Home | History | Annotate | Line # | Download | only in resize_ffs
resize_ffs.c revision 1.32.2.3
      1  1.32.2.3      yamt /*	$NetBSD: resize_ffs.c,v 1.32.2.3 2014/05/22 11:37:31 yamt Exp $	*/
      2       1.1       jtk /* From sources sent on February 17, 2003 */
      3       1.1       jtk /*-
      4       1.1       jtk  * As its sole author, I explicitly place this code in the public
      5       1.1       jtk  *  domain.  Anyone may use it for any purpose (though I would
      6       1.1       jtk  *  appreciate credit where it is due).
      7       1.1       jtk  *
      8       1.1       jtk  *					der Mouse
      9       1.1       jtk  *
     10       1.1       jtk  *			       mouse (at) rodents.montreal.qc.ca
     11       1.1       jtk  *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
     12       1.1       jtk  */
     13       1.1       jtk /*
     14       1.3       wiz  * resize_ffs:
     15       1.1       jtk  *
     16      1.24       wiz  * Resize a file system.  Is capable of both growing and shrinking.
     17       1.1       jtk  *
     18      1.24       wiz  * Usage: resize_ffs [-s newsize] [-y] file_system
     19       1.1       jtk  *
     20      1.15       riz  * Example: resize_ffs -s 29574 /dev/rsd1e
     21       1.1       jtk  *
     22       1.1       jtk  * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
     23       1.1       jtk  *  each).
     24       1.1       jtk  *
     25       1.1       jtk  * Note: this currently requires gcc to build, since it is written
     26       1.1       jtk  *  depending on gcc-specific features, notably nested function
     27       1.1       jtk  *  definitions (which in at least a few cases depend on the lexical
     28       1.1       jtk  *  scoping gcc provides, so they can't be trivially moved outside).
     29       1.1       jtk  *
     30       1.5      salo  * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
     31       1.1       jtk  *  one responsible for the "realloccgblk: can't find blk in cyl"
     32       1.1       jtk  *  problem and a more minor one which left fs_dsize wrong when
     33       1.1       jtk  *  shrinking.  (These actually indicate bugs in fsck too - it should
     34       1.1       jtk  *  have caught and fixed them.)
     35       1.1       jtk  *
     36       1.1       jtk  */
     37       1.1       jtk 
     38      1.11     perry #include <sys/cdefs.h>
     39  1.32.2.3      yamt __RCSID("$NetBSD: resize_ffs.c,v 1.32.2.3 2014/05/22 11:37:31 yamt Exp $");
     40      1.29  dholland 
     41      1.13      haad #include <sys/disk.h>
     42      1.13      haad #include <sys/disklabel.h>
     43      1.13      haad #include <sys/dkio.h>
     44      1.13      haad #include <sys/ioctl.h>
     45       1.1       jtk #include <sys/stat.h>
     46       1.1       jtk #include <sys/mman.h>
     47       1.1       jtk #include <sys/param.h>		/* MAXFRAG */
     48       1.1       jtk #include <ufs/ffs/fs.h>
     49      1.25       riz #include <ufs/ffs/ffs_extern.h>
     50       1.1       jtk #include <ufs/ufs/dir.h>
     51       1.1       jtk #include <ufs/ufs/dinode.h>
     52       1.1       jtk #include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */
     53       1.1       jtk 
     54      1.15       riz #include <err.h>
     55      1.15       riz #include <errno.h>
     56      1.15       riz #include <fcntl.h>
     57      1.15       riz #include <stdio.h>
     58      1.15       riz #include <stdlib.h>
     59      1.15       riz #include <strings.h>
     60      1.15       riz #include <unistd.h>
     61      1.15       riz 
     62      1.24       wiz /* new size of file system, in sectors */
     63      1.30  dholland static int64_t newsize;
     64       1.1       jtk 
     65      1.23       riz /* fd open onto disk device or file */
     66       1.1       jtk static int fd;
     67       1.1       jtk 
     68       1.1       jtk /* must we break up big I/O operations - see checksmallio() */
     69       1.1       jtk static int smallio;
     70       1.1       jtk 
     71       1.1       jtk /* size of a cg, in bytes, rounded up to a frag boundary */
     72       1.1       jtk static int cgblksz;
     73       1.1       jtk 
     74       1.4  christos /* possible superblock localtions */
     75       1.4  christos static int search[] = SBLOCKSEARCH;
     76       1.4  christos /* location of the superblock */
     77       1.4  christos static off_t where;
     78       1.4  christos 
     79       1.1       jtk /* Superblocks. */
     80       1.1       jtk static struct fs *oldsb;	/* before we started */
     81       1.1       jtk static struct fs *newsb;	/* copy to work with */
     82       1.1       jtk /* Buffer to hold the above.  Make sure it's aligned correctly. */
     83      1.15       riz static char sbbuf[2 * SBLOCKSIZE]
     84      1.15       riz 	__attribute__((__aligned__(__alignof__(struct fs))));
     85       1.1       jtk 
     86      1.25       riz union dinode {
     87      1.25       riz 	struct ufs1_dinode dp1;
     88      1.25       riz 	struct ufs2_dinode dp2;
     89      1.25       riz };
     90      1.25       riz #define DIP(dp, field)							      \
     91      1.25       riz 	((is_ufs2) ?							      \
     92      1.25       riz 	    (dp)->dp2.field : (dp)->dp1.field)
     93      1.25       riz 
     94      1.25       riz #define DIP_ASSIGN(dp, field, value)					      \
     95      1.25       riz 	do {								      \
     96      1.25       riz 		if (is_ufs2)						      \
     97      1.25       riz 			(dp)->dp2.field = (value);			      \
     98      1.25       riz 		else							      \
     99      1.25       riz 			(dp)->dp1.field = (value);			      \
    100      1.25       riz 	} while (0)
    101      1.25       riz 
    102       1.1       jtk /* a cg's worth of brand new squeaky-clean inodes */
    103       1.4  christos static struct ufs1_dinode *zinodes;
    104       1.1       jtk 
    105       1.1       jtk /* pointers to the in-core cgs, read off disk and possibly modified */
    106       1.1       jtk static struct cg **cgs;
    107       1.1       jtk 
    108       1.1       jtk /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
    109       1.1       jtk static struct csum *csums;
    110       1.1       jtk 
    111       1.1       jtk /* per-cg flags, indexed by cg number */
    112       1.1       jtk static unsigned char *cgflags;
    113       1.1       jtk #define CGF_DIRTY   0x01	/* needs to be written to disk */
    114       1.1       jtk #define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
    115       1.1       jtk #define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */
    116       1.1       jtk 
    117       1.1       jtk /* when shrinking, these two arrays record how we want blocks to move.	 */
    118       1.1       jtk /*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
    119       1.1       jtk /*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
    120       1.1       jtk /*  started out as inode i should end up as inode j.			 */
    121       1.1       jtk static unsigned int *blkmove;
    122       1.1       jtk static unsigned int *inomove;
    123       1.1       jtk 
    124       1.1       jtk /* in-core copies of all inodes in the fs, indexed by inumber */
    125      1.25       riz union dinode *inodes;
    126      1.25       riz 
    127      1.25       riz void *ibuf;	/* ptr to fs block-sized buffer for reading/writing inodes */
    128      1.25       riz 
    129      1.25       riz /* byteswapped inodes */
    130      1.25       riz union dinode *sinodes;
    131       1.1       jtk 
    132       1.1       jtk /* per-inode flags, indexed by inumber */
    133       1.1       jtk static unsigned char *iflags;
    134       1.1       jtk #define IF_DIRTY  0x01		/* needs to be written to disk */
    135       1.1       jtk #define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
    136       1.1       jtk 				 * block of inodes, and applies to the whole
    137       1.1       jtk 				 * block. */
    138       1.1       jtk 
    139      1.15       riz /* resize_ffs works directly on dinodes, adapt blksize() */
    140      1.30  dholland #define dblksize(fs, dip, lbn, filesize) \
    141  1.32.2.3      yamt 	(((lbn) >= UFS_NDADDR || (uint64_t)(filesize) >= ffs_lblktosize(fs, (lbn) + 1)) \
    142      1.25       riz 	    ? (fs)->fs_bsize						       \
    143  1.32.2.3      yamt 	    : (ffs_fragroundup(fs, ffs_blkoff(fs, (filesize)))))
    144       1.4  christos 
    145       1.4  christos 
    146       1.4  christos /*
    147      1.25       riz  * Number of disk sectors per block/fragment
    148      1.28  dholland  */
    149  1.32.2.3      yamt #define NSPB(fs)	(FFS_FSBTODB((fs),1) << (fs)->fs_fragshift)
    150  1.32.2.3      yamt #define NSPF(fs)	(FFS_FSBTODB((fs),1))
    151       1.4  christos 
    152      1.23       riz /* global flags */
    153      1.23       riz int is_ufs2 = 0;
    154      1.23       riz int needswap = 0;
    155      1.23       riz 
    156      1.13      haad static void usage(void) __dead;
    157      1.13      haad 
    158       1.1       jtk /*
    159       1.1       jtk  * See if we need to break up large I/O operations.  This should never
    160       1.1       jtk  *  be needed, but under at least one <version,platform> combination,
    161       1.1       jtk  *  large enough disk transfers to the raw device hang.  So if we're
    162       1.1       jtk  *  talking to a character special device, play it safe; in this case,
    163       1.1       jtk  *  readat() and writeat() break everything up into pieces no larger
    164       1.1       jtk  *  than 8K, doing multiple syscalls for larger operations.
    165       1.1       jtk  */
    166       1.1       jtk static void
    167       1.1       jtk checksmallio(void)
    168       1.1       jtk {
    169       1.1       jtk 	struct stat stb;
    170       1.1       jtk 
    171       1.1       jtk 	fstat(fd, &stb);
    172       1.1       jtk 	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
    173       1.1       jtk }
    174      1.19       riz 
    175      1.19       riz static int
    176      1.19       riz isplainfile(void)
    177      1.19       riz {
    178      1.19       riz 	struct stat stb;
    179      1.19       riz 
    180      1.19       riz 	fstat(fd, &stb);
    181      1.19       riz 	return S_ISREG(stb.st_mode);
    182      1.19       riz }
    183       1.1       jtk /*
    184       1.1       jtk  * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
    185  1.32.2.3      yamt  *  units, ie, after FFS_FSBTODB(); size is in bytes.
    186       1.1       jtk  */
    187       1.1       jtk static void
    188       1.1       jtk readat(off_t blkno, void *buf, int size)
    189       1.1       jtk {
    190       1.1       jtk 	/* Seek to the correct place. */
    191       1.4  christos 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    192      1.15       riz 		err(EXIT_FAILURE, "lseek failed");
    193       1.4  christos 
    194       1.1       jtk 	/* See if we have to break up the transfer... */
    195       1.1       jtk 	if (smallio) {
    196       1.1       jtk 		char *bp;	/* pointer into buf */
    197       1.1       jtk 		int left;	/* bytes left to go */
    198       1.1       jtk 		int n;		/* number to do this time around */
    199       1.1       jtk 		int rv;		/* syscall return value */
    200       1.1       jtk 		bp = buf;
    201       1.1       jtk 		left = size;
    202       1.1       jtk 		while (left > 0) {
    203       1.1       jtk 			n = (left > 8192) ? 8192 : left;
    204       1.1       jtk 			rv = read(fd, bp, n);
    205       1.4  christos 			if (rv < 0)
    206      1.13      haad 				err(EXIT_FAILURE, "read failed");
    207       1.4  christos 			if (rv != n)
    208      1.15       riz 				errx(EXIT_FAILURE,
    209      1.15       riz 				    "read: wanted %d, got %d", n, rv);
    210       1.1       jtk 			bp += n;
    211       1.1       jtk 			left -= n;
    212       1.1       jtk 		}
    213       1.1       jtk 	} else {
    214       1.1       jtk 		int rv;
    215       1.1       jtk 		rv = read(fd, buf, size);
    216       1.4  christos 		if (rv < 0)
    217      1.13      haad 			err(EXIT_FAILURE, "read failed");
    218       1.4  christos 		if (rv != size)
    219      1.25       riz 			errx(EXIT_FAILURE, "read: wanted %d, got %d",
    220      1.25       riz 			    size, rv);
    221       1.1       jtk 	}
    222       1.1       jtk }
    223       1.1       jtk /*
    224       1.1       jtk  * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
    225  1.32.2.3      yamt  *  units, ie, after FFS_FSBTODB(); size is in bytes.
    226       1.1       jtk  */
    227       1.1       jtk static void
    228       1.1       jtk writeat(off_t blkno, const void *buf, int size)
    229       1.1       jtk {
    230       1.1       jtk 	/* Seek to the correct place. */
    231       1.4  christos 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    232      1.13      haad 		err(EXIT_FAILURE, "lseek failed");
    233       1.1       jtk 	/* See if we have to break up the transfer... */
    234       1.1       jtk 	if (smallio) {
    235       1.1       jtk 		const char *bp;	/* pointer into buf */
    236       1.1       jtk 		int left;	/* bytes left to go */
    237       1.1       jtk 		int n;		/* number to do this time around */
    238       1.1       jtk 		int rv;		/* syscall return value */
    239       1.1       jtk 		bp = buf;
    240       1.1       jtk 		left = size;
    241       1.1       jtk 		while (left > 0) {
    242       1.1       jtk 			n = (left > 8192) ? 8192 : left;
    243       1.1       jtk 			rv = write(fd, bp, n);
    244       1.4  christos 			if (rv < 0)
    245      1.13      haad 				err(EXIT_FAILURE, "write failed");
    246       1.4  christos 			if (rv != n)
    247      1.15       riz 				errx(EXIT_FAILURE,
    248      1.15       riz 				    "write: wanted %d, got %d", n, rv);
    249       1.1       jtk 			bp += n;
    250       1.1       jtk 			left -= n;
    251       1.1       jtk 		}
    252       1.1       jtk 	} else {
    253       1.1       jtk 		int rv;
    254       1.1       jtk 		rv = write(fd, buf, size);
    255       1.4  christos 		if (rv < 0)
    256      1.13      haad 			err(EXIT_FAILURE, "write failed");
    257       1.4  christos 		if (rv != size)
    258      1.15       riz 			errx(EXIT_FAILURE,
    259      1.15       riz 			    "write: wanted %d, got %d", size, rv);
    260       1.1       jtk 	}
    261       1.1       jtk }
    262       1.1       jtk /*
    263       1.1       jtk  * Never-fail versions of malloc() and realloc(), and an allocation
    264       1.1       jtk  *  routine (which also never fails) for allocating memory that will
    265       1.1       jtk  *  never be freed until exit.
    266       1.1       jtk  */
    267       1.1       jtk 
    268       1.1       jtk /*
    269       1.1       jtk  * Never-fail malloc.
    270       1.1       jtk  */
    271       1.1       jtk static void *
    272       1.1       jtk nfmalloc(size_t nb, const char *tag)
    273       1.1       jtk {
    274       1.1       jtk 	void *rv;
    275       1.1       jtk 
    276       1.1       jtk 	rv = malloc(nb);
    277       1.1       jtk 	if (rv)
    278       1.1       jtk 		return (rv);
    279      1.13      haad 	err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
    280       1.4  christos 	    (unsigned long int) nb, tag);
    281       1.1       jtk }
    282       1.1       jtk /*
    283       1.1       jtk  * Never-fail realloc.
    284       1.1       jtk  */
    285       1.1       jtk static void *
    286       1.1       jtk nfrealloc(void *blk, size_t nb, const char *tag)
    287       1.1       jtk {
    288       1.1       jtk 	void *rv;
    289       1.1       jtk 
    290       1.1       jtk 	rv = realloc(blk, nb);
    291       1.1       jtk 	if (rv)
    292       1.1       jtk 		return (rv);
    293      1.13      haad 	err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
    294       1.4  christos 	    (unsigned long int) nb, tag);
    295       1.1       jtk }
    296       1.1       jtk /*
    297       1.1       jtk  * Allocate memory that will never be freed or reallocated.  Arguably
    298       1.1       jtk  *  this routine should handle small allocations by chopping up pages,
    299       1.1       jtk  *  but that's not worth the bother; it's not called more than a
    300       1.1       jtk  *  handful of times per run, and if the allocations are that small the
    301       1.1       jtk  *  waste in giving each one its own page is ignorable.
    302       1.1       jtk  */
    303       1.1       jtk static void *
    304       1.1       jtk alloconce(size_t nb, const char *tag)
    305       1.1       jtk {
    306       1.1       jtk 	void *rv;
    307       1.1       jtk 
    308       1.1       jtk 	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
    309       1.1       jtk 	if (rv != MAP_FAILED)
    310       1.1       jtk 		return (rv);
    311      1.13      haad 	err(EXIT_FAILURE, "Can't map %lu bytes for %s",
    312       1.4  christos 	    (unsigned long int) nb, tag);
    313       1.1       jtk }
    314       1.1       jtk /*
    315       1.1       jtk  * Load the cgs and csums off disk.  Also allocates the space to load
    316       1.1       jtk  *  them into and initializes the per-cg flags.
    317       1.1       jtk  */
    318       1.1       jtk static void
    319       1.1       jtk loadcgs(void)
    320       1.1       jtk {
    321       1.1       jtk 	int cg;
    322       1.1       jtk 	char *cgp;
    323       1.1       jtk 
    324       1.1       jtk 	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
    325      1.32  christos 	cgs = nfmalloc(oldsb->fs_ncg * sizeof(*cgs), "cg pointers");
    326       1.1       jtk 	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
    327       1.1       jtk 	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
    328       1.1       jtk 	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
    329       1.1       jtk 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
    330       1.1       jtk 		cgs[cg] = (struct cg *) cgp;
    331  1.32.2.3      yamt 		readat(FFS_FSBTODB(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
    332      1.25       riz 		if (needswap)
    333      1.25       riz 			ffs_cg_swap(cgs[cg],cgs[cg],oldsb);
    334       1.1       jtk 		cgflags[cg] = 0;
    335       1.1       jtk 		cgp += cgblksz;
    336       1.1       jtk 	}
    337  1.32.2.3      yamt 	readat(FFS_FSBTODB(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
    338      1.25       riz 	if (needswap)
    339      1.25       riz 		ffs_csum_swap(csums,csums,oldsb->fs_cssize);
    340       1.1       jtk }
    341       1.1       jtk /*
    342       1.1       jtk  * Set n bits, starting with bit #base, in the bitmap pointed to by
    343       1.1       jtk  *  bitvec (which is assumed to be large enough to include bits base
    344       1.1       jtk  *  through base+n-1).
    345       1.1       jtk  */
    346       1.1       jtk static void
    347       1.1       jtk set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
    348       1.1       jtk {
    349       1.1       jtk 	if (n < 1)
    350       1.1       jtk 		return;		/* nothing to do */
    351       1.1       jtk 	if (base & 7) {		/* partial byte at beginning */
    352       1.1       jtk 		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
    353       1.1       jtk 			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
    354       1.1       jtk 			return;
    355       1.1       jtk 		}
    356       1.1       jtk 		bitvec[base >> 3] |= (~0U) << (base & 7);
    357       1.1       jtk 		n -= 8 - (base & 7);
    358       1.1       jtk 		base = (base & ~7) + 8;
    359       1.1       jtk 	}
    360       1.1       jtk 	if (n >= 8) {		/* do full bytes */
    361       1.1       jtk 		memset(bitvec + (base >> 3), 0xff, n >> 3);
    362       1.1       jtk 		base += n & ~7;
    363       1.1       jtk 		n &= 7;
    364       1.1       jtk 	}
    365       1.1       jtk 	if (n) {		/* partial byte at end */
    366       1.1       jtk 		bitvec[base >> 3] |= ~((~0U) << n);
    367       1.1       jtk 	}
    368       1.1       jtk }
    369       1.1       jtk /*
    370       1.1       jtk  * Clear n bits, starting with bit #base, in the bitmap pointed to by
    371       1.1       jtk  *  bitvec (which is assumed to be large enough to include bits base
    372       1.1       jtk  *  through base+n-1).  Code parallels set_bits().
    373       1.1       jtk  */
    374       1.1       jtk static void
    375       1.1       jtk clr_bits(unsigned char *bitvec, int base, int n)
    376       1.1       jtk {
    377       1.1       jtk 	if (n < 1)
    378       1.1       jtk 		return;
    379       1.1       jtk 	if (base & 7) {
    380       1.1       jtk 		if (n <= 8 - (base & 7)) {
    381       1.1       jtk 			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
    382       1.1       jtk 			return;
    383       1.1       jtk 		}
    384       1.1       jtk 		bitvec[base >> 3] &= ~((~0U) << (base & 7));
    385       1.1       jtk 		n -= 8 - (base & 7);
    386       1.1       jtk 		base = (base & ~7) + 8;
    387       1.1       jtk 	}
    388       1.1       jtk 	if (n >= 8) {
    389      1.25       riz 		memset(bitvec + (base >> 3), 0, n >> 3);
    390       1.1       jtk 		base += n & ~7;
    391       1.1       jtk 		n &= 7;
    392       1.1       jtk 	}
    393       1.1       jtk 	if (n) {
    394       1.1       jtk 		bitvec[base >> 3] &= (~0U) << n;
    395       1.1       jtk 	}
    396       1.1       jtk }
    397       1.1       jtk /*
    398       1.1       jtk  * Test whether bit #bit is set in the bitmap pointed to by bitvec.
    399       1.1       jtk  */
    400      1.13      haad static int
    401       1.1       jtk bit_is_set(unsigned char *bitvec, int bit)
    402       1.1       jtk {
    403       1.1       jtk 	return (bitvec[bit >> 3] & (1 << (bit & 7)));
    404       1.1       jtk }
    405       1.1       jtk /*
    406       1.1       jtk  * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
    407       1.1       jtk  */
    408      1.13      haad static int
    409       1.1       jtk bit_is_clr(unsigned char *bitvec, int bit)
    410       1.1       jtk {
    411       1.1       jtk 	return (!bit_is_set(bitvec, bit));
    412       1.1       jtk }
    413       1.1       jtk /*
    414       1.1       jtk  * Test whether a whole block of bits is set in a bitmap.  This is
    415       1.1       jtk  *  designed for testing (aligned) disk blocks in a bit-per-frag
    416       1.1       jtk  *  bitmap; it has assumptions wired into it based on that, essentially
    417       1.1       jtk  *  that the entire block fits into a single byte.  This returns true
    418       1.1       jtk  *  iff _all_ the bits are set; it is not just the complement of
    419       1.1       jtk  *  blk_is_clr on the same arguments (unless blkfrags==1).
    420       1.1       jtk  */
    421      1.13      haad static int
    422       1.1       jtk blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
    423       1.1       jtk {
    424       1.1       jtk 	unsigned int mask;
    425       1.1       jtk 
    426       1.1       jtk 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    427       1.1       jtk 	return ((bitvec[blkbase >> 3] & mask) == mask);
    428       1.1       jtk }
    429       1.1       jtk /*
    430       1.1       jtk  * Test whether a whole block of bits is clear in a bitmap.  See
    431       1.1       jtk  *  blk_is_set (above) for assumptions.  This returns true iff _all_
    432       1.1       jtk  *  the bits are clear; it is not just the complement of blk_is_set on
    433       1.1       jtk  *  the same arguments (unless blkfrags==1).
    434       1.1       jtk  */
    435      1.13      haad static int
    436       1.1       jtk blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
    437       1.1       jtk {
    438       1.1       jtk 	unsigned int mask;
    439       1.1       jtk 
    440       1.1       jtk 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    441       1.1       jtk 	return ((bitvec[blkbase >> 3] & mask) == 0);
    442       1.1       jtk }
    443       1.1       jtk /*
    444       1.1       jtk  * Initialize a new cg.  Called when growing.  Assumes memory has been
    445       1.1       jtk  *  allocated but not otherwise set up.  This code sets the fields of
    446       1.1       jtk  *  the cg, initializes the bitmaps (and cluster summaries, if
    447       1.1       jtk  *  applicable), updates both per-cylinder summary info and the global
    448       1.1       jtk  *  summary info in newsb; it also writes out new inodes for the cg.
    449       1.1       jtk  *
    450       1.1       jtk  * This code knows it can never be called for cg 0, which makes it a
    451       1.1       jtk  *  bit simpler than it would otherwise be.
    452       1.1       jtk  */
    453       1.1       jtk static void
    454       1.1       jtk initcg(int cgn)
    455       1.1       jtk {
    456       1.1       jtk 	struct cg *cg;		/* The in-core cg, of course */
    457       1.1       jtk 	int base;		/* Disk address of cg base */
    458       1.1       jtk 	int dlow;		/* Size of pre-cg data area */
    459       1.1       jtk 	int dhigh;		/* Offset of post-inode data area, from base */
    460       1.1       jtk 	int dmax;		/* Offset of end of post-inode data area */
    461       1.1       jtk 	int i;			/* Generic loop index */
    462       1.1       jtk 	int n;			/* Generic count */
    463      1.25       riz 	int start;		/* start of cg maps */
    464       1.1       jtk 
    465       1.1       jtk 	cg = cgs[cgn];
    466       1.1       jtk 	/* Place the data areas */
    467       1.1       jtk 	base = cgbase(newsb, cgn);
    468       1.1       jtk 	dlow = cgsblock(newsb, cgn) - base;
    469       1.1       jtk 	dhigh = cgdmin(newsb, cgn) - base;
    470       1.1       jtk 	dmax = newsb->fs_size - base;
    471       1.1       jtk 	if (dmax > newsb->fs_fpg)
    472       1.1       jtk 		dmax = newsb->fs_fpg;
    473      1.25       riz 	start = &cg->cg_space[0] - (unsigned char *) cg;
    474       1.1       jtk 	/*
    475       1.1       jtk          * Clear out the cg - assumes all-0-bytes is the correct way
    476       1.1       jtk          * to initialize fields we don't otherwise touch, which is
    477       1.1       jtk          * perhaps not the right thing to do, but it's what fsck and
    478       1.1       jtk          * mkfs do.
    479       1.1       jtk          */
    480      1.25       riz 	memset(cg, 0, newsb->fs_cgsize);
    481      1.20    mhitch 	if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
    482      1.20    mhitch 		cg->cg_time = newsb->fs_time;
    483       1.1       jtk 	cg->cg_magic = CG_MAGIC;
    484       1.1       jtk 	cg->cg_cgx = cgn;
    485      1.25       riz 	cg->cg_niblk = newsb->fs_ipg;
    486      1.25       riz 	cg->cg_ndblk = dmax;
    487      1.25       riz 
    488      1.25       riz 	if (is_ufs2) {
    489      1.25       riz 		cg->cg_time = newsb->fs_time;
    490  1.32.2.3      yamt 		cg->cg_initediblk = newsb->fs_ipg < 2 * FFS_INOPB(newsb) ?
    491  1.32.2.3      yamt 		    newsb->fs_ipg : 2 * FFS_INOPB(newsb);
    492      1.25       riz 		cg->cg_iusedoff = start;
    493      1.25       riz 	} else {
    494      1.25       riz 		cg->cg_old_time = newsb->fs_time;
    495      1.25       riz 		cg->cg_old_niblk = cg->cg_niblk;
    496      1.25       riz 		cg->cg_niblk = 0;
    497      1.25       riz 		cg->cg_initediblk = 0;
    498      1.28  dholland 
    499      1.28  dholland 
    500      1.25       riz 		cg->cg_old_ncyl = newsb->fs_old_cpg;
    501      1.25       riz 		/* Update the cg_old_ncyl value for the last cylinder. */
    502      1.25       riz 		if (cgn == newsb->fs_ncg - 1) {
    503      1.25       riz 			if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
    504      1.25       riz 				cg->cg_old_ncyl = newsb->fs_old_ncyl %
    505      1.25       riz 				    newsb->fs_old_cpg;
    506      1.25       riz 		}
    507      1.25       riz 
    508      1.25       riz 		/* Set up the bitmap pointers.  We have to be careful
    509      1.25       riz 		 * to lay out the cg _exactly_ the way mkfs and fsck
    510      1.25       riz 		 * do it, since fsck compares the _entire_ cg against
    511      1.25       riz 		 * a recomputed cg, and whines if there is any
    512      1.25       riz 		 * mismatch, including the bitmap offsets. */
    513      1.25       riz 		/* XXX update this comment when fsck is fixed */
    514      1.25       riz 		cg->cg_old_btotoff = start;
    515      1.25       riz 		cg->cg_old_boff = cg->cg_old_btotoff
    516      1.25       riz 		    + (newsb->fs_old_cpg * sizeof(int32_t));
    517      1.25       riz 		cg->cg_iusedoff = cg->cg_old_boff +
    518      1.25       riz 		    (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
    519       1.1       jtk 	}
    520       1.1       jtk 	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
    521       1.1       jtk 	if (newsb->fs_contigsumsize > 0) {
    522       1.1       jtk 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
    523       1.1       jtk 		cg->cg_clustersumoff = cg->cg_freeoff +
    524      1.25       riz 		    howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t);
    525       1.1       jtk 		cg->cg_clustersumoff =
    526       1.1       jtk 		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
    527       1.1       jtk 		cg->cg_clusteroff = cg->cg_clustersumoff +
    528       1.1       jtk 		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
    529       1.1       jtk 		cg->cg_nextfreeoff = cg->cg_clusteroff +
    530  1.32.2.3      yamt 		    howmany(ffs_fragstoblks(newsb,newsb->fs_fpg), NBBY);
    531       1.1       jtk 		n = dlow / newsb->fs_frag;
    532       1.1       jtk 		if (n > 0) {
    533       1.1       jtk 			set_bits(cg_clustersfree(cg, 0), 0, n);
    534       1.1       jtk 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    535       1.1       jtk 			    newsb->fs_contigsumsize : n]++;
    536       1.1       jtk 		}
    537       1.1       jtk 	} else {
    538       1.1       jtk 		cg->cg_nextfreeoff = cg->cg_freeoff +
    539      1.25       riz 		    howmany(newsb->fs_fpg, NBBY);
    540       1.1       jtk 	}
    541       1.1       jtk 	/* Mark the data areas as free; everything else is marked busy by the
    542      1.25       riz 	 * memset() up at the top. */
    543       1.1       jtk 	set_bits(cg_blksfree(cg, 0), 0, dlow);
    544       1.1       jtk 	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
    545       1.1       jtk 	/* Initialize summary info */
    546       1.1       jtk 	cg->cg_cs.cs_ndir = 0;
    547       1.1       jtk 	cg->cg_cs.cs_nifree = newsb->fs_ipg;
    548       1.1       jtk 	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
    549       1.1       jtk 	cg->cg_cs.cs_nffree = 0;
    550      1.28  dholland 
    551      1.25       riz 	/* This is the simplest way of doing this; we perhaps could
    552      1.25       riz 	 * compute the correct cg_blktot()[] and cg_blks()[] values
    553      1.25       riz 	 * other ways, but it would be complicated and hardly seems
    554      1.25       riz 	 * worth the effort.  (The reason there isn't
    555      1.25       riz 	 * frag-at-beginning and frag-at-end code here, like the code
    556      1.25       riz 	 * below for the post-inode data area, is that the pre-sb data
    557      1.25       riz 	 * area always starts at 0, and thus is block-aligned, and
    558      1.25       riz 	 * always ends at the sb, which is block-aligned.) */
    559      1.28  dholland 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
    560      1.25       riz 		for (i = 0; i < dlow; i += newsb->fs_frag) {
    561      1.25       riz 			old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++;
    562      1.25       riz 			old_cg_blks(newsb, cg,
    563      1.25       riz 			    old_cbtocylno(newsb, i),
    564      1.25       riz 			    0)[old_cbtorpos(newsb, i)]++;
    565      1.25       riz 		}
    566       1.1       jtk 
    567       1.1       jtk 	/* Deal with a partial block at the beginning of the post-inode area.
    568       1.1       jtk 	 * I'm not convinced this can happen - I think the inodes are always
    569       1.1       jtk 	 * block-aligned and always an integral number of blocks - but it's
    570       1.1       jtk 	 * cheap to do the right thing just in case. */
    571       1.1       jtk 	if (dhigh % newsb->fs_frag) {
    572       1.1       jtk 		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
    573       1.1       jtk 		cg->cg_frsum[n]++;
    574       1.1       jtk 		cg->cg_cs.cs_nffree += n;
    575       1.1       jtk 		dhigh += n;
    576       1.1       jtk 	}
    577       1.1       jtk 	n = (dmax - dhigh) / newsb->fs_frag;
    578       1.1       jtk 	/* We have n full-size blocks in the post-inode data area. */
    579       1.1       jtk 	if (n > 0) {
    580       1.1       jtk 		cg->cg_cs.cs_nbfree += n;
    581       1.1       jtk 		if (newsb->fs_contigsumsize > 0) {
    582       1.1       jtk 			i = dhigh / newsb->fs_frag;
    583       1.1       jtk 			set_bits(cg_clustersfree(cg, 0), i, n);
    584       1.1       jtk 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    585       1.1       jtk 			    newsb->fs_contigsumsize : n]++;
    586       1.1       jtk 		}
    587      1.25       riz 		if (is_ufs2 == 0)
    588      1.25       riz 			for (i = n; i > 0; i--) {
    589      1.25       riz 				old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
    590      1.25       riz 					    dhigh)]++;
    591      1.25       riz 				old_cg_blks(newsb, cg,
    592      1.25       riz 				    old_cbtocylno(newsb, dhigh),
    593      1.25       riz 				    0)[old_cbtorpos(newsb,
    594      1.25       riz 					    dhigh)]++;
    595      1.25       riz 				dhigh += newsb->fs_frag;
    596      1.25       riz 			}
    597      1.25       riz 	}
    598      1.25       riz 	if (is_ufs2 == 0) {
    599      1.25       riz 		/* Deal with any leftover frag at the end of the cg. */
    600      1.25       riz 		i = dmax - dhigh;
    601      1.25       riz 		if (i) {
    602      1.25       riz 			cg->cg_frsum[i]++;
    603      1.25       riz 			cg->cg_cs.cs_nffree += i;
    604       1.1       jtk 		}
    605       1.1       jtk 	}
    606       1.1       jtk 	/* Update the csum info. */
    607       1.1       jtk 	csums[cgn] = cg->cg_cs;
    608       1.1       jtk 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
    609       1.1       jtk 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
    610       1.1       jtk 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
    611      1.25       riz 	if (is_ufs2 == 0)
    612      1.25       riz 		/* Write out the cleared inodes. */
    613  1.32.2.3      yamt 		writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes,
    614      1.32  christos 		    newsb->fs_ipg * sizeof(*zinodes));
    615       1.1       jtk 	/* Dirty the cg. */
    616       1.1       jtk 	cgflags[cgn] |= CGF_DIRTY;
    617       1.1       jtk }
    618       1.1       jtk /*
    619       1.1       jtk  * Find free space, at least nfrags consecutive frags of it.  Pays no
    620       1.1       jtk  *  attention to block boundaries, but refuses to straddle cg
    621       1.1       jtk  *  boundaries, even if the disk blocks involved are in fact
    622       1.1       jtk  *  consecutive.  Return value is the frag number of the first frag of
    623       1.1       jtk  *  the block, or -1 if no space was found.  Uses newsb for sb values,
    624       1.1       jtk  *  and assumes the cgs[] structures correctly describe the area to be
    625       1.1       jtk  *  searched.
    626       1.1       jtk  *
    627       1.1       jtk  * XXX is there a bug lurking in the ignoring of block boundaries by
    628       1.1       jtk  *  the routine used by fragmove() in evict_data()?  Can an end-of-file
    629       1.1       jtk  *  frag legally straddle a block boundary?  If not, this should be
    630       1.1       jtk  *  cloned and fixed to stop at block boundaries for that use.  The
    631       1.1       jtk  *  current one may still be needed for csum info motion, in case that
    632       1.1       jtk  *  takes up more than a whole block (is the csum info allowed to begin
    633       1.1       jtk  *  partway through a block and continue into the following block?).
    634       1.1       jtk  *
    635      1.24       wiz  * If we wrap off the end of the file system back to the beginning, we
    636      1.24       wiz  *  can end up searching the end of the file system twice.  I ignore
    637       1.1       jtk  *  this inefficiency, since if that happens we're going to croak with
    638       1.1       jtk  *  a no-space error anyway, so it happens at most once.
    639       1.1       jtk  */
    640       1.1       jtk static int
    641       1.1       jtk find_freespace(unsigned int nfrags)
    642       1.1       jtk {
    643       1.1       jtk 	static int hand = 0;	/* hand rotates through all frags in the fs */
    644       1.1       jtk 	int cgsize;		/* size of the cg hand currently points into */
    645       1.1       jtk 	int cgn;		/* number of cg hand currently points into */
    646       1.1       jtk 	int fwc;		/* frag-within-cg number of frag hand points
    647       1.1       jtk 				 * to */
    648      1.30  dholland 	unsigned int run;	/* length of run of free frags seen so far */
    649       1.1       jtk 	int secondpass;		/* have we wrapped from end of fs to
    650       1.1       jtk 				 * beginning? */
    651       1.1       jtk 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    652       1.1       jtk 
    653       1.1       jtk 	cgn = dtog(newsb, hand);
    654       1.1       jtk 	fwc = dtogd(newsb, hand);
    655       1.1       jtk 	secondpass = (hand == 0);
    656       1.1       jtk 	run = 0;
    657       1.1       jtk 	bits = cg_blksfree(cgs[cgn], 0);
    658       1.1       jtk 	cgsize = cgs[cgn]->cg_ndblk;
    659       1.1       jtk 	while (1) {
    660       1.1       jtk 		if (bit_is_set(bits, fwc)) {
    661       1.1       jtk 			run++;
    662       1.1       jtk 			if (run >= nfrags)
    663       1.1       jtk 				return (hand + 1 - run);
    664       1.1       jtk 		} else {
    665       1.1       jtk 			run = 0;
    666       1.1       jtk 		}
    667       1.1       jtk 		hand++;
    668       1.1       jtk 		fwc++;
    669       1.1       jtk 		if (fwc >= cgsize) {
    670       1.1       jtk 			fwc = 0;
    671       1.1       jtk 			cgn++;
    672       1.1       jtk 			if (cgn >= newsb->fs_ncg) {
    673       1.1       jtk 				hand = 0;
    674       1.1       jtk 				if (secondpass)
    675       1.1       jtk 					return (-1);
    676       1.1       jtk 				secondpass = 1;
    677       1.1       jtk 				cgn = 0;
    678       1.1       jtk 			}
    679       1.1       jtk 			bits = cg_blksfree(cgs[cgn], 0);
    680       1.1       jtk 			cgsize = cgs[cgn]->cg_ndblk;
    681       1.1       jtk 			run = 0;
    682       1.1       jtk 		}
    683       1.1       jtk 	}
    684       1.1       jtk }
    685       1.1       jtk /*
    686       1.1       jtk  * Find a free block of disk space.  Finds an entire block of frags,
    687       1.1       jtk  *  all of which are free.  Return value is the frag number of the
    688       1.1       jtk  *  first frag of the block, or -1 if no space was found.  Uses newsb
    689       1.1       jtk  *  for sb values, and assumes the cgs[] structures correctly describe
    690       1.1       jtk  *  the area to be searched.
    691       1.1       jtk  *
    692       1.1       jtk  * See find_freespace(), above, for remarks about hand wrapping around.
    693       1.1       jtk  */
    694       1.1       jtk static int
    695       1.1       jtk find_freeblock(void)
    696       1.1       jtk {
    697       1.1       jtk 	static int hand = 0;	/* hand rotates through all frags in fs */
    698       1.1       jtk 	int cgn;		/* cg number of cg hand points into */
    699       1.1       jtk 	int fwc;		/* frag-within-cg number of frag hand points
    700       1.1       jtk 				 * to */
    701       1.1       jtk 	int cgsize;		/* size of cg hand points into */
    702       1.1       jtk 	int secondpass;		/* have we wrapped from end to beginning? */
    703       1.1       jtk 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    704       1.1       jtk 
    705       1.1       jtk 	cgn = dtog(newsb, hand);
    706       1.1       jtk 	fwc = dtogd(newsb, hand);
    707       1.1       jtk 	secondpass = (hand == 0);
    708       1.1       jtk 	bits = cg_blksfree(cgs[cgn], 0);
    709  1.32.2.3      yamt 	cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
    710       1.1       jtk 	while (1) {
    711       1.1       jtk 		if (blk_is_set(bits, fwc, newsb->fs_frag))
    712       1.1       jtk 			return (hand);
    713       1.1       jtk 		fwc += newsb->fs_frag;
    714       1.1       jtk 		hand += newsb->fs_frag;
    715       1.1       jtk 		if (fwc >= cgsize) {
    716       1.1       jtk 			fwc = 0;
    717       1.1       jtk 			cgn++;
    718       1.1       jtk 			if (cgn >= newsb->fs_ncg) {
    719       1.1       jtk 				hand = 0;
    720       1.1       jtk 				if (secondpass)
    721       1.1       jtk 					return (-1);
    722       1.1       jtk 				secondpass = 1;
    723       1.1       jtk 				cgn = 0;
    724       1.1       jtk 			}
    725       1.1       jtk 			bits = cg_blksfree(cgs[cgn], 0);
    726  1.32.2.3      yamt 			cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
    727       1.1       jtk 		}
    728       1.1       jtk 	}
    729       1.1       jtk }
    730       1.1       jtk /*
    731       1.1       jtk  * Find a free inode, returning its inumber or -1 if none was found.
    732       1.1       jtk  *  Uses newsb for sb values, and assumes the cgs[] structures
    733       1.1       jtk  *  correctly describe the area to be searched.
    734       1.1       jtk  *
    735       1.1       jtk  * See find_freespace(), above, for remarks about hand wrapping around.
    736       1.1       jtk  */
    737       1.1       jtk static int
    738       1.1       jtk find_freeinode(void)
    739       1.1       jtk {
    740       1.1       jtk 	static int hand = 0;	/* hand rotates through all inodes in fs */
    741       1.1       jtk 	int cgn;		/* cg number of cg hand points into */
    742       1.1       jtk 	int iwc;		/* inode-within-cg number of inode hand points
    743       1.1       jtk 				 * to */
    744       1.1       jtk 	int secondpass;		/* have we wrapped from end to beginning? */
    745       1.1       jtk 	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */
    746       1.1       jtk 
    747       1.1       jtk 	cgn = hand / newsb->fs_ipg;
    748       1.1       jtk 	iwc = hand % newsb->fs_ipg;
    749       1.1       jtk 	secondpass = (hand == 0);
    750       1.1       jtk 	bits = cg_inosused(cgs[cgn], 0);
    751       1.1       jtk 	while (1) {
    752       1.1       jtk 		if (bit_is_clr(bits, iwc))
    753       1.1       jtk 			return (hand);
    754       1.1       jtk 		hand++;
    755       1.1       jtk 		iwc++;
    756       1.1       jtk 		if (iwc >= newsb->fs_ipg) {
    757       1.1       jtk 			iwc = 0;
    758       1.1       jtk 			cgn++;
    759       1.1       jtk 			if (cgn >= newsb->fs_ncg) {
    760       1.1       jtk 				hand = 0;
    761       1.1       jtk 				if (secondpass)
    762       1.1       jtk 					return (-1);
    763       1.1       jtk 				secondpass = 1;
    764       1.1       jtk 				cgn = 0;
    765       1.1       jtk 			}
    766       1.1       jtk 			bits = cg_inosused(cgs[cgn], 0);
    767       1.1       jtk 		}
    768       1.1       jtk 	}
    769       1.1       jtk }
    770       1.1       jtk /*
    771       1.1       jtk  * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
    772       1.1       jtk  *  for the appropriate cg, and marks the cg as dirty.
    773       1.1       jtk  */
    774       1.1       jtk static void
    775       1.1       jtk free_frag(int fno)
    776       1.1       jtk {
    777       1.1       jtk 	int cgn;
    778       1.1       jtk 
    779       1.1       jtk 	cgn = dtog(newsb, fno);
    780       1.1       jtk 	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    781       1.1       jtk 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    782       1.1       jtk }
    783       1.1       jtk /*
    784       1.1       jtk  * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
    785       1.1       jtk  *  for the appropriate cg, and marks the cg as dirty.
    786       1.1       jtk  */
    787       1.1       jtk static void
    788       1.1       jtk alloc_frag(int fno)
    789       1.1       jtk {
    790       1.1       jtk 	int cgn;
    791       1.1       jtk 
    792       1.1       jtk 	cgn = dtog(newsb, fno);
    793       1.1       jtk 	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    794       1.1       jtk 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    795       1.1       jtk }
    796       1.1       jtk /*
    797       1.1       jtk  * Fix up the csum array.  If shrinking, this involves freeing zero or
    798       1.1       jtk  *  more frags; if growing, it involves allocating them, or if the
    799       1.1       jtk  *  frags being grown into aren't free, finding space elsewhere for the
    800       1.1       jtk  *  csum info.  (If the number of occupied frags doesn't change,
    801       1.1       jtk  *  nothing happens here.)
    802       1.1       jtk  */
    803       1.1       jtk static void
    804       1.1       jtk csum_fixup(void)
    805       1.1       jtk {
    806       1.1       jtk 	int nold;		/* # frags in old csum info */
    807       1.1       jtk 	int ntot;		/* # frags in new csum info */
    808       1.1       jtk 	int nnew;		/* ntot-nold */
    809       1.1       jtk 	int newloc;		/* new location for csum info, if necessary */
    810       1.1       jtk 	int i;			/* generic loop index */
    811       1.1       jtk 	int j;			/* generic loop index */
    812       1.1       jtk 	int f;			/* "from" frag number, if moving */
    813       1.1       jtk 	int t;			/* "to" frag number, if moving */
    814       1.1       jtk 	int cgn;		/* cg number, used when shrinking */
    815       1.1       jtk 
    816       1.1       jtk 	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
    817       1.1       jtk 	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
    818       1.1       jtk 	nnew = ntot - nold;
    819       1.1       jtk 	/* First, if there's no change in frag counts, it's easy. */
    820       1.1       jtk 	if (nnew == 0)
    821       1.1       jtk 		return;
    822       1.1       jtk 	/* Next, if we're shrinking, it's almost as easy.  Just free up any
    823       1.1       jtk 	 * frags in the old area we no longer need. */
    824       1.1       jtk 	if (nnew < 0) {
    825       1.1       jtk 		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
    826       1.1       jtk 		    j < 0;
    827       1.1       jtk 		    i--, j++) {
    828       1.1       jtk 			free_frag(i);
    829       1.1       jtk 		}
    830       1.1       jtk 		return;
    831       1.1       jtk 	}
    832       1.1       jtk 	/* We must be growing.  Check to see that the new csum area fits
    833      1.24       wiz 	 * within the file system.  I think this can never happen, since for
    834       1.1       jtk 	 * the csum area to grow, we must be adding at least one cg, so the
    835      1.24       wiz 	 * old csum area can't be this close to the end of the new file system.
    836       1.1       jtk 	 * But it's a cheap check. */
    837       1.1       jtk 	/* XXX what if csum info is at end of cg and grows into next cg, what
    838       1.1       jtk 	 * if it spills over onto the next cg's backup superblock?  Can this
    839       1.1       jtk 	 * happen? */
    840       1.1       jtk 	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
    841       1.1       jtk 		/* Okay, it fits - now,  see if the space we want is free. */
    842       1.1       jtk 		for ((i = newsb->fs_csaddr + nold), (j = nnew);
    843       1.1       jtk 		    j > 0;
    844       1.1       jtk 		    i++, j--) {
    845       1.1       jtk 			cgn = dtog(newsb, i);
    846       1.1       jtk 			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
    847       1.1       jtk 				dtogd(newsb, i)))
    848       1.1       jtk 				break;
    849       1.1       jtk 		}
    850       1.1       jtk 		if (j <= 0) {
    851       1.1       jtk 			/* Win win - all the frags we want are free. Allocate
    852       1.1       jtk 			 * 'em and we're all done.  */
    853      1.25       riz 			for ((i = newsb->fs_csaddr + ntot - nnew),
    854      1.25       riz 				 (j = nnew); j > 0; i++, j--) {
    855       1.1       jtk 				alloc_frag(i);
    856       1.1       jtk 			}
    857       1.1       jtk 			return;
    858       1.1       jtk 		}
    859       1.1       jtk 	}
    860       1.1       jtk 	/* We have to move the csum info, sigh.  Look for new space, free old
    861       1.1       jtk 	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
    862       1.1       jtk 	 * on disk at this point; the csum info will be written to the
    863       1.1       jtk 	 * then-current fs_csaddr as part of the final flush. */
    864       1.1       jtk 	newloc = find_freespace(ntot);
    865      1.32  christos 	if (newloc < 0)
    866      1.32  christos 		errx(EXIT_FAILURE, "Sorry, no space available for new csums");
    867       1.1       jtk 	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
    868       1.1       jtk 		if (i < nold) {
    869       1.1       jtk 			free_frag(f);
    870       1.1       jtk 		}
    871       1.1       jtk 		alloc_frag(t);
    872       1.1       jtk 	}
    873       1.1       jtk 	newsb->fs_csaddr = newloc;
    874       1.1       jtk }
    875       1.1       jtk /*
    876       1.1       jtk  * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
    877       1.1       jtk  *  data blocks in that cg to the total.
    878       1.1       jtk  */
    879       1.1       jtk static void
    880       1.1       jtk recompute_fs_dsize(void)
    881       1.1       jtk {
    882       1.1       jtk 	int i;
    883       1.1       jtk 
    884       1.1       jtk 	newsb->fs_dsize = 0;
    885       1.1       jtk 	for (i = 0; i < newsb->fs_ncg; i++) {
    886       1.1       jtk 		int dlow;	/* size of before-sb data area */
    887       1.1       jtk 		int dhigh;	/* offset of post-inode data area */
    888       1.1       jtk 		int dmax;	/* total size of cg */
    889       1.1       jtk 		int base;	/* base of cg, since cgsblock() etc add it in */
    890       1.1       jtk 		base = cgbase(newsb, i);
    891       1.1       jtk 		dlow = cgsblock(newsb, i) - base;
    892       1.1       jtk 		dhigh = cgdmin(newsb, i) - base;
    893       1.1       jtk 		dmax = newsb->fs_size - base;
    894       1.1       jtk 		if (dmax > newsb->fs_fpg)
    895       1.1       jtk 			dmax = newsb->fs_fpg;
    896       1.1       jtk 		newsb->fs_dsize += dlow + dmax - dhigh;
    897       1.1       jtk 	}
    898       1.1       jtk 	/* Space in cg 0 before cgsblock is boot area, not free space! */
    899       1.1       jtk 	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
    900       1.1       jtk 	/* And of course the csum info takes up space. */
    901       1.1       jtk 	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
    902       1.1       jtk }
    903       1.1       jtk /*
    904       1.1       jtk  * Return the current time.  We call this and assign, rather than
    905       1.1       jtk  *  calling time() directly, as insulation against OSes where fs_time
    906       1.1       jtk  *  is not a time_t.
    907       1.1       jtk  */
    908       1.1       jtk static time_t
    909       1.1       jtk timestamp(void)
    910       1.1       jtk {
    911       1.1       jtk 	time_t t;
    912       1.1       jtk 
    913       1.1       jtk 	time(&t);
    914       1.1       jtk 	return (t);
    915       1.1       jtk }
    916       1.1       jtk /*
    917      1.24       wiz  * Grow the file system.
    918       1.1       jtk  */
    919       1.1       jtk static void
    920       1.1       jtk grow(void)
    921       1.1       jtk {
    922       1.1       jtk 	int i;
    923       1.1       jtk 
    924       1.1       jtk 	/* Update the timestamp. */
    925       1.1       jtk 	newsb->fs_time = timestamp();
    926       1.1       jtk 	/* Allocate and clear the new-inode area, in case we add any cgs. */
    927      1.32  christos 	zinodes = alloconce(newsb->fs_ipg * sizeof(*zinodes), "zeroed inodes");
    928      1.32  christos 	memset(zinodes, 0, newsb->fs_ipg * sizeof(*zinodes));
    929       1.1       jtk 	/* Update the size. */
    930  1.32.2.3      yamt 	newsb->fs_size = FFS_DBTOFSB(newsb, newsize);
    931       1.1       jtk 	/* Did we actually not grow?  (This can happen if newsize is less than
    932       1.1       jtk 	 * a frag larger than the old size - unlikely, but no excuse to
    933       1.1       jtk 	 * misbehave if it happens.) */
    934      1.13      haad 	if (newsb->fs_size == oldsb->fs_size) {
    935      1.32  christos 		printf("New fs size %"PRIu64" = old fs size %"PRIu64
    936      1.15       riz 		    ", not growing.\n", newsb->fs_size, oldsb->fs_size);
    937       1.1       jtk 		return;
    938      1.13      haad 	}
    939       1.1       jtk 	/* Check that the new last sector (frag, actually) is writable.  Since
    940       1.1       jtk 	 * it's at least one frag larger than it used to be, we know we aren't
    941       1.1       jtk 	 * overwriting anything important by this.  (The choice of sbbuf as
    942       1.1       jtk 	 * what to write is irrelevant; it's just something handy that's known
    943       1.1       jtk 	 * to be at least one frag in size.) */
    944  1.32.2.3      yamt 	writeat(FFS_FSBTODB(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
    945      1.25       riz 	if (is_ufs2)
    946      1.25       riz 		newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
    947      1.25       riz 	else {
    948      1.25       riz 		/* Update fs_old_ncyl and fs_ncg. */
    949      1.25       riz 		newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
    950      1.25       riz 		    newsb->fs_old_spc);
    951      1.25       riz 		newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
    952      1.25       riz 	}
    953      1.28  dholland 
    954       1.1       jtk 	/* Does the last cg end before the end of its inode area? There is no
    955       1.1       jtk 	 * reason why this couldn't be handled, but it would complicate a lot
    956      1.24       wiz 	 * of code (in all file system code - fsck, kernel, etc) because of the
    957       1.1       jtk 	 * potential partial inode area, and the gain in space would be
    958       1.1       jtk 	 * minimal, at most the pre-sb data area. */
    959       1.1       jtk 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
    960       1.1       jtk 		newsb->fs_ncg--;
    961       1.4  christos 		newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
    962      1.15       riz 		newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc)
    963      1.15       riz 		    / NSPF(newsb);
    964       1.1       jtk 		printf("Warning: last cylinder group is too small;\n");
    965       1.1       jtk 		printf("    dropping it.  New size = %lu.\n",
    966  1.32.2.3      yamt 		    (unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size));
    967       1.1       jtk 	}
    968       1.1       jtk 	/* Find out how big the csum area is, and realloc csums if bigger. */
    969  1.32.2.3      yamt 	newsb->fs_cssize = ffs_fragroundup(newsb,
    970       1.1       jtk 	    newsb->fs_ncg * sizeof(struct csum));
    971       1.1       jtk 	if (newsb->fs_cssize > oldsb->fs_cssize)
    972       1.1       jtk 		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
    973      1.25       riz 	/* If we're adding any cgs, realloc structures and set up the new
    974      1.25       riz 	   cgs. */
    975       1.1       jtk 	if (newsb->fs_ncg > oldsb->fs_ncg) {
    976       1.1       jtk 		char *cgp;
    977      1.32  christos 		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(*cgs),
    978       1.1       jtk                                 "cg pointers");
    979       1.1       jtk 		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
    980      1.25       riz 		memset(cgflags + oldsb->fs_ncg, 0,
    981      1.25       riz 		    newsb->fs_ncg - oldsb->fs_ncg);
    982       1.1       jtk 		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
    983       1.1       jtk                                 "cgs");
    984       1.1       jtk 		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
    985       1.1       jtk 			cgs[i] = (struct cg *) cgp;
    986       1.1       jtk 			initcg(i);
    987       1.1       jtk 			cgp += cgblksz;
    988       1.1       jtk 		}
    989       1.4  christos 		cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
    990       1.1       jtk 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
    991       1.1       jtk 	}
    992       1.1       jtk 	/* If the old fs ended partway through a cg, we have to update the old
    993       1.1       jtk 	 * last cg (though possibly not to a full cg!). */
    994       1.1       jtk 	if (oldsb->fs_size % oldsb->fs_fpg) {
    995       1.1       jtk 		struct cg *cg;
    996       1.1       jtk 		int newcgsize;
    997       1.1       jtk 		int prevcgtop;
    998       1.1       jtk 		int oldcgsize;
    999       1.1       jtk 		cg = cgs[oldsb->fs_ncg - 1];
   1000       1.1       jtk 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
   1001       1.1       jtk 		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
   1002       1.1       jtk 		newcgsize = newsb->fs_size - prevcgtop;
   1003       1.1       jtk 		if (newcgsize > newsb->fs_fpg)
   1004       1.1       jtk 			newcgsize = newsb->fs_fpg;
   1005       1.1       jtk 		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
   1006       1.1       jtk 		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
   1007      1.20    mhitch 		cg->cg_old_ncyl = oldsb->fs_old_cpg;
   1008       1.1       jtk 		cg->cg_ndblk = newcgsize;
   1009       1.1       jtk 	}
   1010       1.1       jtk 	/* Fix up the csum info, if necessary. */
   1011       1.1       jtk 	csum_fixup();
   1012       1.1       jtk 	/* Make fs_dsize match the new reality. */
   1013       1.1       jtk 	recompute_fs_dsize();
   1014       1.1       jtk }
   1015       1.1       jtk /*
   1016       1.1       jtk  * Call (*fn)() for each inode, passing the inode and its inumber.  The
   1017       1.1       jtk  *  number of cylinder groups is pased in, so this can be used to map
   1018      1.24       wiz  *  over either the old or the new file system's set of inodes.
   1019       1.1       jtk  */
   1020       1.1       jtk static void
   1021      1.25       riz map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg),
   1022      1.15       riz 	   int ncg, void *cbarg) {
   1023       1.1       jtk 	int i;
   1024       1.1       jtk 	int ni;
   1025       1.1       jtk 
   1026       1.1       jtk 	ni = oldsb->fs_ipg * ncg;
   1027       1.1       jtk 	for (i = 0; i < ni; i++)
   1028       1.1       jtk 		(*fn) (inodes + i, i, cbarg);
   1029       1.1       jtk }
   1030       1.1       jtk /* Values for the third argument to the map function for
   1031       1.1       jtk  * map_inode_data_blocks.  MDB_DATA indicates the block is contains
   1032       1.1       jtk  * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
   1033       1.1       jtk  * indirect block.  The MDB_INDIR_PRE call is made before the indirect
   1034       1.1       jtk  * block pointers are followed and the pointed-to blocks scanned,
   1035       1.1       jtk  * MDB_INDIR_POST after.
   1036       1.1       jtk  */
   1037       1.1       jtk #define MDB_DATA       1
   1038       1.1       jtk #define MDB_INDIR_PRE  2
   1039       1.1       jtk #define MDB_INDIR_POST 3
   1040       1.1       jtk 
   1041      1.30  dholland typedef void (*mark_callback_t) (off_t blocknum, unsigned int nfrags,
   1042      1.15       riz 				 unsigned int blksize, int opcode);
   1043       1.1       jtk 
   1044       1.1       jtk /* Helper function - handles a data block.  Calls the callback
   1045       1.1       jtk  * function and returns number of bytes occupied in file (actually,
   1046       1.1       jtk  * rounded up to a frag boundary).  The name is historical.  */
   1047       1.1       jtk static int
   1048      1.30  dholland markblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o)
   1049       1.1       jtk {
   1050       1.1       jtk 	int sz;
   1051       1.1       jtk 	int nb;
   1052      1.30  dholland 	off_t filesize;
   1053      1.26  dholland 
   1054      1.30  dholland 	filesize = DIP(di,di_size);
   1055      1.30  dholland 	if (o >= filesize)
   1056       1.1       jtk 		return (0);
   1057  1.32.2.3      yamt 	sz = dblksize(newsb, di, ffs_lblkno(newsb, o), filesize);
   1058      1.30  dholland 	nb = (sz > filesize - o) ? filesize - o : sz;
   1059       1.1       jtk 	if (bn)
   1060  1.32.2.3      yamt 		(*fn) (bn, ffs_numfrags(newsb, sz), nb, MDB_DATA);
   1061       1.1       jtk 	return (sz);
   1062       1.1       jtk }
   1063       1.1       jtk /* Helper function - handles an indirect block.  Makes the
   1064       1.1       jtk  * MDB_INDIR_PRE callback for the indirect block, loops over the
   1065       1.1       jtk  * pointers and recurses, and makes the MDB_INDIR_POST callback.
   1066       1.1       jtk  * Returns the number of bytes occupied in file, as does markblk().
   1067       1.1       jtk  * For the sake of update_for_data_move(), we read the indirect block
   1068       1.1       jtk  * _after_ making the _PRE callback.  The name is historical.  */
   1069       1.1       jtk static int
   1070      1.30  dholland markiblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o, int lev)
   1071       1.1       jtk {
   1072       1.1       jtk 	int i;
   1073       1.1       jtk 	int j;
   1074      1.30  dholland 	unsigned k;
   1075       1.1       jtk 	int tot;
   1076       1.2    martin 	static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
   1077       1.2    martin 	static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
   1078       1.2    martin 	static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
   1079       1.2    martin 	static int32_t *indirblks[3] = {
   1080       1.1       jtk 		&indirblk1[0], &indirblk2[0], &indirblk3[0]
   1081       1.1       jtk 	};
   1082      1.26  dholland 
   1083       1.1       jtk 	if (lev < 0)
   1084       1.1       jtk 		return (markblk(fn, di, bn, o));
   1085       1.1       jtk 	if (bn == 0) {
   1086       1.1       jtk 		for (i = newsb->fs_bsize;
   1087       1.1       jtk 		    lev >= 0;
   1088  1.32.2.3      yamt 		    i *= FFS_NINDIR(newsb), lev--);
   1089       1.1       jtk 		return (i);
   1090       1.1       jtk 	}
   1091       1.1       jtk 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
   1092  1.32.2.3      yamt 	readat(FFS_FSBTODB(newsb, bn), indirblks[lev], newsb->fs_bsize);
   1093      1.25       riz 	if (needswap)
   1094      1.30  dholland 		for (k = 0; k < howmany(MAXBSIZE, sizeof(int32_t)); k++)
   1095      1.30  dholland 			indirblks[lev][k] = bswap32(indirblks[lev][k]);
   1096       1.1       jtk 	tot = 0;
   1097  1.32.2.3      yamt 	for (i = 0; i < FFS_NINDIR(newsb); i++) {
   1098       1.1       jtk 		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
   1099       1.1       jtk 		if (j == 0)
   1100       1.1       jtk 			break;
   1101       1.1       jtk 		o += j;
   1102       1.1       jtk 		tot += j;
   1103       1.1       jtk 	}
   1104       1.1       jtk 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
   1105       1.1       jtk 	return (tot);
   1106       1.1       jtk }
   1107       1.1       jtk 
   1108       1.1       jtk 
   1109       1.1       jtk /*
   1110       1.1       jtk  * Call (*fn)() for each data block for an inode.  This routine assumes
   1111       1.1       jtk  *  the inode is known to be of a type that has data blocks (file,
   1112       1.1       jtk  *  directory, or non-fast symlink).  The called function is:
   1113       1.1       jtk  *
   1114       1.1       jtk  * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
   1115       1.1       jtk  *
   1116       1.1       jtk  *  where blkno is the frag number, nf is the number of frags starting
   1117       1.1       jtk  *  at blkno (always <= fs_frag), nb is the number of bytes that belong
   1118       1.1       jtk  *  to the file (usually nf*fs_frag, often less for the last block/frag
   1119       1.1       jtk  *  of a file).
   1120       1.1       jtk  */
   1121       1.1       jtk static void
   1122      1.25       riz map_inode_data_blocks(union dinode * di, mark_callback_t fn)
   1123       1.1       jtk {
   1124       1.1       jtk 	off_t o;		/* offset within  inode */
   1125       1.1       jtk 	int inc;		/* increment for o - maybe should be off_t? */
   1126       1.1       jtk 	int b;			/* index within di_db[] and di_ib[] arrays */
   1127       1.1       jtk 
   1128       1.1       jtk 	/* Scan the direct blocks... */
   1129       1.1       jtk 	o = 0;
   1130  1.32.2.2      yamt 	for (b = 0; b < UFS_NDADDR; b++) {
   1131      1.25       riz 		inc = markblk(fn, di, DIP(di,di_db[b]), o);
   1132       1.1       jtk 		if (inc == 0)
   1133       1.1       jtk 			break;
   1134       1.1       jtk 		o += inc;
   1135       1.1       jtk 	}
   1136       1.1       jtk 	/* ...and the indirect blocks. */
   1137       1.1       jtk 	if (inc) {
   1138  1.32.2.2      yamt 		for (b = 0; b < UFS_NIADDR; b++) {
   1139      1.25       riz 			inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b);
   1140       1.1       jtk 			if (inc == 0)
   1141       1.1       jtk 				return;
   1142       1.1       jtk 			o += inc;
   1143       1.1       jtk 		}
   1144       1.1       jtk 	}
   1145       1.1       jtk }
   1146       1.1       jtk 
   1147       1.1       jtk static void
   1148      1.25       riz dblk_callback(union dinode * di, unsigned int inum, void *arg)
   1149       1.1       jtk {
   1150       1.1       jtk 	mark_callback_t fn;
   1151      1.30  dholland 	off_t filesize;
   1152      1.26  dholland 
   1153      1.30  dholland 	filesize = DIP(di,di_size);
   1154       1.1       jtk 	fn = (mark_callback_t) arg;
   1155      1.25       riz 	switch (DIP(di,di_mode) & IFMT) {
   1156       1.1       jtk 	case IFLNK:
   1157      1.31  dholland 		if (filesize <= newsb->fs_maxsymlinklen) {
   1158      1.31  dholland 			break;
   1159      1.31  dholland 		}
   1160      1.31  dholland 		/* FALLTHROUGH */
   1161       1.1       jtk 	case IFDIR:
   1162       1.1       jtk 	case IFREG:
   1163      1.31  dholland 		map_inode_data_blocks(di, fn);
   1164       1.1       jtk 		break;
   1165       1.1       jtk 	}
   1166       1.1       jtk }
   1167       1.1       jtk /*
   1168       1.1       jtk  * Make a callback call, a la map_inode_data_blocks, for all data
   1169       1.1       jtk  *  blocks in the entire fs.  This is used only once, in
   1170       1.1       jtk  *  update_for_data_move, but it's out at top level because the complex
   1171       1.1       jtk  *  downward-funarg nesting that would otherwise result seems to give
   1172       1.1       jtk  *  gcc gastric distress.
   1173       1.1       jtk  */
   1174       1.1       jtk static void
   1175       1.1       jtk map_data_blocks(mark_callback_t fn, int ncg)
   1176       1.1       jtk {
   1177       1.1       jtk 	map_inodes(&dblk_callback, ncg, (void *) fn);
   1178       1.1       jtk }
   1179       1.1       jtk /*
   1180       1.1       jtk  * Initialize the blkmove array.
   1181       1.1       jtk  */
   1182       1.1       jtk static void
   1183       1.1       jtk blkmove_init(void)
   1184       1.1       jtk {
   1185       1.1       jtk 	int i;
   1186       1.1       jtk 
   1187       1.1       jtk 	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
   1188       1.1       jtk 	for (i = 0; i < oldsb->fs_size; i++)
   1189       1.1       jtk 		blkmove[i] = i;
   1190       1.1       jtk }
   1191       1.1       jtk /*
   1192       1.1       jtk  * Load the inodes off disk.  Allocates the structures and initializes
   1193       1.1       jtk  *  them - the inodes from disk, the flags to zero.
   1194       1.1       jtk  */
   1195       1.1       jtk static void
   1196       1.1       jtk loadinodes(void)
   1197       1.1       jtk {
   1198      1.25       riz 	int imax, ino, i, j;
   1199      1.25       riz 	struct ufs1_dinode *dp1 = NULL;
   1200      1.25       riz 	struct ufs2_dinode *dp2 = NULL;
   1201      1.28  dholland 
   1202      1.25       riz 	/* read inodes one fs block at a time and copy them */
   1203       1.1       jtk 
   1204      1.15       riz 	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
   1205      1.25       riz 	    sizeof(union dinode), "inodes");
   1206       1.1       jtk 	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
   1207      1.25       riz 	memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg);
   1208      1.28  dholland 
   1209      1.25       riz 	ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf");
   1210      1.25       riz 	if (is_ufs2)
   1211      1.25       riz 		dp2 = (struct ufs2_dinode *)ibuf;
   1212      1.25       riz 	else
   1213      1.25       riz 		dp1 = (struct ufs1_dinode *)ibuf;
   1214      1.28  dholland 
   1215      1.25       riz 	for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) {
   1216  1.32.2.3      yamt 		readat(FFS_FSBTODB(oldsb, ino_to_fsba(oldsb, ino)), ibuf,
   1217      1.25       riz 		    oldsb->fs_bsize);
   1218      1.25       riz 
   1219      1.25       riz 		for (i = 0; i < oldsb->fs_inopb; i++) {
   1220      1.25       riz 			if (is_ufs2) {
   1221      1.25       riz 				if (needswap) {
   1222      1.25       riz 					ffs_dinode2_swap(&(dp2[i]), &(dp2[i]));
   1223  1.32.2.2      yamt 					for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++)
   1224      1.25       riz 						dp2[i].di_db[j] =
   1225      1.25       riz 						    bswap32(dp2[i].di_db[j]);
   1226      1.25       riz 				}
   1227      1.25       riz 				memcpy(&inodes[ino].dp2, &dp2[i],
   1228      1.32  christos 				    sizeof(inodes[ino].dp2));
   1229      1.25       riz 			} else {
   1230      1.25       riz 				if (needswap) {
   1231      1.25       riz 					ffs_dinode1_swap(&(dp1[i]), &(dp1[i]));
   1232  1.32.2.2      yamt 					for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++)
   1233      1.25       riz 						dp1[i].di_db[j] =
   1234      1.25       riz 						    bswap32(dp1[i].di_db[j]);
   1235      1.25       riz 				}
   1236      1.25       riz 				memcpy(&inodes[ino].dp1, &dp1[i],
   1237      1.32  christos 				    sizeof(inodes[ino].dp1));
   1238      1.25       riz 			}
   1239      1.25       riz 			    if (++ino > imax)
   1240      1.25       riz 				    errx(EXIT_FAILURE,
   1241      1.25       riz 					"Exceeded number of inodes");
   1242      1.25       riz 		}
   1243      1.25       riz 
   1244       1.1       jtk 	}
   1245       1.1       jtk }
   1246       1.1       jtk /*
   1247      1.24       wiz  * Report a file-system-too-full problem.
   1248       1.1       jtk  */
   1249      1.32  christos __dead static void
   1250       1.1       jtk toofull(void)
   1251       1.1       jtk {
   1252      1.32  christos 	errx(EXIT_FAILURE, "Sorry, would run out of data blocks");
   1253       1.1       jtk }
   1254       1.1       jtk /*
   1255       1.1       jtk  * Record a desire to move "n" frags from "from" to "to".
   1256       1.1       jtk  */
   1257       1.1       jtk static void
   1258       1.1       jtk mark_move(unsigned int from, unsigned int to, unsigned int n)
   1259       1.1       jtk {
   1260       1.1       jtk 	for (; n > 0; n--)
   1261       1.1       jtk 		blkmove[from++] = to++;
   1262       1.1       jtk }
   1263       1.1       jtk /* Helper function - evict n frags, starting with start (cg-relative).
   1264       1.1       jtk  * The free bitmap is scanned, unallocated frags are ignored, and
   1265       1.1       jtk  * each block of consecutive allocated frags is moved as a unit.
   1266       1.1       jtk  */
   1267       1.1       jtk static void
   1268       1.1       jtk fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
   1269       1.1       jtk {
   1270      1.30  dholland 	unsigned int i;
   1271       1.1       jtk 	int run;
   1272      1.26  dholland 
   1273       1.1       jtk 	run = 0;
   1274       1.1       jtk 	for (i = 0; i <= n; i++) {
   1275       1.1       jtk 		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
   1276       1.1       jtk 			run++;
   1277       1.1       jtk 		} else {
   1278       1.1       jtk 			if (run > 0) {
   1279       1.1       jtk 				int off;
   1280       1.1       jtk 				off = find_freespace(run);
   1281       1.1       jtk 				if (off < 0)
   1282       1.1       jtk 					toofull();
   1283       1.1       jtk 				mark_move(base + start + i - run, off, run);
   1284       1.1       jtk 				set_bits(cg_blksfree(cg, 0), start + i - run,
   1285       1.1       jtk 				    run);
   1286       1.1       jtk 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1287       1.1       jtk 				    dtogd(oldsb, off), run);
   1288       1.1       jtk 			}
   1289       1.1       jtk 			run = 0;
   1290       1.1       jtk 		}
   1291       1.1       jtk 	}
   1292       1.1       jtk }
   1293       1.1       jtk /*
   1294       1.1       jtk  * Evict all data blocks from the given cg, starting at minfrag (based
   1295       1.1       jtk  *  at the beginning of the cg), for length nfrag.  The eviction is
   1296       1.1       jtk  *  assumed to be entirely data-area; this should not be called with a
   1297       1.1       jtk  *  range overlapping the metadata structures in the cg.  It also
   1298       1.1       jtk  *  assumes minfrag points into the given cg; it will misbehave if this
   1299       1.1       jtk  *  is not true.
   1300       1.1       jtk  *
   1301       1.1       jtk  * See the comment header on find_freespace() for one possible bug
   1302       1.1       jtk  *  lurking here.
   1303       1.1       jtk  */
   1304       1.1       jtk static void
   1305      1.30  dholland evict_data(struct cg * cg, unsigned int minfrag, int nfrag)
   1306       1.1       jtk {
   1307      1.25       riz 	int base;	/* base of cg (in frags from beginning of fs) */
   1308       1.1       jtk 
   1309       1.1       jtk 	base = cgbase(oldsb, cg->cg_cgx);
   1310      1.25       riz 	/* Does the boundary fall in the middle of a block?  To avoid
   1311      1.25       riz 	 * breaking between frags allocated as consecutive, we always
   1312      1.25       riz 	 * evict the whole block in this case, though one could argue
   1313      1.25       riz 	 * we should check to see if the frag before or after the
   1314      1.25       riz 	 * break is unallocated. */
   1315       1.1       jtk 	if (minfrag % oldsb->fs_frag) {
   1316       1.1       jtk 		int n;
   1317       1.1       jtk 		n = minfrag % oldsb->fs_frag;
   1318       1.1       jtk 		minfrag -= n;
   1319       1.1       jtk 		nfrag += n;
   1320       1.1       jtk 	}
   1321      1.25       riz 	/* Do whole blocks.  If a block is wholly free, skip it; if
   1322      1.25       riz 	 * wholly allocated, move it in toto.  If neither, call
   1323      1.25       riz 	 * fragmove() to move the frags to new locations. */
   1324       1.1       jtk 	while (nfrag >= oldsb->fs_frag) {
   1325       1.1       jtk 		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
   1326       1.1       jtk 			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
   1327       1.1       jtk 				oldsb->fs_frag)) {
   1328       1.1       jtk 				int off;
   1329       1.1       jtk 				off = find_freeblock();
   1330       1.1       jtk 				if (off < 0)
   1331       1.1       jtk 					toofull();
   1332       1.1       jtk 				mark_move(base + minfrag, off, oldsb->fs_frag);
   1333       1.1       jtk 				set_bits(cg_blksfree(cg, 0), minfrag,
   1334       1.1       jtk 				    oldsb->fs_frag);
   1335       1.1       jtk 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1336       1.1       jtk 				    dtogd(oldsb, off), oldsb->fs_frag);
   1337       1.1       jtk 			} else {
   1338       1.1       jtk 				fragmove(cg, base, minfrag, oldsb->fs_frag);
   1339       1.1       jtk 			}
   1340       1.1       jtk 		}
   1341       1.1       jtk 		minfrag += oldsb->fs_frag;
   1342       1.1       jtk 		nfrag -= oldsb->fs_frag;
   1343       1.1       jtk 	}
   1344       1.1       jtk 	/* Clean up any sub-block amount left over. */
   1345       1.1       jtk 	if (nfrag) {
   1346       1.1       jtk 		fragmove(cg, base, minfrag, nfrag);
   1347       1.1       jtk 	}
   1348       1.1       jtk }
   1349       1.1       jtk /*
   1350       1.1       jtk  * Move all data blocks according to blkmove.  We have to be careful,
   1351       1.1       jtk  *  because we may be updating indirect blocks that will themselves be
   1352       1.2    martin  *  getting moved, or inode int32_t arrays that point to indirect
   1353       1.1       jtk  *  blocks that will be moved.  We call this before
   1354       1.1       jtk  *  update_for_data_move, and update_for_data_move does inodes first,
   1355       1.1       jtk  *  then indirect blocks in preorder, so as to make sure that the
   1356      1.24       wiz  *  file system is self-consistent at all points, for better crash
   1357       1.1       jtk  *  tolerance.  (We can get away with this only because all the writes
   1358       1.1       jtk  *  done by perform_data_move() are writing into space that's not used
   1359      1.24       wiz  *  by the old file system.)  If we crash, some things may point to the
   1360       1.1       jtk  *  old data and some to the new, but both copies are the same.  The
   1361       1.1       jtk  *  only wrong things should be csum info and free bitmaps, which fsck
   1362       1.1       jtk  *  is entirely capable of cleaning up.
   1363       1.1       jtk  *
   1364       1.1       jtk  * Since blkmove_init() initializes all blocks to move to their current
   1365       1.1       jtk  *  locations, we can have two blocks marked as wanting to move to the
   1366       1.1       jtk  *  same location, but only two and only when one of them is the one
   1367       1.1       jtk  *  that was already there.  So if blkmove[i]==i, we ignore that entry
   1368       1.1       jtk  *  entirely - for unallocated blocks, we don't want it (and may be
   1369       1.1       jtk  *  putting something else there), and for allocated blocks, we don't
   1370       1.1       jtk  *  want to copy it anywhere.
   1371       1.1       jtk  */
   1372       1.1       jtk static void
   1373       1.1       jtk perform_data_move(void)
   1374       1.1       jtk {
   1375       1.1       jtk 	int i;
   1376       1.1       jtk 	int run;
   1377       1.1       jtk 	int maxrun;
   1378       1.1       jtk 	char buf[65536];
   1379       1.1       jtk 
   1380       1.1       jtk 	maxrun = sizeof(buf) / newsb->fs_fsize;
   1381       1.1       jtk 	run = 0;
   1382       1.1       jtk 	for (i = 0; i < oldsb->fs_size; i++) {
   1383      1.30  dholland 		if ((blkmove[i] == (unsigned)i /*XXX cast*/) ||
   1384       1.1       jtk 		    (run >= maxrun) ||
   1385       1.1       jtk 		    ((run > 0) &&
   1386       1.1       jtk 			(blkmove[i] != blkmove[i - 1] + 1))) {
   1387       1.1       jtk 			if (run > 0) {
   1388  1.32.2.3      yamt 				readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
   1389       1.1       jtk 				    run << oldsb->fs_fshift);
   1390  1.32.2.3      yamt 				writeat(FFS_FSBTODB(oldsb, blkmove[i - run]),
   1391       1.1       jtk 				    &buf[0], run << oldsb->fs_fshift);
   1392       1.1       jtk 			}
   1393       1.1       jtk 			run = 0;
   1394       1.1       jtk 		}
   1395      1.30  dholland 		if (blkmove[i] != (unsigned)i /*XXX cast*/)
   1396       1.1       jtk 			run++;
   1397       1.1       jtk 	}
   1398       1.1       jtk 	if (run > 0) {
   1399  1.32.2.3      yamt 		readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
   1400       1.1       jtk 		    run << oldsb->fs_fshift);
   1401  1.32.2.3      yamt 		writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), &buf[0],
   1402       1.1       jtk 		    run << oldsb->fs_fshift);
   1403       1.1       jtk 	}
   1404       1.1       jtk }
   1405       1.1       jtk /*
   1406       1.2    martin  * This modifies an array of int32_t, according to blkmove.  This is
   1407       1.1       jtk  *  used to update inode block arrays and indirect blocks to point to
   1408       1.1       jtk  *  the new locations of data blocks.
   1409       1.1       jtk  *
   1410       1.2    martin  * Return value is the number of int32_ts that needed updating; in
   1411       1.1       jtk  *  particular, the return value is zero iff nothing was modified.
   1412       1.1       jtk  */
   1413       1.1       jtk static int
   1414       1.2    martin movemap_blocks(int32_t * vec, int n)
   1415       1.1       jtk {
   1416       1.1       jtk 	int rv;
   1417      1.26  dholland 
   1418       1.1       jtk 	rv = 0;
   1419       1.1       jtk 	for (; n > 0; n--, vec++) {
   1420      1.30  dholland 		if (blkmove[*vec] != (unsigned)*vec /*XXX cast*/) {
   1421       1.1       jtk 			*vec = blkmove[*vec];
   1422       1.1       jtk 			rv++;
   1423       1.1       jtk 		}
   1424       1.1       jtk 	}
   1425       1.1       jtk 	return (rv);
   1426       1.1       jtk }
   1427       1.1       jtk static void
   1428      1.25       riz moveblocks_callback(union dinode * di, unsigned int inum, void *arg)
   1429       1.1       jtk {
   1430      1.30  dholland 	int32_t *dblkptr, *iblkptr;
   1431      1.26  dholland 
   1432      1.25       riz 	switch (DIP(di,di_mode) & IFMT) {
   1433       1.1       jtk 	case IFLNK:
   1434      1.30  dholland 		if ((off_t)DIP(di,di_size) <= oldsb->fs_maxsymlinklen) {
   1435      1.27  dholland 			break;
   1436      1.27  dholland 		}
   1437      1.27  dholland 		/* FALLTHROUGH */
   1438       1.1       jtk 	case IFDIR:
   1439       1.1       jtk 	case IFREG:
   1440      1.25       riz 		if (is_ufs2) {
   1441      1.30  dholland 			/* XXX these are not int32_t and this is WRONG! */
   1442      1.30  dholland 			dblkptr = (void *) &(di->dp2.di_db[0]);
   1443      1.30  dholland 			iblkptr = (void *) &(di->dp2.di_ib[0]);
   1444      1.25       riz 		} else {
   1445      1.25       riz 			dblkptr = &(di->dp1.di_db[0]);
   1446      1.25       riz 			iblkptr = &(di->dp1.di_ib[0]);
   1447      1.25       riz 		}
   1448      1.26  dholland 		/*
   1449      1.26  dholland 		 * Don't || these two calls; we need their
   1450      1.26  dholland 		 * side-effects.
   1451      1.26  dholland 		 */
   1452  1.32.2.2      yamt 		if (movemap_blocks(dblkptr, UFS_NDADDR)) {
   1453      1.28  dholland 			iflags[inum] |= IF_DIRTY;
   1454      1.28  dholland 		}
   1455  1.32.2.2      yamt 		if (movemap_blocks(iblkptr, UFS_NIADDR)) {
   1456      1.28  dholland 			iflags[inum] |= IF_DIRTY;
   1457      1.28  dholland 		}
   1458       1.1       jtk 		break;
   1459       1.1       jtk 	}
   1460       1.1       jtk }
   1461       1.1       jtk 
   1462       1.1       jtk static void
   1463      1.30  dholland moveindir_callback(off_t off, unsigned int nfrag, unsigned int nbytes,
   1464      1.15       riz 		   int kind)
   1465       1.1       jtk {
   1466      1.30  dholland 	unsigned int i;
   1467      1.26  dholland 
   1468       1.1       jtk 	if (kind == MDB_INDIR_PRE) {
   1469       1.2    martin 		int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
   1470  1.32.2.3      yamt 		readat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
   1471      1.25       riz 		if (needswap)
   1472      1.25       riz 			for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
   1473      1.25       riz 				blk[i] = bswap32(blk[i]);
   1474  1.32.2.3      yamt 		if (movemap_blocks(&blk[0], FFS_NINDIR(oldsb))) {
   1475      1.25       riz 			if (needswap)
   1476      1.25       riz 				for (i = 0; i < howmany(MAXBSIZE,
   1477      1.25       riz 					sizeof(int32_t)); i++)
   1478      1.25       riz 					blk[i] = bswap32(blk[i]);
   1479  1.32.2.3      yamt 			writeat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
   1480       1.1       jtk 		}
   1481       1.1       jtk 	}
   1482       1.1       jtk }
   1483       1.1       jtk /*
   1484       1.1       jtk  * Update all inode data arrays and indirect blocks to point to the new
   1485       1.1       jtk  *  locations of data blocks.  See the comment header on
   1486       1.1       jtk  *  perform_data_move for some ordering considerations.
   1487       1.1       jtk  */
   1488       1.1       jtk static void
   1489       1.1       jtk update_for_data_move(void)
   1490       1.1       jtk {
   1491       1.1       jtk 	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
   1492       1.1       jtk 	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
   1493       1.1       jtk }
   1494       1.1       jtk /*
   1495       1.1       jtk  * Initialize the inomove array.
   1496       1.1       jtk  */
   1497       1.1       jtk static void
   1498       1.1       jtk inomove_init(void)
   1499       1.1       jtk {
   1500       1.1       jtk 	int i;
   1501       1.1       jtk 
   1502       1.1       jtk 	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
   1503       1.1       jtk                             "inomove");
   1504       1.1       jtk 	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
   1505       1.1       jtk 		inomove[i] = i;
   1506       1.1       jtk }
   1507       1.1       jtk /*
   1508       1.1       jtk  * Flush all dirtied inodes to disk.  Scans the inode flags array; for
   1509       1.1       jtk  *  each dirty inode, it sets the BDIRTY bit on the first inode in the
   1510       1.1       jtk  *  block containing the dirty inode.  Then it scans by blocks, and for
   1511       1.1       jtk  *  each marked block, writes it.
   1512       1.1       jtk  */
   1513       1.1       jtk static void
   1514       1.1       jtk flush_inodes(void)
   1515       1.1       jtk {
   1516      1.25       riz 	int i, j, k, na, ni, m;
   1517      1.25       riz 	struct ufs1_dinode *dp1 = NULL;
   1518      1.25       riz 	struct ufs2_dinode *dp2 = NULL;
   1519       1.1       jtk 
   1520  1.32.2.2      yamt 	na = UFS_NDADDR + UFS_NIADDR;
   1521       1.1       jtk 	ni = newsb->fs_ipg * newsb->fs_ncg;
   1522  1.32.2.3      yamt 	m = FFS_INOPB(newsb) - 1;
   1523       1.1       jtk 	for (i = 0; i < ni; i++) {
   1524       1.1       jtk 		if (iflags[i] & IF_DIRTY) {
   1525       1.1       jtk 			iflags[i & ~m] |= IF_BDIRTY;
   1526       1.1       jtk 		}
   1527       1.1       jtk 	}
   1528       1.1       jtk 	m++;
   1529      1.25       riz 
   1530      1.25       riz 	if (is_ufs2)
   1531      1.25       riz 		dp2 = (struct ufs2_dinode *)ibuf;
   1532      1.25       riz 	else
   1533      1.25       riz 		dp1 = (struct ufs1_dinode *)ibuf;
   1534      1.28  dholland 
   1535       1.1       jtk 	for (i = 0; i < ni; i += m) {
   1536       1.1       jtk 		if (iflags[i] & IF_BDIRTY) {
   1537      1.25       riz 			if (is_ufs2)
   1538      1.25       riz 				for (j = 0; j < m; j++) {
   1539      1.25       riz 					dp2[j] = inodes[i + j].dp2;
   1540      1.25       riz 					if (needswap) {
   1541      1.25       riz 						for (k = 0; k < na; k++)
   1542      1.25       riz 							dp2[j].di_db[k]=
   1543      1.25       riz 							    bswap32(dp2[j].di_db[k]);
   1544      1.25       riz 						ffs_dinode2_swap(&dp2[j],
   1545      1.25       riz 						    &dp2[j]);
   1546      1.25       riz 					}
   1547      1.25       riz 				}
   1548      1.25       riz 			else
   1549      1.25       riz 				for (j = 0; j < m; j++) {
   1550      1.25       riz 					dp1[j] = inodes[i + j].dp1;
   1551      1.25       riz 					if (needswap) {
   1552      1.25       riz 						for (k = 0; k < na; k++)
   1553      1.25       riz 							dp1[j].di_db[k]=
   1554      1.25       riz 							    bswap32(dp1[j].di_db[k]);
   1555      1.25       riz 						ffs_dinode1_swap(&dp1[j],
   1556      1.25       riz 						    &dp1[j]);
   1557      1.25       riz 					}
   1558      1.25       riz 				}
   1559      1.28  dholland 
   1560  1.32.2.3      yamt 			writeat(FFS_FSBTODB(newsb, ino_to_fsba(newsb, i)),
   1561      1.25       riz 			    ibuf, newsb->fs_bsize);
   1562       1.1       jtk 		}
   1563       1.1       jtk 	}
   1564       1.1       jtk }
   1565       1.1       jtk /*
   1566       1.1       jtk  * Evict all inodes from the specified cg.  shrink() already checked
   1567       1.1       jtk  *  that there were enough free inodes, so the no-free-inodes check is
   1568      1.24       wiz  *  a can't-happen.  If it does trip, the file system should be in good
   1569       1.1       jtk  *  enough shape for fsck to fix; see the comment on perform_data_move
   1570       1.1       jtk  *  for the considerations in question.
   1571       1.1       jtk  */
   1572       1.1       jtk static void
   1573       1.1       jtk evict_inodes(struct cg * cg)
   1574       1.1       jtk {
   1575       1.1       jtk 	int inum;
   1576       1.1       jtk 	int i;
   1577       1.1       jtk 	int fi;
   1578       1.1       jtk 
   1579       1.1       jtk 	inum = newsb->fs_ipg * cg->cg_cgx;
   1580       1.1       jtk 	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
   1581      1.25       riz 		if (DIP(inodes + inum,di_mode) != 0) {
   1582       1.1       jtk 			fi = find_freeinode();
   1583      1.32  christos 			if (fi < 0)
   1584      1.32  christos 				errx(EXIT_FAILURE, "Sorry, inodes evaporated - "
   1585      1.32  christos 				    "file system probably needs fsck");
   1586       1.1       jtk 			inomove[inum] = fi;
   1587       1.1       jtk 			clr_bits(cg_inosused(cg, 0), i, 1);
   1588       1.1       jtk 			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
   1589       1.1       jtk 			    fi % newsb->fs_ipg, 1);
   1590       1.1       jtk 		}
   1591       1.1       jtk 	}
   1592       1.1       jtk }
   1593       1.1       jtk /*
   1594       1.1       jtk  * Move inodes from old locations to new.  Does not actually write
   1595       1.1       jtk  *  anything to disk; just copies in-core and sets dirty bits.
   1596       1.1       jtk  *
   1597       1.1       jtk  * We have to be careful here for reasons similar to those mentioned in
   1598       1.1       jtk  *  the comment header on perform_data_move, above: for the sake of
   1599       1.1       jtk  *  crash tolerance, we want to make sure everything is present at both
   1600       1.1       jtk  *  old and new locations before we update pointers.  So we call this
   1601       1.1       jtk  *  first, then flush_inodes() to get them out on disk, then update
   1602       1.1       jtk  *  directories to match.
   1603       1.1       jtk  */
   1604       1.1       jtk static void
   1605       1.1       jtk perform_inode_move(void)
   1606       1.1       jtk {
   1607      1.30  dholland 	unsigned int i;
   1608      1.30  dholland 	unsigned int ni;
   1609       1.1       jtk 
   1610       1.1       jtk 	ni = oldsb->fs_ipg * oldsb->fs_ncg;
   1611       1.1       jtk 	for (i = 0; i < ni; i++) {
   1612       1.1       jtk 		if (inomove[i] != i) {
   1613       1.1       jtk 			inodes[inomove[i]] = inodes[i];
   1614       1.1       jtk 			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
   1615       1.1       jtk 		}
   1616       1.1       jtk 	}
   1617       1.1       jtk }
   1618       1.1       jtk /*
   1619       1.1       jtk  * Update the directory contained in the nb bytes at buf, to point to
   1620       1.1       jtk  *  inodes' new locations.
   1621       1.1       jtk  */
   1622       1.1       jtk static int
   1623       1.1       jtk update_dirents(char *buf, int nb)
   1624       1.1       jtk {
   1625       1.1       jtk 	int rv;
   1626       1.1       jtk #define d ((struct direct *)buf)
   1627      1.25       riz #define s32(x) (needswap?bswap32((x)):(x))
   1628      1.25       riz #define s16(x) (needswap?bswap16((x)):(x))
   1629      1.28  dholland 
   1630       1.1       jtk 	rv = 0;
   1631       1.1       jtk 	while (nb > 0) {
   1632      1.25       riz 		if (inomove[s32(d->d_ino)] != s32(d->d_ino)) {
   1633       1.1       jtk 			rv++;
   1634      1.25       riz 			d->d_ino = s32(inomove[s32(d->d_ino)]);
   1635       1.1       jtk 		}
   1636      1.25       riz 		nb -= s16(d->d_reclen);
   1637      1.25       riz 		buf += s16(d->d_reclen);
   1638       1.1       jtk 	}
   1639       1.1       jtk 	return (rv);
   1640       1.1       jtk #undef d
   1641      1.25       riz #undef s32
   1642      1.25       riz #undef s16
   1643       1.1       jtk }
   1644       1.1       jtk /*
   1645       1.1       jtk  * Callback function for map_inode_data_blocks, for updating a
   1646       1.1       jtk  *  directory to point to new inode locations.
   1647       1.1       jtk  */
   1648       1.1       jtk static void
   1649      1.30  dholland update_dir_data(off_t bn, unsigned int size, unsigned int nb, int kind)
   1650       1.1       jtk {
   1651       1.1       jtk 	if (kind == MDB_DATA) {
   1652       1.1       jtk 		union {
   1653       1.1       jtk 			struct direct d;
   1654       1.1       jtk 			char ch[MAXBSIZE];
   1655       1.1       jtk 		}     buf;
   1656  1.32.2.3      yamt 		readat(FFS_FSBTODB(oldsb, bn), &buf, size << oldsb->fs_fshift);
   1657       1.1       jtk 		if (update_dirents((char *) &buf, nb)) {
   1658  1.32.2.3      yamt 			writeat(FFS_FSBTODB(oldsb, bn), &buf,
   1659       1.1       jtk 			    size << oldsb->fs_fshift);
   1660       1.1       jtk 		}
   1661       1.1       jtk 	}
   1662       1.1       jtk }
   1663       1.1       jtk static void
   1664      1.25       riz dirmove_callback(union dinode * di, unsigned int inum, void *arg)
   1665       1.1       jtk {
   1666      1.25       riz 	switch (DIP(di,di_mode) & IFMT) {
   1667       1.1       jtk 	case IFDIR:
   1668       1.1       jtk 		map_inode_data_blocks(di, &update_dir_data);
   1669       1.1       jtk 		break;
   1670       1.1       jtk 	}
   1671       1.1       jtk }
   1672       1.1       jtk /*
   1673       1.1       jtk  * Update directory entries to point to new inode locations.
   1674       1.1       jtk  */
   1675       1.1       jtk static void
   1676       1.1       jtk update_for_inode_move(void)
   1677       1.1       jtk {
   1678       1.1       jtk 	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
   1679       1.1       jtk }
   1680       1.1       jtk /*
   1681      1.24       wiz  * Shrink the file system.
   1682       1.1       jtk  */
   1683       1.1       jtk static void
   1684       1.1       jtk shrink(void)
   1685       1.1       jtk {
   1686       1.1       jtk 	int i;
   1687       1.1       jtk 
   1688       1.1       jtk 	/* Load the inodes off disk - we'll need 'em. */
   1689       1.1       jtk 	loadinodes();
   1690       1.1       jtk 	/* Update the timestamp. */
   1691       1.1       jtk 	newsb->fs_time = timestamp();
   1692       1.1       jtk 	/* Update the size figures. */
   1693  1.32.2.3      yamt 	newsb->fs_size = FFS_DBTOFSB(newsb, newsize);
   1694      1.25       riz 	if (is_ufs2)
   1695      1.25       riz 		newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
   1696      1.25       riz 	else {
   1697      1.25       riz 		newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
   1698      1.25       riz 		    newsb->fs_old_spc);
   1699      1.25       riz 		newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
   1700      1.25       riz 	}
   1701       1.1       jtk 	/* Does the (new) last cg end before the end of its inode area?  See
   1702       1.1       jtk 	 * the similar code in grow() for more on this. */
   1703       1.1       jtk 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
   1704       1.1       jtk 		newsb->fs_ncg--;
   1705      1.25       riz 		if (is_ufs2 == 0) {
   1706      1.25       riz 			newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
   1707      1.25       riz 			newsb->fs_size = (newsb->fs_old_ncyl *
   1708      1.25       riz 			    newsb->fs_old_spc) / NSPF(newsb);
   1709      1.25       riz 		} else
   1710      1.25       riz 			newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg;
   1711      1.28  dholland 
   1712       1.1       jtk 		printf("Warning: last cylinder group is too small;\n");
   1713       1.1       jtk 		printf("    dropping it.  New size = %lu.\n",
   1714  1.32.2.3      yamt 		    (unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size));
   1715       1.1       jtk 	}
   1716       1.1       jtk 	/* Let's make sure we're not being shrunk into oblivion. */
   1717      1.32  christos 	if (newsb->fs_ncg < 1)
   1718      1.32  christos 		errx(EXIT_FAILURE, "Size too small - file system would "
   1719      1.32  christos 		    "have no cylinders");
   1720       1.1       jtk 	/* Initialize for block motion. */
   1721       1.1       jtk 	blkmove_init();
   1722       1.1       jtk 	/* Update csum size, then fix up for the new size */
   1723  1.32.2.3      yamt 	newsb->fs_cssize = ffs_fragroundup(newsb,
   1724       1.1       jtk 	    newsb->fs_ncg * sizeof(struct csum));
   1725       1.1       jtk 	csum_fixup();
   1726       1.8       snj 	/* Evict data from any cgs being wholly eliminated */
   1727       1.1       jtk 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
   1728       1.1       jtk 		int base;
   1729       1.1       jtk 		int dlow;
   1730       1.1       jtk 		int dhigh;
   1731       1.1       jtk 		int dmax;
   1732       1.1       jtk 		base = cgbase(oldsb, i);
   1733       1.1       jtk 		dlow = cgsblock(oldsb, i) - base;
   1734       1.1       jtk 		dhigh = cgdmin(oldsb, i) - base;
   1735       1.1       jtk 		dmax = oldsb->fs_size - base;
   1736       1.1       jtk 		if (dmax > cgs[i]->cg_ndblk)
   1737       1.1       jtk 			dmax = cgs[i]->cg_ndblk;
   1738       1.1       jtk 		evict_data(cgs[i], 0, dlow);
   1739       1.1       jtk 		evict_data(cgs[i], dhigh, dmax - dhigh);
   1740       1.1       jtk 		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
   1741       1.1       jtk 		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
   1742       1.1       jtk 		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
   1743       1.1       jtk 		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
   1744       1.1       jtk 	}
   1745       1.1       jtk 	/* Update the new last cg. */
   1746       1.1       jtk 	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
   1747       1.1       jtk 	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
   1748       1.1       jtk 	/* Is the new last cg partial?  If so, evict any data from the part
   1749       1.1       jtk 	 * being shrunken away. */
   1750       1.1       jtk 	if (newsb->fs_size % newsb->fs_fpg) {
   1751       1.1       jtk 		struct cg *cg;
   1752       1.1       jtk 		int oldcgsize;
   1753       1.1       jtk 		int newcgsize;
   1754       1.1       jtk 		cg = cgs[newsb->fs_ncg - 1];
   1755       1.1       jtk 		newcgsize = newsb->fs_size % newsb->fs_fpg;
   1756      1.15       riz 		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
   1757      1.15       riz 		    oldsb->fs_fpg);
   1758       1.1       jtk 		if (oldcgsize > oldsb->fs_fpg)
   1759       1.1       jtk 			oldcgsize = oldsb->fs_fpg;
   1760       1.1       jtk 		evict_data(cg, newcgsize, oldcgsize - newcgsize);
   1761       1.1       jtk 		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
   1762       1.1       jtk 	}
   1763      1.25       riz 	/* Find out whether we would run out of inodes.  (Note we
   1764      1.25       riz 	 * haven't actually done anything to the file system yet; all
   1765      1.25       riz 	 * those evict_data calls just update blkmove.) */
   1766       1.1       jtk 	{
   1767       1.1       jtk 		int slop;
   1768       1.1       jtk 		slop = 0;
   1769       1.1       jtk 		for (i = 0; i < newsb->fs_ncg; i++)
   1770       1.1       jtk 			slop += cgs[i]->cg_cs.cs_nifree;
   1771       1.1       jtk 		for (; i < oldsb->fs_ncg; i++)
   1772       1.1       jtk 			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
   1773      1.32  christos 		if (slop < 0)
   1774      1.32  christos 			errx(EXIT_FAILURE, "Sorry, would run out of inodes");
   1775       1.1       jtk 	}
   1776      1.25       riz 	/* Copy data, then update pointers to data.  See the comment
   1777      1.25       riz 	 * header on perform_data_move for ordering considerations. */
   1778       1.1       jtk 	perform_data_move();
   1779       1.1       jtk 	update_for_data_move();
   1780      1.25       riz 	/* Now do inodes.  Initialize, evict, move, update - see the
   1781      1.25       riz 	 * comment header on perform_inode_move. */
   1782       1.1       jtk 	inomove_init();
   1783       1.1       jtk 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
   1784       1.1       jtk 		evict_inodes(cgs[i]);
   1785       1.1       jtk 	perform_inode_move();
   1786       1.1       jtk 	flush_inodes();
   1787       1.1       jtk 	update_for_inode_move();
   1788       1.1       jtk 	/* Recompute all the bitmaps; most of them probably need it anyway,
   1789       1.1       jtk 	 * the rest are just paranoia and not wanting to have to bother
   1790       1.1       jtk 	 * keeping track of exactly which ones require it. */
   1791       1.1       jtk 	for (i = 0; i < newsb->fs_ncg; i++)
   1792       1.1       jtk 		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
   1793      1.14       riz 	/* Update the cg_old_ncyl value for the last cylinder. */
   1794      1.20    mhitch 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
   1795      1.14       riz 		cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
   1796      1.20    mhitch 		    newsb->fs_old_ncyl % newsb->fs_old_cpg;
   1797       1.1       jtk 	/* Make fs_dsize match the new reality. */
   1798       1.1       jtk 	recompute_fs_dsize();
   1799       1.1       jtk }
   1800       1.1       jtk /*
   1801       1.1       jtk  * Recompute the block totals, block cluster summaries, and rotational
   1802       1.1       jtk  *  position summaries, for a given cg (specified by number), based on
   1803       1.1       jtk  *  its free-frag bitmap (cg_blksfree()[]).
   1804       1.1       jtk  */
   1805       1.1       jtk static void
   1806       1.1       jtk rescan_blkmaps(int cgn)
   1807       1.1       jtk {
   1808       1.1       jtk 	struct cg *cg;
   1809       1.1       jtk 	int f;
   1810       1.1       jtk 	int b;
   1811       1.1       jtk 	int blkfree;
   1812       1.1       jtk 	int blkrun;
   1813       1.1       jtk 	int fragrun;
   1814       1.1       jtk 	int fwb;
   1815       1.1       jtk 
   1816       1.1       jtk 	cg = cgs[cgn];
   1817       1.1       jtk 	/* Subtract off the current totals from the sb's summary info */
   1818       1.1       jtk 	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
   1819       1.1       jtk 	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
   1820       1.1       jtk 	/* Clear counters and bitmaps. */
   1821       1.1       jtk 	cg->cg_cs.cs_nffree = 0;
   1822       1.1       jtk 	cg->cg_cs.cs_nbfree = 0;
   1823      1.25       riz 	memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0]));
   1824      1.25       riz 	memset(&old_cg_blktot(cg, 0)[0], 0,
   1825      1.15       riz 	    newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
   1826      1.25       riz 	memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0,
   1827       1.4  christos 	    newsb->fs_old_cpg * newsb->fs_old_nrpos *
   1828      1.15       riz 	    sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
   1829       1.1       jtk 	if (newsb->fs_contigsumsize > 0) {
   1830       1.1       jtk 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
   1831      1.25       riz 		memset(&cg_clustersum(cg, 0)[1], 0,
   1832       1.1       jtk 		    newsb->fs_contigsumsize *
   1833       1.1       jtk 		    sizeof(cg_clustersum(cg, 0)[1]));
   1834      1.25       riz 		if (is_ufs2)
   1835      1.25       riz 			memset(&cg_clustersfree(cg, 0)[0], 0,
   1836      1.25       riz 			    howmany(newsb->fs_fpg / NSPB(newsb), NBBY));
   1837      1.25       riz 		else
   1838      1.25       riz 			memset(&cg_clustersfree(cg, 0)[0], 0,
   1839      1.25       riz 			    howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
   1840      1.25       riz 				NSPB(newsb), NBBY));
   1841      1.25       riz 	}
   1842      1.25       riz 	/* Scan the free-frag bitmap.  Runs of free frags are kept
   1843      1.25       riz 	 * track of with fragrun, and recorded into cg_frsum[] and
   1844      1.25       riz 	 * cg_cs.cs_nffree; on each block boundary, entire free blocks
   1845      1.25       riz 	 * are recorded as well. */
   1846       1.1       jtk 	blkfree = 1;
   1847       1.1       jtk 	blkrun = 0;
   1848       1.1       jtk 	fragrun = 0;
   1849       1.1       jtk 	f = 0;
   1850       1.1       jtk 	b = 0;
   1851       1.1       jtk 	fwb = 0;
   1852       1.1       jtk 	while (f < cg->cg_ndblk) {
   1853       1.1       jtk 		if (bit_is_set(cg_blksfree(cg, 0), f)) {
   1854       1.1       jtk 			fragrun++;
   1855       1.1       jtk 		} else {
   1856       1.1       jtk 			blkfree = 0;
   1857       1.1       jtk 			if (fragrun > 0) {
   1858       1.1       jtk 				cg->cg_frsum[fragrun]++;
   1859       1.1       jtk 				cg->cg_cs.cs_nffree += fragrun;
   1860       1.1       jtk 			}
   1861       1.1       jtk 			fragrun = 0;
   1862       1.1       jtk 		}
   1863       1.1       jtk 		f++;
   1864       1.1       jtk 		fwb++;
   1865       1.1       jtk 		if (fwb >= newsb->fs_frag) {
   1866       1.1       jtk 			if (blkfree) {
   1867       1.1       jtk 				cg->cg_cs.cs_nbfree++;
   1868       1.1       jtk 				if (newsb->fs_contigsumsize > 0)
   1869       1.1       jtk 					set_bits(cg_clustersfree(cg, 0), b, 1);
   1870      1.25       riz 				if (is_ufs2 == 0) {
   1871      1.25       riz 					old_cg_blktot(cg, 0)[
   1872      1.25       riz 						old_cbtocylno(newsb,
   1873      1.25       riz 						    f - newsb->fs_frag)]++;
   1874      1.25       riz 					old_cg_blks(newsb, cg,
   1875      1.25       riz 					    old_cbtocylno(newsb,
   1876      1.25       riz 						f - newsb->fs_frag),
   1877      1.25       riz 					    0)[old_cbtorpos(newsb,
   1878      1.25       riz 						    f - newsb->fs_frag)]++;
   1879      1.25       riz 				}
   1880       1.1       jtk 				blkrun++;
   1881       1.1       jtk 			} else {
   1882       1.1       jtk 				if (fragrun > 0) {
   1883       1.1       jtk 					cg->cg_frsum[fragrun]++;
   1884       1.1       jtk 					cg->cg_cs.cs_nffree += fragrun;
   1885       1.1       jtk 				}
   1886       1.1       jtk 				if (newsb->fs_contigsumsize > 0) {
   1887       1.1       jtk 					if (blkrun > 0) {
   1888      1.15       riz 						cg_clustersum(cg, 0)[(blkrun
   1889      1.15       riz 						    > newsb->fs_contigsumsize)
   1890      1.15       riz 						    ? newsb->fs_contigsumsize
   1891      1.15       riz 						    : blkrun]++;
   1892       1.1       jtk 					}
   1893       1.1       jtk 				}
   1894       1.1       jtk 				blkrun = 0;
   1895       1.1       jtk 			}
   1896       1.1       jtk 			fwb = 0;
   1897       1.1       jtk 			b++;
   1898       1.1       jtk 			blkfree = 1;
   1899       1.1       jtk 			fragrun = 0;
   1900       1.1       jtk 		}
   1901       1.1       jtk 	}
   1902       1.1       jtk 	if (fragrun > 0) {
   1903       1.1       jtk 		cg->cg_frsum[fragrun]++;
   1904       1.1       jtk 		cg->cg_cs.cs_nffree += fragrun;
   1905       1.1       jtk 	}
   1906       1.1       jtk 	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
   1907       1.1       jtk 		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
   1908       1.1       jtk 		    newsb->fs_contigsumsize : blkrun]++;
   1909       1.1       jtk 	}
   1910       1.1       jtk 	/*
   1911       1.1       jtk          * Put the updated summary info back into csums, and add it
   1912       1.1       jtk          * back into the sb's summary info.  Then mark the cg dirty.
   1913       1.1       jtk          */
   1914       1.1       jtk 	csums[cgn] = cg->cg_cs;
   1915       1.1       jtk 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
   1916       1.1       jtk 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
   1917       1.1       jtk 	cgflags[cgn] |= CGF_DIRTY;
   1918       1.1       jtk }
   1919       1.1       jtk /*
   1920       1.1       jtk  * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
   1921       1.1       jtk  *  values, for a cg, based on the in-core inodes for that cg.
   1922       1.1       jtk  */
   1923       1.1       jtk static void
   1924       1.1       jtk rescan_inomaps(int cgn)
   1925       1.1       jtk {
   1926       1.1       jtk 	struct cg *cg;
   1927       1.1       jtk 	int inum;
   1928       1.1       jtk 	int iwc;
   1929       1.1       jtk 
   1930       1.1       jtk 	cg = cgs[cgn];
   1931       1.1       jtk 	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
   1932       1.1       jtk 	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
   1933       1.1       jtk 	cg->cg_cs.cs_ndir = 0;
   1934       1.1       jtk 	cg->cg_cs.cs_nifree = 0;
   1935      1.25       riz 	memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY));
   1936       1.1       jtk 	inum = cgn * newsb->fs_ipg;
   1937       1.1       jtk 	if (cgn == 0) {
   1938       1.1       jtk 		set_bits(cg_inosused(cg, 0), 0, 2);
   1939       1.1       jtk 		iwc = 2;
   1940       1.1       jtk 		inum += 2;
   1941       1.1       jtk 	} else {
   1942       1.1       jtk 		iwc = 0;
   1943       1.1       jtk 	}
   1944       1.1       jtk 	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
   1945      1.25       riz 		switch (DIP(inodes + inum, di_mode) & IFMT) {
   1946       1.1       jtk 		case 0:
   1947       1.1       jtk 			cg->cg_cs.cs_nifree++;
   1948       1.1       jtk 			break;
   1949       1.1       jtk 		case IFDIR:
   1950       1.1       jtk 			cg->cg_cs.cs_ndir++;
   1951      1.31  dholland 			/* FALLTHROUGH */
   1952       1.1       jtk 		default:
   1953       1.1       jtk 			set_bits(cg_inosused(cg, 0), iwc, 1);
   1954       1.1       jtk 			break;
   1955       1.1       jtk 		}
   1956       1.1       jtk 	}
   1957       1.1       jtk 	csums[cgn] = cg->cg_cs;
   1958       1.1       jtk 	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
   1959       1.1       jtk 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
   1960       1.1       jtk 	cgflags[cgn] |= CGF_DIRTY;
   1961       1.1       jtk }
   1962       1.1       jtk /*
   1963       1.1       jtk  * Flush cgs to disk, recomputing anything they're marked as needing.
   1964       1.1       jtk  */
   1965       1.1       jtk static void
   1966       1.1       jtk flush_cgs(void)
   1967       1.1       jtk {
   1968       1.1       jtk 	int i;
   1969       1.1       jtk 
   1970       1.1       jtk 	for (i = 0; i < newsb->fs_ncg; i++) {
   1971       1.1       jtk 		if (cgflags[i] & CGF_BLKMAPS) {
   1972       1.1       jtk 			rescan_blkmaps(i);
   1973       1.1       jtk 		}
   1974       1.1       jtk 		if (cgflags[i] & CGF_INOMAPS) {
   1975       1.1       jtk 			rescan_inomaps(i);
   1976       1.1       jtk 		}
   1977       1.1       jtk 		if (cgflags[i] & CGF_DIRTY) {
   1978       1.1       jtk 			cgs[i]->cg_rotor = 0;
   1979       1.1       jtk 			cgs[i]->cg_frotor = 0;
   1980       1.1       jtk 			cgs[i]->cg_irotor = 0;
   1981      1.25       riz 			if (needswap)
   1982      1.25       riz 				ffs_cg_swap(cgs[i],cgs[i],newsb);
   1983  1.32.2.3      yamt 			writeat(FFS_FSBTODB(newsb, cgtod(newsb, i)), cgs[i],
   1984       1.1       jtk 			    cgblksz);
   1985       1.1       jtk 		}
   1986       1.1       jtk 	}
   1987      1.25       riz 	if (needswap)
   1988      1.25       riz 		ffs_csum_swap(csums,csums,newsb->fs_cssize);
   1989  1.32.2.3      yamt 	writeat(FFS_FSBTODB(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
   1990       1.1       jtk }
   1991       1.1       jtk /*
   1992       1.1       jtk  * Write the superblock, both to the main superblock and to each cg's
   1993       1.1       jtk  *  alternative superblock.
   1994       1.1       jtk  */
   1995       1.1       jtk static void
   1996       1.1       jtk write_sbs(void)
   1997       1.1       jtk {
   1998       1.1       jtk 	int i;
   1999       1.1       jtk 
   2000      1.20    mhitch 	if (newsb->fs_magic == FS_UFS1_MAGIC &&
   2001      1.20    mhitch 	    (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
   2002      1.20    mhitch 		newsb->fs_old_time = newsb->fs_time;
   2003      1.20    mhitch 	    	newsb->fs_old_size = newsb->fs_size;
   2004      1.20    mhitch 	    	/* we don't update fs_csaddr */
   2005      1.20    mhitch 	    	newsb->fs_old_dsize = newsb->fs_dsize;
   2006      1.20    mhitch 		newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
   2007      1.20    mhitch 		newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
   2008      1.20    mhitch 		newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
   2009      1.20    mhitch 		newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
   2010      1.20    mhitch 		/* fill fs_old_postbl_start with 256 bytes of 0xff? */
   2011      1.20    mhitch 	}
   2012      1.25       riz 	/* copy newsb back to oldsb, so we can use it for offsets if
   2013      1.25       riz 	   newsb has been swapped for writing to disk */
   2014      1.25       riz 	memcpy(oldsb, newsb, SBLOCKSIZE);
   2015      1.25       riz 	if (needswap)
   2016      1.25       riz 		ffs_sb_swap(newsb,newsb);
   2017      1.10    bouyer 	writeat(where /  DEV_BSIZE, newsb, SBLOCKSIZE);
   2018      1.25       riz 	for (i = 0; i < oldsb->fs_ncg; i++) {
   2019  1.32.2.3      yamt 		writeat(FFS_FSBTODB(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE);
   2020       1.1       jtk 	}
   2021       1.1       jtk }
   2022      1.13      haad 
   2023      1.30  dholland static off_t
   2024      1.13      haad get_dev_size(char *dev_name)
   2025      1.13      haad {
   2026      1.13      haad 	struct dkwedge_info dkw;
   2027      1.13      haad 	struct partition *pp;
   2028      1.13      haad 	struct disklabel lp;
   2029      1.13      haad 	size_t ptn;
   2030      1.28  dholland 
   2031      1.13      haad 	/* Get info about partition/wedge */
   2032      1.13      haad 	if (ioctl(fd, DIOCGWEDGEINFO, &dkw) == -1) {
   2033      1.13      haad 		if (ioctl(fd, DIOCGDINFO, &lp) == -1)
   2034      1.13      haad 			return 0;
   2035      1.13      haad 
   2036      1.13      haad 		ptn = strchr(dev_name, '\0')[-1] - 'a';
   2037      1.13      haad 		if (ptn >= lp.d_npartitions)
   2038      1.13      haad 			return 0;
   2039      1.13      haad 
   2040      1.13      haad 		pp = &lp.d_partitions[ptn];
   2041      1.13      haad 		return pp->p_size;
   2042      1.13      haad 	}
   2043      1.13      haad 
   2044      1.13      haad 	return dkw.dkw_size;
   2045      1.13      haad }
   2046      1.13      haad 
   2047       1.1       jtk /*
   2048       1.1       jtk  * main().
   2049       1.1       jtk  */
   2050       1.1       jtk int
   2051      1.13      haad main(int argc, char **argv)
   2052       1.1       jtk {
   2053      1.13      haad 	int ch;
   2054      1.13      haad 	int ExpertFlag;
   2055      1.13      haad 	int SFlag;
   2056       1.4  christos 	size_t i;
   2057      1.13      haad 
   2058      1.23       riz 	char *special;
   2059      1.13      haad 	char reply[5];
   2060      1.28  dholland 
   2061      1.13      haad 	newsize = 0;
   2062      1.13      haad 	ExpertFlag = 0;
   2063      1.13      haad 	SFlag = 0;
   2064      1.28  dholland 
   2065      1.13      haad 	while ((ch = getopt(argc, argv, "s:y")) != -1) {
   2066      1.13      haad 		switch (ch) {
   2067      1.13      haad 		case 's':
   2068      1.13      haad 			SFlag = 1;
   2069      1.30  dholland 			newsize = strtoll(optarg, NULL, 10);
   2070      1.13      haad 			if(newsize < 1) {
   2071      1.13      haad 				usage();
   2072      1.13      haad 			}
   2073      1.13      haad 			break;
   2074      1.13      haad 		case 'y':
   2075      1.13      haad 			ExpertFlag = 1;
   2076      1.13      haad 			break;
   2077      1.13      haad 		case '?':
   2078      1.13      haad 			/* FALLTHROUGH */
   2079      1.13      haad 		default:
   2080      1.13      haad 			usage();
   2081      1.13      haad 		}
   2082      1.13      haad 	}
   2083      1.13      haad 	argc -= optind;
   2084      1.13      haad 	argv += optind;
   2085      1.13      haad 
   2086      1.13      haad 	if (argc != 1) {
   2087      1.13      haad 		usage();
   2088      1.13      haad 	}
   2089      1.13      haad 
   2090      1.23       riz 	special = *argv;
   2091      1.13      haad 
   2092      1.13      haad 	if (ExpertFlag == 0) {
   2093      1.24       wiz 		printf("It's required to manually run fsck on file system "
   2094      1.13      haad 		    "before you can resize it\n\n"
   2095      1.13      haad 		    " Did you run fsck on your disk (Yes/No) ? ");
   2096      1.13      haad 		fgets(reply, (int)sizeof(reply), stdin);
   2097      1.13      haad 		if (strcasecmp(reply, "Yes\n")) {
   2098      1.13      haad 			printf("\n Nothing done \n");
   2099      1.13      haad 			exit(EXIT_SUCCESS);
   2100      1.13      haad 		}
   2101       1.1       jtk 	}
   2102      1.28  dholland 
   2103      1.23       riz 	fd = open(special, O_RDWR, 0);
   2104       1.4  christos 	if (fd < 0)
   2105      1.23       riz 		err(EXIT_FAILURE, "Can't open `%s'", special);
   2106       1.1       jtk 	checksmallio();
   2107      1.13      haad 
   2108      1.13      haad 	if (SFlag == 0) {
   2109      1.23       riz 		newsize = get_dev_size(special);
   2110      1.13      haad 		if (newsize == 0)
   2111      1.15       riz 			err(EXIT_FAILURE,
   2112      1.24       wiz 			    "Can't resize file system, newsize not known.");
   2113      1.13      haad 	}
   2114      1.28  dholland 
   2115       1.1       jtk 	oldsb = (struct fs *) & sbbuf;
   2116       1.4  christos 	newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
   2117       1.4  christos 	for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
   2118       1.9    bouyer 		readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
   2119      1.23       riz 		switch (oldsb->fs_magic) {
   2120      1.23       riz 		case FS_UFS2_MAGIC:
   2121      1.31  dholland 			is_ufs2 = 1;
   2122      1.23       riz 			/* FALLTHROUGH */
   2123      1.23       riz 		case FS_UFS1_MAGIC:
   2124      1.23       riz 			needswap = 0;
   2125      1.23       riz 			break;
   2126      1.23       riz 		case FS_UFS2_MAGIC_SWAPPED:
   2127      1.23       riz  			is_ufs2 = 1;
   2128      1.23       riz 			/* FALLTHROUGH */
   2129      1.23       riz 		case FS_UFS1_MAGIC_SWAPPED:
   2130      1.23       riz 			needswap = 1;
   2131      1.23       riz 			break;
   2132      1.23       riz 		default:
   2133      1.23       riz 			continue;
   2134      1.23       riz 		}
   2135      1.23       riz 		if (!is_ufs2 && where == SBLOCK_UFS2)
   2136      1.16       riz 			continue;
   2137      1.23       riz 		break;
   2138       1.1       jtk 	}
   2139       1.4  christos 	if (where == (off_t)-1)
   2140      1.13      haad 		errx(EXIT_FAILURE, "Bad magic number");
   2141      1.25       riz 	if (needswap)
   2142      1.25       riz 		ffs_sb_swap(oldsb,oldsb);
   2143      1.20    mhitch 	if (oldsb->fs_magic == FS_UFS1_MAGIC &&
   2144      1.20    mhitch 	    (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
   2145      1.20    mhitch 		oldsb->fs_csaddr = oldsb->fs_old_csaddr;
   2146      1.20    mhitch 		oldsb->fs_size = oldsb->fs_old_size;
   2147      1.20    mhitch 		oldsb->fs_dsize = oldsb->fs_old_dsize;
   2148      1.20    mhitch 		oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
   2149      1.20    mhitch 		oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
   2150      1.20    mhitch 		oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
   2151      1.20    mhitch 		oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
   2152      1.20    mhitch 		/* any others? */
   2153      1.20    mhitch 		printf("Resizing with ffsv1 superblock\n");
   2154      1.20    mhitch 	}
   2155      1.25       riz 
   2156       1.1       jtk 	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
   2157       1.1       jtk 	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
   2158  1.32.2.3      yamt 	if (oldsb->fs_ipg % FFS_INOPB(oldsb))
   2159  1.32.2.3      yamt 		errx(EXIT_FAILURE, "ipg[%d] %% FFS_INOPB[%d] != 0",
   2160  1.32.2.3      yamt 		    (int) oldsb->fs_ipg, (int) FFS_INOPB(oldsb));
   2161      1.25       riz 	/* The superblock is bigger than struct fs (there are trailing
   2162      1.25       riz 	 * tables, of non-fixed size); make sure we copy the whole
   2163      1.25       riz 	 * thing.  SBLOCKSIZE may be an over-estimate, but we do this
   2164      1.25       riz 	 * just once, so being generous is cheap. */
   2165      1.25       riz 	memcpy(newsb, oldsb, SBLOCKSIZE);
   2166       1.1       jtk 	loadcgs();
   2167  1.32.2.3      yamt 	if (newsize > FFS_FSBTODB(oldsb, oldsb->fs_size)) {
   2168       1.1       jtk 		grow();
   2169  1.32.2.3      yamt 	} else if (newsize < FFS_FSBTODB(oldsb, oldsb->fs_size)) {
   2170      1.25       riz 		if (is_ufs2)
   2171      1.25       riz 			errx(EXIT_FAILURE,"shrinking not supported for ufs2");
   2172       1.1       jtk 		shrink();
   2173       1.1       jtk 	}
   2174       1.1       jtk 	flush_cgs();
   2175       1.1       jtk 	write_sbs();
   2176      1.19       riz 	if (isplainfile())
   2177      1.19       riz 		ftruncate(fd,newsize * DEV_BSIZE);
   2178      1.13      haad 	return 0;
   2179      1.13      haad }
   2180      1.13      haad 
   2181      1.13      haad static void
   2182      1.13      haad usage(void)
   2183      1.13      haad {
   2184      1.13      haad 
   2185      1.25       riz 	(void)fprintf(stderr, "usage: %s [-y] [-s size] special\n",
   2186      1.25       riz 	    getprogname());
   2187      1.13      haad 	exit(EXIT_FAILURE);
   2188       1.1       jtk }
   2189