {								      \
     94  1.25       riz 		if (is_ufs2)						      \
     95  1.25       riz 			(dp)->dp2.field = (value);			      \
     96  1.25       riz 		else							      \
     97  1.25       riz 			(dp)->dp1.field = (value);			      \
     98  1.25       riz 	} while (0)
     99  1.25       riz 
    100   1.1       jtk /* a cg's worth of brand new squeaky-clean inodes */
    101   1.4  christos static struct ufs1_dinode *zinodes;
    102   1.1       jtk 
    103   1.1       jtk /* pointers to the in-core cgs, read off disk and possibly modified */
    104   1.1       jtk static struct cg **cgs;
    105   1.1       jtk 
    106   1.1       jtk /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
    107   1.1       jtk static struct csum *csums;
    108   1.1       jtk 
    109   1.1       jtk /* per-cg flags, indexed by cg number */
    110   1.1       jtk static unsigned char *cgflags;
    111   1.1       jtk #define CGF_DIRTY   0x01	/* needs to be written to disk */
    112   1.1       jtk #define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
    113   1.1       jtk #define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */
    114   1.1       jtk 
    115   1.1       jtk /* when shrinking, these two arrays record how we want blocks to move.	 */
    116   1.1       jtk /*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
    117   1.1       jtk /*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
    118   1.1       jtk /*  started out as inode i should end up as inode j.			 */
    119   1.1       jtk static unsigned int *blkmove;
    120   1.1       jtk static unsigned int *inomove;
    121   1.1       jtk 
    122   1.1       jtk /* in-core copies of all inodes in the fs, indexed by inumber */
    123  1.25       riz union dinode *inodes;
    124  1.25       riz 
    125  1.25       riz void *ibuf;	/* ptr to fs block-sized buffer for reading/writing inodes */
    126  1.25       riz 
    127  1.25       riz /* byteswapped inodes */
    128  1.25       riz union dinode *sinodes;
    129   1.1       jtk 
    130   1.1       jtk /* per-inode flags, indexed by inumber */
    131   1.1       jtk static unsigned char *iflags;
    132   1.1       jtk #define IF_DIRTY  0x01		/* needs to be written to disk */
    133   1.1       jtk #define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
    134   1.1       jtk 				 * block of inodes, and applies to the whole
    135   1.1       jtk 				 * block. */
    136   1.1       jtk 
    137  1.15       riz /* resize_ffs works directly on dinodes, adapt blksize() */
    138   1.4  christos #define dblksize(fs, dip, lbn) \
    139  1.25       riz 	(((lbn) >= NDADDR || DIP((dip), di_size) >= lblktosize(fs, (lbn) + 1)) \
    140  1.25       riz 	    ? (fs)->fs_bsize						       \
    141  1.25       riz 	    : (fragroundup(fs, blkoff(fs, DIP((dip), di_size)))))
    142   1.4  christos 
    143   1.4  christos 
    144   1.4  christos /*
    145  1.25       riz  * Number of disk sectors per block/fragment
    146   1.4  christos  */
    147  1.25       riz #define NSPB(fs)	(fsbtodb((fs),1) << (fs)->fs_fragshift)
    148  1.25       riz #define NSPF(fs)	(fsbtodb((fs),1))
    149   1.4  christos 
    150  1.23       riz /* global flags */
    151  1.23       riz int is_ufs2 = 0;
    152  1.23       riz int needswap = 0;
    153  1.23       riz 
    154  1.13      haad static void usage(void) __dead;
    155  1.13      haad 
    156   1.1       jtk /*
    157   1.1       jtk  * See if we need to break up large I/O operations.  This should never
    158   1.1       jtk  *  be needed, but under at least one <version,platform> combination,
    159   1.1       jtk  *  large enough disk transfers to the raw device hang.  So if we're
    160   1.1       jtk  *  talking to a character special device, play it safe; in this case,
    161   1.1       jtk  *  readat() and writeat() break everything up into pieces no larger
    162   1.1       jtk  *  than 8K, doing multiple syscalls for larger operations.
    163   1.1       jtk  */
    164   1.1       jtk static void
    165   1.1       jtk checksmallio(void)
    166   1.1       jtk {
    167   1.1       jtk 	struct stat stb;
    168   1.1       jtk 
    169   1.1       jtk 	fstat(fd, &stb);
    170   1.1       jtk 	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
    171   1.1       jtk }
    172  1.19       riz 
    173  1.19       riz static int
    174  1.19       riz isplainfile(void)
    175  1.19       riz {
    176  1.19       riz 	struct stat stb;
    177  1.19       riz 
    178  1.19       riz 	fstat(fd, &stb);
    179  1.19       riz 	return S_ISREG(stb.st_mode);
    180  1.19       riz }
    181   1.1       jtk /*
    182   1.1       jtk  * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
    183   1.1       jtk  *  units, ie, after fsbtodb(); size is in bytes.
    184   1.1       jtk  */
    185   1.1       jtk static void
    186   1.1       jtk readat(off_t blkno, void *buf, int size)
    187   1.1       jtk {
    188   1.1       jtk 	/* Seek to the correct place. */
    189   1.4  christos 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    190  1.15       riz 		err(EXIT_FAILURE, "lseek failed");
    191   1.4  christos 
    192   1.1       jtk 	/* See if we have to break up the transfer... */
    193   1.1       jtk 	if (smallio) {
    194   1.1       jtk 		char *bp;	/* pointer into buf */
    195   1.1       jtk 		int left;	/* bytes left to go */
    196   1.1       jtk 		int n;		/* number to do this time around */
    197   1.1       jtk 		int rv;		/* syscall return value */
    198   1.1       jtk 		bp = buf;
    199   1.1       jtk 		left = size;
    200   1.1       jtk 		while (left > 0) {
    201   1.1       jtk 			n = (left > 8192) ? 8192 : left;
    202   1.1       jtk 			rv = read(fd, bp, n);
    203   1.4  christos 			if (rv < 0)
    204  1.13      haad 				err(EXIT_FAILURE, "read failed");
    205   1.4  christos 			if (rv != n)
    206  1.15       riz 				errx(EXIT_FAILURE,
    207  1.15       riz 				    "read: wanted %d, got %d", n, rv);
    208   1.1       jtk 			bp += n;
    209   1.1       jtk 			left -= n;
    210   1.1       jtk 		}
    211   1.1       jtk 	} else {
    212   1.1       jtk 		int rv;
    213   1.1       jtk 		rv = read(fd, buf, size);
    214   1.4  christos 		if (rv < 0)
    215  1.13      haad 			err(EXIT_FAILURE, "read failed");
    216   1.4  christos 		if (rv != size)
    217  1.25       riz 			errx(EXIT_FAILURE, "read: wanted %d, got %d",
    218  1.25       riz 			    size, rv);
    219   1.1       jtk 	}
    220   1.1       jtk }
    221   1.1       jtk /*
    222   1.1       jtk  * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
    223   1.1       jtk  *  units, ie, after fsbtodb(); size is in bytes.
    224   1.1       jtk  */
    225   1.1       jtk static void
    226   1.1       jtk writeat(off_t blkno, const void *buf, int size)
    227   1.1       jtk {
    228   1.1       jtk 	/* Seek to the correct place. */
    229   1.4  christos 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    230  1.13      haad 		err(EXIT_FAILURE, "lseek failed");
    231   1.1       jtk 	/* See if we have to break up the transfer... */
    232   1.1       jtk 	if (smallio) {
    233   1.1       jtk 		const char *bp;	/* pointer into buf */
    234   1.1       jtk 		int left;	/* bytes left to go */
    235   1.1       jtk 		int n;		/* number to do this time around */
    236   1.1       jtk 		int rv;		/* syscall return value */
    237   1.1       jtk 		bp = buf;
    238   1.1       jtk 		left = size;
    239   1.1       jtk 		while (left > 0) {
    240   1.1       jtk 			n = (left > 8192) ? 8192 : left;
    241   1.1       jtk 			rv = write(fd, bp, n);
    242   1.4  christos 			if (rv < 0)
    243  1.13      haad 				err(EXIT_FAILURE, "write failed");
    244   1.4  christos 			if (rv != n)
    245  1.15       riz 				errx(EXIT_FAILURE,
    246  1.15       riz 				    "write: wanted %d, got %d", n, rv);
    247   1.1       jtk 			bp += n;
    248   1.1       jtk 			left -= n;
    249   1.1       jtk 		}
    250   1.1       jtk 	} else {
    251   1.1       jtk 		int rv;
    252   1.1       jtk 		rv = write(fd, buf, size);
    253   1.4  christos 		if (rv < 0)
    254  1.13      haad 			err(EXIT_FAILURE, "write failed");
    255   1.4  christos 		if (rv != size)
    256  1.15       riz 			errx(EXIT_FAILURE,
    257  1.15       riz 			    "write: wanted %d, got %d", size, rv);
    258   1.1       jtk 	}
    259   1.1       jtk }
    260   1.1       jtk /*
    261   1.1       jtk  * Never-fail versions of malloc() and realloc(), and an allocation
    262   1.1       jtk  *  routine (which also never fails) for allocating memory that will
    263   1.1       jtk  *  never be freed until exit.
    264   1.1       jtk  */
    265   1.1       jtk 
    266   1.1       jtk /*
    267   1.1       jtk  * Never-fail malloc.
    268   1.1       jtk  */
    269   1.1       jtk static void *
    270   1.1       jtk nfmalloc(size_t nb, const char *tag)
    271   1.1       jtk {
    272   1.1       jtk 	void *rv;
    273   1.1       jtk 
    274   1.1       jtk 	rv = malloc(nb);
    275   1.1       jtk 	if (rv)
    276   1.1       jtk 		return (rv);
    277  1.13      haad 	err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
    278   1.4  christos 	    (unsigned long int) nb, tag);
    279   1.1       jtk }
    280   1.1       jtk /*
    281   1.1       jtk  * Never-fail realloc.
    282   1.1       jtk  */
    283   1.1       jtk static void *
    284   1.1       jtk nfrealloc(void *blk, size_t nb, const char *tag)
    285   1.1       jtk {
    286   1.1       jtk 	void *rv;
    287   1.1       jtk 
    288   1.1       jtk 	rv = realloc(blk, nb);
    289   1.1       jtk 	if (rv)
    290   1.1       jtk 		return (rv);
    291  1.13      haad 	err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
    292   1.4  christos 	    (unsigned long int) nb, tag);
    293   1.1       jtk }
    294   1.1       jtk /*
    295   1.1       jtk  * Allocate memory that will never be freed or reallocated.  Arguably
    296   1.1       jtk  *  this routine should handle small allocations by chopping up pages,
    297   1.1       jtk  *  but that's not worth the bother; it's not called more than a
    298   1.1       jtk  *  handful of times per run, and if the allocations are that small the
    299   1.1       jtk  *  waste in giving each one its own page is ignorable.
    300   1.1       jtk  */
    301   1.1       jtk static void *
    302   1.1       jtk alloconce(size_t nb, const char *tag)
    303   1.1       jtk {
    304   1.1       jtk 	void *rv;
    305   1.1       jtk 
    306   1.1       jtk 	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
    307   1.1       jtk 	if (rv != MAP_FAILED)
    308   1.1       jtk 		return (rv);
    309  1.13      haad 	err(EXIT_FAILURE, "Can't map %lu bytes for %s",
    310   1.4  christos 	    (unsigned long int) nb, tag);
    311   1.1       jtk }
    312   1.1       jtk /*
    313   1.1       jtk  * Load the cgs and csums off disk.  Also allocates the space to load
    314   1.1       jtk  *  them into and initializes the per-cg flags.
    315   1.1       jtk  */
    316   1.1       jtk static void
    317   1.1       jtk loadcgs(void)
    318   1.1       jtk {
    319   1.1       jtk 	int cg;
    320   1.1       jtk 	char *cgp;
    321   1.1       jtk 
    322   1.1       jtk 	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
    323   1.1       jtk 	cgs = nfmalloc(oldsb->fs_ncg * sizeof(struct cg *), "cg pointers");
    324   1.1       jtk 	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
    325   1.1       jtk 	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
    326   1.1       jtk 	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
    327   1.1       jtk 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
    328   1.1       jtk 		cgs[cg] = (struct cg *) cgp;
    329   1.1       jtk 		readat(fsbtodb(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
    330  1.25       riz 		if (needswap)
    331  1.25       riz 			ffs_cg_swap(cgs[cg],cgs[cg],oldsb);
    332   1.1       jtk 		cgflags[cg] = 0;
    333   1.1       jtk 		cgp += cgblksz;
    334   1.1       jtk 	}
    335   1.1       jtk 	readat(fsbtodb(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
    336  1.25       riz 	if (needswap)
    337  1.25       riz 		ffs_csum_swap(csums,csums,oldsb->fs_cssize);
    338   1.1       jtk }
    339   1.1       jtk /*
    340   1.1       jtk  * Set n bits, starting with bit #base, in the bitmap pointed to by
    341   1.1       jtk  *  bitvec (which is assumed to be large enough to include bits base
    342   1.1       jtk  *  through base+n-1).
    343   1.1       jtk  */
    344   1.1       jtk static void
    345   1.1       jtk set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
    346   1.1       jtk {
    347   1.1       jtk 	if (n < 1)
    348   1.1       jtk 		return;		/* nothing to do */
    349   1.1       jtk 	if (base & 7) {		/* partial byte at beginning */
    350   1.1       jtk 		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
    351   1.1       jtk 			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
    352   1.1       jtk 			return;
    353   1.1       jtk 		}
    354   1.1       jtk 		bitvec[base >> 3] |= (~0U) << (base & 7);
    355   1.1       jtk 		n -= 8 - (base & 7);
    356   1.1       jtk 		base = (base & ~7) + 8;
    357   1.1       jtk 	}
    358   1.1       jtk 	if (n >= 8) {		/* do full bytes */
    359   1.1       jtk 		memset(bitvec + (base >> 3), 0xff, n >> 3);
    360   1.1       jtk 		base += n & ~7;
    361   1.1       jtk 		n &= 7;
    362   1.1       jtk 	}
    363   1.1       jtk 	if (n) {		/* partial byte at end */
    364   1.1       jtk 		bitvec[base >> 3] |= ~((~0U) << n);
    365   1.1       jtk 	}
    366   1.1       jtk }
    367   1.1       jtk /*
    368   1.1       jtk  * Clear n bits, starting with bit #base, in the bitmap pointed to by
    369   1.1       jtk  *  bitvec (which is assumed to be large enough to include bits base
    370   1.1       jtk  *  through base+n-1).  Code parallels set_bits().
    371   1.1       jtk  */
    372   1.1       jtk static void
    373   1.1       jtk clr_bits(unsigned char *bitvec, int base, int n)
    374   1.1       jtk {
    375   1.1       jtk 	if (n < 1)
    376   1.1       jtk 		return;
    377   1.1       jtk 	if (base & 7) {
    378   1.1       jtk 		if (n <= 8 - (base & 7)) {
    379   1.1       jtk 			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
    380   1.1       jtk 			return;
    381   1.1       jtk 		}
    382   1.1       jtk 		bitvec[base >> 3] &= ~((~0U) << (base & 7));
    383   1.1       jtk 		n -= 8 - (base & 7);
    384   1.1       jtk 		base = (base & ~7) + 8;
    385   1.1       jtk 	}
    386   1.1       jtk 	if (n >= 8) {
    387  1.25       riz 		memset(bitvec + (base >> 3), 0, n >> 3);
    388   1.1       jtk 		base += n & ~7;
    389   1.1       jtk 		n &= 7;
    390   1.1       jtk 	}
    391   1.1       jtk 	if (n) {
    392   1.1       jtk 		bitvec[base >> 3] &= (~0U) << n;
    393   1.1       jtk 	}
    394   1.1       jtk }
    395   1.1       jtk /*
    396   1.1       jtk  * Test whether bit #bit is set in the bitmap pointed to by bitvec.
    397   1.1       jtk  */
    398  1.13      haad static int
    399   1.1       jtk bit_is_set(unsigned char *bitvec, int bit)
    400   1.1       jtk {
    401   1.1       jtk 	return (bitvec[bit >> 3] & (1 << (bit & 7)));
    402   1.1       jtk }
    403   1.1       jtk /*
    404   1.1       jtk  * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
    405   1.1       jtk  */
    406  1.13      haad static int
    407   1.1       jtk bit_is_clr(unsigned char *bitvec, int bit)
    408   1.1       jtk {
    409   1.1       jtk 	return (!bit_is_set(bitvec, bit));
    410   1.1       jtk }
    411   1.1       jtk /*
    412   1.1       jtk  * Test whether a whole block of bits is set in a bitmap.  This is
    413   1.1       jtk  *  designed for testing (aligned) disk blocks in a bit-per-frag
    414   1.1       jtk  *  bitmap; it has assumptions wired into it based on that, essentially
    415   1.1       jtk  *  that the entire block fits into a single byte.  This returns true
    416   1.1       jtk  *  iff _all_ the bits are set; it is not just the complement of
    417   1.1       jtk  *  blk_is_clr on the same arguments (unless blkfrags==1).
    418   1.1       jtk  */
    419  1.13      haad static int
    420   1.1       jtk blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
    421   1.1       jtk {
    422   1.1       jtk 	unsigned int mask;
    423   1.1       jtk 
    424   1.1       jtk 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    425   1.1       jtk 	return ((bitvec[blkbase >> 3] & mask) == mask);
    426   1.1       jtk }
    427   1.1       jtk /*
    428   1.1       jtk  * Test whether a whole block of bits is clear in a bitmap.  See
    429   1.1       jtk  *  blk_is_set (above) for assumptions.  This returns true iff _all_
    430   1.1       jtk  *  the bits are clear; it is not just the complement of blk_is_set on
    431   1.1       jtk  *  the same arguments (unless blkfrags==1).
    432   1.1       jtk  */
    433  1.13      haad static int
    434   1.1       jtk blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
    435   1.1       jtk {
    436   1.1       jtk 	unsigned int mask;
    437   1.1       jtk 
    438   1.1       jtk 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    439   1.1       jtk 	return ((bitvec[blkbase >> 3] & mask) == 0);
    440   1.1       jtk }
    441   1.1       jtk /*
    442   1.1       jtk  * Initialize a new cg.  Called when growing.  Assumes memory has been
    443   1.1       jtk  *  allocated but not otherwise set up.  This code sets the fields of
    444   1.1       jtk  *  the cg, initializes the bitmaps (and cluster summaries, if
    445   1.1       jtk  *  applicable), updates both per-cylinder summary info and the global
    446   1.1       jtk  *  summary info in newsb; it also writes out new inodes for the cg.
    447   1.1       jtk  *
    448   1.1       jtk  * This code knows it can never be called for cg 0, which makes it a
    449   1.1       jtk  *  bit simpler than it would otherwise be.
    450   1.1       jtk  */
    451   1.1       jtk static void
    452   1.1       jtk initcg(int cgn)
    453   1.1       jtk {
    454   1.1       jtk 	struct cg *cg;		/* The in-core cg, of course */
    455   1.1       jtk 	int base;		/* Disk address of cg base */
    456   1.1       jtk 	int dlow;		/* Size of pre-cg data area */
    457   1.1       jtk 	int dhigh;		/* Offset of post-inode data area, from base */
    458   1.1       jtk 	int dmax;		/* Offset of end of post-inode data area */
    459   1.1       jtk 	int i;			/* Generic loop index */
    460   1.1       jtk 	int n;			/* Generic count */
    461  1.25       riz 	int start;		/* start of cg maps */
    462   1.1       jtk 
    463   1.1       jtk 	cg = cgs[cgn];
    464   1.1       jtk 	/* Place the data areas */
    465   1.1       jtk 	base = cgbase(newsb, cgn);
    466   1.1       jtk 	dlow = cgsblock(newsb, cgn) - base;
    467   1.1       jtk 	dhigh = cgdmin(newsb, cgn) - base;
    468   1.1       jtk 	dmax = newsb->fs_size - base;
    469   1.1       jtk 	if (dmax > newsb->fs_fpg)
    470   1.1       jtk 		dmax = newsb->fs_fpg;
    471  1.25       riz 	start = &cg->cg_space[0] - (unsigned char *) cg;
    472   1.1       jtk 	/*
    473   1.1       jtk          * Clear out the cg - assumes all-0-bytes is the correct way
    474   1.1       jtk          * to initialize fields we don't otherwise touch, which is
    475   1.1       jtk          * perhaps not the right thing to do, but it's what fsck and
    476   1.1       jtk          * mkfs do.
    477   1.1       jtk          */
    478  1.25       riz 	memset(cg, 0, newsb->fs_cgsize);
    479  1.20    mhitch 	if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
    480  1.20    mhitch 		cg->cg_time = newsb->fs_time;
    481   1.1       jtk 	cg->cg_magic = CG_MAGIC;
    482   1.1       jtk 	cg->cg_cgx = cgn;
    483  1.25       riz 	cg->cg_niblk = newsb->fs_ipg;
    484  1.25       riz 	cg->cg_ndblk = dmax;
    485  1.25       riz 
    486  1.25       riz 	if (is_ufs2) {
    487  1.25       riz 		cg->cg_time = newsb->fs_time;
    488  1.25       riz 		cg->cg_initediblk = newsb->fs_ipg < 2 * INOPB(newsb) ?
    489  1.25       riz 		    newsb->fs_ipg : 2 * INOPB(newsb);
    490  1.25       riz 		cg->cg_iusedoff = start;
    491  1.25       riz 	} else {
    492  1.25       riz 		cg->cg_old_time = newsb->fs_time;
    493  1.25       riz 		cg->cg_old_niblk = cg->cg_niblk;
    494  1.25       riz 		cg->cg_niblk = 0;
    495  1.25       riz 		cg->cg_initediblk = 0;
    496  1.25       riz 
    497  1.25       riz 
    498  1.25       riz 		cg->cg_old_ncyl = newsb->fs_old_cpg;
    499  1.25       riz 		/* Update the cg_old_ncyl value for the last cylinder. */
    500  1.25       riz 		if (cgn == newsb->fs_ncg - 1) {
    501  1.25       riz 			if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
    502  1.25       riz 				cg->cg_old_ncyl = newsb->fs_old_ncyl %
    503  1.25       riz 				    newsb->fs_old_cpg;
    504  1.25       riz 		}
    505  1.25       riz 
    506  1.25       riz 		/* Set up the bitmap pointers.  We have to be careful
    507  1.25       riz 		 * to lay out the cg _exactly_ the way mkfs and fsck
    508  1.25       riz 		 * do it, since fsck compares the _entire_ cg against
    509  1.25       riz 		 * a recomputed cg, and whines if there is any
    510  1.25       riz 		 * mismatch, including the bitmap offsets. */
    511  1.25       riz 		/* XXX update this comment when fsck is fixed */
    512  1.25       riz 		cg->cg_old_btotoff = start;
    513  1.25       riz 		cg->cg_old_boff = cg->cg_old_btotoff
    514  1.25       riz 		    + (newsb->fs_old_cpg * sizeof(int32_t));
    515  1.25       riz 		cg->cg_iusedoff = cg->cg_old_boff +
    516  1.25       riz 		    (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
    517   1.1       jtk 	}
    518   1.1       jtk 	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
    519   1.1       jtk 	if (newsb->fs_contigsumsize > 0) {
    520   1.1       jtk 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
    521   1.1       jtk 		cg->cg_clustersumoff = cg->cg_freeoff +
    522  1.25       riz 		    howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t);
    523   1.1       jtk 		cg->cg_clustersumoff =
    524   1.1       jtk 		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
    525   1.1       jtk 		cg->cg_clusteroff = cg->cg_clustersumoff +
    526   1.1       jtk 		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
    527   1.1       jtk 		cg->cg_nextfreeoff = cg->cg_clusteroff +
    528  1.25       riz 		    howmany(fragstoblks(newsb,newsb->fs_fpg), NBBY);
    529   1.1       jtk 		n = dlow / newsb->fs_frag;
    530   1.1       jtk 		if (n > 0) {
    531   1.1       jtk 			set_bits(cg_clustersfree(cg, 0), 0, n);
    532   1.1       jtk 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    533   1.1       jtk 			    newsb->fs_contigsumsize : n]++;
    534   1.1       jtk 		}
    535   1.1       jtk 	} else {
    536   1.1       jtk 		cg->cg_nextfreeoff = cg->cg_freeoff +
    537  1.25       riz 		    howmany(newsb->fs_fpg, NBBY);
    538   1.1       jtk 	}
    539   1.1       jtk 	/* Mark the data areas as free; everything else is marked busy by the
    540  1.25       riz 	 * memset() up at the top. */
    541   1.1       jtk 	set_bits(cg_blksfree(cg, 0), 0, dlow);
    542   1.1       jtk 	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
    543   1.1       jtk 	/* Initialize summary info */
    544   1.1       jtk 	cg->cg_cs.cs_ndir = 0;
    545   1.1       jtk 	cg->cg_cs.cs_nifree = newsb->fs_ipg;
    546   1.1       jtk 	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
    547   1.1       jtk 	cg->cg_cs.cs_nffree = 0;
    548  1.25       riz 
    549  1.25       riz 	/* This is the simplest way of doing this; we perhaps could
    550  1.25       riz 	 * compute the correct cg_blktot()[] and cg_blks()[] values
    551  1.25       riz 	 * other ways, but it would be complicated and hardly seems
    552  1.25       riz 	 * worth the effort.  (The reason there isn't
    553  1.25       riz 	 * frag-at-beginning and frag-at-end code here, like the code
    554  1.25       riz 	 * below for the post-inode data area, is that the pre-sb data
    555  1.25       riz 	 * area always starts at 0, and thus is block-aligned, and
    556  1.25       riz 	 * always ends at the sb, which is block-aligned.) */
    557  1.25       riz 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
    558  1.25       riz 		for (i = 0; i < dlow; i += newsb->fs_frag) {
    559  1.25       riz 			old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++;
    560  1.25       riz 			old_cg_blks(newsb, cg,
    561  1.25       riz 			    old_cbtocylno(newsb, i),
    562  1.25       riz 			    0)[old_cbtorpos(newsb, i)]++;
    563  1.25       riz 		}
    564   1.1       jtk 
    565   1.1       jtk 	/* Deal with a partial block at the beginning of the post-inode area.
    566   1.1       jtk 	 * I'm not convinced this can happen - I think the inodes are always
    567   1.1       jtk 	 * block-aligned and always an integral number of blocks - but it's
    568   1.1       jtk 	 * cheap to do the right thing just in case. */
    569   1.1       jtk 	if (dhigh % newsb->fs_frag) {
    570   1.1       jtk 		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
    571   1.1       jtk 		cg->cg_frsum[n]++;
    572   1.1       jtk 		cg->cg_cs.cs_nffree += n;
    573   1.1       jtk 		dhigh += n;
    574   1.1       jtk 	}
    575   1.1       jtk 	n = (dmax - dhigh) / newsb->fs_frag;
    576   1.1       jtk 	/* We have n full-size blocks in the post-inode data area. */
    577   1.1       jtk 	if (n > 0) {
    578   1.1       jtk 		cg->cg_cs.cs_nbfree += n;
    579   1.1       jtk 		if (newsb->fs_contigsumsize > 0) {
    580   1.1       jtk 			i = dhigh / newsb->fs_frag;
    581   1.1       jtk 			set_bits(cg_clustersfree(cg, 0), i, n);
    582   1.1       jtk 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    583   1.1       jtk 			    newsb->fs_contigsumsize : n]++;
    584   1.1       jtk 		}
    585  1.25       riz 		if (is_ufs2 == 0)
    586  1.25       riz 			for (i = n; i > 0; i--) {
    587  1.25       riz 				old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
    588  1.25       riz 					    dhigh)]++;
    589  1.25       riz 				old_cg_blks(newsb, cg,
    590  1.25       riz 				    old_cbtocylno(newsb, dhigh),
    591  1.25       riz 				    0)[old_cbtorpos(newsb,
    592  1.25       riz 					    dhigh)]++;
    593  1.25       riz 				dhigh += newsb->fs_frag;
    594  1.25       riz 			}
    595  1.25       riz 	}
    596  1.25       riz 	if (is_ufs2 == 0) {
    597  1.25       riz 		/* Deal with any leftover frag at the end of the cg. */
    598  1.25       riz 		i = dmax - dhigh;
    599  1.25       riz 		if (i) {
    600  1.25       riz 			cg->cg_frsum[i]++;
    601  1.25       riz 			cg->cg_cs.cs_nffree += i;
    602   1.1       jtk 		}
    603   1.1       jtk 	}
    604   1.1       jtk 	/* Update the csum info. */
    605   1.1       jtk 	csums[cgn] = cg->cg_cs;
    606   1.1       jtk 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
    607   1.1       jtk 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
    608   1.1       jtk 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
    609  1.25       riz 	if (is_ufs2 == 0)
    610  1.25       riz 		/* Write out the cleared inodes. */
    611  1.25       riz 		writeat(fsbtodb(newsb, cgimin(newsb, cgn)), zinodes,
    612  1.25       riz 		    newsb->fs_ipg * sizeof(struct ufs1_dinode));
    613   1.1       jtk 	/* Dirty the cg. */
    614   1.1       jtk 	cgflags[cgn] |= CGF_DIRTY;
    615   1.1       jtk }
    616   1.1       jtk /*
    617   1.1       jtk  * Find free space, at least nfrags consecutive frags of it.  Pays no
    618   1.1       jtk  *  attention to block boundaries, but refuses to straddle cg
    619   1.1       jtk  *  boundaries, even if the disk blocks involved are in fact
    620   1.1       jtk  *  consecutive.  Return value is the frag number of the first frag of
    621   1.1       jtk  *  the block, or -1 if no space was found.  Uses newsb for sb values,
    622   1.1       jtk  *  and assumes the cgs[] structures correctly describe the area to be
    623   1.1       jtk  *  searched.
    624   1.1       jtk  *
    625   1.1       jtk  * XXX is there a bug lurking in the ignoring of block boundaries by
    626   1.1       jtk  *  the routine used by fragmove() in evict_data()?  Can an end-of-file
    627   1.1       jtk  *  frag legally straddle a block boundary?  If not, this should be
    628   1.1       jtk  *  cloned and fixed to stop at block boundaries for that use.  The
    629   1.1       jtk  *  current one may still be needed for csum info motion, in case that
    630   1.1       jtk  *  takes up more than a whole block (is the csum info allowed to begin
    631   1.1       jtk  *  partway through a block and continue into the following block?).
    632   1.1       jtk  *
    633  1.24       wiz  * If we wrap off the end of the file system back to the beginning, we
    634  1.24       wiz  *  can end up searching the end of the file system twice.  I ignore
    635   1.1       jtk  *  this inefficiency, since if that happens we're going to croak with
    636   1.1       jtk  *  a no-space error anyway, so it happens at most once.
    637   1.1       jtk  */
    638   1.1       jtk static int
    639   1.1       jtk find_freespace(unsigned int nfrags)
    640   1.1       jtk {
    641   1.1       jtk 	static int hand = 0;	/* hand rotates through all frags in the fs */
    642   1.1       jtk 	int cgsize;		/* size of the cg hand currently points into */
    643   1.1       jtk 	int cgn;		/* number of cg hand currently points into */
    644   1.1       jtk 	int fwc;		/* frag-within-cg number of frag hand points
    645   1.1       jtk 				 * to */
    646   1.1       jtk 	int run;		/* length of run of free frags seen so far */
    647   1.1       jtk 	int secondpass;		/* have we wrapped from end of fs to
    648   1.1       jtk 				 * beginning? */
    649   1.1       jtk 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    650   1.1       jtk 
    651   1.1       jtk 	cgn = dtog(newsb, hand);
    652   1.1       jtk 	fwc = dtogd(newsb, hand);
    653   1.1       jtk 	secondpass = (hand == 0);
    654   1.1       jtk 	run = 0;
    655   1.1       jtk 	bits = cg_blksfree(cgs[cgn], 0);
    656   1.1       jtk 	cgsize = cgs[cgn]->cg_ndblk;
    657   1.1       jtk 	while (1) {
    658   1.1       jtk 		if (bit_is_set(bits, fwc)) {
    659   1.1       jtk 			run++;
    660   1.1       jtk 			if (run >= nfrags)
    661   1.1       jtk 				return (hand + 1 - run);
    662   1.1       jtk 		} else {
    663   1.1       jtk 			run = 0;
    664   1.1       jtk 		}
    665   1.1       jtk 		hand++;
    666   1.1       jtk 		fwc++;
    667   1.1       jtk 		if (fwc >= cgsize) {
    668   1.1       jtk 			fwc = 0;
    669   1.1       jtk 			cgn++;
    670   1.1       jtk 			if (cgn >= newsb->fs_ncg) {
    671   1.1       jtk 				hand = 0;
    672   1.1       jtk 				if (secondpass)
    673   1.1       jtk 					return (-1);
    674   1.1       jtk 				secondpass = 1;
    675   1.1       jtk 				cgn = 0;
    676   1.1       jtk 			}
    677   1.1       jtk 			bits = cg_blksfree(cgs[cgn], 0);
    678   1.1       jtk 			cgsize = cgs[cgn]->cg_ndblk;
    679   1.1       jtk 			run = 0;
    680   1.1       jtk 		}
    681   1.1       jtk 	}
    682   1.1       jtk }
    683   1.1       jtk /*
    684   1.1       jtk  * Find a free block of disk space.  Finds an entire block of frags,
    685   1.1       jtk  *  all of which are free.  Return value is the frag number of the
    686   1.1       jtk  *  first frag of the block, or -1 if no space was found.  Uses newsb
    687   1.1       jtk  *  for sb values, and assumes the cgs[] structures correctly describe
    688   1.1       jtk  *  the area to be searched.
    689   1.1       jtk  *
    690   1.1       jtk  * See find_freespace(), above, for remarks about hand wrapping around.
    691   1.1       jtk  */
    692   1.1       jtk static int
    693   1.1       jtk find_freeblock(void)
    694   1.1       jtk {
    695   1.1       jtk 	static int hand = 0;	/* hand rotates through all frags in fs */
    696   1.1       jtk 	int cgn;		/* cg number of cg hand points into */
    697   1.1       jtk 	int fwc;		/* frag-within-cg number of frag hand points
    698   1.1       jtk 				 * to */
    699   1.1       jtk 	int cgsize;		/* size of cg hand points into */
    700   1.1       jtk 	int secondpass;		/* have we wrapped from end to beginning? */
    701   1.1       jtk 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    702   1.1       jtk 
    703   1.1       jtk 	cgn = dtog(newsb, hand);
    704   1.1       jtk 	fwc = dtogd(newsb, hand);
    705   1.1       jtk 	secondpass = (hand == 0);
    706   1.1       jtk 	bits = cg_blksfree(cgs[cgn], 0);
    707   1.1       jtk 	cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
    708   1.1       jtk 	while (1) {
    709   1.1       jtk 		if (blk_is_set(bits, fwc, newsb->fs_frag))
    710   1.1       jtk 			return (hand);
    711   1.1       jtk 		fwc += newsb->fs_frag;
    712   1.1       jtk 		hand += newsb->fs_frag;
    713   1.1       jtk 		if (fwc >= cgsize) {
    714   1.1       jtk 			fwc = 0;
    715   1.1       jtk 			cgn++;
    716   1.1       jtk 			if (cgn >= newsb->fs_ncg) {
    717   1.1       jtk 				hand = 0;
    718   1.1       jtk 				if (secondpass)
    719   1.1       jtk 					return (-1);
    720   1.1       jtk 				secondpass = 1;
    721   1.1       jtk 				cgn = 0;
    722   1.1       jtk 			}
    723   1.1       jtk 			bits = cg_blksfree(cgs[cgn], 0);
    724   1.1       jtk 			cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
    725   1.1       jtk 		}
    726   1.1       jtk 	}
    727   1.1       jtk }
    728   1.1       jtk /*
    729   1.1       jtk  * Find a free inode, returning its inumber or -1 if none was found.
    730   1.1       jtk  *  Uses newsb for sb values, and assumes the cgs[] structures
    731   1.1       jtk  *  correctly describe the area to be searched.
    732   1.1       jtk  *
    733   1.1       jtk  * See find_freespace(), above, for remarks about hand wrapping around.
    734   1.1       jtk  */
    735   1.1       jtk static int
    736   1.1       jtk find_freeinode(void)
    737   1.1       jtk {
    738   1.1       jtk 	static int hand = 0;	/* hand rotates through all inodes in fs */
    739   1.1       jtk 	int cgn;		/* cg number of cg hand points into */
    740   1.1       jtk 	int iwc;		/* inode-within-cg number of inode hand points
    741   1.1       jtk 				 * to */
    742   1.1       jtk 	int secondpass;		/* have we wrapped from end to beginning? */
    743   1.1       jtk 	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */
    744   1.1       jtk 
    745   1.1       jtk 	cgn = hand / newsb->fs_ipg;
    746   1.1       jtk 	iwc = hand % newsb->fs_ipg;
    747   1.1       jtk 	secondpass = (hand == 0);
    748   1.1       jtk 	bits = cg_inosused(cgs[cgn], 0);
    749   1.1       jtk 	while (1) {
    750   1.1       jtk 		if (bit_is_clr(bits, iwc))
    751   1.1       jtk 			return (hand);
    752   1.1       jtk 		hand++;
    753   1.1       jtk 		iwc++;
    754   1.1       jtk 		if (iwc >= newsb->fs_ipg) {
    755   1.1       jtk 			iwc = 0;
    756   1.1       jtk 			cgn++;
    757   1.1       jtk 			if (cgn >= newsb->fs_ncg) {
    758   1.1       jtk 				hand = 0;
    759   1.1       jtk 				if (secondpass)
    760   1.1       jtk 					return (-1);
    761   1.1       jtk 				secondpass = 1;
    762   1.1       jtk 				cgn = 0;
    763   1.1       jtk 			}
    764   1.1       jtk 			bits = cg_inosused(cgs[cgn], 0);
    765   1.1       jtk 		}
    766   1.1       jtk 	}
    767   1.1       jtk }
    768   1.1       jtk /*
    769   1.1       jtk  * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
    770   1.1       jtk  *  for the appropriate cg, and marks the cg as dirty.
    771   1.1       jtk  */
    772   1.1       jtk static void
    773   1.1       jtk free_frag(int fno)
    774   1.1       jtk {
    775   1.1       jtk 	int cgn;
    776   1.1       jtk 
    777   1.1       jtk 	cgn = dtog(newsb, fno);
    778   1.1       jtk 	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    779   1.1       jtk 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    780   1.1       jtk }
    781   1.1       jtk /*
    782   1.1       jtk  * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
    783   1.1       jtk  *  for the appropriate cg, and marks the cg as dirty.
    784   1.1       jtk  */
    785   1.1       jtk static void
    786   1.1       jtk alloc_frag(int fno)
    787   1.1       jtk {
    788   1.1       jtk 	int cgn;
    789   1.1       jtk 
    790   1.1       jtk 	cgn = dtog(newsb, fno);
    791   1.1       jtk 	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    792   1.1       jtk 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    793   1.1       jtk }
    794   1.1       jtk /*
    795   1.1       jtk  * Fix up the csum array.  If shrinking, this involves freeing zero or
    796   1.1       jtk  *  more frags; if growing, it involves allocating them, or if the
    797   1.1       jtk  *  frags being grown into aren't free, finding space elsewhere for the
    798   1.1       jtk  *  csum info.  (If the number of occupied frags doesn't change,
    799   1.1       jtk  *  nothing happens here.)
    800   1.1       jtk  */
    801   1.1       jtk static void
    802   1.1       jtk csum_fixup(void)
    803   1.1       jtk {
    804   1.1       jtk 	int nold;		/* # frags in old csum info */
    805   1.1       jtk 	int ntot;		/* # frags in new csum info */
    806   1.1       jtk 	int nnew;		/* ntot-nold */
    807   1.1       jtk 	int newloc;		/* new location for csum info, if necessary */
    808   1.1       jtk 	int i;			/* generic loop index */
    809   1.1       jtk 	int j;			/* generic loop index */
    810   1.1       jtk 	int f;			/* "from" frag number, if moving */
    811   1.1       jtk 	int t;			/* "to" frag number, if moving */
    812   1.1       jtk 	int cgn;		/* cg number, used when shrinking */
    813   1.1       jtk 
    814   1.1       jtk 	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
    815   1.1       jtk 	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
    816   1.1       jtk 	nnew = ntot - nold;
    817   1.1       jtk 	/* First, if there's no change in frag counts, it's easy. */
    818   1.1       jtk 	if (nnew == 0)
    819   1.1       jtk 		return;
    820   1.1       jtk 	/* Next, if we're shrinking, it's almost as easy.  Just free up any
    821   1.1       jtk 	 * frags in the old area we no longer need. */
    822   1.1       jtk 	if (nnew < 0) {
    823   1.1       jtk 		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
    824   1.1       jtk 		    j < 0;
    825   1.1       jtk 		    i--, j++) {
    826   1.1       jtk 			free_frag(i);
    827   1.1       jtk 		}
    828   1.1       jtk 		return;
    829   1.1       jtk 	}
    830   1.1       jtk 	/* We must be growing.  Check to see that the new csum area fits
    831  1.24       wiz 	 * within the file system.  I think this can never happen, since for
    832   1.1       jtk 	 * the csum area to grow, we must be adding at least one cg, so the
    833  1.24       wiz 	 * old csum area can't be this close to the end of the new file system.
    834   1.1       jtk 	 * But it's a cheap check. */
    835   1.1       jtk 	/* XXX what if csum info is at end of cg and grows into next cg, what
    836   1.1       jtk 	 * if it spills over onto the next cg's backup superblock?  Can this
    837   1.1       jtk 	 * happen? */
    838   1.1       jtk 	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
    839   1.1       jtk 		/* Okay, it fits - now,  see if the space we want is free. */
    840   1.1       jtk 		for ((i = newsb->fs_csaddr + nold), (j = nnew);
    841   1.1       jtk 		    j > 0;
    842   1.1       jtk 		    i++, j--) {
    843   1.1       jtk 			cgn = dtog(newsb, i);
    844   1.1       jtk 			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
    845   1.1       jtk 				dtogd(newsb, i)))
    846   1.1       jtk 				break;
    847   1.1       jtk 		}
    848   1.1       jtk 		if (j <= 0) {
    849   1.1       jtk 			/* Win win - all the frags we want are free. Allocate
    850   1.1       jtk 			 * 'em and we're all done.  */
    851  1.25       riz 			for ((i = newsb->fs_csaddr + ntot - nnew),
    852  1.25       riz 				 (j = nnew); j > 0; i++, j--) {
    853   1.1       jtk 				alloc_frag(i);
    854   1.1       jtk 			}
    855   1.1       jtk 			return;
    856   1.1       jtk 		}
    857   1.1       jtk 	}
    858   1.1       jtk 	/* We have to move the csum info, sigh.  Look for new space, free old
    859   1.1       jtk 	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
    860   1.1       jtk 	 * on disk at this point; the csum info will be written to the
    861   1.1       jtk 	 * then-current fs_csaddr as part of the final flush. */
    862   1.1       jtk 	newloc = find_freespace(ntot);
    863   1.1       jtk 	if (newloc < 0) {
    864   1.1       jtk 		printf("Sorry, no space available for new csums\n");
    865  1.15       riz 		exit(EXIT_FAILURE);
    866   1.1       jtk 	}
    867   1.1       jtk 	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
    868   1.1       jtk 		if (i < nold) {
    869   1.1       jtk 			free_frag(f);
    870   1.1       jtk 		}
    871   1.1       jtk 		alloc_frag(t);
    872   1.1       jtk 	}
    873   1.1       jtk 	newsb->fs_csaddr = newloc;
    874   1.1       jtk }
    875   1.1       jtk /*
    876   1.1       jtk  * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
    877   1.1       jtk  *  data blocks in that cg to the total.
    878   1.1       jtk  */
    879   1.1       jtk static void
    880   1.1       jtk recompute_fs_dsize(void)
    881   1.1       jtk {
    882   1.1       jtk 	int i;
    883   1.1       jtk 
    884   1.1       jtk 	newsb->fs_dsize = 0;
    885   1.1       jtk 	for (i = 0; i < newsb->fs_ncg; i++) {
    886   1.1       jtk 		int dlow;	/* size of before-sb data area */
    887   1.1       jtk 		int dhigh;	/* offset of post-inode data area */
    888   1.1       jtk 		int dmax;	/* total size of cg */
    889   1.1       jtk 		int base;	/* base of cg, since cgsblock() etc add it in */
    890   1.1       jtk 		base = cgbase(newsb, i);
    891   1.1       jtk 		dlow = cgsblock(newsb, i) - base;
    892   1.1       jtk 		dhigh = cgdmin(newsb, i) - base;
    893   1.1       jtk 		dmax = newsb->fs_size - base;
    894   1.1       jtk 		if (dmax > newsb->fs_fpg)
    895   1.1       jtk 			dmax = newsb->fs_fpg;
    896   1.1       jtk 		newsb->fs_dsize += dlow + dmax - dhigh;
    897   1.1       jtk 	}
    898   1.1       jtk 	/* Space in cg 0 before cgsblock is boot area, not free space! */
    899   1.1       jtk 	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
    900   1.1       jtk 	/* And of course the csum info takes up space. */
    901   1.1       jtk 	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
    902   1.1       jtk }
    903   1.1       jtk /*
    904   1.1       jtk  * Return the current time.  We call this and assign, rather than
    905   1.1       jtk  *  calling time() directly, as insulation against OSes where fs_time
    906   1.1       jtk  *  is not a time_t.
    907   1.1       jtk  */
    908   1.1       jtk static time_t
    909   1.1       jtk timestamp(void)
    910   1.1       jtk {
    911   1.1       jtk 	time_t t;
    912   1.1       jtk 
    913   1.1       jtk 	time(&t);
    914   1.1       jtk 	return (t);
    915   1.1       jtk }
    916   1.1       jtk /*
    917  1.24       wiz  * Grow the file system.
    918   1.1       jtk  */
    919   1.1       jtk static void
    920   1.1       jtk grow(void)
    921   1.1       jtk {
    922   1.1       jtk 	int i;
    923   1.1       jtk 
    924   1.1       jtk 	/* Update the timestamp. */
    925   1.1       jtk 	newsb->fs_time = timestamp();
    926   1.1       jtk 	/* Allocate and clear the new-inode area, in case we add any cgs. */
    927   1.4  christos 	zinodes = alloconce(newsb->fs_ipg * sizeof(struct ufs1_dinode),
    928   1.1       jtk                             "zeroed inodes");
    929  1.25       riz 	memset(zinodes, 0, newsb->fs_ipg * sizeof(struct ufs1_dinode));
    930   1.1       jtk 	/* Update the size. */
    931   1.1       jtk 	newsb->fs_size = dbtofsb(newsb, newsize);
    932   1.1       jtk 	/* Did we actually not grow?  (This can happen if newsize is less than
    933   1.1       jtk 	 * a frag larger than the old size - unlikely, but no excuse to
    934   1.1       jtk 	 * misbehave if it happens.) */
    935  1.13      haad 	if (newsb->fs_size == oldsb->fs_size) {
    936  1.15       riz 		printf("New fs size %"PRIu64" = odl fs size %"PRIu64
    937  1.15       riz 		    ", not growing.\n", newsb->fs_size, oldsb->fs_size);
    938   1.1       jtk 		return;
    939  1.13      haad 	}
    940   1.1       jtk 	/* Check that the new last sector (frag, actually) is writable.  Since
    941   1.1       jtk 	 * it's at least one frag larger than it used to be, we know we aren't
    942   1.1       jtk 	 * overwriting anything important by this.  (The choice of sbbuf as
    943   1.1       jtk 	 * what to write is irrelevant; it's just something handy that's known
    944   1.1       jtk 	 * to be at least one frag in size.) */
    945  1.18       riz 	writeat(fsbtodb(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
    946  1.25       riz 	if (is_ufs2)
    947  1.25       riz 		newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
    948  1.25       riz 	else {
    949  1.25       riz 		/* Update fs_old_ncyl and fs_ncg. */
    950  1.25       riz 		newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
    951  1.25       riz 		    newsb->fs_old_spc);
    952  1.25       riz 		newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
    953  1.25       riz 	}
    954  1.25       riz 
    955   1.1       jtk 	/* Does the last cg end before the end of its inode area? There is no
    956   1.1       jtk 	 * reason why this couldn't be handled, but it would complicate a lot
    957  1.24       wiz 	 * of code (in all file system code - fsck, kernel, etc) because of the
    958   1.1       jtk 	 * potential partial inode area, and the gain in space would be
    959   1.1       jtk 	 * minimal, at most the pre-sb data area. */
    960   1.1       jtk 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
    961   1.1       jtk 		newsb->fs_ncg--;
    962   1.4  christos 		newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
    963  1.15       riz 		newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc)
    964  1.15       riz 		    / NSPF(newsb);
    965   1.1       jtk 		printf("Warning: last cylinder group is too small;\n");
    966   1.1       jtk 		printf("    dropping it.  New size = %lu.\n",
    967   1.1       jtk 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
    968   1.1       jtk 	}
    969   1.1       jtk 	/* Find out how big the csum area is, and realloc csums if bigger. */
    970   1.1       jtk 	newsb->fs_cssize = fragroundup(newsb,
    971   1.1       jtk 	    newsb->fs_ncg * sizeof(struct csum));
    972   1.1       jtk 	if (newsb->fs_cssize > oldsb->fs_cssize)
    973   1.1       jtk 		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
    974  1.25       riz 	/* If we're adding any cgs, realloc structures and set up the new
    975  1.25       riz 	   cgs. */
    976   1.1       jtk 	if (newsb->fs_ncg > oldsb->fs_ncg) {
    977   1.1       jtk 		char *cgp;
    978   1.1       jtk 		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(struct cg *),
    979   1.1       jtk                                 "cg pointers");
    980   1.1       jtk 		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
    981  1.25       riz 		memset(cgflags + oldsb->fs_ncg, 0,
    982  1.25       riz 		    newsb->fs_ncg - oldsb->fs_ncg);
    983   1.1       jtk 		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
    984   1.1       jtk                                 "cgs");
    985   1.1       jtk 		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
    986   1.1       jtk 			cgs[i] = (struct cg *) cgp;
    987   1.1       jtk 			initcg(i);
    988   1.1       jtk 			cgp += cgblksz;
    989   1.1       jtk 		}
    990   1.4  christos 		cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
    991   1.1       jtk 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
    992   1.1       jtk 	}
    993   1.1       jtk 	/* If the old fs ended partway through a cg, we have to update the old
    994   1.1       jtk 	 * last cg (though possibly not to a full cg!). */
    995   1.1       jtk 	if (oldsb->fs_size % oldsb->fs_fpg) {
    996   1.1       jtk 		struct cg *cg;
    997   1.1       jtk 		int newcgsize;
    998   1.1       jtk 		int prevcgtop;
    999   1.1       jtk 		int oldcgsize;
   1000   1.1       jtk 		cg = cgs[oldsb->fs_ncg - 1];
   1001   1.1       jtk 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
   1002   1.1       jtk 		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
   1003   1.1       jtk 		newcgsize = newsb->fs_size - prevcgtop;
   1004   1.1       jtk 		if (newcgsize > newsb->fs_fpg)
   1005   1.1       jtk 			newcgsize = newsb->fs_fpg;
   1006   1.1       jtk 		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
   1007   1.1       jtk 		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
   1008  1.20    mhitch 		cg->cg_old_ncyl = oldsb->fs_old_cpg;
   1009   1.1       jtk 		cg->cg_ndblk = newcgsize;
   1010   1.1       jtk 	}
   1011   1.1       jtk 	/* Fix up the csum info, if necessary. */
   1012   1.1       jtk 	csum_fixup();
   1013   1.1       jtk 	/* Make fs_dsize match the new reality. */
   1014   1.1       jtk 	recompute_fs_dsize();
   1015   1.1       jtk }
   1016   1.1       jtk /*
   1017   1.1       jtk  * Call (*fn)() for each inode, passing the inode and its inumber.  The
   1018   1.1       jtk  *  number of cylinder groups is pased in, so this can be used to map
   1019  1.24       wiz  *  over either the old or the new file system's set of inodes.
   1020   1.1       jtk  */
   1021   1.1       jtk static void
   1022  1.25       riz map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg),
   1023  1.15       riz 	   int ncg, void *cbarg) {
   1024   1.1       jtk 	int i;
   1025   1.1       jtk 	int ni;
   1026   1.1       jtk 
   1027   1.1       jtk 	ni = oldsb->fs_ipg * ncg;
   1028   1.1       jtk 	for (i = 0; i < ni; i++)
   1029   1.1       jtk 		(*fn) (inodes + i, i, cbarg);
   1030   1.1       jtk }
   1031   1.1       jtk /* Values for the third argument to the map function for
   1032   1.1       jtk  * map_inode_data_blocks.  MDB_DATA indicates the block is contains
   1033   1.1       jtk  * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
   1034   1.1       jtk  * indirect block.  The MDB_INDIR_PRE call is made before the indirect
   1035   1.1       jtk  * block pointers are followed and the pointed-to blocks scanned,
   1036   1.1       jtk  * MDB_INDIR_POST after.
   1037   1.1       jtk  */
   1038   1.1       jtk #define MDB_DATA       1
   1039   1.1       jtk #define MDB_INDIR_PRE  2
   1040   1.1       jtk #define MDB_INDIR_POST 3
   1041   1.1       jtk 
   1042  1.15       riz typedef void (*mark_callback_t) (unsigned int blocknum, unsigned int nfrags,
   1043  1.15       riz 				 unsigned int blksize, int opcode);
   1044   1.1       jtk 
   1045   1.1       jtk /* Helper function - handles a data block.  Calls the callback
   1046   1.1       jtk  * function and returns number of bytes occupied in file (actually,
   1047   1.1       jtk  * rounded up to a frag boundary).  The name is historical.  */
   1048   1.1       jtk static int
   1049  1.25       riz markblk(mark_callback_t fn, union dinode * di, int bn, off_t o)
   1050   1.1       jtk {
   1051   1.1       jtk 	int sz;
   1052   1.1       jtk 	int nb;
   1053  1.26  dholland 
   1054  1.25       riz 	if (o >= DIP(di,di_size))
   1055   1.1       jtk 		return (0);
   1056   1.1       jtk 	sz = dblksize(newsb, di, lblkno(newsb, o));
   1057  1.25       riz 	nb = (sz > DIP(di,di_size) - o) ? DIP(di,di_size) - o : sz;
   1058   1.1       jtk 	if (bn)
   1059   1.1       jtk 		(*fn) (bn, numfrags(newsb, sz), nb, MDB_DATA);
   1060   1.1       jtk 	return (sz);
   1061   1.1       jtk }
   1062   1.1       jtk /* Helper function - handles an indirect block.  Makes the
   1063   1.1       jtk  * MDB_INDIR_PRE callback for the indirect block, loops over the
   1064   1.1       jtk  * pointers and recurses, and makes the MDB_INDIR_POST callback.
   1065   1.1       jtk  * Returns the number of bytes occupied in file, as does markblk().
   1066   1.1       jtk  * For the sake of update_for_data_move(), we read the indirect block
   1067   1.1       jtk  * _after_ making the _PRE callback.  The name is historical.  */
   1068   1.1       jtk static int
   1069  1.25       riz markiblk(mark_callback_t fn, union dinode * di, int bn, off_t o, int lev)
   1070   1.1       jtk {
   1071   1.1       jtk 	int i;
   1072   1.1       jtk 	int j;
   1073   1.1       jtk 	int tot;
   1074   1.2    martin 	static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
   1075   1.2    martin 	static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
   1076   1.2    martin 	static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
   1077   1.2    martin 	static int32_t *indirblks[3] = {
   1078   1.1       jtk 		&indirblk1[0], &indirblk2[0], &indirblk3[0]
   1079   1.1       jtk 	};
   1080  1.26  dholland 
   1081   1.1       jtk 	if (lev < 0)
   1082   1.1       jtk 		return (markblk(fn, di, bn, o));
   1083   1.1       jtk 	if (bn == 0) {
   1084   1.1       jtk 		for (i = newsb->fs_bsize;
   1085   1.1       jtk 		    lev >= 0;
   1086   1.1       jtk 		    i *= NINDIR(newsb), lev--);
   1087   1.1       jtk 		return (i);
   1088   1.1       jtk 	}
   1089   1.1       jtk 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
   1090   1.1       jtk 	readat(fsbtodb(newsb, bn), indirblks[lev], newsb->fs_bsize);
   1091  1.25       riz 	if (needswap)
   1092  1.25       riz 		for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
   1093  1.25       riz 			indirblks[lev][i] = bswap32(indirblks[lev][i]);
   1094   1.1       jtk 	tot = 0;
   1095   1.1       jtk 	for (i = 0; i < NINDIR(newsb); i++) {
   1096   1.1       jtk 		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
   1097   1.1       jtk 		if (j == 0)
   1098   1.1       jtk 			break;
   1099   1.1       jtk 		o += j;
   1100   1.1       jtk 		tot += j;
   1101   1.1       jtk 	}
   1102   1.1       jtk 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
   1103   1.1       jtk 	return (tot);
   1104   1.1       jtk }
   1105   1.1       jtk 
   1106   1.1       jtk 
   1107   1.1       jtk /*
   1108   1.1       jtk  * Call (*fn)() for each data block for an inode.  This routine assumes
   1109   1.1       jtk  *  the inode is known to be of a type that has data blocks (file,
   1110   1.1       jtk  *  directory, or non-fast symlink).  The called function is:
   1111   1.1       jtk  *
   1112   1.1       jtk  * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
   1113   1.1       jtk  *
   1114   1.1       jtk  *  where blkno is the frag number, nf is the number of frags starting
   1115   1.1       jtk  *  at blkno (always <= fs_frag), nb is the number of bytes that belong
   1116   1.1       jtk  *  to the file (usually nf*fs_frag, often less for the last block/frag
   1117   1.1       jtk  *  of a file).
   1118   1.1       jtk  */
   1119   1.1       jtk static void
   1120  1.25       riz map_inode_data_blocks(union dinode * di, mark_callback_t fn)
   1121   1.1       jtk {
   1122   1.1       jtk 	off_t o;		/* offset within  inode */
   1123   1.1       jtk 	int inc;		/* increment for o - maybe should be off_t? */
   1124   1.1       jtk 	int b;			/* index within di_db[] and di_ib[] arrays */
   1125   1.1       jtk 
   1126   1.1       jtk 	/* Scan the direct blocks... */
   1127   1.1       jtk 	o = 0;
   1128   1.1       jtk 	for (b = 0; b < NDADDR; b++) {
   1129  1.25       riz 		inc = markblk(fn, di, DIP(di,di_db[b]), o);
   1130   1.1       jtk 		if (inc == 0)
   1131   1.1       jtk 			break;
   1132   1.1       jtk 		o += inc;
   1133   1.1       jtk 	}
   1134   1.1       jtk 	/* ...and the indirect blocks. */
   1135   1.1       jtk 	if (inc) {
   1136   1.1       jtk 		for (b = 0; b < NIADDR; b++) {
   1137  1.25       riz 			inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b);
   1138   1.1       jtk 			if (inc == 0)
   1139   1.1       jtk 				return;
   1140   1.1       jtk 			o += inc;
   1141   1.1       jtk 		}
   1142   1.1       jtk 	}
   1143   1.1       jtk }
   1144   1.1       jtk 
   1145   1.1       jtk static void
   1146  1.25       riz dblk_callback(union dinode * di, unsigned int inum, void *arg)
   1147   1.1       jtk {
   1148   1.1       jtk 	mark_callback_t fn;
   1149  1.26  dholland 
   1150   1.1       jtk 	fn = (mark_callback_t) arg;
   1151  1.25       riz 	switch (DIP(di,di_mode) & IFMT) {
   1152   1.1       jtk 	case IFLNK:
   1153  1.25       riz 		if (DIP(di,di_size) > newsb->fs_maxsymlinklen) {
   1154   1.1       jtk 	case IFDIR:
   1155   1.1       jtk 	case IFREG:
   1156   1.1       jtk 			map_inode_data_blocks(di, fn);
   1157   1.1       jtk 		}
   1158   1.1       jtk 		break;
   1159   1.1       jtk 	}
   1160   1.1       jtk }
   1161   1.1       jtk /*
   1162   1.1       jtk  * Make a callback call, a la map_inode_data_blocks, for all data
   1163   1.1       jtk  *  blocks in the entire fs.  This is used only once, in
   1164   1.1       jtk  *  update_for_data_move, but it's out at top level because the complex
   1165   1.1       jtk  *  downward-funarg nesting that would otherwise result seems to give
   1166   1.1       jtk  *  gcc gastric distress.
   1167   1.1       jtk  */
   1168   1.1       jtk static void
   1169   1.1       jtk map_data_blocks(mark_callback_t fn, int ncg)
   1170   1.1       jtk {
   1171   1.1       jtk 	map_inodes(&dblk_callback, ncg, (void *) fn);
   1172   1.1       jtk }
   1173   1.1       jtk /*
   1174   1.1       jtk  * Initialize the blkmove array.
   1175   1.1       jtk  */
   1176   1.1       jtk static void
   1177   1.1       jtk blkmove_init(void)
   1178   1.1       jtk {
   1179   1.1       jtk 	int i;
   1180   1.1       jtk 
   1181   1.1       jtk 	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
   1182   1.1       jtk 	for (i = 0; i < oldsb->fs_size; i++)
   1183   1.1       jtk 		blkmove[i] = i;
   1184   1.1       jtk }
   1185   1.1       jtk /*
   1186   1.1       jtk  * Load the inodes off disk.  Allocates the structures and initializes
   1187   1.1       jtk  *  them - the inodes from disk, the flags to zero.
   1188   1.1       jtk  */
   1189   1.1       jtk static void
   1190   1.1       jtk loadinodes(void)
   1191   1.1       jtk {
   1192  1.25       riz 	int imax, ino, i, j;
   1193  1.25       riz 	struct ufs1_dinode *dp1 = NULL;
   1194  1.25       riz 	struct ufs2_dinode *dp2 = NULL;
   1195  1.25       riz 
   1196  1.25       riz 	/* read inodes one fs block at a time and copy them */
   1197   1.1       jtk 
   1198  1.15       riz 	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
   1199  1.25       riz 	    sizeof(union dinode), "inodes");
   1200   1.1       jtk 	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
   1201  1.25       riz 	memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg);
   1202  1.25       riz 
   1203  1.25       riz 	ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf");
   1204  1.25       riz 	if (is_ufs2)
   1205  1.25       riz 		dp2 = (struct ufs2_dinode *)ibuf;
   1206  1.25       riz 	else
   1207  1.25       riz 		dp1 = (struct ufs1_dinode *)ibuf;
   1208  1.25       riz 
   1209  1.25       riz 	for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) {
   1210  1.25       riz 		readat(fsbtodb(oldsb, ino_to_fsba(oldsb, ino)), ibuf,
   1211  1.25       riz 		    oldsb->fs_bsize);
   1212  1.25       riz 
   1213  1.25       riz 		for (i = 0; i < oldsb->fs_inopb; i++) {
   1214  1.25       riz 			if (is_ufs2) {
   1215  1.25       riz 				if (needswap) {
   1216  1.25       riz 					ffs_dinode2_swap(&(dp2[i]), &(dp2[i]));
   1217  1.25       riz 					for (j = 0; j < NDADDR + NIADDR; j++)
   1218  1.25       riz 						dp2[i].di_db[j] =
   1219  1.25       riz 						    bswap32(dp2[i].di_db[j]);
   1220  1.25       riz 				}
   1221  1.25       riz 				memcpy(&inodes[ino].dp2, &dp2[i],
   1222  1.25       riz 				    sizeof(struct ufs2_dinode));
   1223  1.25       riz 			} else {
   1224  1.25       riz 				if (needswap) {
   1225  1.25       riz 					ffs_dinode1_swap(&(dp1[i]), &(dp1[i]));
   1226  1.25       riz 					for (j = 0; j < NDADDR + NIADDR; j++)
   1227  1.25       riz 						dp1[i].di_db[j] =
   1228  1.25       riz 						    bswap32(dp1[i].di_db[j]);
   1229  1.25       riz 				}
   1230  1.25       riz 				memcpy(&inodes[ino].dp1, &dp1[i],
   1231  1.25       riz 				    sizeof(struct ufs1_dinode));
   1232  1.25       riz 			}
   1233  1.25       riz 			    if (++ino > imax)
   1234  1.25       riz 				    errx(EXIT_FAILURE,
   1235  1.25       riz 					"Exceeded number of inodes");
   1236  1.25       riz 		}
   1237  1.25       riz 
   1238   1.1       jtk 	}
   1239   1.1       jtk }
   1240   1.1       jtk /*
   1241  1.24       wiz  * Report a file-system-too-full problem.
   1242   1.1       jtk  */
   1243   1.1       jtk static void
   1244   1.1       jtk toofull(void)
   1245   1.1       jtk {
   1246   1.1       jtk 	printf("Sorry, would run out of data blocks\n");
   1247  1.15       riz 	exit(EXIT_FAILURE);
   1248   1.1       jtk }
   1249   1.1       jtk /*
   1250   1.1       jtk  * Record a desire to move "n" frags from "from" to "to".
   1251   1.1       jtk  */
   1252   1.1       jtk static void
   1253   1.1       jtk mark_move(unsigned int from, unsigned int to, unsigned int n)
   1254   1.1       jtk {
   1255   1.1       jtk 	for (; n > 0; n--)
   1256   1.1       jtk 		blkmove[from++] = to++;
   1257   1.1       jtk }
   1258   1.1       jtk /* Helper function - evict n frags, starting with start (cg-relative).
   1259   1.1       jtk  * The free bitmap is scanned, unallocated frags are ignored, and
   1260   1.1       jtk  * each block of consecutive allocated frags is moved as a unit.
   1261   1.1       jtk  */
   1262   1.1       jtk static void
   1263   1.1       jtk fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
   1264   1.1       jtk {
   1265   1.1       jtk 	int i;
   1266   1.1       jtk 	int run;
   1267  1.26  dholland 
   1268   1.1       jtk 	run = 0;
   1269   1.1       jtk 	for (i = 0; i <= n; i++) {
   1270   1.1       jtk 		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
   1271   1.1       jtk 			run++;
   1272   1.1       jtk 		} else {
   1273   1.1       jtk 			if (run > 0) {
   1274   1.1       jtk 				int off;
   1275   1.1       jtk 				off = find_freespace(run);
   1276   1.1       jtk 				if (off < 0)
   1277   1.1       jtk 					toofull();
   1278   1.1       jtk 				mark_move(base + start + i - run, off, run);
   1279   1.1       jtk 				set_bits(cg_blksfree(cg, 0), start + i - run,
   1280   1.1       jtk 				    run);
   1281   1.1       jtk 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1282   1.1       jtk 				    dtogd(oldsb, off), run);
   1283   1.1       jtk 			}
   1284   1.1       jtk 			run = 0;
   1285   1.1       jtk 		}
   1286   1.1       jtk 	}
   1287   1.1       jtk }
   1288   1.1       jtk /*
   1289   1.1       jtk  * Evict all data blocks from the given cg, starting at minfrag (based
   1290   1.1       jtk  *  at the beginning of the cg), for length nfrag.  The eviction is
   1291   1.1       jtk  *  assumed to be entirely data-area; this should not be called with a
   1292   1.1       jtk  *  range overlapping the metadata structures in the cg.  It also
   1293   1.1       jtk  *  assumes minfrag points into the given cg; it will misbehave if this
   1294   1.1       jtk  *  is not true.
   1295   1.1       jtk  *
   1296   1.1       jtk  * See the comment header on find_freespace() for one possible bug
   1297   1.1       jtk  *  lurking here.
   1298   1.1       jtk  */
   1299   1.1       jtk static void
   1300   1.1       jtk evict_data(struct cg * cg, unsigned int minfrag, unsigned int nfrag)
   1301   1.1       jtk {
   1302  1.25       riz 	int base;	/* base of cg (in frags from beginning of fs) */
   1303   1.1       jtk 
   1304   1.1       jtk 	base = cgbase(oldsb, cg->cg_cgx);
   1305  1.25       riz 	/* Does the boundary fall in the middle of a block?  To avoid
   1306  1.25       riz 	 * breaking between frags allocated as consecutive, we always
   1307  1.25       riz 	 * evict the whole block in this case, though one could argue
   1308  1.25       riz 	 * we should check to see if the frag before or after the
   1309  1.25       riz 	 * break is unallocated. */
   1310   1.1       jtk 	if (minfrag % oldsb->fs_frag) {
   1311   1.1       jtk 		int n;
   1312   1.1       jtk 		n = minfrag % oldsb->fs_frag;
   1313   1.1       jtk 		minfrag -= n;
   1314   1.1       jtk 		nfrag += n;
   1315   1.1       jtk 	}
   1316  1.25       riz 	/* Do whole blocks.  If a block is wholly free, skip it; if
   1317  1.25       riz 	 * wholly allocated, move it in toto.  If neither, call
   1318  1.25       riz 	 * fragmove() to move the frags to new locations. */
   1319   1.1       jtk 	while (nfrag >= oldsb->fs_frag) {
   1320   1.1       jtk 		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
   1321   1.1       jtk 			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
   1322   1.1       jtk 				oldsb->fs_frag)) {
   1323   1.1       jtk 				int off;
   1324   1.1       jtk 				off = find_freeblock();
   1325   1.1       jtk 				if (off < 0)
   1326   1.1       jtk 					toofull();
   1327   1.1       jtk 				mark_move(base + minfrag, off, oldsb->fs_frag);
   1328   1.1       jtk 				set_bits(cg_blksfree(cg, 0), minfrag,
   1329   1.1       jtk 				    oldsb->fs_frag);
   1330   1.1       jtk 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1331   1.1       jtk 				    dtogd(oldsb, off), oldsb->fs_frag);
   1332   1.1       jtk 			} else {
   1333   1.1       jtk 				fragmove(cg, base, minfrag, oldsb->fs_frag);
   1334   1.1       jtk 			}
   1335   1.1       jtk 		}
   1336   1.1       jtk 		minfrag += oldsb->fs_frag;
   1337   1.1       jtk 		nfrag -= oldsb->fs_frag;
   1338   1.1       jtk 	}
   1339   1.1       jtk 	/* Clean up any sub-block amount left over. */
   1340   1.1       jtk 	if (nfrag) {
   1341   1.1       jtk 		fragmove(cg, base, minfrag, nfrag);
   1342   1.1       jtk 	}
   1343   1.1       jtk }
   1344   1.1       jtk /*
   1345   1.1       jtk  * Move all data blocks according to blkmove.  We have to be careful,
   1346   1.1       jtk  *  because we may be updating indirect blocks that will themselves be
   1347   1.2    martin  *  getting moved, or inode int32_t arrays that point to indirect
   1348   1.1       jtk  *  blocks that will be moved.  We call this before
   1349   1.1       jtk  *  update_for_data_move, and update_for_data_move does inodes first,
   1350   1.1       jtk  *  then indirect blocks in preorder, so as to make sure that the
   1351  1.24       wiz  *  file system is self-consistent at all points, for better crash
   1352   1.1       jtk  *  tolerance.  (We can get away with this only because all the writes
   1353   1.1       jtk  *  done by perform_data_move() are writing into space that's not used
   1354  1.24       wiz  *  by the old file system.)  If we crash, some things may point to the
   1355   1.1       jtk  *  old data and some to the new, but both copies are the same.  The
   1356   1.1       jtk  *  only wrong things should be csum info and free bitmaps, which fsck
   1357   1.1       jtk  *  is entirely capable of cleaning up.
   1358   1.1       jtk  *
   1359   1.1       jtk  * Since blkmove_init() initializes all blocks to move to their current
   1360   1.1       jtk  *  locations, we can have two blocks marked as wanting to move to the
   1361   1.1       jtk  *  same location, but only two and only when one of them is the one
   1362   1.1       jtk  *  that was already there.  So if blkmove[i]==i, we ignore that entry
   1363   1.1       jtk  *  entirely - for unallocated blocks, we don't want it (and may be
   1364   1.1       jtk  *  putting something else there), and for allocated blocks, we don't
   1365   1.1       jtk  *  want to copy it anywhere.
   1366   1.1       jtk  */
   1367   1.1       jtk static void
   1368   1.1       jtk perform_data_move(void)
   1369   1.1       jtk {
   1370   1.1       jtk 	int i;
   1371   1.1       jtk 	int run;
   1372   1.1       jtk 	int maxrun;
   1373   1.1       jtk 	char buf[65536];
   1374   1.1       jtk 
   1375   1.1       jtk 	maxrun = sizeof(buf) / newsb->fs_fsize;
   1376   1.1       jtk 	run = 0;
   1377   1.1       jtk 	for (i = 0; i < oldsb->fs_size; i++) {
   1378   1.1       jtk 		if ((blkmove[i] == i) ||
   1379   1.1       jtk 		    (run >= maxrun) ||
   1380   1.1       jtk 		    ((run > 0) &&
   1381   1.1       jtk 			(blkmove[i] != blkmove[i - 1] + 1))) {
   1382   1.1       jtk 			if (run > 0) {
   1383   1.1       jtk 				readat(fsbtodb(oldsb, i - run), &buf[0],
   1384   1.1       jtk 				    run << oldsb->fs_fshift);
   1385   1.1       jtk 				writeat(fsbtodb(oldsb, blkmove[i - run]),
   1386   1.1       jtk 				    &buf[0], run << oldsb->fs_fshift);
   1387   1.1       jtk 			}
   1388   1.1       jtk 			run = 0;
   1389   1.1       jtk 		}
   1390   1.1       jtk 		if (blkmove[i] != i)
   1391   1.1       jtk 			run++;
   1392   1.1       jtk 	}
   1393   1.1       jtk 	if (run > 0) {
   1394   1.1       jtk 		readat(fsbtodb(oldsb, i - run), &buf[0],
   1395   1.1       jtk 		    run << oldsb->fs_fshift);
   1396   1.1       jtk 		writeat(fsbtodb(oldsb, blkmove[i - run]), &buf[0],
   1397   1.1       jtk 		    run << oldsb->fs_fshift);
   1398   1.1       jtk 	}
   1399   1.1       jtk }
   1400   1.1       jtk /*
   1401   1.2    martin  * This modifies an array of int32_t, according to blkmove.  This is
   1402   1.1       jtk  *  used to update inode block arrays and indirect blocks to point to
   1403   1.1       jtk  *  the new locations of data blocks.
   1404   1.1       jtk  *
   1405   1.2    martin  * Return value is the number of int32_ts that needed updating; in
   1406   1.1       jtk  *  particular, the return value is zero iff nothing was modified.
   1407   1.1       jtk  */
   1408   1.1       jtk static int
   1409   1.2    martin movemap_blocks(int32_t * vec, int n)
   1410   1.1       jtk {
   1411   1.1       jtk 	int rv;
   1412  1.26  dholland 
   1413   1.1       jtk 	rv = 0;
   1414   1.1       jtk 	for (; n > 0; n--, vec++) {
   1415   1.1       jtk 		if (blkmove[*vec] != *vec) {
   1416   1.1       jtk 			*vec = blkmove[*vec];
   1417   1.1       jtk 			rv++;
   1418   1.1       jtk 		}
   1419   1.1       jtk 	}
   1420   1.1       jtk 	return (rv);
   1421   1.1       jtk }
   1422   1.1       jtk static void
   1423  1.25       riz moveblocks_callback(union dinode * di, unsigned int inum, void *arg)
   1424   1.1       jtk {
   1425  1.25       riz 	void *dblkptr, *iblkptr; /* XXX */
   1426  1.26  dholland 
   1427  1.25       riz 	switch (DIP(di,di_mode) & IFMT) {
   1428   1.1       jtk 	case IFLNK:
   1429  1.25       riz 		if (DIP(di,di_size) > oldsb->fs_maxsymlinklen) {
   1430   1.1       jtk 	case IFDIR:
   1431   1.1       jtk 	case IFREG:
   1432  1.25       riz 		if (is_ufs2) {
   1433  1.25       riz 			dblkptr = &(di->dp2.di_db[0]);
   1434  1.25       riz 			iblkptr = &(di->dp2.di_ib[0]);
   1435  1.25       riz 		} else {
   1436  1.25       riz 			dblkptr = &(di->dp1.di_db[0]);
   1437  1.25       riz 			iblkptr = &(di->dp1.di_ib[0]);
   1438  1.25       riz 		}
   1439  1.26  dholland 		/*
   1440  1.26  dholland 		 * Don't || these two calls; we need their
   1441  1.26  dholland 		 * side-effects.
   1442  1.26  dholland 		 */
   1443  1.25       riz 		if (movemap_blocks(dblkptr, NDADDR)) {
   1444   1.1       jtk 				iflags[inum] |= IF_DIRTY;
   1445   1.1       jtk 			}
   1446  1.25       riz 		if (movemap_blocks(iblkptr, NIADDR)) {
   1447   1.1       jtk 				iflags[inum] |= IF_DIRTY;
   1448   1.1       jtk 			}
   1449   1.1       jtk 		}
   1450   1.1       jtk 		break;
   1451   1.1       jtk 	}
   1452   1.1       jtk }
   1453   1.1       jtk 
   1454   1.1       jtk static void
   1455  1.15       riz moveindir_callback(unsigned int off, unsigned int nfrag, unsigned int nbytes,
   1456  1.15       riz 		   int kind)
   1457   1.1       jtk {
   1458  1.25       riz 	int i;
   1459  1.26  dholland 
   1460   1.1       jtk 	if (kind == MDB_INDIR_PRE) {
   1461   1.2    martin 		int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
   1462   1.1       jtk 		readat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
   1463  1.25       riz 		if (needswap)
   1464  1.25       riz 			for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
   1465  1.25       riz 				blk[i] = bswap32(blk[i]);
   1466   1.1       jtk 		if (movemap_blocks(&blk[0], NINDIR(oldsb))) {
   1467  1.25       riz 			if (needswap)
   1468  1.25       riz 				for (i = 0; i < howmany(MAXBSIZE,
   1469  1.25       riz 					sizeof(int32_t)); i++)
   1470  1.25       riz 					blk[i] = bswap32(blk[i]);
   1471   1.1       jtk 			writeat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
   1472   1.1       jtk 		}
   1473   1.1       jtk 	}
   1474   1.1       jtk }
   1475   1.1       jtk /*
   1476   1.1       jtk  * Update all inode data arrays and indirect blocks to point to the new
   1477   1.1       jtk  *  locations of data blocks.  See the comment header on
   1478   1.1       jtk  *  perform_data_move for some ordering considerations.
   1479   1.1       jtk  */
   1480   1.1       jtk static void
   1481   1.1       jtk update_for_data_move(void)
   1482   1.1       jtk {
   1483   1.1       jtk 	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
   1484   1.1       jtk 	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
   1485   1.1       jtk }
   1486   1.1       jtk /*
   1487   1.1       jtk  * Initialize the inomove array.
   1488   1.1       jtk  */
   1489   1.1       jtk static void
   1490   1.1       jtk inomove_init(void)
   1491   1.1       jtk {
   1492   1.1       jtk 	int i;
   1493   1.1       jtk 
   1494   1.1       jtk 	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
   1495   1.1       jtk                             "inomove");
   1496   1.1       jtk 	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
   1497   1.1       jtk 		inomove[i] = i;
   1498   1.1       jtk }
   1499   1.1       jtk /*
   1500   1.1       jtk  * Flush all dirtied inodes to disk.  Scans the inode flags array; for
   1501   1.1       jtk  *  each dirty inode, it sets the BDIRTY bit on the first inode in the
   1502   1.1       jtk  *  block containing the dirty inode.  Then it scans by blocks, and for
   1503   1.1       jtk  *  each marked block, writes it.
   1504   1.1       jtk  */
   1505   1.1       jtk static void
   1506   1.1       jtk flush_inodes(void)
   1507   1.1       jtk {
   1508  1.25       riz 	int i, j, k, na, ni, m;
   1509  1.25       riz 	struct ufs1_dinode *dp1 = NULL;
   1510  1.25       riz 	struct ufs2_dinode *dp2 = NULL;
   1511   1.1       jtk 
   1512  1.25       riz 	na = NDADDR + NIADDR;
   1513   1.1       jtk 	ni = newsb->fs_ipg * newsb->fs_ncg;
   1514   1.1       jtk 	m = INOPB(newsb) - 1;
   1515   1.1       jtk 	for (i = 0; i < ni; i++) {
   1516   1.1       jtk 		if (iflags[i] & IF_DIRTY) {
   1517   1.1       jtk 			iflags[i & ~m] |= IF_BDIRTY;
   1518   1.1       jtk 		}
   1519   1.1       jtk 	}
   1520   1.1       jtk 	m++;
   1521  1.25       riz 
   1522  1.25       riz 	if (is_ufs2)
   1523  1.25       riz 		dp2 = (struct ufs2_dinode *)ibuf;
   1524  1.25       riz 	else
   1525  1.25       riz 		dp1 = (struct ufs1_dinode *)ibuf;
   1526  1.25       riz 
   1527   1.1       jtk 	for (i = 0; i < ni; i += m) {
   1528   1.1       jtk 		if (iflags[i] & IF_BDIRTY) {
   1529  1.25       riz 			if (is_ufs2)
   1530  1.25       riz 				for (j = 0; j < m; j++) {
   1531  1.25       riz 					dp2[j] = inodes[i + j].dp2;
   1532  1.25       riz 					if (needswap) {
   1533  1.25       riz 						for (k = 0; k < na; k++)
   1534  1.25       riz 							dp2[j].di_db[k]=
   1535  1.25       riz 							    bswap32(dp2[j].di_db[k]);
   1536  1.25       riz 						ffs_dinode2_swap(&dp2[j],
   1537  1.25       riz 						    &dp2[j]);
   1538  1.25       riz 					}
   1539  1.25       riz 				}
   1540  1.25       riz 			else
   1541  1.25       riz 				for (j = 0; j < m; j++) {
   1542  1.25       riz 					dp1[j] = inodes[i + j].dp1;
   1543  1.25       riz 					if (needswap) {
   1544  1.25       riz 						for (k = 0; k < na; k++)
   1545  1.25       riz 							dp1[j].di_db[k]=
   1546  1.25       riz 							    bswap32(dp1[j].di_db[k]);
   1547  1.25       riz 						ffs_dinode1_swap(&dp1[j],
   1548  1.25       riz 						    &dp1[j]);
   1549  1.25       riz 					}
   1550  1.25       riz 				}
   1551  1.25       riz 
   1552   1.1       jtk 			writeat(fsbtodb(newsb, ino_to_fsba(newsb, i)),
   1553  1.25       riz 			    ibuf, newsb->fs_bsize);
   1554   1.1       jtk 		}
   1555   1.1       jtk 	}
   1556   1.1       jtk }
   1557   1.1       jtk /*
   1558   1.1       jtk  * Evict all inodes from the specified cg.  shrink() already checked
   1559   1.1       jtk  *  that there were enough free inodes, so the no-free-inodes check is
   1560  1.24       wiz  *  a can't-happen.  If it does trip, the file system should be in good
   1561   1.1       jtk  *  enough shape for fsck to fix; see the comment on perform_data_move
   1562   1.1       jtk  *  for the considerations in question.
   1563   1.1       jtk  */
   1564   1.1       jtk static void
   1565   1.1       jtk evict_inodes(struct cg * cg)
   1566   1.1       jtk {
   1567   1.1       jtk 	int inum;
   1568   1.1       jtk 	int i;
   1569   1.1       jtk 	int fi;
   1570   1.1       jtk 
   1571   1.1       jtk 	inum = newsb->fs_ipg * cg->cg_cgx;
   1572   1.1       jtk 	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
   1573  1.25       riz 		if (DIP(inodes + inum,di_mode) != 0) {
   1574   1.1       jtk 			fi = find_freeinode();
   1575   1.1       jtk 			if (fi < 0) {
   1576   1.1       jtk 				printf("Sorry, inodes evaporated - "
   1577  1.24       wiz 				    "file system probably needs fsck\n");
   1578  1.15       riz 				exit(EXIT_FAILURE);
   1579   1.1       jtk 			}
   1580   1.1       jtk 			inomove[inum] = fi;
   1581   1.1       jtk 			clr_bits(cg_inosused(cg, 0), i, 1);
   1582   1.1       jtk 			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
   1583   1.1       jtk 			    fi % newsb->fs_ipg, 1);
   1584   1.1       jtk 		}
   1585   1.1       jtk 	}
   1586   1.1       jtk }
   1587   1.1       jtk /*
   1588   1.1       jtk  * Move inodes from old locations to new.  Does not actually write
   1589   1.1       jtk  *  anything to disk; just copies in-core and sets dirty bits.
   1590   1.1       jtk  *
   1591   1.1       jtk  * We have to be careful here for reasons similar to those mentioned in
   1592   1.1       jtk  *  the comment header on perform_data_move, above: for the sake of
   1593   1.1       jtk  *  crash tolerance, we want to make sure everything is present at both
   1594   1.1       jtk  *  old and new locations before we update pointers.  So we call this
   1595   1.1       jtk  *  first, then flush_inodes() to get them out on disk, then update
   1596   1.1       jtk  *  directories to match.
   1597   1.1       jtk  */
   1598   1.1       jtk static void
   1599   1.1       jtk perform_inode_move(void)
   1600   1.1       jtk {
   1601   1.1       jtk 	int i;
   1602   1.1       jtk 	int ni;
   1603   1.1       jtk 
   1604   1.1       jtk 	ni = oldsb->fs_ipg * oldsb->fs_ncg;
   1605   1.1       jtk 	for (i = 0; i < ni; i++) {
   1606   1.1       jtk 		if (inomove[i] != i) {
   1607   1.1       jtk 			inodes[inomove[i]] = inodes[i];
   1608   1.1       jtk 			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
   1609   1.1       jtk 		}
   1610   1.1       jtk 	}
   1611   1.1       jtk }
   1612   1.1       jtk /*
   1613   1.1       jtk  * Update the directory contained in the nb bytes at buf, to point to
   1614   1.1       jtk  *  inodes' new locations.
   1615   1.1       jtk  */
   1616   1.1       jtk static int
   1617   1.1       jtk update_dirents(char *buf, int nb)
   1618   1.1       jtk {
   1619   1.1       jtk 	int rv;
   1620   1.1       jtk #define d ((struct direct *)buf)
   1621  1.25       riz #define s32(x) (needswap?bswap32((x)):(x))
   1622  1.25       riz #define s16(x) (needswap?bswap16((x)):(x))
   1623  1.25       riz 
   1624   1.1       jtk 	rv = 0;
   1625   1.1       jtk 	while (nb > 0) {
   1626  1.25       riz 		if (inomove[s32(d->d_ino)] != s32(d->d_ino)) {
   1627   1.1       jtk 			rv++;
   1628  1.25       riz 			d->d_ino = s32(inomove[s32(d->d_ino)]);
   1629   1.1       jtk 		}
   1630  1.25       riz 		nb -= s16(d->d_reclen);
   1631  1.25       riz 		buf += s16(d->d_reclen);
   1632   1.1       jtk 	}
   1633   1.1       jtk 	return (rv);
   1634   1.1       jtk #undef d
   1635  1.25       riz #undef s32
   1636  1.25       riz #undef s16
   1637   1.1       jtk }
   1638   1.1       jtk /*
   1639   1.1       jtk  * Callback function for map_inode_data_blocks, for updating a
   1640   1.1       jtk  *  directory to point to new inode locations.
   1641   1.1       jtk  */
   1642   1.1       jtk static void
   1643   1.1       jtk update_dir_data(unsigned int bn, unsigned int size, unsigned int nb, int kind)
   1644   1.1       jtk {
   1645   1.1       jtk 	if (kind == MDB_DATA) {
   1646   1.1       jtk 		union {
   1647   1.1       jtk 			struct direct d;
   1648   1.1       jtk 			char ch[MAXBSIZE];
   1649   1.1       jtk 		}     buf;
   1650   1.1       jtk 		readat(fsbtodb(oldsb, bn), &buf, size << oldsb->fs_fshift);
   1651   1.1       jtk 		if (update_dirents((char *) &buf, nb)) {
   1652   1.1       jtk 			writeat(fsbtodb(oldsb, bn), &buf,
   1653   1.1       jtk 			    size << oldsb->fs_fshift);
   1654   1.1       jtk 		}
   1655   1.1       jtk 	}
   1656   1.1       jtk }
   1657   1.1       jtk static void
   1658  1.25       riz dirmove_callback(union dinode * di, unsigned int inum, void *arg)
   1659   1.1       jtk {
   1660  1.25       riz 	switch (DIP(di,di_mode) & IFMT) {
   1661   1.1       jtk 	case IFDIR:
   1662   1.1       jtk 		map_inode_data_blocks(di, &update_dir_data);
   1663   1.1       jtk 		break;
   1664   1.1       jtk 	}
   1665   1.1       jtk }
   1666   1.1       jtk /*
   1667   1.1       jtk  * Update directory entries to point to new inode locations.
   1668   1.1       jtk  */
   1669   1.1       jtk static void
   1670   1.1       jtk update_for_inode_move(void)
   1671   1.1       jtk {
   1672   1.1       jtk 	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
   1673   1.1       jtk }
   1674   1.1       jtk /*
   1675  1.24       wiz  * Shrink the file system.
   1676   1.1       jtk  */
   1677   1.1       jtk static void
   1678   1.1       jtk shrink(void)
   1679   1.1       jtk {
   1680   1.1       jtk 	int i;
   1681   1.1       jtk 
   1682   1.1       jtk 	/* Load the inodes off disk - we'll need 'em. */
   1683   1.1       jtk 	loadinodes();
   1684   1.1       jtk 	/* Update the timestamp. */
   1685   1.1       jtk 	newsb->fs_time = timestamp();
   1686   1.1       jtk 	/* Update the size figures. */
   1687   1.1       jtk 	newsb->fs_size = dbtofsb(newsb, newsize);
   1688  1.25       riz 	if (is_ufs2)
   1689  1.25       riz 		newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
   1690  1.25       riz 	else {
   1691  1.25       riz 		newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
   1692  1.25       riz 		    newsb->fs_old_spc);
   1693  1.25       riz 		newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
   1694  1.25       riz 	}
   1695   1.1       jtk 	/* Does the (new) last cg end before the end of its inode area?  See
   1696   1.1       jtk 	 * the similar code in grow() for more on this. */
   1697   1.1       jtk 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
   1698   1.1       jtk 		newsb->fs_ncg--;
   1699  1.25       riz 		if (is_ufs2 == 0) {
   1700  1.25       riz 			newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
   1701  1.25       riz 			newsb->fs_size = (newsb->fs_old_ncyl *
   1702  1.25       riz 			    newsb->fs_old_spc) / NSPF(newsb);
   1703  1.25       riz 		} else
   1704  1.25       riz 			newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg;
   1705  1.25       riz 
   1706   1.1       jtk 		printf("Warning: last cylinder group is too small;\n");
   1707   1.1       jtk 		printf("    dropping it.  New size = %lu.\n",
   1708   1.1       jtk 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
   1709   1.1       jtk 	}
   1710   1.1       jtk 	/* Let's make sure we're not being shrunk into oblivion. */
   1711   1.1       jtk 	if (newsb->fs_ncg < 1) {
   1712  1.25       riz 		printf("Size too small - file system would "
   1713  1.25       riz 		    "have no cylinders\n");
   1714  1.15       riz 		exit(EXIT_FAILURE);
   1715   1.1       jtk 	}
   1716   1.1       jtk 	/* Initialize for block motion. */
   1717   1.1       jtk 	blkmove_init();
   1718   1.1       jtk 	/* Update csum size, then fix up for the new size */
   1719   1.1       jtk 	newsb->fs_cssize = fragroundup(newsb,
   1720   1.1       jtk 	    newsb->fs_ncg * sizeof(struct csum));
   1721   1.1       jtk 	csum_fixup();
   1722   1.8       snj 	/* Evict data from any cgs being wholly eliminated */
   1723   1.1       jtk 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
   1724   1.1       jtk 		int base;
   1725   1.1       jtk 		int dlow;
   1726   1.1       jtk 		int dhigh;
   1727   1.1       jtk 		int dmax;
   1728   1.1       jtk 		base = cgbase(oldsb, i);
   1729   1.1       jtk 		dlow = cgsblock(oldsb, i) - base;
   1730   1.1       jtk 		dhigh = cgdmin(oldsb, i) - base;
   1731   1.1       jtk 		dmax = oldsb->fs_size - base;
   1732   1.1       jtk 		if (dmax > cgs[i]->cg_ndblk)
   1733   1.1       jtk 			dmax = cgs[i]->cg_ndblk;
   1734   1.1       jtk 		evict_data(cgs[i], 0, dlow);
   1735   1.1       jtk 		evict_data(cgs[i], dhigh, dmax - dhigh);
   1736   1.1       jtk 		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
   1737   1.1       jtk 		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
   1738   1.1       jtk 		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
   1739   1.1       jtk 		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
   1740   1.1       jtk 	}
   1741   1.1       jtk 	/* Update the new last cg. */
   1742   1.1       jtk 	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
   1743   1.1       jtk 	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
   1744   1.1       jtk 	/* Is the new last cg partial?  If so, evict any data from the part
   1745   1.1       jtk 	 * being shrunken away. */
   1746   1.1       jtk 	if (newsb->fs_size % newsb->fs_fpg) {
   1747   1.1       jtk 		struct cg *cg;
   1748   1.1       jtk 		int oldcgsize;
   1749   1.1       jtk 		int newcgsize;
   1750   1.1       jtk 		cg = cgs[newsb->fs_ncg - 1];
   1751   1.1       jtk 		newcgsize = newsb->fs_size % newsb->fs_fpg;
   1752  1.15       riz 		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
   1753  1.15       riz 		    oldsb->fs_fpg);
   1754   1.1       jtk 		if (oldcgsize > oldsb->fs_fpg)
   1755   1.1       jtk 			oldcgsize = oldsb->fs_fpg;
   1756   1.1       jtk 		evict_data(cg, newcgsize, oldcgsize - newcgsize);
   1757   1.1       jtk 		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
   1758   1.1       jtk 	}
   1759  1.25       riz 	/* Find out whether we would run out of inodes.  (Note we
   1760  1.25       riz 	 * haven't actually done anything to the file system yet; all
   1761  1.25       riz 	 * those evict_data calls just update blkmove.) */
   1762   1.1       jtk 	{
   1763   1.1       jtk 		int slop;
   1764   1.1       jtk 		slop = 0;
   1765   1.1       jtk 		for (i = 0; i < newsb->fs_ncg; i++)
   1766   1.1       jtk 			slop += cgs[i]->cg_cs.cs_nifree;
   1767   1.1       jtk 		for (; i < oldsb->fs_ncg; i++)
   1768   1.1       jtk 			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
   1769   1.1       jtk 		if (slop < 0) {
   1770   1.1       jtk 			printf("Sorry, would run out of inodes\n");
   1771  1.15       riz 			exit(EXIT_FAILURE);
   1772   1.1       jtk 		}
   1773   1.1       jtk 	}
   1774  1.25       riz 	/* Copy data, then update pointers to data.  See the comment
   1775  1.25       riz 	 * header on perform_data_move for ordering considerations. */
   1776   1.1       jtk 	perform_data_move();
   1777   1.1       jtk 	update_for_data_move();
   1778  1.25       riz 	/* Now do inodes.  Initialize, evict, move, update - see the
   1779  1.25       riz 	 * comment header on perform_inode_move. */
   1780   1.1       jtk 	inomove_init();
   1781   1.1       jtk 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
   1782   1.1       jtk 		evict_inodes(cgs[i]);
   1783   1.1       jtk 	perform_inode_move();
   1784   1.1       jtk 	flush_inodes();
   1785   1.1       jtk 	update_for_inode_move();
   1786   1.1       jtk 	/* Recompute all the bitmaps; most of them probably need it anyway,
   1787   1.1       jtk 	 * the rest are just paranoia and not wanting to have to bother
   1788   1.1       jtk 	 * keeping track of exactly which ones require it. */
   1789   1.1       jtk 	for (i = 0; i < newsb->fs_ncg; i++)
   1790   1.1       jtk 		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
   1791  1.14       riz 	/* Update the cg_old_ncyl value for the last cylinder. */
   1792  1.20    mhitch 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
   1793  1.14       riz 		cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
   1794  1.20    mhitch 		    newsb->fs_old_ncyl % newsb->fs_old_cpg;
   1795   1.1       jtk 	/* Make fs_dsize match the new reality. */
   1796   1.1       jtk 	recompute_fs_dsize();
   1797   1.1       jtk }
   1798   1.1       jtk /*
   1799   1.1       jtk  * Recompute the block totals, block cluster summaries, and rotational
   1800   1.1       jtk  *  position summaries, for a given cg (specified by number), based on
   1801   1.1       jtk  *  its free-frag bitmap (cg_blksfree()[]).
   1802   1.1       jtk  */
   1803   1.1       jtk static void
   1804   1.1       jtk rescan_blkmaps(int cgn)
   1805   1.1       jtk {
   1806   1.1       jtk 	struct cg *cg;
   1807   1.1       jtk 	int f;
   1808   1.1       jtk 	int b;
   1809   1.1       jtk 	int blkfree;
   1810   1.1       jtk 	int blkrun;
   1811   1.1       jtk 	int fragrun;
   1812   1.1       jtk 	int fwb;
   1813   1.1       jtk 
   1814   1.1       jtk 	cg = cgs[cgn];
   1815   1.1       jtk 	/* Subtract off the current totals from the sb's summary info */
   1816   1.1       jtk 	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
   1817   1.1       jtk 	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
   1818   1.1       jtk 	/* Clear counters and bitmaps. */
   1819   1.1       jtk 	cg->cg_cs.cs_nffree = 0;
   1820   1.1       jtk 	cg->cg_cs.cs_nbfree = 0;
   1821  1.25       riz 	memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0]));
   1822  1.25       riz 	memset(&old_cg_blktot(cg, 0)[0], 0,
   1823  1.15       riz 	    newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
   1824  1.25       riz 	memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0,
   1825   1.4  christos 	    newsb->fs_old_cpg * newsb->fs_old_nrpos *
   1826  1.15       riz 	    sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
   1827   1.1       jtk 	if (newsb->fs_contigsumsize > 0) {
   1828   1.1       jtk 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
   1829  1.25       riz 		memset(&cg_clustersum(cg, 0)[1], 0,
   1830   1.1       jtk 		    newsb->fs_contigsumsize *
   1831   1.1       jtk 		    sizeof(cg_clustersum(cg, 0)[1]));
   1832  1.25       riz 		if (is_ufs2)
   1833  1.25       riz 			memset(&cg_clustersfree(cg, 0)[0], 0,
   1834  1.25       riz 			    howmany(newsb->fs_fpg / NSPB(newsb), NBBY));
   1835  1.25       riz 		else
   1836  1.25       riz 			memset(&cg_clustersfree(cg, 0)[0], 0,
   1837  1.25       riz 			    howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
   1838  1.25       riz 				NSPB(newsb), NBBY));
   1839  1.25       riz 	}
   1840  1.25       riz 	/* Scan the free-frag bitmap.  Runs of free frags are kept
   1841  1.25       riz 	 * track of with fragrun, and recorded into cg_frsum[] and
   1842  1.25       riz 	 * cg_cs.cs_nffree; on each block boundary, entire free blocks
   1843  1.25       riz 	 * are recorded as well. */
   1844   1.1       jtk 	blkfree = 1;
   1845   1.1       jtk 	blkrun = 0;
   1846   1.1       jtk 	fragrun = 0;
   1847   1.1       jtk 	f = 0;
   1848   1.1       jtk 	b = 0;
   1849   1.1       jtk 	fwb = 0;
   1850   1.1       jtk 	while (f < cg->cg_ndblk) {
   1851   1.1       jtk 		if (bit_is_set(cg_blksfree(cg, 0), f)) {
   1852   1.1       jtk 			fragrun++;
   1853   1.1       jtk 		} else {
   1854   1.1       jtk 			blkfree = 0;
   1855   1.1       jtk 			if (fragrun > 0) {
   1856   1.1       jtk 				cg->cg_frsum[fragrun]++;
   1857   1.1       jtk 				cg->cg_cs.cs_nffree += fragrun;
   1858   1.1       jtk 			}
   1859   1.1       jtk 			fragrun = 0;
   1860   1.1       jtk 		}
   1861   1.1       jtk 		f++;
   1862   1.1       jtk 		fwb++;
   1863   1.1       jtk 		if (fwb >= newsb->fs_frag) {
   1864   1.1       jtk 			if (blkfree) {
   1865   1.1       jtk 				cg->cg_cs.cs_nbfree++;
   1866   1.1       jtk 				if (newsb->fs_contigsumsize > 0)
   1867   1.1       jtk 					set_bits(cg_clustersfree(cg, 0), b, 1);
   1868  1.25       riz 				if (is_ufs2 == 0) {
   1869  1.25       riz 					old_cg_blktot(cg, 0)[
   1870  1.25       riz 						old_cbtocylno(newsb,
   1871  1.25       riz 						    f - newsb->fs_frag)]++;
   1872  1.25       riz 					old_cg_blks(newsb, cg,
   1873  1.25       riz 					    old_cbtocylno(newsb,
   1874  1.25       riz 						f - newsb->fs_frag),
   1875  1.25       riz 					    0)[old_cbtorpos(newsb,
   1876  1.25       riz 						    f - newsb->fs_frag)]++;
   1877  1.25       riz 				}
   1878   1.1       jtk 				blkrun++;
   1879   1.1       jtk 			} else {
   1880   1.1       jtk 				if (fragrun > 0) {
   1881   1.1       jtk 					cg->cg_frsum[fragrun]++;
   1882   1.1       jtk 					cg->cg_cs.cs_nffree += fragrun;
   1883   1.1       jtk 				}
   1884   1.1       jtk 				if (newsb->fs_contigsumsize > 0) {
   1885   1.1       jtk 					if (blkrun > 0) {
   1886  1.15       riz 						cg_clustersum(cg, 0)[(blkrun
   1887  1.15       riz 						    > newsb->fs_contigsumsize)
   1888  1.15       riz 						    ? newsb->fs_contigsumsize
   1889  1.15       riz 						    : blkrun]++;
   1890   1.1       jtk 					}
   1891   1.1       jtk 				}
   1892   1.1       jtk 				blkrun = 0;
   1893   1.1       jtk 			}
   1894   1.1       jtk 			fwb = 0;
   1895   1.1       jtk 			b++;
   1896   1.1       jtk 			blkfree = 1;
   1897   1.1       jtk 			fragrun = 0;
   1898   1.1       jtk 		}
   1899   1.1       jtk 	}
   1900   1.1       jtk 	if (fragrun > 0) {
   1901   1.1       jtk 		cg->cg_frsum[fragrun]++;
   1902   1.1       jtk 		cg->cg_cs.cs_nffree += fragrun;
   1903   1.1       jtk 	}
   1904   1.1       jtk 	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
   1905   1.1       jtk 		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
   1906   1.1       jtk 		    newsb->fs_contigsumsize : blkrun]++;
   1907   1.1       jtk 	}
   1908   1.1       jtk 	/*
   1909   1.1       jtk          * Put the updated summary info back into csums, and add it
   1910   1.1       jtk          * back into the sb's summary info.  Then mark the cg dirty.
   1911   1.1       jtk          */
   1912   1.1       jtk 	csums[cgn] = cg->cg_cs;
   1913   1.1       jtk 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
   1914   1.1       jtk 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
   1915   1.1       jtk 	cgflags[cgn] |= CGF_DIRTY;
   1916   1.1       jtk }
   1917   1.1       jtk /*
   1918   1.1       jtk  * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
   1919   1.1       jtk  *  values, for a cg, based on the in-core inodes for that cg.
   1920   1.1       jtk  */
   1921   1.1       jtk static void
   1922   1.1       jtk rescan_inomaps(int cgn)
   1923   1.1       jtk {
   1924   1.1       jtk 	struct cg *cg;
   1925   1.1       jtk 	int inum;
   1926   1.1       jtk 	int iwc;
   1927   1.1       jtk 
   1928   1.1       jtk 	cg = cgs[cgn];
   1929   1.1       jtk 	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
   1930   1.1       jtk 	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
   1931   1.1       jtk 	cg->cg_cs.cs_ndir = 0;
   1932   1.1       jtk 	cg->cg_cs.cs_nifree = 0;
   1933  1.25       riz 	memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY));
   1934   1.1       jtk 	inum = cgn * newsb->fs_ipg;
   1935   1.1       jtk 	if (cgn == 0) {
   1936   1.1       jtk 		set_bits(cg_inosused(cg, 0), 0, 2);
   1937   1.1       jtk 		iwc = 2;
   1938   1.1       jtk 		inum += 2;
   1939   1.1       jtk 	} else {
   1940   1.1       jtk 		iwc = 0;
   1941   1.1       jtk 	}
   1942   1.1       jtk 	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
   1943  1.25       riz 		switch (DIP(inodes + inum, di_mode) & IFMT) {
   1944   1.1       jtk 		case 0:
   1945   1.1       jtk 			cg->cg_cs.cs_nifree++;
   1946   1.1       jtk 			break;
   1947   1.1       jtk 		case IFDIR:
   1948   1.1       jtk 			cg->cg_cs.cs_ndir++;
   1949   1.1       jtk 			/* fall through */
   1950   1.1       jtk 		default:
   1951   1.1       jtk 			set_bits(cg_inosused(cg, 0), iwc, 1);
   1952   1.1       jtk 			break;
   1953   1.1       jtk 		}
   1954   1.1       jtk 	}
   1955   1.1       jtk 	csums[cgn] = cg->cg_cs;
   1956   1.1       jtk 	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
   1957   1.1       jtk 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
   1958   1.1       jtk 	cgflags[cgn] |= CGF_DIRTY;
   1959   1.1       jtk }
   1960   1.1       jtk /*
   1961   1.1       jtk  * Flush cgs to disk, recomputing anything they're marked as needing.
   1962   1.1       jtk  */
   1963   1.1       jtk static void
   1964   1.1       jtk flush_cgs(void)
   1965   1.1       jtk {
   1966   1.1       jtk 	int i;
   1967   1.1       jtk 
   1968   1.1       jtk 	for (i = 0; i < newsb->fs_ncg; i++) {
   1969   1.1       jtk 		if (cgflags[i] & CGF_BLKMAPS) {
   1970   1.1       jtk 			rescan_blkmaps(i);
   1971   1.1       jtk 		}
   1972   1.1       jtk 		if (cgflags[i] & CGF_INOMAPS) {
   1973   1.1       jtk 			rescan_inomaps(i);
   1974   1.1       jtk 		}
   1975   1.1       jtk 		if (cgflags[i] & CGF_DIRTY) {
   1976   1.1       jtk 			cgs[i]->cg_rotor = 0;
   1977   1.1       jtk 			cgs[i]->cg_frotor = 0;
   1978   1.1       jtk 			cgs[i]->cg_irotor = 0;
   1979  1.25       riz 			if (needswap)
   1980  1.25       riz 				ffs_cg_swap(cgs[i],cgs[i],newsb);
   1981   1.1       jtk 			writeat(fsbtodb(newsb, cgtod(newsb, i)), cgs[i],
   1982   1.1       jtk 			    cgblksz);
   1983   1.1       jtk 		}
   1984   1.1       jtk 	}
   1985  1.25       riz 	if (needswap)
   1986  1.25       riz 		ffs_csum_swap(csums,csums,newsb->fs_cssize);
   1987   1.1       jtk 	writeat(fsbtodb(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
   1988   1.1       jtk }
   1989   1.1       jtk /*
   1990   1.1       jtk  * Write the superblock, both to the main superblock and to each cg's
   1991   1.1       jtk  *  alternative superblock.
   1992   1.1       jtk  */
   1993   1.1       jtk static void
   1994   1.1       jtk write_sbs(void)
   1995   1.1       jtk {
   1996   1.1       jtk 	int i;
   1997   1.1       jtk 
   1998  1.20    mhitch 	if (newsb->fs_magic == FS_UFS1_MAGIC &&
   1999  1.20    mhitch 	    (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
   2000  1.20    mhitch 		newsb->fs_old_time = newsb->fs_time;
   2001  1.20    mhitch 	    	newsb->fs_old_size = newsb->fs_size;
   2002  1.20    mhitch 	    	/* we don't update fs_csaddr */
   2003  1.20    mhitch 	    	newsb->fs_old_dsize = newsb->fs_dsize;
   2004  1.20    mhitch 		newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
   2005  1.20    mhitch 		newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
   2006  1.20    mhitch 		newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
   2007  1.20    mhitch 		newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
   2008  1.20    mhitch 		/* fill fs_old_postbl_start with 256 bytes of 0xff? */
   2009  1.20    mhitch 	}
   2010  1.25       riz 	/* copy newsb back to oldsb, so we can use it for offsets if
   2011  1.25       riz 	   newsb has been swapped for writing to disk */
   2012  1.25       riz 	memcpy(oldsb, newsb, SBLOCKSIZE);
   2013  1.25       riz 	if (needswap)
   2014  1.25       riz 		ffs_sb_swap(newsb,newsb);
   2015  1.10    bouyer 	writeat(where /  DEV_BSIZE, newsb, SBLOCKSIZE);
   2016  1.25       riz 	for (i = 0; i < oldsb->fs_ncg; i++) {
   2017  1.25       riz 		writeat(fsbtodb(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE);
   2018   1.1       jtk 	}
   2019   1.1       jtk }
   2020  1.13      haad 
   2021  1.13      haad static uint32_t
   2022  1.13      haad get_dev_size(char *dev_name)
   2023  1.13      haad {
   2024  1.13      haad 	struct dkwedge_info dkw;
   2025  1.13      haad 	struct partition *pp;
   2026  1.13      haad 	struct disklabel lp;
   2027  1.13      haad 	size_t ptn;
   2028  1.13      haad 
   2029  1.13      haad 	/* Get info about partition/wedge */
   2030  1.13      haad 	if (ioctl(fd, DIOCGWEDGEINFO, &dkw) == -1) {
   2031  1.13      haad 		if (ioctl(fd, DIOCGDINFO, &lp) == -1)
   2032  1.13      haad 			return 0;
   2033  1.13      haad 
   2034  1.13      haad 		ptn = strchr(dev_name, '\0')[-1] - 'a';
   2035  1.13      haad 		if (ptn >= lp.d_npartitions)
   2036  1.13      haad 			return 0;
   2037  1.13      haad 
   2038  1.13      haad 		pp = &lp.d_partitions[ptn];
   2039  1.13      haad 		return pp->p_size;
   2040  1.13      haad 	}
   2041  1.13      haad 
   2042  1.13      haad 	return dkw.dkw_size;
   2043  1.13      haad }
   2044  1.13      haad 
   2045   1.1       jtk /*
   2046   1.1       jtk  * main().
   2047   1.1       jtk  */
   2048   1.1       jtk int
   2049  1.13      haad main(int argc, char **argv)
   2050   1.1       jtk {
   2051  1.13      haad 	int ch;
   2052  1.13      haad 	int ExpertFlag;
   2053  1.13      haad 	int SFlag;
   2054   1.4  christos 	size_t i;
   2055  1.13      haad 
   2056  1.23       riz 	char *special;
   2057  1.13      haad 	char reply[5];
   2058  1.13      haad 
   2059  1.13      haad 	newsize = 0;
   2060  1.13      haad 	ExpertFlag = 0;
   2061  1.13      haad 	SFlag = 0;
   2062  1.13      haad 
   2063  1.13      haad 	while ((ch = getopt(argc, argv, "s:y")) != -1) {
   2064  1.13      haad 		switch (ch) {
   2065  1.13      haad 		case 's':
   2066  1.13      haad 			SFlag = 1;
   2067  1.13      haad 			newsize = (size_t)strtoul(optarg, NULL, 10);
   2068  1.13      haad 			if(newsize < 1) {
   2069  1.13      haad 				usage();
   2070  1.13      haad 			}
   2071  1.13      haad 			break;
   2072  1.13      haad 		case 'y':
   2073  1.13      haad 			ExpertFlag = 1;
   2074  1.13      haad 			break;
   2075  1.13      haad 		case '?':
   2076  1.13      haad 			/* FALLTHROUGH */
   2077  1.13      haad 		default:
   2078  1.13      haad 			usage();
   2079  1.13      haad 		}
   2080  1.13      haad 	}
   2081  1.13      haad 	argc -= optind;
   2082  1.13      haad 	argv += optind;
   2083  1.13      haad 
   2084  1.13      haad 	if (argc != 1) {
   2085  1.13      haad 		usage();
   2086  1.13      haad 	}
   2087  1.13      haad 
   2088  1.23       riz 	special = *argv;
   2089  1.13      haad 
   2090  1.13      haad 	if (ExpertFlag == 0) {
   2091  1.24       wiz 		printf("It's required to manually run fsck on file system "
   2092  1.13      haad 		    "before you can resize it\n\n"
   2093  1.13      haad 		    " Did you run fsck on your disk (Yes/No) ? ");
   2094  1.13      haad 		fgets(reply, (int)sizeof(reply), stdin);
   2095  1.13      haad 		if (strcasecmp(reply, "Yes\n")) {
   2096  1.13      haad 			printf("\n Nothing done \n");
   2097  1.13      haad 			exit(EXIT_SUCCESS);
   2098  1.13      haad 		}
   2099   1.1       jtk 	}
   2100  1.13      haad 
   2101  1.23       riz 	fd = open(special, O_RDWR, 0);
   2102   1.4  christos 	if (fd < 0)
   2103  1.23       riz 		err(EXIT_FAILURE, "Can't open `%s'", special);
   2104   1.1       jtk 	checksmallio();
   2105  1.13      haad 
   2106  1.13      haad 	if (SFlag == 0) {
   2107  1.23       riz 		newsize = get_dev_size(special);
   2108  1.13      haad 		if (newsize == 0)
   2109  1.15       riz 			err(EXIT_FAILURE,
   2110  1.24       wiz 			    "Can't resize file system, newsize not known.");
   2111  1.13      haad 	}
   2112  1.13      haad 
   2113   1.1       jtk 	oldsb = (struct fs *) & sbbuf;
   2114   1.4  christos 	newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
   2115   1.4  christos 	for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
   2116   1.9    bouyer 		readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
   2117  1.23       riz 		switch (oldsb->fs_magic) {
   2118  1.23       riz 		case FS_UFS2_MAGIC:
   2119  1.23       riz 			/* FALLTHROUGH */
   2120  1.23       riz 			is_ufs2 = 1;
   2121  1.23       riz 		case FS_UFS1_MAGIC:
   2122  1.23       riz 			needswap = 0;
   2123  1.23       riz 			break;
   2124  1.23       riz 		case FS_UFS2_MAGIC_SWAPPED:
   2125  1.23       riz  			is_ufs2 = 1;
   2126  1.23       riz 			/* FALLTHROUGH */
   2127  1.23       riz 		case FS_UFS1_MAGIC_SWAPPED:
   2128  1.23       riz 			needswap = 1;
   2129  1.23       riz 			break;
   2130  1.23       riz 		default:
   2131  1.23       riz 			continue;
   2132  1.23       riz 		}
   2133  1.23       riz 		if (!is_ufs2 && where == SBLOCK_UFS2)
   2134  1.16       riz 			continue;
   2135  1.23       riz 		break;
   2136   1.1       jtk 	}
   2137   1.4  christos 	if (where == (off_t)-1)
   2138  1.13      haad 		errx(EXIT_FAILURE, "Bad magic number");
   2139  1.25       riz 	if (needswap)
   2140  1.25       riz 		ffs_sb_swap(oldsb,oldsb);
   2141  1.20    mhitch 	if (oldsb->fs_magic == FS_UFS1_MAGIC &&
   2142  1.20    mhitch 	    (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
   2143  1.20    mhitch 		oldsb->fs_csaddr = oldsb->fs_old_csaddr;
   2144  1.20    mhitch 		oldsb->fs_size = oldsb->fs_old_size;
   2145  1.20    mhitch 		oldsb->fs_dsize = oldsb->fs_old_dsize;
   2146  1.20    mhitch 		oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
   2147  1.20    mhitch 		oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
   2148  1.20    mhitch 		oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
   2149  1.20    mhitch 		oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
   2150  1.20    mhitch 		/* any others? */
   2151  1.20    mhitch 		printf("Resizing with ffsv1 superblock\n");
   2152  1.20    mhitch 	}
   2153  1.25       riz 
   2154   1.1       jtk 	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
   2155   1.1       jtk 	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
   2156   1.1       jtk 	if (oldsb->fs_ipg % INOPB(oldsb)) {
   2157  1.15       riz 		(void)fprintf(stderr, "ipg[%d] %% INOPB[%d] != 0\n",
   2158  1.15       riz 		    (int) oldsb->fs_ipg, (int) INOPB(oldsb));
   2159  1.13      haad 		exit(EXIT_FAILURE);
   2160   1.1       jtk 	}
   2161  1.25       riz 	/* The superblock is bigger than struct fs (there are trailing
   2162  1.25       riz 	 * tables, of non-fixed size); make sure we copy the whole
   2163  1.25       riz 	 * thing.  SBLOCKSIZE may be an over-estimate, but we do this
   2164  1.25       riz 	 * just once, so being generous is cheap. */
   2165  1.25       riz 	memcpy(newsb, oldsb, SBLOCKSIZE);
   2166   1.1       jtk 	loadcgs();
   2167   1.1       jtk 	if (newsize > fsbtodb(oldsb, oldsb->fs_size)) {
   2168   1.1       jtk 		grow();
   2169   1.1       jtk 	} else if (newsize < fsbtodb(oldsb, oldsb->fs_size)) {
   2170  1.25       riz 		if (is_ufs2)
   2171  1.25       riz 			errx(EXIT_FAILURE,"shrinking not supported for ufs2");
   2172   1.1       jtk 		shrink();
   2173   1.1       jtk 	}
   2174   1.1       jtk 	flush_cgs();
   2175   1.1       jtk 	write_sbs();
   2176  1.19       riz 	if (isplainfile())
   2177  1.19       riz 		ftruncate(fd,newsize * DEV_BSIZE);
   2178  1.13      haad 	return 0;
   2179  1.13      haad }
   2180  1.13      haad 
   2181  1.13      haad static void
   2182  1.13      haad usage(void)
   2183  1.13      haad {
   2184  1.13      haad 
   2185  1.25       riz 	(void)fprintf(stderr, "usage: %s [-y] [-s size] special\n",
   2186  1.25       riz 	    getprogname());
   2187  1.13      haad 	exit(EXIT_FAILURE);
   2188   1.1       jtk }
   2189