Home | History | Annotate | Line # | Download | only in resize_ffs
resize_ffs.c revision 1.38.6.1.2.1
      1  1.38.6.1.2.1       snj /*	$NetBSD: resize_ffs.c,v 1.38.6.1.2.1 2017/10/23 19:24:33 snj Exp $	*/
      2           1.1       jtk /* From sources sent on February 17, 2003 */
      3           1.1       jtk /*-
      4           1.1       jtk  * As its sole author, I explicitly place this code in the public
      5           1.1       jtk  *  domain.  Anyone may use it for any purpose (though I would
      6           1.1       jtk  *  appreciate credit where it is due).
      7           1.1       jtk  *
      8           1.1       jtk  *					der Mouse
      9           1.1       jtk  *
     10           1.1       jtk  *			       mouse (at) rodents.montreal.qc.ca
     11           1.1       jtk  *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
     12           1.1       jtk  */
     13           1.1       jtk /*
     14           1.3       wiz  * resize_ffs:
     15           1.1       jtk  *
     16          1.24       wiz  * Resize a file system.  Is capable of both growing and shrinking.
     17           1.1       jtk  *
     18          1.24       wiz  * Usage: resize_ffs [-s newsize] [-y] file_system
     19           1.1       jtk  *
     20          1.15       riz  * Example: resize_ffs -s 29574 /dev/rsd1e
     21           1.1       jtk  *
     22           1.1       jtk  * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
     23           1.1       jtk  *  each).
     24           1.1       jtk  *
     25           1.1       jtk  * Note: this currently requires gcc to build, since it is written
     26           1.1       jtk  *  depending on gcc-specific features, notably nested function
     27           1.1       jtk  *  definitions (which in at least a few cases depend on the lexical
     28           1.1       jtk  *  scoping gcc provides, so they can't be trivially moved outside).
     29           1.1       jtk  *
     30           1.5      salo  * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
     31           1.1       jtk  *  one responsible for the "realloccgblk: can't find blk in cyl"
     32           1.1       jtk  *  problem and a more minor one which left fs_dsize wrong when
     33           1.1       jtk  *  shrinking.  (These actually indicate bugs in fsck too - it should
     34           1.1       jtk  *  have caught and fixed them.)
     35           1.1       jtk  *
     36           1.1       jtk  */
     37           1.1       jtk 
     38          1.11     perry #include <sys/cdefs.h>
     39  1.38.6.1.2.1       snj __RCSID("$NetBSD: resize_ffs.c,v 1.38.6.1.2.1 2017/10/23 19:24:33 snj Exp $");
     40          1.29  dholland 
     41          1.13      haad #include <sys/disk.h>
     42          1.13      haad #include <sys/disklabel.h>
     43          1.13      haad #include <sys/dkio.h>
     44          1.13      haad #include <sys/ioctl.h>
     45           1.1       jtk #include <sys/stat.h>
     46           1.1       jtk #include <sys/mman.h>
     47           1.1       jtk #include <sys/param.h>		/* MAXFRAG */
     48           1.1       jtk #include <ufs/ffs/fs.h>
     49          1.25       riz #include <ufs/ffs/ffs_extern.h>
     50           1.1       jtk #include <ufs/ufs/dir.h>
     51           1.1       jtk #include <ufs/ufs/dinode.h>
     52           1.1       jtk #include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */
     53           1.1       jtk 
     54          1.15       riz #include <err.h>
     55          1.15       riz #include <errno.h>
     56          1.15       riz #include <fcntl.h>
     57          1.15       riz #include <stdio.h>
     58          1.15       riz #include <stdlib.h>
     59          1.15       riz #include <strings.h>
     60          1.15       riz #include <unistd.h>
     61          1.15       riz 
     62      1.38.6.1       snj #include "progress.h"
     63      1.38.6.1       snj 
     64          1.24       wiz /* new size of file system, in sectors */
     65          1.30  dholland static int64_t newsize;
     66           1.1       jtk 
     67          1.23       riz /* fd open onto disk device or file */
     68           1.1       jtk static int fd;
     69           1.1       jtk 
     70      1.38.6.1       snj /* disk device or file path */
     71      1.38.6.1       snj char *special;
     72      1.38.6.1       snj 
     73           1.1       jtk /* must we break up big I/O operations - see checksmallio() */
     74           1.1       jtk static int smallio;
     75           1.1       jtk 
     76           1.1       jtk /* size of a cg, in bytes, rounded up to a frag boundary */
     77           1.1       jtk static int cgblksz;
     78           1.1       jtk 
     79           1.4  christos /* possible superblock localtions */
     80           1.4  christos static int search[] = SBLOCKSEARCH;
     81           1.4  christos /* location of the superblock */
     82           1.4  christos static off_t where;
     83           1.4  christos 
     84           1.1       jtk /* Superblocks. */
     85           1.1       jtk static struct fs *oldsb;	/* before we started */
     86           1.1       jtk static struct fs *newsb;	/* copy to work with */
     87           1.1       jtk /* Buffer to hold the above.  Make sure it's aligned correctly. */
     88          1.15       riz static char sbbuf[2 * SBLOCKSIZE]
     89          1.15       riz 	__attribute__((__aligned__(__alignof__(struct fs))));
     90           1.1       jtk 
     91          1.25       riz union dinode {
     92          1.25       riz 	struct ufs1_dinode dp1;
     93          1.25       riz 	struct ufs2_dinode dp2;
     94          1.25       riz };
     95          1.25       riz #define DIP(dp, field)							      \
     96          1.25       riz 	((is_ufs2) ?							      \
     97          1.25       riz 	    (dp)->dp2.field : (dp)->dp1.field)
     98          1.25       riz 
     99          1.25       riz #define DIP_ASSIGN(dp, field, value)					      \
    100          1.25       riz 	do {								      \
    101          1.25       riz 		if (is_ufs2)						      \
    102          1.25       riz 			(dp)->dp2.field = (value);			      \
    103          1.25       riz 		else							      \
    104          1.25       riz 			(dp)->dp1.field = (value);			      \
    105          1.25       riz 	} while (0)
    106          1.25       riz 
    107           1.1       jtk /* a cg's worth of brand new squeaky-clean inodes */
    108           1.4  christos static struct ufs1_dinode *zinodes;
    109           1.1       jtk 
    110           1.1       jtk /* pointers to the in-core cgs, read off disk and possibly modified */
    111           1.1       jtk static struct cg **cgs;
    112           1.1       jtk 
    113           1.1       jtk /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
    114           1.1       jtk static struct csum *csums;
    115           1.1       jtk 
    116           1.1       jtk /* per-cg flags, indexed by cg number */
    117           1.1       jtk static unsigned char *cgflags;
    118           1.1       jtk #define CGF_DIRTY   0x01	/* needs to be written to disk */
    119           1.1       jtk #define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
    120           1.1       jtk #define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */
    121           1.1       jtk 
    122           1.1       jtk /* when shrinking, these two arrays record how we want blocks to move.	 */
    123           1.1       jtk /*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
    124           1.1       jtk /*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
    125           1.1       jtk /*  started out as inode i should end up as inode j.			 */
    126           1.1       jtk static unsigned int *blkmove;
    127           1.1       jtk static unsigned int *inomove;
    128           1.1       jtk 
    129           1.1       jtk /* in-core copies of all inodes in the fs, indexed by inumber */
    130          1.25       riz union dinode *inodes;
    131          1.25       riz 
    132          1.25       riz void *ibuf;	/* ptr to fs block-sized buffer for reading/writing inodes */
    133          1.25       riz 
    134          1.25       riz /* byteswapped inodes */
    135          1.25       riz union dinode *sinodes;
    136           1.1       jtk 
    137           1.1       jtk /* per-inode flags, indexed by inumber */
    138           1.1       jtk static unsigned char *iflags;
    139           1.1       jtk #define IF_DIRTY  0x01		/* needs to be written to disk */
    140           1.1       jtk #define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
    141           1.1       jtk 				 * block of inodes, and applies to the whole
    142           1.1       jtk 				 * block. */
    143           1.1       jtk 
    144          1.15       riz /* resize_ffs works directly on dinodes, adapt blksize() */
    145          1.30  dholland #define dblksize(fs, dip, lbn, filesize) \
    146          1.37  dholland 	(((lbn) >= UFS_NDADDR || (uint64_t)(filesize) >= ffs_lblktosize(fs, (lbn) + 1)) \
    147          1.25       riz 	    ? (fs)->fs_bsize						       \
    148          1.37  dholland 	    : (ffs_fragroundup(fs, ffs_blkoff(fs, (filesize)))))
    149           1.4  christos 
    150           1.4  christos 
    151           1.4  christos /*
    152          1.25       riz  * Number of disk sectors per block/fragment
    153          1.28  dholland  */
    154          1.36  dholland #define NSPB(fs)	(FFS_FSBTODB((fs),1) << (fs)->fs_fragshift)
    155          1.36  dholland #define NSPF(fs)	(FFS_FSBTODB((fs),1))
    156           1.4  christos 
    157          1.23       riz /* global flags */
    158          1.23       riz int is_ufs2 = 0;
    159          1.23       riz int needswap = 0;
    160      1.38.6.1       snj int verbose = 0;
    161      1.38.6.1       snj int progress = 0;
    162          1.23       riz 
    163          1.13      haad static void usage(void) __dead;
    164          1.13      haad 
    165           1.1       jtk /*
    166           1.1       jtk  * See if we need to break up large I/O operations.  This should never
    167           1.1       jtk  *  be needed, but under at least one <version,platform> combination,
    168           1.1       jtk  *  large enough disk transfers to the raw device hang.  So if we're
    169           1.1       jtk  *  talking to a character special device, play it safe; in this case,
    170           1.1       jtk  *  readat() and writeat() break everything up into pieces no larger
    171           1.1       jtk  *  than 8K, doing multiple syscalls for larger operations.
    172           1.1       jtk  */
    173           1.1       jtk static void
    174           1.1       jtk checksmallio(void)
    175           1.1       jtk {
    176           1.1       jtk 	struct stat stb;
    177           1.1       jtk 
    178           1.1       jtk 	fstat(fd, &stb);
    179           1.1       jtk 	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
    180           1.1       jtk }
    181          1.19       riz 
    182          1.19       riz static int
    183          1.19       riz isplainfile(void)
    184          1.19       riz {
    185          1.19       riz 	struct stat stb;
    186          1.19       riz 
    187          1.19       riz 	fstat(fd, &stb);
    188          1.19       riz 	return S_ISREG(stb.st_mode);
    189          1.19       riz }
    190           1.1       jtk /*
    191           1.1       jtk  * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
    192          1.36  dholland  *  units, ie, after FFS_FSBTODB(); size is in bytes.
    193           1.1       jtk  */
    194           1.1       jtk static void
    195           1.1       jtk readat(off_t blkno, void *buf, int size)
    196           1.1       jtk {
    197           1.1       jtk 	/* Seek to the correct place. */
    198           1.4  christos 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    199          1.15       riz 		err(EXIT_FAILURE, "lseek failed");
    200           1.4  christos 
    201           1.1       jtk 	/* See if we have to break up the transfer... */
    202           1.1       jtk 	if (smallio) {
    203           1.1       jtk 		char *bp;	/* pointer into buf */
    204           1.1       jtk 		int left;	/* bytes left to go */
    205           1.1       jtk 		int n;		/* number to do this time around */
    206           1.1       jtk 		int rv;		/* syscall return value */
    207           1.1       jtk 		bp = buf;
    208           1.1       jtk 		left = size;
    209           1.1       jtk 		while (left > 0) {
    210           1.1       jtk 			n = (left > 8192) ? 8192 : left;
    211           1.1       jtk 			rv = read(fd, bp, n);
    212           1.4  christos 			if (rv < 0)
    213          1.13      haad 				err(EXIT_FAILURE, "read failed");
    214           1.4  christos 			if (rv != n)
    215          1.15       riz 				errx(EXIT_FAILURE,
    216          1.15       riz 				    "read: wanted %d, got %d", n, rv);
    217           1.1       jtk 			bp += n;
    218           1.1       jtk 			left -= n;
    219           1.1       jtk 		}
    220           1.1       jtk 	} else {
    221           1.1       jtk 		int rv;
    222           1.1       jtk 		rv = read(fd, buf, size);
    223           1.4  christos 		if (rv < 0)
    224          1.13      haad 			err(EXIT_FAILURE, "read failed");
    225           1.4  christos 		if (rv != size)
    226          1.25       riz 			errx(EXIT_FAILURE, "read: wanted %d, got %d",
    227          1.25       riz 			    size, rv);
    228           1.1       jtk 	}
    229           1.1       jtk }
    230           1.1       jtk /*
    231           1.1       jtk  * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
    232          1.36  dholland  *  units, ie, after FFS_FSBTODB(); size is in bytes.
    233           1.1       jtk  */
    234           1.1       jtk static void
    235           1.1       jtk writeat(off_t blkno, const void *buf, int size)
    236           1.1       jtk {
    237           1.1       jtk 	/* Seek to the correct place. */
    238           1.4  christos 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    239          1.13      haad 		err(EXIT_FAILURE, "lseek failed");
    240           1.1       jtk 	/* See if we have to break up the transfer... */
    241           1.1       jtk 	if (smallio) {
    242           1.1       jtk 		const char *bp;	/* pointer into buf */
    243           1.1       jtk 		int left;	/* bytes left to go */
    244           1.1       jtk 		int n;		/* number to do this time around */
    245           1.1       jtk 		int rv;		/* syscall return value */
    246           1.1       jtk 		bp = buf;
    247           1.1       jtk 		left = size;
    248           1.1       jtk 		while (left > 0) {
    249           1.1       jtk 			n = (left > 8192) ? 8192 : left;
    250           1.1       jtk 			rv = write(fd, bp, n);
    251           1.4  christos 			if (rv < 0)
    252          1.13      haad 				err(EXIT_FAILURE, "write failed");
    253           1.4  christos 			if (rv != n)
    254          1.15       riz 				errx(EXIT_FAILURE,
    255          1.15       riz 				    "write: wanted %d, got %d", n, rv);
    256           1.1       jtk 			bp += n;
    257           1.1       jtk 			left -= n;
    258           1.1       jtk 		}
    259           1.1       jtk 	} else {
    260           1.1       jtk 		int rv;
    261           1.1       jtk 		rv = write(fd, buf, size);
    262           1.4  christos 		if (rv < 0)
    263          1.13      haad 			err(EXIT_FAILURE, "write failed");
    264           1.4  christos 		if (rv != size)
    265          1.15       riz 			errx(EXIT_FAILURE,
    266          1.15       riz 			    "write: wanted %d, got %d", size, rv);
    267           1.1       jtk 	}
    268           1.1       jtk }
    269           1.1       jtk /*
    270           1.1       jtk  * Never-fail versions of malloc() and realloc(), and an allocation
    271           1.1       jtk  *  routine (which also never fails) for allocating memory that will
    272           1.1       jtk  *  never be freed until exit.
    273           1.1       jtk  */
    274           1.1       jtk 
    275           1.1       jtk /*
    276           1.1       jtk  * Never-fail malloc.
    277           1.1       jtk  */
    278           1.1       jtk static void *
    279           1.1       jtk nfmalloc(size_t nb, const char *tag)
    280           1.1       jtk {
    281           1.1       jtk 	void *rv;
    282           1.1       jtk 
    283           1.1       jtk 	rv = malloc(nb);
    284           1.1       jtk 	if (rv)
    285           1.1       jtk 		return (rv);
    286          1.13      haad 	err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
    287           1.4  christos 	    (unsigned long int) nb, tag);
    288           1.1       jtk }
    289           1.1       jtk /*
    290           1.1       jtk  * Never-fail realloc.
    291           1.1       jtk  */
    292           1.1       jtk static void *
    293           1.1       jtk nfrealloc(void *blk, size_t nb, const char *tag)
    294           1.1       jtk {
    295           1.1       jtk 	void *rv;
    296           1.1       jtk 
    297           1.1       jtk 	rv = realloc(blk, nb);
    298           1.1       jtk 	if (rv)
    299           1.1       jtk 		return (rv);
    300          1.13      haad 	err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
    301           1.4  christos 	    (unsigned long int) nb, tag);
    302           1.1       jtk }
    303           1.1       jtk /*
    304           1.1       jtk  * Allocate memory that will never be freed or reallocated.  Arguably
    305           1.1       jtk  *  this routine should handle small allocations by chopping up pages,
    306           1.1       jtk  *  but that's not worth the bother; it's not called more than a
    307           1.1       jtk  *  handful of times per run, and if the allocations are that small the
    308           1.1       jtk  *  waste in giving each one its own page is ignorable.
    309           1.1       jtk  */
    310           1.1       jtk static void *
    311           1.1       jtk alloconce(size_t nb, const char *tag)
    312           1.1       jtk {
    313           1.1       jtk 	void *rv;
    314           1.1       jtk 
    315           1.1       jtk 	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
    316           1.1       jtk 	if (rv != MAP_FAILED)
    317           1.1       jtk 		return (rv);
    318          1.13      haad 	err(EXIT_FAILURE, "Can't map %lu bytes for %s",
    319           1.4  christos 	    (unsigned long int) nb, tag);
    320           1.1       jtk }
    321           1.1       jtk /*
    322           1.1       jtk  * Load the cgs and csums off disk.  Also allocates the space to load
    323           1.1       jtk  *  them into and initializes the per-cg flags.
    324           1.1       jtk  */
    325           1.1       jtk static void
    326           1.1       jtk loadcgs(void)
    327           1.1       jtk {
    328           1.1       jtk 	int cg;
    329           1.1       jtk 	char *cgp;
    330           1.1       jtk 
    331           1.1       jtk 	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
    332          1.32  christos 	cgs = nfmalloc(oldsb->fs_ncg * sizeof(*cgs), "cg pointers");
    333           1.1       jtk 	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
    334           1.1       jtk 	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
    335           1.1       jtk 	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
    336           1.1       jtk 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
    337           1.1       jtk 		cgs[cg] = (struct cg *) cgp;
    338          1.36  dholland 		readat(FFS_FSBTODB(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
    339          1.25       riz 		if (needswap)
    340          1.25       riz 			ffs_cg_swap(cgs[cg],cgs[cg],oldsb);
    341           1.1       jtk 		cgflags[cg] = 0;
    342           1.1       jtk 		cgp += cgblksz;
    343           1.1       jtk 	}
    344          1.36  dholland 	readat(FFS_FSBTODB(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
    345          1.25       riz 	if (needswap)
    346          1.25       riz 		ffs_csum_swap(csums,csums,oldsb->fs_cssize);
    347           1.1       jtk }
    348           1.1       jtk /*
    349           1.1       jtk  * Set n bits, starting with bit #base, in the bitmap pointed to by
    350           1.1       jtk  *  bitvec (which is assumed to be large enough to include bits base
    351           1.1       jtk  *  through base+n-1).
    352           1.1       jtk  */
    353           1.1       jtk static void
    354           1.1       jtk set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
    355           1.1       jtk {
    356           1.1       jtk 	if (n < 1)
    357           1.1       jtk 		return;		/* nothing to do */
    358           1.1       jtk 	if (base & 7) {		/* partial byte at beginning */
    359           1.1       jtk 		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
    360           1.1       jtk 			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
    361           1.1       jtk 			return;
    362           1.1       jtk 		}
    363           1.1       jtk 		bitvec[base >> 3] |= (~0U) << (base & 7);
    364           1.1       jtk 		n -= 8 - (base & 7);
    365           1.1       jtk 		base = (base & ~7) + 8;
    366           1.1       jtk 	}
    367           1.1       jtk 	if (n >= 8) {		/* do full bytes */
    368           1.1       jtk 		memset(bitvec + (base >> 3), 0xff, n >> 3);
    369           1.1       jtk 		base += n & ~7;
    370           1.1       jtk 		n &= 7;
    371           1.1       jtk 	}
    372           1.1       jtk 	if (n) {		/* partial byte at end */
    373           1.1       jtk 		bitvec[base >> 3] |= ~((~0U) << n);
    374           1.1       jtk 	}
    375           1.1       jtk }
    376           1.1       jtk /*
    377           1.1       jtk  * Clear n bits, starting with bit #base, in the bitmap pointed to by
    378           1.1       jtk  *  bitvec (which is assumed to be large enough to include bits base
    379           1.1       jtk  *  through base+n-1).  Code parallels set_bits().
    380           1.1       jtk  */
    381           1.1       jtk static void
    382           1.1       jtk clr_bits(unsigned char *bitvec, int base, int n)
    383           1.1       jtk {
    384           1.1       jtk 	if (n < 1)
    385           1.1       jtk 		return;
    386           1.1       jtk 	if (base & 7) {
    387           1.1       jtk 		if (n <= 8 - (base & 7)) {
    388           1.1       jtk 			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
    389           1.1       jtk 			return;
    390           1.1       jtk 		}
    391           1.1       jtk 		bitvec[base >> 3] &= ~((~0U) << (base & 7));
    392           1.1       jtk 		n -= 8 - (base & 7);
    393           1.1       jtk 		base = (base & ~7) + 8;
    394           1.1       jtk 	}
    395           1.1       jtk 	if (n >= 8) {
    396          1.25       riz 		memset(bitvec + (base >> 3), 0, n >> 3);
    397           1.1       jtk 		base += n & ~7;
    398           1.1       jtk 		n &= 7;
    399           1.1       jtk 	}
    400           1.1       jtk 	if (n) {
    401           1.1       jtk 		bitvec[base >> 3] &= (~0U) << n;
    402           1.1       jtk 	}
    403           1.1       jtk }
    404           1.1       jtk /*
    405           1.1       jtk  * Test whether bit #bit is set in the bitmap pointed to by bitvec.
    406           1.1       jtk  */
    407          1.13      haad static int
    408           1.1       jtk bit_is_set(unsigned char *bitvec, int bit)
    409           1.1       jtk {
    410           1.1       jtk 	return (bitvec[bit >> 3] & (1 << (bit & 7)));
    411           1.1       jtk }
    412           1.1       jtk /*
    413           1.1       jtk  * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
    414           1.1       jtk  */
    415          1.13      haad static int
    416           1.1       jtk bit_is_clr(unsigned char *bitvec, int bit)
    417           1.1       jtk {
    418           1.1       jtk 	return (!bit_is_set(bitvec, bit));
    419           1.1       jtk }
    420           1.1       jtk /*
    421           1.1       jtk  * Test whether a whole block of bits is set in a bitmap.  This is
    422           1.1       jtk  *  designed for testing (aligned) disk blocks in a bit-per-frag
    423           1.1       jtk  *  bitmap; it has assumptions wired into it based on that, essentially
    424           1.1       jtk  *  that the entire block fits into a single byte.  This returns true
    425           1.1       jtk  *  iff _all_ the bits are set; it is not just the complement of
    426           1.1       jtk  *  blk_is_clr on the same arguments (unless blkfrags==1).
    427           1.1       jtk  */
    428          1.13      haad static int
    429           1.1       jtk blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
    430           1.1       jtk {
    431           1.1       jtk 	unsigned int mask;
    432           1.1       jtk 
    433           1.1       jtk 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    434           1.1       jtk 	return ((bitvec[blkbase >> 3] & mask) == mask);
    435           1.1       jtk }
    436           1.1       jtk /*
    437           1.1       jtk  * Test whether a whole block of bits is clear in a bitmap.  See
    438           1.1       jtk  *  blk_is_set (above) for assumptions.  This returns true iff _all_
    439           1.1       jtk  *  the bits are clear; it is not just the complement of blk_is_set on
    440           1.1       jtk  *  the same arguments (unless blkfrags==1).
    441           1.1       jtk  */
    442          1.13      haad static int
    443           1.1       jtk blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
    444           1.1       jtk {
    445           1.1       jtk 	unsigned int mask;
    446           1.1       jtk 
    447           1.1       jtk 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    448           1.1       jtk 	return ((bitvec[blkbase >> 3] & mask) == 0);
    449           1.1       jtk }
    450           1.1       jtk /*
    451           1.1       jtk  * Initialize a new cg.  Called when growing.  Assumes memory has been
    452           1.1       jtk  *  allocated but not otherwise set up.  This code sets the fields of
    453           1.1       jtk  *  the cg, initializes the bitmaps (and cluster summaries, if
    454           1.1       jtk  *  applicable), updates both per-cylinder summary info and the global
    455           1.1       jtk  *  summary info in newsb; it also writes out new inodes for the cg.
    456           1.1       jtk  *
    457           1.1       jtk  * This code knows it can never be called for cg 0, which makes it a
    458           1.1       jtk  *  bit simpler than it would otherwise be.
    459           1.1       jtk  */
    460           1.1       jtk static void
    461           1.1       jtk initcg(int cgn)
    462           1.1       jtk {
    463           1.1       jtk 	struct cg *cg;		/* The in-core cg, of course */
    464  1.38.6.1.2.1       snj 	int64_t base;		/* Disk address of cg base */
    465  1.38.6.1.2.1       snj 	int64_t dlow;		/* Size of pre-cg data area */
    466  1.38.6.1.2.1       snj 	int64_t dhigh;		/* Offset of post-inode data area, from base */
    467  1.38.6.1.2.1       snj 	int64_t dmax;		/* Offset of end of post-inode data area */
    468           1.1       jtk 	int i;			/* Generic loop index */
    469           1.1       jtk 	int n;			/* Generic count */
    470          1.25       riz 	int start;		/* start of cg maps */
    471           1.1       jtk 
    472           1.1       jtk 	cg = cgs[cgn];
    473           1.1       jtk 	/* Place the data areas */
    474           1.1       jtk 	base = cgbase(newsb, cgn);
    475           1.1       jtk 	dlow = cgsblock(newsb, cgn) - base;
    476           1.1       jtk 	dhigh = cgdmin(newsb, cgn) - base;
    477           1.1       jtk 	dmax = newsb->fs_size - base;
    478           1.1       jtk 	if (dmax > newsb->fs_fpg)
    479           1.1       jtk 		dmax = newsb->fs_fpg;
    480  1.38.6.1.2.1       snj 	start = (unsigned char *)&cg->cg_space[0] - (unsigned char *) cg;
    481           1.1       jtk 	/*
    482           1.1       jtk          * Clear out the cg - assumes all-0-bytes is the correct way
    483           1.1       jtk          * to initialize fields we don't otherwise touch, which is
    484           1.1       jtk          * perhaps not the right thing to do, but it's what fsck and
    485           1.1       jtk          * mkfs do.
    486           1.1       jtk          */
    487          1.25       riz 	memset(cg, 0, newsb->fs_cgsize);
    488          1.20    mhitch 	if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
    489          1.20    mhitch 		cg->cg_time = newsb->fs_time;
    490           1.1       jtk 	cg->cg_magic = CG_MAGIC;
    491           1.1       jtk 	cg->cg_cgx = cgn;
    492          1.25       riz 	cg->cg_niblk = newsb->fs_ipg;
    493          1.25       riz 	cg->cg_ndblk = dmax;
    494          1.25       riz 
    495          1.25       riz 	if (is_ufs2) {
    496          1.25       riz 		cg->cg_time = newsb->fs_time;
    497          1.35  dholland 		cg->cg_initediblk = newsb->fs_ipg < 2 * FFS_INOPB(newsb) ?
    498          1.35  dholland 		    newsb->fs_ipg : 2 * FFS_INOPB(newsb);
    499          1.25       riz 		cg->cg_iusedoff = start;
    500          1.25       riz 	} else {
    501          1.25       riz 		cg->cg_old_time = newsb->fs_time;
    502          1.25       riz 		cg->cg_old_niblk = cg->cg_niblk;
    503          1.25       riz 		cg->cg_niblk = 0;
    504          1.25       riz 		cg->cg_initediblk = 0;
    505          1.28  dholland 
    506          1.28  dholland 
    507          1.25       riz 		cg->cg_old_ncyl = newsb->fs_old_cpg;
    508          1.25       riz 		/* Update the cg_old_ncyl value for the last cylinder. */
    509          1.25       riz 		if (cgn == newsb->fs_ncg - 1) {
    510          1.25       riz 			if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
    511          1.25       riz 				cg->cg_old_ncyl = newsb->fs_old_ncyl %
    512          1.25       riz 				    newsb->fs_old_cpg;
    513          1.25       riz 		}
    514          1.25       riz 
    515          1.25       riz 		/* Set up the bitmap pointers.  We have to be careful
    516          1.25       riz 		 * to lay out the cg _exactly_ the way mkfs and fsck
    517          1.25       riz 		 * do it, since fsck compares the _entire_ cg against
    518          1.25       riz 		 * a recomputed cg, and whines if there is any
    519          1.25       riz 		 * mismatch, including the bitmap offsets. */
    520          1.25       riz 		/* XXX update this comment when fsck is fixed */
    521          1.25       riz 		cg->cg_old_btotoff = start;
    522          1.25       riz 		cg->cg_old_boff = cg->cg_old_btotoff
    523          1.25       riz 		    + (newsb->fs_old_cpg * sizeof(int32_t));
    524          1.25       riz 		cg->cg_iusedoff = cg->cg_old_boff +
    525          1.25       riz 		    (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
    526           1.1       jtk 	}
    527           1.1       jtk 	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
    528           1.1       jtk 	if (newsb->fs_contigsumsize > 0) {
    529           1.1       jtk 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
    530           1.1       jtk 		cg->cg_clustersumoff = cg->cg_freeoff +
    531          1.25       riz 		    howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t);
    532           1.1       jtk 		cg->cg_clustersumoff =
    533           1.1       jtk 		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
    534           1.1       jtk 		cg->cg_clusteroff = cg->cg_clustersumoff +
    535           1.1       jtk 		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
    536           1.1       jtk 		cg->cg_nextfreeoff = cg->cg_clusteroff +
    537          1.38  dholland 		    howmany(ffs_fragstoblks(newsb,newsb->fs_fpg), NBBY);
    538           1.1       jtk 		n = dlow / newsb->fs_frag;
    539           1.1       jtk 		if (n > 0) {
    540           1.1       jtk 			set_bits(cg_clustersfree(cg, 0), 0, n);
    541           1.1       jtk 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    542           1.1       jtk 			    newsb->fs_contigsumsize : n]++;
    543           1.1       jtk 		}
    544           1.1       jtk 	} else {
    545           1.1       jtk 		cg->cg_nextfreeoff = cg->cg_freeoff +
    546          1.25       riz 		    howmany(newsb->fs_fpg, NBBY);
    547           1.1       jtk 	}
    548           1.1       jtk 	/* Mark the data areas as free; everything else is marked busy by the
    549          1.25       riz 	 * memset() up at the top. */
    550           1.1       jtk 	set_bits(cg_blksfree(cg, 0), 0, dlow);
    551           1.1       jtk 	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
    552           1.1       jtk 	/* Initialize summary info */
    553           1.1       jtk 	cg->cg_cs.cs_ndir = 0;
    554           1.1       jtk 	cg->cg_cs.cs_nifree = newsb->fs_ipg;
    555           1.1       jtk 	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
    556           1.1       jtk 	cg->cg_cs.cs_nffree = 0;
    557          1.28  dholland 
    558          1.25       riz 	/* This is the simplest way of doing this; we perhaps could
    559          1.25       riz 	 * compute the correct cg_blktot()[] and cg_blks()[] values
    560          1.25       riz 	 * other ways, but it would be complicated and hardly seems
    561          1.25       riz 	 * worth the effort.  (The reason there isn't
    562          1.25       riz 	 * frag-at-beginning and frag-at-end code here, like the code
    563          1.25       riz 	 * below for the post-inode data area, is that the pre-sb data
    564          1.25       riz 	 * area always starts at 0, and thus is block-aligned, and
    565          1.25       riz 	 * always ends at the sb, which is block-aligned.) */
    566  1.38.6.1.2.1       snj 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
    567  1.38.6.1.2.1       snj 		int64_t di;
    568  1.38.6.1.2.1       snj 
    569  1.38.6.1.2.1       snj 		for (di = 0; di < dlow; di += newsb->fs_frag) {
    570  1.38.6.1.2.1       snj 			old_cg_blktot(cg, 0)[old_cbtocylno(newsb, di)]++;
    571          1.25       riz 			old_cg_blks(newsb, cg,
    572  1.38.6.1.2.1       snj 			    old_cbtocylno(newsb, di),
    573  1.38.6.1.2.1       snj 			    0)[old_cbtorpos(newsb, di)]++;
    574          1.25       riz 		}
    575  1.38.6.1.2.1       snj 	}
    576           1.1       jtk 
    577           1.1       jtk 	/* Deal with a partial block at the beginning of the post-inode area.
    578           1.1       jtk 	 * I'm not convinced this can happen - I think the inodes are always
    579           1.1       jtk 	 * block-aligned and always an integral number of blocks - but it's
    580           1.1       jtk 	 * cheap to do the right thing just in case. */
    581           1.1       jtk 	if (dhigh % newsb->fs_frag) {
    582           1.1       jtk 		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
    583           1.1       jtk 		cg->cg_frsum[n]++;
    584           1.1       jtk 		cg->cg_cs.cs_nffree += n;
    585           1.1       jtk 		dhigh += n;
    586           1.1       jtk 	}
    587           1.1       jtk 	n = (dmax - dhigh) / newsb->fs_frag;
    588           1.1       jtk 	/* We have n full-size blocks in the post-inode data area. */
    589           1.1       jtk 	if (n > 0) {
    590           1.1       jtk 		cg->cg_cs.cs_nbfree += n;
    591           1.1       jtk 		if (newsb->fs_contigsumsize > 0) {
    592           1.1       jtk 			i = dhigh / newsb->fs_frag;
    593           1.1       jtk 			set_bits(cg_clustersfree(cg, 0), i, n);
    594           1.1       jtk 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    595           1.1       jtk 			    newsb->fs_contigsumsize : n]++;
    596           1.1       jtk 		}
    597  1.38.6.1.2.1       snj 		for (i = n; i > 0; i--) {
    598  1.38.6.1.2.1       snj 			if (is_ufs2 == 0) {
    599          1.25       riz 				old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
    600          1.25       riz 					    dhigh)]++;
    601          1.25       riz 				old_cg_blks(newsb, cg,
    602          1.25       riz 				    old_cbtocylno(newsb, dhigh),
    603          1.25       riz 				    0)[old_cbtorpos(newsb,
    604          1.25       riz 					    dhigh)]++;
    605          1.25       riz 			}
    606  1.38.6.1.2.1       snj 			dhigh += newsb->fs_frag;
    607           1.1       jtk 		}
    608           1.1       jtk 	}
    609  1.38.6.1.2.1       snj 	/* Deal with any leftover frag at the end of the cg. */
    610  1.38.6.1.2.1       snj 	i = dmax - dhigh;
    611  1.38.6.1.2.1       snj 	if (i) {
    612  1.38.6.1.2.1       snj 		cg->cg_frsum[i]++;
    613  1.38.6.1.2.1       snj 		cg->cg_cs.cs_nffree += i;
    614  1.38.6.1.2.1       snj 	}
    615           1.1       jtk 	/* Update the csum info. */
    616           1.1       jtk 	csums[cgn] = cg->cg_cs;
    617           1.1       jtk 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
    618           1.1       jtk 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
    619           1.1       jtk 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
    620          1.25       riz 	if (is_ufs2 == 0)
    621          1.25       riz 		/* Write out the cleared inodes. */
    622          1.36  dholland 		writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes,
    623          1.32  christos 		    newsb->fs_ipg * sizeof(*zinodes));
    624           1.1       jtk 	/* Dirty the cg. */
    625           1.1       jtk 	cgflags[cgn] |= CGF_DIRTY;
    626           1.1       jtk }
    627           1.1       jtk /*
    628           1.1       jtk  * Find free space, at least nfrags consecutive frags of it.  Pays no
    629           1.1       jtk  *  attention to block boundaries, but refuses to straddle cg
    630           1.1       jtk  *  boundaries, even if the disk blocks involved are in fact
    631           1.1       jtk  *  consecutive.  Return value is the frag number of the first frag of
    632           1.1       jtk  *  the block, or -1 if no space was found.  Uses newsb for sb values,
    633           1.1       jtk  *  and assumes the cgs[] structures correctly describe the area to be
    634           1.1       jtk  *  searched.
    635           1.1       jtk  *
    636           1.1       jtk  * XXX is there a bug lurking in the ignoring of block boundaries by
    637           1.1       jtk  *  the routine used by fragmove() in evict_data()?  Can an end-of-file
    638           1.1       jtk  *  frag legally straddle a block boundary?  If not, this should be
    639           1.1       jtk  *  cloned and fixed to stop at block boundaries for that use.  The
    640           1.1       jtk  *  current one may still be needed for csum info motion, in case that
    641           1.1       jtk  *  takes up more than a whole block (is the csum info allowed to begin
    642           1.1       jtk  *  partway through a block and continue into the following block?).
    643           1.1       jtk  *
    644          1.24       wiz  * If we wrap off the end of the file system back to the beginning, we
    645          1.24       wiz  *  can end up searching the end of the file system twice.  I ignore
    646           1.1       jtk  *  this inefficiency, since if that happens we're going to croak with
    647           1.1       jtk  *  a no-space error anyway, so it happens at most once.
    648           1.1       jtk  */
    649           1.1       jtk static int
    650           1.1       jtk find_freespace(unsigned int nfrags)
    651           1.1       jtk {
    652           1.1       jtk 	static int hand = 0;	/* hand rotates through all frags in the fs */
    653           1.1       jtk 	int cgsize;		/* size of the cg hand currently points into */
    654           1.1       jtk 	int cgn;		/* number of cg hand currently points into */
    655           1.1       jtk 	int fwc;		/* frag-within-cg number of frag hand points
    656           1.1       jtk 				 * to */
    657          1.30  dholland 	unsigned int run;	/* length of run of free frags seen so far */
    658           1.1       jtk 	int secondpass;		/* have we wrapped from end of fs to
    659           1.1       jtk 				 * beginning? */
    660           1.1       jtk 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    661           1.1       jtk 
    662           1.1       jtk 	cgn = dtog(newsb, hand);
    663           1.1       jtk 	fwc = dtogd(newsb, hand);
    664           1.1       jtk 	secondpass = (hand == 0);
    665           1.1       jtk 	run = 0;
    666           1.1       jtk 	bits = cg_blksfree(cgs[cgn], 0);
    667           1.1       jtk 	cgsize = cgs[cgn]->cg_ndblk;
    668           1.1       jtk 	while (1) {
    669           1.1       jtk 		if (bit_is_set(bits, fwc)) {
    670           1.1       jtk 			run++;
    671           1.1       jtk 			if (run >= nfrags)
    672           1.1       jtk 				return (hand + 1 - run);
    673           1.1       jtk 		} else {
    674           1.1       jtk 			run = 0;
    675           1.1       jtk 		}
    676           1.1       jtk 		hand++;
    677           1.1       jtk 		fwc++;
    678           1.1       jtk 		if (fwc >= cgsize) {
    679           1.1       jtk 			fwc = 0;
    680           1.1       jtk 			cgn++;
    681           1.1       jtk 			if (cgn >= newsb->fs_ncg) {
    682           1.1       jtk 				hand = 0;
    683           1.1       jtk 				if (secondpass)
    684           1.1       jtk 					return (-1);
    685           1.1       jtk 				secondpass = 1;
    686           1.1       jtk 				cgn = 0;
    687           1.1       jtk 			}
    688           1.1       jtk 			bits = cg_blksfree(cgs[cgn], 0);
    689           1.1       jtk 			cgsize = cgs[cgn]->cg_ndblk;
    690           1.1       jtk 			run = 0;
    691           1.1       jtk 		}
    692           1.1       jtk 	}
    693           1.1       jtk }
    694           1.1       jtk /*
    695           1.1       jtk  * Find a free block of disk space.  Finds an entire block of frags,
    696           1.1       jtk  *  all of which are free.  Return value is the frag number of the
    697           1.1       jtk  *  first frag of the block, or -1 if no space was found.  Uses newsb
    698           1.1       jtk  *  for sb values, and assumes the cgs[] structures correctly describe
    699           1.1       jtk  *  the area to be searched.
    700           1.1       jtk  *
    701           1.1       jtk  * See find_freespace(), above, for remarks about hand wrapping around.
    702           1.1       jtk  */
    703           1.1       jtk static int
    704           1.1       jtk find_freeblock(void)
    705           1.1       jtk {
    706           1.1       jtk 	static int hand = 0;	/* hand rotates through all frags in fs */
    707           1.1       jtk 	int cgn;		/* cg number of cg hand points into */
    708           1.1       jtk 	int fwc;		/* frag-within-cg number of frag hand points
    709           1.1       jtk 				 * to */
    710           1.1       jtk 	int cgsize;		/* size of cg hand points into */
    711           1.1       jtk 	int secondpass;		/* have we wrapped from end to beginning? */
    712           1.1       jtk 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    713           1.1       jtk 
    714           1.1       jtk 	cgn = dtog(newsb, hand);
    715           1.1       jtk 	fwc = dtogd(newsb, hand);
    716           1.1       jtk 	secondpass = (hand == 0);
    717           1.1       jtk 	bits = cg_blksfree(cgs[cgn], 0);
    718          1.38  dholland 	cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
    719           1.1       jtk 	while (1) {
    720           1.1       jtk 		if (blk_is_set(bits, fwc, newsb->fs_frag))
    721           1.1       jtk 			return (hand);
    722           1.1       jtk 		fwc += newsb->fs_frag;
    723           1.1       jtk 		hand += newsb->fs_frag;
    724           1.1       jtk 		if (fwc >= cgsize) {
    725           1.1       jtk 			fwc = 0;
    726           1.1       jtk 			cgn++;
    727           1.1       jtk 			if (cgn >= newsb->fs_ncg) {
    728           1.1       jtk 				hand = 0;
    729           1.1       jtk 				if (secondpass)
    730           1.1       jtk 					return (-1);
    731           1.1       jtk 				secondpass = 1;
    732           1.1       jtk 				cgn = 0;
    733           1.1       jtk 			}
    734           1.1       jtk 			bits = cg_blksfree(cgs[cgn], 0);
    735          1.38  dholland 			cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
    736           1.1       jtk 		}
    737           1.1       jtk 	}
    738           1.1       jtk }
    739           1.1       jtk /*
    740           1.1       jtk  * Find a free inode, returning its inumber or -1 if none was found.
    741           1.1       jtk  *  Uses newsb for sb values, and assumes the cgs[] structures
    742           1.1       jtk  *  correctly describe the area to be searched.
    743           1.1       jtk  *
    744           1.1       jtk  * See find_freespace(), above, for remarks about hand wrapping around.
    745           1.1       jtk  */
    746           1.1       jtk static int
    747           1.1       jtk find_freeinode(void)
    748           1.1       jtk {
    749           1.1       jtk 	static int hand = 0;	/* hand rotates through all inodes in fs */
    750           1.1       jtk 	int cgn;		/* cg number of cg hand points into */
    751           1.1       jtk 	int iwc;		/* inode-within-cg number of inode hand points
    752           1.1       jtk 				 * to */
    753           1.1       jtk 	int secondpass;		/* have we wrapped from end to beginning? */
    754           1.1       jtk 	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */
    755           1.1       jtk 
    756           1.1       jtk 	cgn = hand / newsb->fs_ipg;
    757           1.1       jtk 	iwc = hand % newsb->fs_ipg;
    758           1.1       jtk 	secondpass = (hand == 0);
    759           1.1       jtk 	bits = cg_inosused(cgs[cgn], 0);
    760           1.1       jtk 	while (1) {
    761           1.1       jtk 		if (bit_is_clr(bits, iwc))
    762           1.1       jtk 			return (hand);
    763           1.1       jtk 		hand++;
    764           1.1       jtk 		iwc++;
    765           1.1       jtk 		if (iwc >= newsb->fs_ipg) {
    766           1.1       jtk 			iwc = 0;
    767           1.1       jtk 			cgn++;
    768           1.1       jtk 			if (cgn >= newsb->fs_ncg) {
    769           1.1       jtk 				hand = 0;
    770           1.1       jtk 				if (secondpass)
    771           1.1       jtk 					return (-1);
    772           1.1       jtk 				secondpass = 1;
    773           1.1       jtk 				cgn = 0;
    774           1.1       jtk 			}
    775           1.1       jtk 			bits = cg_inosused(cgs[cgn], 0);
    776           1.1       jtk 		}
    777           1.1       jtk 	}
    778           1.1       jtk }
    779           1.1       jtk /*
    780           1.1       jtk  * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
    781           1.1       jtk  *  for the appropriate cg, and marks the cg as dirty.
    782           1.1       jtk  */
    783           1.1       jtk static void
    784           1.1       jtk free_frag(int fno)
    785           1.1       jtk {
    786           1.1       jtk 	int cgn;
    787           1.1       jtk 
    788           1.1       jtk 	cgn = dtog(newsb, fno);
    789           1.1       jtk 	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    790           1.1       jtk 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    791           1.1       jtk }
    792           1.1       jtk /*
    793           1.1       jtk  * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
    794           1.1       jtk  *  for the appropriate cg, and marks the cg as dirty.
    795           1.1       jtk  */
    796           1.1       jtk static void
    797           1.1       jtk alloc_frag(int fno)
    798           1.1       jtk {
    799           1.1       jtk 	int cgn;
    800           1.1       jtk 
    801           1.1       jtk 	cgn = dtog(newsb, fno);
    802           1.1       jtk 	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    803           1.1       jtk 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    804           1.1       jtk }
    805           1.1       jtk /*
    806           1.1       jtk  * Fix up the csum array.  If shrinking, this involves freeing zero or
    807           1.1       jtk  *  more frags; if growing, it involves allocating them, or if the
    808           1.1       jtk  *  frags being grown into aren't free, finding space elsewhere for the
    809           1.1       jtk  *  csum info.  (If the number of occupied frags doesn't change,
    810           1.1       jtk  *  nothing happens here.)
    811           1.1       jtk  */
    812           1.1       jtk static void
    813           1.1       jtk csum_fixup(void)
    814           1.1       jtk {
    815           1.1       jtk 	int nold;		/* # frags in old csum info */
    816           1.1       jtk 	int ntot;		/* # frags in new csum info */
    817           1.1       jtk 	int nnew;		/* ntot-nold */
    818           1.1       jtk 	int newloc;		/* new location for csum info, if necessary */
    819           1.1       jtk 	int i;			/* generic loop index */
    820           1.1       jtk 	int j;			/* generic loop index */
    821           1.1       jtk 	int f;			/* "from" frag number, if moving */
    822           1.1       jtk 	int t;			/* "to" frag number, if moving */
    823           1.1       jtk 	int cgn;		/* cg number, used when shrinking */
    824           1.1       jtk 
    825           1.1       jtk 	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
    826           1.1       jtk 	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
    827           1.1       jtk 	nnew = ntot - nold;
    828           1.1       jtk 	/* First, if there's no change in frag counts, it's easy. */
    829           1.1       jtk 	if (nnew == 0)
    830           1.1       jtk 		return;
    831           1.1       jtk 	/* Next, if we're shrinking, it's almost as easy.  Just free up any
    832           1.1       jtk 	 * frags in the old area we no longer need. */
    833           1.1       jtk 	if (nnew < 0) {
    834           1.1       jtk 		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
    835           1.1       jtk 		    j < 0;
    836           1.1       jtk 		    i--, j++) {
    837           1.1       jtk 			free_frag(i);
    838           1.1       jtk 		}
    839           1.1       jtk 		return;
    840           1.1       jtk 	}
    841           1.1       jtk 	/* We must be growing.  Check to see that the new csum area fits
    842          1.24       wiz 	 * within the file system.  I think this can never happen, since for
    843           1.1       jtk 	 * the csum area to grow, we must be adding at least one cg, so the
    844          1.24       wiz 	 * old csum area can't be this close to the end of the new file system.
    845           1.1       jtk 	 * But it's a cheap check. */
    846           1.1       jtk 	/* XXX what if csum info is at end of cg and grows into next cg, what
    847           1.1       jtk 	 * if it spills over onto the next cg's backup superblock?  Can this
    848           1.1       jtk 	 * happen? */
    849           1.1       jtk 	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
    850           1.1       jtk 		/* Okay, it fits - now,  see if the space we want is free. */
    851           1.1       jtk 		for ((i = newsb->fs_csaddr + nold), (j = nnew);
    852           1.1       jtk 		    j > 0;
    853           1.1       jtk 		    i++, j--) {
    854           1.1       jtk 			cgn = dtog(newsb, i);
    855           1.1       jtk 			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
    856           1.1       jtk 				dtogd(newsb, i)))
    857           1.1       jtk 				break;
    858           1.1       jtk 		}
    859           1.1       jtk 		if (j <= 0) {
    860           1.1       jtk 			/* Win win - all the frags we want are free. Allocate
    861           1.1       jtk 			 * 'em and we're all done.  */
    862          1.25       riz 			for ((i = newsb->fs_csaddr + ntot - nnew),
    863          1.25       riz 				 (j = nnew); j > 0; i++, j--) {
    864           1.1       jtk 				alloc_frag(i);
    865           1.1       jtk 			}
    866           1.1       jtk 			return;
    867           1.1       jtk 		}
    868           1.1       jtk 	}
    869           1.1       jtk 	/* We have to move the csum info, sigh.  Look for new space, free old
    870           1.1       jtk 	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
    871           1.1       jtk 	 * on disk at this point; the csum info will be written to the
    872           1.1       jtk 	 * then-current fs_csaddr as part of the final flush. */
    873           1.1       jtk 	newloc = find_freespace(ntot);
    874          1.32  christos 	if (newloc < 0)
    875          1.32  christos 		errx(EXIT_FAILURE, "Sorry, no space available for new csums");
    876           1.1       jtk 	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
    877           1.1       jtk 		if (i < nold) {
    878           1.1       jtk 			free_frag(f);
    879           1.1       jtk 		}
    880           1.1       jtk 		alloc_frag(t);
    881           1.1       jtk 	}
    882           1.1       jtk 	newsb->fs_csaddr = newloc;
    883           1.1       jtk }
    884           1.1       jtk /*
    885           1.1       jtk  * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
    886           1.1       jtk  *  data blocks in that cg to the total.
    887           1.1       jtk  */
    888           1.1       jtk static void
    889           1.1       jtk recompute_fs_dsize(void)
    890           1.1       jtk {
    891           1.1       jtk 	int i;
    892           1.1       jtk 
    893           1.1       jtk 	newsb->fs_dsize = 0;
    894           1.1       jtk 	for (i = 0; i < newsb->fs_ncg; i++) {
    895  1.38.6.1.2.1       snj 		int64_t dlow;	/* size of before-sb data area */
    896  1.38.6.1.2.1       snj 		int64_t dhigh;	/* offset of post-inode data area */
    897  1.38.6.1.2.1       snj 		int64_t dmax;	/* total size of cg */
    898  1.38.6.1.2.1       snj 		int64_t base;	/* base of cg, since cgsblock() etc add it in */
    899           1.1       jtk 		base = cgbase(newsb, i);
    900           1.1       jtk 		dlow = cgsblock(newsb, i) - base;
    901           1.1       jtk 		dhigh = cgdmin(newsb, i) - base;
    902           1.1       jtk 		dmax = newsb->fs_size - base;
    903           1.1       jtk 		if (dmax > newsb->fs_fpg)
    904           1.1       jtk 			dmax = newsb->fs_fpg;
    905           1.1       jtk 		newsb->fs_dsize += dlow + dmax - dhigh;
    906           1.1       jtk 	}
    907           1.1       jtk 	/* Space in cg 0 before cgsblock is boot area, not free space! */
    908           1.1       jtk 	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
    909           1.1       jtk 	/* And of course the csum info takes up space. */
    910           1.1       jtk 	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
    911           1.1       jtk }
    912           1.1       jtk /*
    913           1.1       jtk  * Return the current time.  We call this and assign, rather than
    914           1.1       jtk  *  calling time() directly, as insulation against OSes where fs_time
    915           1.1       jtk  *  is not a time_t.
    916           1.1       jtk  */
    917           1.1       jtk static time_t
    918           1.1       jtk timestamp(void)
    919           1.1       jtk {
    920           1.1       jtk 	time_t t;
    921           1.1       jtk 
    922           1.1       jtk 	time(&t);
    923           1.1       jtk 	return (t);
    924           1.1       jtk }
    925      1.38.6.1       snj 
    926           1.1       jtk /*
    927      1.38.6.1       snj  * Calculate new filesystem geometry
    928      1.38.6.1       snj  *  return 0 if geometry actually changed
    929           1.1       jtk  */
    930      1.38.6.1       snj static int
    931      1.38.6.1       snj makegeometry(int chatter)
    932           1.1       jtk {
    933           1.1       jtk 
    934           1.1       jtk 	/* Update the size. */
    935          1.36  dholland 	newsb->fs_size = FFS_DBTOFSB(newsb, newsize);
    936          1.25       riz 	if (is_ufs2)
    937          1.25       riz 		newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
    938          1.25       riz 	else {
    939          1.25       riz 		/* Update fs_old_ncyl and fs_ncg. */
    940          1.25       riz 		newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
    941          1.25       riz 		    newsb->fs_old_spc);
    942          1.25       riz 		newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
    943          1.25       riz 	}
    944          1.28  dholland 
    945           1.1       jtk 	/* Does the last cg end before the end of its inode area? There is no
    946           1.1       jtk 	 * reason why this couldn't be handled, but it would complicate a lot
    947          1.24       wiz 	 * of code (in all file system code - fsck, kernel, etc) because of the
    948           1.1       jtk 	 * potential partial inode area, and the gain in space would be
    949           1.1       jtk 	 * minimal, at most the pre-sb data area. */
    950           1.1       jtk 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
    951           1.1       jtk 		newsb->fs_ncg--;
    952      1.38.6.1       snj 		if (is_ufs2)
    953      1.38.6.1       snj 			newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg;
    954      1.38.6.1       snj 		else {
    955      1.38.6.1       snj 			newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
    956      1.38.6.1       snj 			newsb->fs_size = (newsb->fs_old_ncyl *
    957      1.38.6.1       snj 				newsb->fs_old_spc) / NSPF(newsb);
    958      1.38.6.1       snj 		}
    959      1.38.6.1       snj 		if (chatter || verbose) {
    960      1.38.6.1       snj 			printf("Warning: last cylinder group is too small;\n");
    961      1.38.6.1       snj 			printf("    dropping it.  New size = %lu.\n",
    962      1.38.6.1       snj 			(unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size));
    963      1.38.6.1       snj 		}
    964           1.1       jtk 	}
    965      1.38.6.1       snj 
    966      1.38.6.1       snj 	/* Did we actually not grow?  (This can happen if newsize is less than
    967      1.38.6.1       snj 	 * a frag larger than the old size - unlikely, but no excuse to
    968      1.38.6.1       snj 	 * misbehave if it happens.) */
    969      1.38.6.1       snj 	if (newsb->fs_size == oldsb->fs_size)
    970      1.38.6.1       snj 		return 1;
    971      1.38.6.1       snj 
    972      1.38.6.1       snj 	return 0;
    973      1.38.6.1       snj }
    974      1.38.6.1       snj 
    975      1.38.6.1       snj 
    976      1.38.6.1       snj /*
    977      1.38.6.1       snj  * Grow the file system.
    978      1.38.6.1       snj  */
    979      1.38.6.1       snj static void
    980      1.38.6.1       snj grow(void)
    981      1.38.6.1       snj {
    982      1.38.6.1       snj 	int i;
    983      1.38.6.1       snj 
    984      1.38.6.1       snj 	if (makegeometry(1)) {
    985      1.38.6.1       snj 		printf("New fs size %"PRIu64" = old fs size %"PRIu64
    986      1.38.6.1       snj 		    ", not growing.\n", newsb->fs_size, oldsb->fs_size);
    987      1.38.6.1       snj 		return;
    988      1.38.6.1       snj 	}
    989      1.38.6.1       snj 
    990      1.38.6.1       snj 	if (verbose) {
    991      1.38.6.1       snj 		printf("Growing fs from %"PRIu64" blocks to %"PRIu64
    992      1.38.6.1       snj 		    " blocks.\n", oldsb->fs_size, newsb->fs_size);
    993      1.38.6.1       snj 	}
    994      1.38.6.1       snj 
    995      1.38.6.1       snj 	/* Update the timestamp. */
    996      1.38.6.1       snj 	newsb->fs_time = timestamp();
    997      1.38.6.1       snj 	/* Allocate and clear the new-inode area, in case we add any cgs. */
    998      1.38.6.1       snj 	zinodes = alloconce(newsb->fs_ipg * sizeof(*zinodes), "zeroed inodes");
    999      1.38.6.1       snj 	memset(zinodes, 0, newsb->fs_ipg * sizeof(*zinodes));
   1000      1.38.6.1       snj 
   1001      1.38.6.1       snj 	/* Check that the new last sector (frag, actually) is writable.  Since
   1002      1.38.6.1       snj 	 * it's at least one frag larger than it used to be, we know we aren't
   1003      1.38.6.1       snj 	 * overwriting anything important by this.  (The choice of sbbuf as
   1004      1.38.6.1       snj 	 * what to write is irrelevant; it's just something handy that's known
   1005      1.38.6.1       snj 	 * to be at least one frag in size.) */
   1006      1.38.6.1       snj 	writeat(FFS_FSBTODB(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
   1007      1.38.6.1       snj 
   1008           1.1       jtk 	/* Find out how big the csum area is, and realloc csums if bigger. */
   1009          1.37  dholland 	newsb->fs_cssize = ffs_fragroundup(newsb,
   1010           1.1       jtk 	    newsb->fs_ncg * sizeof(struct csum));
   1011           1.1       jtk 	if (newsb->fs_cssize > oldsb->fs_cssize)
   1012           1.1       jtk 		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
   1013          1.25       riz 	/* If we're adding any cgs, realloc structures and set up the new
   1014          1.25       riz 	   cgs. */
   1015           1.1       jtk 	if (newsb->fs_ncg > oldsb->fs_ncg) {
   1016           1.1       jtk 		char *cgp;
   1017          1.32  christos 		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(*cgs),
   1018           1.1       jtk                                 "cg pointers");
   1019           1.1       jtk 		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
   1020          1.25       riz 		memset(cgflags + oldsb->fs_ncg, 0,
   1021          1.25       riz 		    newsb->fs_ncg - oldsb->fs_ncg);
   1022           1.1       jtk 		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
   1023           1.1       jtk                                 "cgs");
   1024           1.1       jtk 		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
   1025           1.1       jtk 			cgs[i] = (struct cg *) cgp;
   1026      1.38.6.1       snj 			progress_bar(special, "grow cg",
   1027      1.38.6.1       snj 			    i - oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
   1028           1.1       jtk 			initcg(i);
   1029           1.1       jtk 			cgp += cgblksz;
   1030           1.1       jtk 		}
   1031           1.4  christos 		cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
   1032           1.1       jtk 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
   1033           1.1       jtk 	}
   1034           1.1       jtk 	/* If the old fs ended partway through a cg, we have to update the old
   1035           1.1       jtk 	 * last cg (though possibly not to a full cg!). */
   1036           1.1       jtk 	if (oldsb->fs_size % oldsb->fs_fpg) {
   1037           1.1       jtk 		struct cg *cg;
   1038  1.38.6.1.2.1       snj 		int64_t newcgsize;
   1039  1.38.6.1.2.1       snj 		int64_t prevcgtop;
   1040  1.38.6.1.2.1       snj 		int64_t oldcgsize;
   1041           1.1       jtk 		cg = cgs[oldsb->fs_ncg - 1];
   1042           1.1       jtk 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
   1043           1.1       jtk 		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
   1044           1.1       jtk 		newcgsize = newsb->fs_size - prevcgtop;
   1045           1.1       jtk 		if (newcgsize > newsb->fs_fpg)
   1046           1.1       jtk 			newcgsize = newsb->fs_fpg;
   1047           1.1       jtk 		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
   1048           1.1       jtk 		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
   1049          1.20    mhitch 		cg->cg_old_ncyl = oldsb->fs_old_cpg;
   1050           1.1       jtk 		cg->cg_ndblk = newcgsize;
   1051           1.1       jtk 	}
   1052           1.1       jtk 	/* Fix up the csum info, if necessary. */
   1053           1.1       jtk 	csum_fixup();
   1054           1.1       jtk 	/* Make fs_dsize match the new reality. */
   1055           1.1       jtk 	recompute_fs_dsize();
   1056      1.38.6.1       snj 
   1057      1.38.6.1       snj 	progress_done();
   1058           1.1       jtk }
   1059           1.1       jtk /*
   1060           1.1       jtk  * Call (*fn)() for each inode, passing the inode and its inumber.  The
   1061           1.1       jtk  *  number of cylinder groups is pased in, so this can be used to map
   1062          1.24       wiz  *  over either the old or the new file system's set of inodes.
   1063           1.1       jtk  */
   1064           1.1       jtk static void
   1065          1.25       riz map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg),
   1066          1.15       riz 	   int ncg, void *cbarg) {
   1067           1.1       jtk 	int i;
   1068           1.1       jtk 	int ni;
   1069           1.1       jtk 
   1070           1.1       jtk 	ni = oldsb->fs_ipg * ncg;
   1071           1.1       jtk 	for (i = 0; i < ni; i++)
   1072           1.1       jtk 		(*fn) (inodes + i, i, cbarg);
   1073           1.1       jtk }
   1074           1.1       jtk /* Values for the third argument to the map function for
   1075           1.1       jtk  * map_inode_data_blocks.  MDB_DATA indicates the block is contains
   1076           1.1       jtk  * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
   1077           1.1       jtk  * indirect block.  The MDB_INDIR_PRE call is made before the indirect
   1078           1.1       jtk  * block pointers are followed and the pointed-to blocks scanned,
   1079           1.1       jtk  * MDB_INDIR_POST after.
   1080           1.1       jtk  */
   1081           1.1       jtk #define MDB_DATA       1
   1082           1.1       jtk #define MDB_INDIR_PRE  2
   1083           1.1       jtk #define MDB_INDIR_POST 3
   1084           1.1       jtk 
   1085          1.30  dholland typedef void (*mark_callback_t) (off_t blocknum, unsigned int nfrags,
   1086          1.15       riz 				 unsigned int blksize, int opcode);
   1087           1.1       jtk 
   1088           1.1       jtk /* Helper function - handles a data block.  Calls the callback
   1089           1.1       jtk  * function and returns number of bytes occupied in file (actually,
   1090           1.1       jtk  * rounded up to a frag boundary).  The name is historical.  */
   1091           1.1       jtk static int
   1092          1.30  dholland markblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o)
   1093           1.1       jtk {
   1094           1.1       jtk 	int sz;
   1095           1.1       jtk 	int nb;
   1096          1.30  dholland 	off_t filesize;
   1097          1.26  dholland 
   1098          1.30  dholland 	filesize = DIP(di,di_size);
   1099          1.30  dholland 	if (o >= filesize)
   1100           1.1       jtk 		return (0);
   1101          1.37  dholland 	sz = dblksize(newsb, di, ffs_lblkno(newsb, o), filesize);
   1102          1.30  dholland 	nb = (sz > filesize - o) ? filesize - o : sz;
   1103           1.1       jtk 	if (bn)
   1104          1.37  dholland 		(*fn) (bn, ffs_numfrags(newsb, sz), nb, MDB_DATA);
   1105           1.1       jtk 	return (sz);
   1106           1.1       jtk }
   1107           1.1       jtk /* Helper function - handles an indirect block.  Makes the
   1108           1.1       jtk  * MDB_INDIR_PRE callback for the indirect block, loops over the
   1109           1.1       jtk  * pointers and recurses, and makes the MDB_INDIR_POST callback.
   1110           1.1       jtk  * Returns the number of bytes occupied in file, as does markblk().
   1111           1.1       jtk  * For the sake of update_for_data_move(), we read the indirect block
   1112           1.1       jtk  * _after_ making the _PRE callback.  The name is historical.  */
   1113  1.38.6.1.2.1       snj static off_t
   1114          1.30  dholland markiblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o, int lev)
   1115           1.1       jtk {
   1116           1.1       jtk 	int i;
   1117          1.30  dholland 	unsigned k;
   1118  1.38.6.1.2.1       snj 	off_t j, tot;
   1119           1.2    martin 	static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
   1120           1.2    martin 	static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
   1121           1.2    martin 	static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
   1122           1.2    martin 	static int32_t *indirblks[3] = {
   1123           1.1       jtk 		&indirblk1[0], &indirblk2[0], &indirblk3[0]
   1124           1.1       jtk 	};
   1125          1.26  dholland 
   1126           1.1       jtk 	if (lev < 0)
   1127           1.1       jtk 		return (markblk(fn, di, bn, o));
   1128           1.1       jtk 	if (bn == 0) {
   1129  1.38.6.1.2.1       snj 		for (j = newsb->fs_bsize;
   1130           1.1       jtk 		    lev >= 0;
   1131  1.38.6.1.2.1       snj 		    j *= FFS_NINDIR(newsb), lev--);
   1132  1.38.6.1.2.1       snj 		return (j);
   1133           1.1       jtk 	}
   1134           1.1       jtk 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
   1135          1.36  dholland 	readat(FFS_FSBTODB(newsb, bn), indirblks[lev], newsb->fs_bsize);
   1136          1.25       riz 	if (needswap)
   1137          1.30  dholland 		for (k = 0; k < howmany(MAXBSIZE, sizeof(int32_t)); k++)
   1138          1.30  dholland 			indirblks[lev][k] = bswap32(indirblks[lev][k]);
   1139           1.1       jtk 	tot = 0;
   1140          1.35  dholland 	for (i = 0; i < FFS_NINDIR(newsb); i++) {
   1141           1.1       jtk 		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
   1142           1.1       jtk 		if (j == 0)
   1143           1.1       jtk 			break;
   1144           1.1       jtk 		o += j;
   1145           1.1       jtk 		tot += j;
   1146           1.1       jtk 	}
   1147           1.1       jtk 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
   1148           1.1       jtk 	return (tot);
   1149           1.1       jtk }
   1150           1.1       jtk 
   1151           1.1       jtk 
   1152           1.1       jtk /*
   1153           1.1       jtk  * Call (*fn)() for each data block for an inode.  This routine assumes
   1154           1.1       jtk  *  the inode is known to be of a type that has data blocks (file,
   1155           1.1       jtk  *  directory, or non-fast symlink).  The called function is:
   1156           1.1       jtk  *
   1157           1.1       jtk  * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
   1158           1.1       jtk  *
   1159           1.1       jtk  *  where blkno is the frag number, nf is the number of frags starting
   1160           1.1       jtk  *  at blkno (always <= fs_frag), nb is the number of bytes that belong
   1161           1.1       jtk  *  to the file (usually nf*fs_frag, often less for the last block/frag
   1162           1.1       jtk  *  of a file).
   1163           1.1       jtk  */
   1164           1.1       jtk static void
   1165          1.25       riz map_inode_data_blocks(union dinode * di, mark_callback_t fn)
   1166           1.1       jtk {
   1167           1.1       jtk 	off_t o;		/* offset within  inode */
   1168  1.38.6.1.2.1       snj 	off_t inc;		/* increment for o */
   1169           1.1       jtk 	int b;			/* index within di_db[] and di_ib[] arrays */
   1170           1.1       jtk 
   1171           1.1       jtk 	/* Scan the direct blocks... */
   1172           1.1       jtk 	o = 0;
   1173          1.34  dholland 	for (b = 0; b < UFS_NDADDR; b++) {
   1174          1.25       riz 		inc = markblk(fn, di, DIP(di,di_db[b]), o);
   1175           1.1       jtk 		if (inc == 0)
   1176           1.1       jtk 			break;
   1177           1.1       jtk 		o += inc;
   1178           1.1       jtk 	}
   1179           1.1       jtk 	/* ...and the indirect blocks. */
   1180           1.1       jtk 	if (inc) {
   1181          1.34  dholland 		for (b = 0; b < UFS_NIADDR; b++) {
   1182          1.25       riz 			inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b);
   1183           1.1       jtk 			if (inc == 0)
   1184           1.1       jtk 				return;
   1185           1.1       jtk 			o += inc;
   1186           1.1       jtk 		}
   1187           1.1       jtk 	}
   1188           1.1       jtk }
   1189           1.1       jtk 
   1190           1.1       jtk static void
   1191          1.25       riz dblk_callback(union dinode * di, unsigned int inum, void *arg)
   1192           1.1       jtk {
   1193           1.1       jtk 	mark_callback_t fn;
   1194          1.30  dholland 	off_t filesize;
   1195          1.26  dholland 
   1196          1.30  dholland 	filesize = DIP(di,di_size);
   1197           1.1       jtk 	fn = (mark_callback_t) arg;
   1198          1.25       riz 	switch (DIP(di,di_mode) & IFMT) {
   1199           1.1       jtk 	case IFLNK:
   1200          1.31  dholland 		if (filesize <= newsb->fs_maxsymlinklen) {
   1201          1.31  dholland 			break;
   1202          1.31  dholland 		}
   1203          1.31  dholland 		/* FALLTHROUGH */
   1204           1.1       jtk 	case IFDIR:
   1205           1.1       jtk 	case IFREG:
   1206          1.31  dholland 		map_inode_data_blocks(di, fn);
   1207           1.1       jtk 		break;
   1208           1.1       jtk 	}
   1209           1.1       jtk }
   1210           1.1       jtk /*
   1211           1.1       jtk  * Make a callback call, a la map_inode_data_blocks, for all data
   1212           1.1       jtk  *  blocks in the entire fs.  This is used only once, in
   1213           1.1       jtk  *  update_for_data_move, but it's out at top level because the complex
   1214           1.1       jtk  *  downward-funarg nesting that would otherwise result seems to give
   1215           1.1       jtk  *  gcc gastric distress.
   1216           1.1       jtk  */
   1217           1.1       jtk static void
   1218           1.1       jtk map_data_blocks(mark_callback_t fn, int ncg)
   1219           1.1       jtk {
   1220           1.1       jtk 	map_inodes(&dblk_callback, ncg, (void *) fn);
   1221           1.1       jtk }
   1222           1.1       jtk /*
   1223           1.1       jtk  * Initialize the blkmove array.
   1224           1.1       jtk  */
   1225           1.1       jtk static void
   1226           1.1       jtk blkmove_init(void)
   1227           1.1       jtk {
   1228           1.1       jtk 	int i;
   1229           1.1       jtk 
   1230           1.1       jtk 	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
   1231           1.1       jtk 	for (i = 0; i < oldsb->fs_size; i++)
   1232           1.1       jtk 		blkmove[i] = i;
   1233           1.1       jtk }
   1234           1.1       jtk /*
   1235           1.1       jtk  * Load the inodes off disk.  Allocates the structures and initializes
   1236           1.1       jtk  *  them - the inodes from disk, the flags to zero.
   1237           1.1       jtk  */
   1238           1.1       jtk static void
   1239           1.1       jtk loadinodes(void)
   1240           1.1       jtk {
   1241          1.25       riz 	int imax, ino, i, j;
   1242          1.25       riz 	struct ufs1_dinode *dp1 = NULL;
   1243          1.25       riz 	struct ufs2_dinode *dp2 = NULL;
   1244          1.28  dholland 
   1245          1.25       riz 	/* read inodes one fs block at a time and copy them */
   1246           1.1       jtk 
   1247          1.15       riz 	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
   1248          1.25       riz 	    sizeof(union dinode), "inodes");
   1249           1.1       jtk 	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
   1250          1.25       riz 	memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg);
   1251          1.28  dholland 
   1252          1.25       riz 	ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf");
   1253          1.25       riz 	if (is_ufs2)
   1254          1.25       riz 		dp2 = (struct ufs2_dinode *)ibuf;
   1255          1.25       riz 	else
   1256          1.25       riz 		dp1 = (struct ufs1_dinode *)ibuf;
   1257          1.28  dholland 
   1258          1.25       riz 	for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) {
   1259          1.36  dholland 		readat(FFS_FSBTODB(oldsb, ino_to_fsba(oldsb, ino)), ibuf,
   1260          1.25       riz 		    oldsb->fs_bsize);
   1261          1.25       riz 
   1262          1.25       riz 		for (i = 0; i < oldsb->fs_inopb; i++) {
   1263          1.25       riz 			if (is_ufs2) {
   1264          1.25       riz 				if (needswap) {
   1265          1.25       riz 					ffs_dinode2_swap(&(dp2[i]), &(dp2[i]));
   1266          1.34  dholland 					for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++)
   1267          1.25       riz 						dp2[i].di_db[j] =
   1268          1.25       riz 						    bswap32(dp2[i].di_db[j]);
   1269          1.25       riz 				}
   1270          1.25       riz 				memcpy(&inodes[ino].dp2, &dp2[i],
   1271          1.32  christos 				    sizeof(inodes[ino].dp2));
   1272          1.25       riz 			} else {
   1273          1.25       riz 				if (needswap) {
   1274          1.25       riz 					ffs_dinode1_swap(&(dp1[i]), &(dp1[i]));
   1275          1.34  dholland 					for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++)
   1276          1.25       riz 						dp1[i].di_db[j] =
   1277          1.25       riz 						    bswap32(dp1[i].di_db[j]);
   1278          1.25       riz 				}
   1279          1.25       riz 				memcpy(&inodes[ino].dp1, &dp1[i],
   1280          1.32  christos 				    sizeof(inodes[ino].dp1));
   1281          1.25       riz 			}
   1282          1.25       riz 			    if (++ino > imax)
   1283          1.25       riz 				    errx(EXIT_FAILURE,
   1284          1.25       riz 					"Exceeded number of inodes");
   1285          1.25       riz 		}
   1286          1.25       riz 
   1287           1.1       jtk 	}
   1288           1.1       jtk }
   1289           1.1       jtk /*
   1290          1.24       wiz  * Report a file-system-too-full problem.
   1291           1.1       jtk  */
   1292          1.32  christos __dead static void
   1293           1.1       jtk toofull(void)
   1294           1.1       jtk {
   1295          1.32  christos 	errx(EXIT_FAILURE, "Sorry, would run out of data blocks");
   1296           1.1       jtk }
   1297           1.1       jtk /*
   1298           1.1       jtk  * Record a desire to move "n" frags from "from" to "to".
   1299           1.1       jtk  */
   1300           1.1       jtk static void
   1301           1.1       jtk mark_move(unsigned int from, unsigned int to, unsigned int n)
   1302           1.1       jtk {
   1303           1.1       jtk 	for (; n > 0; n--)
   1304           1.1       jtk 		blkmove[from++] = to++;
   1305           1.1       jtk }
   1306           1.1       jtk /* Helper function - evict n frags, starting with start (cg-relative).
   1307           1.1       jtk  * The free bitmap is scanned, unallocated frags are ignored, and
   1308           1.1       jtk  * each block of consecutive allocated frags is moved as a unit.
   1309           1.1       jtk  */
   1310           1.1       jtk static void
   1311  1.38.6.1.2.1       snj fragmove(struct cg * cg, int64_t base, unsigned int start, unsigned int n)
   1312           1.1       jtk {
   1313          1.30  dholland 	unsigned int i;
   1314           1.1       jtk 	int run;
   1315          1.26  dholland 
   1316           1.1       jtk 	run = 0;
   1317           1.1       jtk 	for (i = 0; i <= n; i++) {
   1318           1.1       jtk 		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
   1319           1.1       jtk 			run++;
   1320           1.1       jtk 		} else {
   1321           1.1       jtk 			if (run > 0) {
   1322           1.1       jtk 				int off;
   1323           1.1       jtk 				off = find_freespace(run);
   1324           1.1       jtk 				if (off < 0)
   1325           1.1       jtk 					toofull();
   1326           1.1       jtk 				mark_move(base + start + i - run, off, run);
   1327           1.1       jtk 				set_bits(cg_blksfree(cg, 0), start + i - run,
   1328           1.1       jtk 				    run);
   1329           1.1       jtk 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1330           1.1       jtk 				    dtogd(oldsb, off), run);
   1331           1.1       jtk 			}
   1332           1.1       jtk 			run = 0;
   1333           1.1       jtk 		}
   1334           1.1       jtk 	}
   1335           1.1       jtk }
   1336           1.1       jtk /*
   1337           1.1       jtk  * Evict all data blocks from the given cg, starting at minfrag (based
   1338           1.1       jtk  *  at the beginning of the cg), for length nfrag.  The eviction is
   1339           1.1       jtk  *  assumed to be entirely data-area; this should not be called with a
   1340           1.1       jtk  *  range overlapping the metadata structures in the cg.  It also
   1341           1.1       jtk  *  assumes minfrag points into the given cg; it will misbehave if this
   1342           1.1       jtk  *  is not true.
   1343           1.1       jtk  *
   1344           1.1       jtk  * See the comment header on find_freespace() for one possible bug
   1345           1.1       jtk  *  lurking here.
   1346           1.1       jtk  */
   1347           1.1       jtk static void
   1348          1.30  dholland evict_data(struct cg * cg, unsigned int minfrag, int nfrag)
   1349           1.1       jtk {
   1350  1.38.6.1.2.1       snj 	int64_t base;	/* base of cg (in frags from beginning of fs) */
   1351           1.1       jtk 
   1352           1.1       jtk 	base = cgbase(oldsb, cg->cg_cgx);
   1353          1.25       riz 	/* Does the boundary fall in the middle of a block?  To avoid
   1354          1.25       riz 	 * breaking between frags allocated as consecutive, we always
   1355          1.25       riz 	 * evict the whole block in this case, though one could argue
   1356          1.25       riz 	 * we should check to see if the frag before or after the
   1357          1.25       riz 	 * break is unallocated. */
   1358           1.1       jtk 	if (minfrag % oldsb->fs_frag) {
   1359           1.1       jtk 		int n;
   1360           1.1       jtk 		n = minfrag % oldsb->fs_frag;
   1361           1.1       jtk 		minfrag -= n;
   1362           1.1       jtk 		nfrag += n;
   1363           1.1       jtk 	}
   1364          1.25       riz 	/* Do whole blocks.  If a block is wholly free, skip it; if
   1365          1.25       riz 	 * wholly allocated, move it in toto.  If neither, call
   1366          1.25       riz 	 * fragmove() to move the frags to new locations. */
   1367           1.1       jtk 	while (nfrag >= oldsb->fs_frag) {
   1368           1.1       jtk 		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
   1369           1.1       jtk 			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
   1370           1.1       jtk 				oldsb->fs_frag)) {
   1371           1.1       jtk 				int off;
   1372           1.1       jtk 				off = find_freeblock();
   1373           1.1       jtk 				if (off < 0)
   1374           1.1       jtk 					toofull();
   1375           1.1       jtk 				mark_move(base + minfrag, off, oldsb->fs_frag);
   1376           1.1       jtk 				set_bits(cg_blksfree(cg, 0), minfrag,
   1377           1.1       jtk 				    oldsb->fs_frag);
   1378           1.1       jtk 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1379           1.1       jtk 				    dtogd(oldsb, off), oldsb->fs_frag);
   1380           1.1       jtk 			} else {
   1381           1.1       jtk 				fragmove(cg, base, minfrag, oldsb->fs_frag);
   1382           1.1       jtk 			}
   1383           1.1       jtk 		}
   1384           1.1       jtk 		minfrag += oldsb->fs_frag;
   1385           1.1       jtk 		nfrag -= oldsb->fs_frag;
   1386           1.1       jtk 	}
   1387           1.1       jtk 	/* Clean up any sub-block amount left over. */
   1388           1.1       jtk 	if (nfrag) {
   1389           1.1       jtk 		fragmove(cg, base, minfrag, nfrag);
   1390           1.1       jtk 	}
   1391           1.1       jtk }
   1392           1.1       jtk /*
   1393           1.1       jtk  * Move all data blocks according to blkmove.  We have to be careful,
   1394           1.1       jtk  *  because we may be updating indirect blocks that will themselves be
   1395           1.2    martin  *  getting moved, or inode int32_t arrays that point to indirect
   1396           1.1       jtk  *  blocks that will be moved.  We call this before
   1397           1.1       jtk  *  update_for_data_move, and update_for_data_move does inodes first,
   1398           1.1       jtk  *  then indirect blocks in preorder, so as to make sure that the
   1399          1.24       wiz  *  file system is self-consistent at all points, for better crash
   1400           1.1       jtk  *  tolerance.  (We can get away with this only because all the writes
   1401           1.1       jtk  *  done by perform_data_move() are writing into space that's not used
   1402          1.24       wiz  *  by the old file system.)  If we crash, some things may point to the
   1403           1.1       jtk  *  old data and some to the new, but both copies are the same.  The
   1404           1.1       jtk  *  only wrong things should be csum info and free bitmaps, which fsck
   1405           1.1       jtk  *  is entirely capable of cleaning up.
   1406           1.1       jtk  *
   1407           1.1       jtk  * Since blkmove_init() initializes all blocks to move to their current
   1408           1.1       jtk  *  locations, we can have two blocks marked as wanting to move to the
   1409           1.1       jtk  *  same location, but only two and only when one of them is the one
   1410           1.1       jtk  *  that was already there.  So if blkmove[i]==i, we ignore that entry
   1411           1.1       jtk  *  entirely - for unallocated blocks, we don't want it (and may be
   1412           1.1       jtk  *  putting something else there), and for allocated blocks, we don't
   1413           1.1       jtk  *  want to copy it anywhere.
   1414           1.1       jtk  */
   1415           1.1       jtk static void
   1416           1.1       jtk perform_data_move(void)
   1417           1.1       jtk {
   1418           1.1       jtk 	int i;
   1419           1.1       jtk 	int run;
   1420           1.1       jtk 	int maxrun;
   1421           1.1       jtk 	char buf[65536];
   1422           1.1       jtk 
   1423           1.1       jtk 	maxrun = sizeof(buf) / newsb->fs_fsize;
   1424           1.1       jtk 	run = 0;
   1425           1.1       jtk 	for (i = 0; i < oldsb->fs_size; i++) {
   1426          1.30  dholland 		if ((blkmove[i] == (unsigned)i /*XXX cast*/) ||
   1427           1.1       jtk 		    (run >= maxrun) ||
   1428           1.1       jtk 		    ((run > 0) &&
   1429           1.1       jtk 			(blkmove[i] != blkmove[i - 1] + 1))) {
   1430           1.1       jtk 			if (run > 0) {
   1431          1.36  dholland 				readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
   1432           1.1       jtk 				    run << oldsb->fs_fshift);
   1433          1.36  dholland 				writeat(FFS_FSBTODB(oldsb, blkmove[i - run]),
   1434           1.1       jtk 				    &buf[0], run << oldsb->fs_fshift);
   1435           1.1       jtk 			}
   1436           1.1       jtk 			run = 0;
   1437           1.1       jtk 		}
   1438          1.30  dholland 		if (blkmove[i] != (unsigned)i /*XXX cast*/)
   1439           1.1       jtk 			run++;
   1440           1.1       jtk 	}
   1441           1.1       jtk 	if (run > 0) {
   1442          1.36  dholland 		readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
   1443           1.1       jtk 		    run << oldsb->fs_fshift);
   1444          1.36  dholland 		writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), &buf[0],
   1445           1.1       jtk 		    run << oldsb->fs_fshift);
   1446           1.1       jtk 	}
   1447           1.1       jtk }
   1448           1.1       jtk /*
   1449           1.2    martin  * This modifies an array of int32_t, according to blkmove.  This is
   1450           1.1       jtk  *  used to update inode block arrays and indirect blocks to point to
   1451           1.1       jtk  *  the new locations of data blocks.
   1452           1.1       jtk  *
   1453           1.2    martin  * Return value is the number of int32_ts that needed updating; in
   1454           1.1       jtk  *  particular, the return value is zero iff nothing was modified.
   1455           1.1       jtk  */
   1456           1.1       jtk static int
   1457           1.2    martin movemap_blocks(int32_t * vec, int n)
   1458           1.1       jtk {
   1459           1.1       jtk 	int rv;
   1460          1.26  dholland 
   1461           1.1       jtk 	rv = 0;
   1462           1.1       jtk 	for (; n > 0; n--, vec++) {
   1463          1.30  dholland 		if (blkmove[*vec] != (unsigned)*vec /*XXX cast*/) {
   1464           1.1       jtk 			*vec = blkmove[*vec];
   1465           1.1       jtk 			rv++;
   1466           1.1       jtk 		}
   1467           1.1       jtk 	}
   1468           1.1       jtk 	return (rv);
   1469           1.1       jtk }
   1470           1.1       jtk static void
   1471          1.25       riz moveblocks_callback(union dinode * di, unsigned int inum, void *arg)
   1472           1.1       jtk {
   1473          1.30  dholland 	int32_t *dblkptr, *iblkptr;
   1474          1.26  dholland 
   1475          1.25       riz 	switch (DIP(di,di_mode) & IFMT) {
   1476           1.1       jtk 	case IFLNK:
   1477          1.30  dholland 		if ((off_t)DIP(di,di_size) <= oldsb->fs_maxsymlinklen) {
   1478          1.27  dholland 			break;
   1479          1.27  dholland 		}
   1480          1.27  dholland 		/* FALLTHROUGH */
   1481           1.1       jtk 	case IFDIR:
   1482           1.1       jtk 	case IFREG:
   1483          1.25       riz 		if (is_ufs2) {
   1484          1.30  dholland 			/* XXX these are not int32_t and this is WRONG! */
   1485          1.30  dholland 			dblkptr = (void *) &(di->dp2.di_db[0]);
   1486          1.30  dholland 			iblkptr = (void *) &(di->dp2.di_ib[0]);
   1487          1.25       riz 		} else {
   1488          1.25       riz 			dblkptr = &(di->dp1.di_db[0]);
   1489          1.25       riz 			iblkptr = &(di->dp1.di_ib[0]);
   1490          1.25       riz 		}
   1491          1.26  dholland 		/*
   1492          1.26  dholland 		 * Don't || these two calls; we need their
   1493          1.26  dholland 		 * side-effects.
   1494          1.26  dholland 		 */
   1495          1.34  dholland 		if (movemap_blocks(dblkptr, UFS_NDADDR)) {
   1496          1.28  dholland 			iflags[inum] |= IF_DIRTY;
   1497          1.28  dholland 		}
   1498          1.34  dholland 		if (movemap_blocks(iblkptr, UFS_NIADDR)) {
   1499          1.28  dholland 			iflags[inum] |= IF_DIRTY;
   1500          1.28  dholland 		}
   1501           1.1       jtk 		break;
   1502           1.1       jtk 	}
   1503           1.1       jtk }
   1504           1.1       jtk 
   1505           1.1       jtk static void
   1506          1.30  dholland moveindir_callback(off_t off, unsigned int nfrag, unsigned int nbytes,
   1507          1.15       riz 		   int kind)
   1508           1.1       jtk {
   1509          1.30  dholland 	unsigned int i;
   1510          1.26  dholland 
   1511           1.1       jtk 	if (kind == MDB_INDIR_PRE) {
   1512           1.2    martin 		int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
   1513          1.36  dholland 		readat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
   1514          1.25       riz 		if (needswap)
   1515          1.25       riz 			for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
   1516          1.25       riz 				blk[i] = bswap32(blk[i]);
   1517          1.35  dholland 		if (movemap_blocks(&blk[0], FFS_NINDIR(oldsb))) {
   1518          1.25       riz 			if (needswap)
   1519          1.25       riz 				for (i = 0; i < howmany(MAXBSIZE,
   1520          1.25       riz 					sizeof(int32_t)); i++)
   1521          1.25       riz 					blk[i] = bswap32(blk[i]);
   1522          1.36  dholland 			writeat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
   1523           1.1       jtk 		}
   1524           1.1       jtk 	}
   1525           1.1       jtk }
   1526           1.1       jtk /*
   1527           1.1       jtk  * Update all inode data arrays and indirect blocks to point to the new
   1528           1.1       jtk  *  locations of data blocks.  See the comment header on
   1529           1.1       jtk  *  perform_data_move for some ordering considerations.
   1530           1.1       jtk  */
   1531           1.1       jtk static void
   1532           1.1       jtk update_for_data_move(void)
   1533           1.1       jtk {
   1534           1.1       jtk 	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
   1535           1.1       jtk 	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
   1536           1.1       jtk }
   1537           1.1       jtk /*
   1538           1.1       jtk  * Initialize the inomove array.
   1539           1.1       jtk  */
   1540           1.1       jtk static void
   1541           1.1       jtk inomove_init(void)
   1542           1.1       jtk {
   1543           1.1       jtk 	int i;
   1544           1.1       jtk 
   1545           1.1       jtk 	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
   1546           1.1       jtk                             "inomove");
   1547           1.1       jtk 	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
   1548           1.1       jtk 		inomove[i] = i;
   1549           1.1       jtk }
   1550           1.1       jtk /*
   1551           1.1       jtk  * Flush all dirtied inodes to disk.  Scans the inode flags array; for
   1552           1.1       jtk  *  each dirty inode, it sets the BDIRTY bit on the first inode in the
   1553           1.1       jtk  *  block containing the dirty inode.  Then it scans by blocks, and for
   1554           1.1       jtk  *  each marked block, writes it.
   1555           1.1       jtk  */
   1556           1.1       jtk static void
   1557           1.1       jtk flush_inodes(void)
   1558           1.1       jtk {
   1559          1.25       riz 	int i, j, k, na, ni, m;
   1560          1.25       riz 	struct ufs1_dinode *dp1 = NULL;
   1561          1.25       riz 	struct ufs2_dinode *dp2 = NULL;
   1562           1.1       jtk 
   1563          1.34  dholland 	na = UFS_NDADDR + UFS_NIADDR;
   1564           1.1       jtk 	ni = newsb->fs_ipg * newsb->fs_ncg;
   1565          1.35  dholland 	m = FFS_INOPB(newsb) - 1;
   1566           1.1       jtk 	for (i = 0; i < ni; i++) {
   1567           1.1       jtk 		if (iflags[i] & IF_DIRTY) {
   1568           1.1       jtk 			iflags[i & ~m] |= IF_BDIRTY;
   1569           1.1       jtk 		}
   1570           1.1       jtk 	}
   1571           1.1       jtk 	m++;
   1572          1.25       riz 
   1573          1.25       riz 	if (is_ufs2)
   1574          1.25       riz 		dp2 = (struct ufs2_dinode *)ibuf;
   1575          1.25       riz 	else
   1576          1.25       riz 		dp1 = (struct ufs1_dinode *)ibuf;
   1577          1.28  dholland 
   1578           1.1       jtk 	for (i = 0; i < ni; i += m) {
   1579           1.1       jtk 		if (iflags[i] & IF_BDIRTY) {
   1580          1.25       riz 			if (is_ufs2)
   1581          1.25       riz 				for (j = 0; j < m; j++) {
   1582          1.25       riz 					dp2[j] = inodes[i + j].dp2;
   1583          1.25       riz 					if (needswap) {
   1584          1.25       riz 						for (k = 0; k < na; k++)
   1585          1.25       riz 							dp2[j].di_db[k]=
   1586          1.25       riz 							    bswap32(dp2[j].di_db[k]);
   1587          1.25       riz 						ffs_dinode2_swap(&dp2[j],
   1588          1.25       riz 						    &dp2[j]);
   1589          1.25       riz 					}
   1590          1.25       riz 				}
   1591          1.25       riz 			else
   1592          1.25       riz 				for (j = 0; j < m; j++) {
   1593          1.25       riz 					dp1[j] = inodes[i + j].dp1;
   1594          1.25       riz 					if (needswap) {
   1595          1.25       riz 						for (k = 0; k < na; k++)
   1596          1.25       riz 							dp1[j].di_db[k]=
   1597          1.25       riz 							    bswap32(dp1[j].di_db[k]);
   1598          1.25       riz 						ffs_dinode1_swap(&dp1[j],
   1599          1.25       riz 						    &dp1[j]);
   1600          1.25       riz 					}
   1601          1.25       riz 				}
   1602          1.28  dholland 
   1603          1.36  dholland 			writeat(FFS_FSBTODB(newsb, ino_to_fsba(newsb, i)),
   1604          1.25       riz 			    ibuf, newsb->fs_bsize);
   1605           1.1       jtk 		}
   1606           1.1       jtk 	}
   1607           1.1       jtk }
   1608           1.1       jtk /*
   1609           1.1       jtk  * Evict all inodes from the specified cg.  shrink() already checked
   1610           1.1       jtk  *  that there were enough free inodes, so the no-free-inodes check is
   1611          1.24       wiz  *  a can't-happen.  If it does trip, the file system should be in good
   1612           1.1       jtk  *  enough shape for fsck to fix; see the comment on perform_data_move
   1613           1.1       jtk  *  for the considerations in question.
   1614           1.1       jtk  */
   1615           1.1       jtk static void
   1616           1.1       jtk evict_inodes(struct cg * cg)
   1617           1.1       jtk {
   1618           1.1       jtk 	int inum;
   1619           1.1       jtk 	int i;
   1620           1.1       jtk 	int fi;
   1621           1.1       jtk 
   1622           1.1       jtk 	inum = newsb->fs_ipg * cg->cg_cgx;
   1623           1.1       jtk 	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
   1624          1.25       riz 		if (DIP(inodes + inum,di_mode) != 0) {
   1625           1.1       jtk 			fi = find_freeinode();
   1626          1.32  christos 			if (fi < 0)
   1627          1.32  christos 				errx(EXIT_FAILURE, "Sorry, inodes evaporated - "
   1628          1.32  christos 				    "file system probably needs fsck");
   1629           1.1       jtk 			inomove[inum] = fi;
   1630           1.1       jtk 			clr_bits(cg_inosused(cg, 0), i, 1);
   1631           1.1       jtk 			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
   1632           1.1       jtk 			    fi % newsb->fs_ipg, 1);
   1633           1.1       jtk 		}
   1634           1.1       jtk 	}
   1635           1.1       jtk }
   1636           1.1       jtk /*
   1637           1.1       jtk  * Move inodes from old locations to new.  Does not actually write
   1638           1.1       jtk  *  anything to disk; just copies in-core and sets dirty bits.
   1639           1.1       jtk  *
   1640           1.1       jtk  * We have to be careful here for reasons similar to those mentioned in
   1641           1.1       jtk  *  the comment header on perform_data_move, above: for the sake of
   1642           1.1       jtk  *  crash tolerance, we want to make sure everything is present at both
   1643           1.1       jtk  *  old and new locations before we update pointers.  So we call this
   1644           1.1       jtk  *  first, then flush_inodes() to get them out on disk, then update
   1645           1.1       jtk  *  directories to match.
   1646           1.1       jtk  */
   1647           1.1       jtk static void
   1648           1.1       jtk perform_inode_move(void)
   1649           1.1       jtk {
   1650          1.30  dholland 	unsigned int i;
   1651          1.30  dholland 	unsigned int ni;
   1652           1.1       jtk 
   1653           1.1       jtk 	ni = oldsb->fs_ipg * oldsb->fs_ncg;
   1654           1.1       jtk 	for (i = 0; i < ni; i++) {
   1655           1.1       jtk 		if (inomove[i] != i) {
   1656           1.1       jtk 			inodes[inomove[i]] = inodes[i];
   1657           1.1       jtk 			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
   1658           1.1       jtk 		}
   1659           1.1       jtk 	}
   1660           1.1       jtk }
   1661           1.1       jtk /*
   1662           1.1       jtk  * Update the directory contained in the nb bytes at buf, to point to
   1663           1.1       jtk  *  inodes' new locations.
   1664           1.1       jtk  */
   1665           1.1       jtk static int
   1666           1.1       jtk update_dirents(char *buf, int nb)
   1667           1.1       jtk {
   1668           1.1       jtk 	int rv;
   1669           1.1       jtk #define d ((struct direct *)buf)
   1670          1.25       riz #define s32(x) (needswap?bswap32((x)):(x))
   1671          1.25       riz #define s16(x) (needswap?bswap16((x)):(x))
   1672          1.28  dholland 
   1673           1.1       jtk 	rv = 0;
   1674           1.1       jtk 	while (nb > 0) {
   1675          1.25       riz 		if (inomove[s32(d->d_ino)] != s32(d->d_ino)) {
   1676           1.1       jtk 			rv++;
   1677          1.25       riz 			d->d_ino = s32(inomove[s32(d->d_ino)]);
   1678           1.1       jtk 		}
   1679          1.25       riz 		nb -= s16(d->d_reclen);
   1680          1.25       riz 		buf += s16(d->d_reclen);
   1681           1.1       jtk 	}
   1682           1.1       jtk 	return (rv);
   1683           1.1       jtk #undef d
   1684          1.25       riz #undef s32
   1685          1.25       riz #undef s16
   1686           1.1       jtk }
   1687           1.1       jtk /*
   1688           1.1       jtk  * Callback function for map_inode_data_blocks, for updating a
   1689           1.1       jtk  *  directory to point to new inode locations.
   1690           1.1       jtk  */
   1691           1.1       jtk static void
   1692          1.30  dholland update_dir_data(off_t bn, unsigned int size, unsigned int nb, int kind)
   1693           1.1       jtk {
   1694           1.1       jtk 	if (kind == MDB_DATA) {
   1695           1.1       jtk 		union {
   1696           1.1       jtk 			struct direct d;
   1697           1.1       jtk 			char ch[MAXBSIZE];
   1698           1.1       jtk 		}     buf;
   1699          1.36  dholland 		readat(FFS_FSBTODB(oldsb, bn), &buf, size << oldsb->fs_fshift);
   1700           1.1       jtk 		if (update_dirents((char *) &buf, nb)) {
   1701          1.36  dholland 			writeat(FFS_FSBTODB(oldsb, bn), &buf,
   1702           1.1       jtk 			    size << oldsb->fs_fshift);
   1703           1.1       jtk 		}
   1704           1.1       jtk 	}
   1705           1.1       jtk }
   1706           1.1       jtk static void
   1707          1.25       riz dirmove_callback(union dinode * di, unsigned int inum, void *arg)
   1708           1.1       jtk {
   1709          1.25       riz 	switch (DIP(di,di_mode) & IFMT) {
   1710           1.1       jtk 	case IFDIR:
   1711           1.1       jtk 		map_inode_data_blocks(di, &update_dir_data);
   1712           1.1       jtk 		break;
   1713           1.1       jtk 	}
   1714           1.1       jtk }
   1715           1.1       jtk /*
   1716           1.1       jtk  * Update directory entries to point to new inode locations.
   1717           1.1       jtk  */
   1718           1.1       jtk static void
   1719           1.1       jtk update_for_inode_move(void)
   1720           1.1       jtk {
   1721           1.1       jtk 	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
   1722           1.1       jtk }
   1723           1.1       jtk /*
   1724          1.24       wiz  * Shrink the file system.
   1725           1.1       jtk  */
   1726           1.1       jtk static void
   1727           1.1       jtk shrink(void)
   1728           1.1       jtk {
   1729           1.1       jtk 	int i;
   1730           1.1       jtk 
   1731      1.38.6.1       snj 	if (makegeometry(1)) {
   1732      1.38.6.1       snj 		printf("New fs size %"PRIu64" = old fs size %"PRIu64
   1733      1.38.6.1       snj 		    ", not shrinking.\n", newsb->fs_size, oldsb->fs_size);
   1734      1.38.6.1       snj 		return;
   1735          1.25       riz 	}
   1736          1.28  dholland 
   1737           1.1       jtk 	/* Let's make sure we're not being shrunk into oblivion. */
   1738          1.32  christos 	if (newsb->fs_ncg < 1)
   1739          1.32  christos 		errx(EXIT_FAILURE, "Size too small - file system would "
   1740          1.32  christos 		    "have no cylinders");
   1741      1.38.6.1       snj 
   1742      1.38.6.1       snj 	if (verbose) {
   1743      1.38.6.1       snj 		printf("Shrinking fs from %"PRIu64" blocks to %"PRIu64
   1744      1.38.6.1       snj 		    " blocks.\n", oldsb->fs_size, newsb->fs_size);
   1745      1.38.6.1       snj 	}
   1746      1.38.6.1       snj 
   1747      1.38.6.1       snj 	/* Load the inodes off disk - we'll need 'em. */
   1748      1.38.6.1       snj 	loadinodes();
   1749      1.38.6.1       snj 
   1750      1.38.6.1       snj 	/* Update the timestamp. */
   1751      1.38.6.1       snj 	newsb->fs_time = timestamp();
   1752      1.38.6.1       snj 
   1753           1.1       jtk 	/* Initialize for block motion. */
   1754           1.1       jtk 	blkmove_init();
   1755           1.1       jtk 	/* Update csum size, then fix up for the new size */
   1756          1.37  dholland 	newsb->fs_cssize = ffs_fragroundup(newsb,
   1757           1.1       jtk 	    newsb->fs_ncg * sizeof(struct csum));
   1758           1.1       jtk 	csum_fixup();
   1759           1.8       snj 	/* Evict data from any cgs being wholly eliminated */
   1760           1.1       jtk 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
   1761  1.38.6.1.2.1       snj 		int64_t base;
   1762  1.38.6.1.2.1       snj 		int64_t dlow;
   1763  1.38.6.1.2.1       snj 		int64_t dhigh;
   1764  1.38.6.1.2.1       snj 		int64_t dmax;
   1765           1.1       jtk 		base = cgbase(oldsb, i);
   1766           1.1       jtk 		dlow = cgsblock(oldsb, i) - base;
   1767           1.1       jtk 		dhigh = cgdmin(oldsb, i) - base;
   1768           1.1       jtk 		dmax = oldsb->fs_size - base;
   1769           1.1       jtk 		if (dmax > cgs[i]->cg_ndblk)
   1770           1.1       jtk 			dmax = cgs[i]->cg_ndblk;
   1771           1.1       jtk 		evict_data(cgs[i], 0, dlow);
   1772           1.1       jtk 		evict_data(cgs[i], dhigh, dmax - dhigh);
   1773           1.1       jtk 		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
   1774           1.1       jtk 		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
   1775           1.1       jtk 		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
   1776           1.1       jtk 		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
   1777           1.1       jtk 	}
   1778           1.1       jtk 	/* Update the new last cg. */
   1779           1.1       jtk 	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
   1780           1.1       jtk 	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
   1781           1.1       jtk 	/* Is the new last cg partial?  If so, evict any data from the part
   1782           1.1       jtk 	 * being shrunken away. */
   1783           1.1       jtk 	if (newsb->fs_size % newsb->fs_fpg) {
   1784           1.1       jtk 		struct cg *cg;
   1785           1.1       jtk 		int oldcgsize;
   1786           1.1       jtk 		int newcgsize;
   1787           1.1       jtk 		cg = cgs[newsb->fs_ncg - 1];
   1788           1.1       jtk 		newcgsize = newsb->fs_size % newsb->fs_fpg;
   1789          1.15       riz 		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
   1790          1.15       riz 		    oldsb->fs_fpg);
   1791           1.1       jtk 		if (oldcgsize > oldsb->fs_fpg)
   1792           1.1       jtk 			oldcgsize = oldsb->fs_fpg;
   1793           1.1       jtk 		evict_data(cg, newcgsize, oldcgsize - newcgsize);
   1794           1.1       jtk 		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
   1795           1.1       jtk 	}
   1796          1.25       riz 	/* Find out whether we would run out of inodes.  (Note we
   1797          1.25       riz 	 * haven't actually done anything to the file system yet; all
   1798          1.25       riz 	 * those evict_data calls just update blkmove.) */
   1799           1.1       jtk 	{
   1800           1.1       jtk 		int slop;
   1801           1.1       jtk 		slop = 0;
   1802           1.1       jtk 		for (i = 0; i < newsb->fs_ncg; i++)
   1803           1.1       jtk 			slop += cgs[i]->cg_cs.cs_nifree;
   1804           1.1       jtk 		for (; i < oldsb->fs_ncg; i++)
   1805           1.1       jtk 			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
   1806          1.32  christos 		if (slop < 0)
   1807          1.32  christos 			errx(EXIT_FAILURE, "Sorry, would run out of inodes");
   1808           1.1       jtk 	}
   1809          1.25       riz 	/* Copy data, then update pointers to data.  See the comment
   1810          1.25       riz 	 * header on perform_data_move for ordering considerations. */
   1811           1.1       jtk 	perform_data_move();
   1812           1.1       jtk 	update_for_data_move();
   1813          1.25       riz 	/* Now do inodes.  Initialize, evict, move, update - see the
   1814          1.25       riz 	 * comment header on perform_inode_move. */
   1815           1.1       jtk 	inomove_init();
   1816           1.1       jtk 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
   1817           1.1       jtk 		evict_inodes(cgs[i]);
   1818           1.1       jtk 	perform_inode_move();
   1819           1.1       jtk 	flush_inodes();
   1820           1.1       jtk 	update_for_inode_move();
   1821           1.1       jtk 	/* Recompute all the bitmaps; most of them probably need it anyway,
   1822           1.1       jtk 	 * the rest are just paranoia and not wanting to have to bother
   1823           1.1       jtk 	 * keeping track of exactly which ones require it. */
   1824           1.1       jtk 	for (i = 0; i < newsb->fs_ncg; i++)
   1825           1.1       jtk 		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
   1826          1.14       riz 	/* Update the cg_old_ncyl value for the last cylinder. */
   1827          1.20    mhitch 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
   1828          1.14       riz 		cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
   1829          1.20    mhitch 		    newsb->fs_old_ncyl % newsb->fs_old_cpg;
   1830           1.1       jtk 	/* Make fs_dsize match the new reality. */
   1831           1.1       jtk 	recompute_fs_dsize();
   1832           1.1       jtk }
   1833           1.1       jtk /*
   1834           1.1       jtk  * Recompute the block totals, block cluster summaries, and rotational
   1835           1.1       jtk  *  position summaries, for a given cg (specified by number), based on
   1836           1.1       jtk  *  its free-frag bitmap (cg_blksfree()[]).
   1837           1.1       jtk  */
   1838           1.1       jtk static void
   1839           1.1       jtk rescan_blkmaps(int cgn)
   1840           1.1       jtk {
   1841           1.1       jtk 	struct cg *cg;
   1842           1.1       jtk 	int f;
   1843           1.1       jtk 	int b;
   1844           1.1       jtk 	int blkfree;
   1845           1.1       jtk 	int blkrun;
   1846           1.1       jtk 	int fragrun;
   1847           1.1       jtk 	int fwb;
   1848           1.1       jtk 
   1849           1.1       jtk 	cg = cgs[cgn];
   1850           1.1       jtk 	/* Subtract off the current totals from the sb's summary info */
   1851           1.1       jtk 	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
   1852           1.1       jtk 	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
   1853           1.1       jtk 	/* Clear counters and bitmaps. */
   1854           1.1       jtk 	cg->cg_cs.cs_nffree = 0;
   1855           1.1       jtk 	cg->cg_cs.cs_nbfree = 0;
   1856          1.25       riz 	memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0]));
   1857          1.25       riz 	memset(&old_cg_blktot(cg, 0)[0], 0,
   1858          1.15       riz 	    newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
   1859          1.25       riz 	memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0,
   1860           1.4  christos 	    newsb->fs_old_cpg * newsb->fs_old_nrpos *
   1861          1.15       riz 	    sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
   1862           1.1       jtk 	if (newsb->fs_contigsumsize > 0) {
   1863           1.1       jtk 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
   1864          1.25       riz 		memset(&cg_clustersum(cg, 0)[1], 0,
   1865           1.1       jtk 		    newsb->fs_contigsumsize *
   1866           1.1       jtk 		    sizeof(cg_clustersum(cg, 0)[1]));
   1867          1.25       riz 		if (is_ufs2)
   1868          1.25       riz 			memset(&cg_clustersfree(cg, 0)[0], 0,
   1869          1.25       riz 			    howmany(newsb->fs_fpg / NSPB(newsb), NBBY));
   1870          1.25       riz 		else
   1871          1.25       riz 			memset(&cg_clustersfree(cg, 0)[0], 0,
   1872          1.25       riz 			    howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
   1873          1.25       riz 				NSPB(newsb), NBBY));
   1874          1.25       riz 	}
   1875          1.25       riz 	/* Scan the free-frag bitmap.  Runs of free frags are kept
   1876          1.25       riz 	 * track of with fragrun, and recorded into cg_frsum[] and
   1877          1.25       riz 	 * cg_cs.cs_nffree; on each block boundary, entire free blocks
   1878          1.25       riz 	 * are recorded as well. */
   1879           1.1       jtk 	blkfree = 1;
   1880           1.1       jtk 	blkrun = 0;
   1881           1.1       jtk 	fragrun = 0;
   1882           1.1       jtk 	f = 0;
   1883           1.1       jtk 	b = 0;
   1884           1.1       jtk 	fwb = 0;
   1885           1.1       jtk 	while (f < cg->cg_ndblk) {
   1886           1.1       jtk 		if (bit_is_set(cg_blksfree(cg, 0), f)) {
   1887           1.1       jtk 			fragrun++;
   1888           1.1       jtk 		} else {
   1889           1.1       jtk 			blkfree = 0;
   1890           1.1       jtk 			if (fragrun > 0) {
   1891           1.1       jtk 				cg->cg_frsum[fragrun]++;
   1892           1.1       jtk 				cg->cg_cs.cs_nffree += fragrun;
   1893           1.1       jtk 			}
   1894           1.1       jtk 			fragrun = 0;
   1895           1.1       jtk 		}
   1896           1.1       jtk 		f++;
   1897           1.1       jtk 		fwb++;
   1898           1.1       jtk 		if (fwb >= newsb->fs_frag) {
   1899           1.1       jtk 			if (blkfree) {
   1900           1.1       jtk 				cg->cg_cs.cs_nbfree++;
   1901           1.1       jtk 				if (newsb->fs_contigsumsize > 0)
   1902           1.1       jtk 					set_bits(cg_clustersfree(cg, 0), b, 1);
   1903          1.25       riz 				if (is_ufs2 == 0) {
   1904          1.25       riz 					old_cg_blktot(cg, 0)[
   1905          1.25       riz 						old_cbtocylno(newsb,
   1906          1.25       riz 						    f - newsb->fs_frag)]++;
   1907          1.25       riz 					old_cg_blks(newsb, cg,
   1908          1.25       riz 					    old_cbtocylno(newsb,
   1909          1.25       riz 						f - newsb->fs_frag),
   1910          1.25       riz 					    0)[old_cbtorpos(newsb,
   1911          1.25       riz 						    f - newsb->fs_frag)]++;
   1912          1.25       riz 				}
   1913           1.1       jtk 				blkrun++;
   1914           1.1       jtk 			} else {
   1915           1.1       jtk 				if (fragrun > 0) {
   1916           1.1       jtk 					cg->cg_frsum[fragrun]++;
   1917           1.1       jtk 					cg->cg_cs.cs_nffree += fragrun;
   1918           1.1       jtk 				}
   1919           1.1       jtk 				if (newsb->fs_contigsumsize > 0) {
   1920           1.1       jtk 					if (blkrun > 0) {
   1921          1.15       riz 						cg_clustersum(cg, 0)[(blkrun
   1922          1.15       riz 						    > newsb->fs_contigsumsize)
   1923          1.15       riz 						    ? newsb->fs_contigsumsize
   1924          1.15       riz 						    : blkrun]++;
   1925           1.1       jtk 					}
   1926           1.1       jtk 				}
   1927           1.1       jtk 				blkrun = 0;
   1928           1.1       jtk 			}
   1929           1.1       jtk 			fwb = 0;
   1930           1.1       jtk 			b++;
   1931           1.1       jtk 			blkfree = 1;
   1932           1.1       jtk 			fragrun = 0;
   1933           1.1       jtk 		}
   1934           1.1       jtk 	}
   1935           1.1       jtk 	if (fragrun > 0) {
   1936           1.1       jtk 		cg->cg_frsum[fragrun]++;
   1937           1.1       jtk 		cg->cg_cs.cs_nffree += fragrun;
   1938           1.1       jtk 	}
   1939           1.1       jtk 	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
   1940           1.1       jtk 		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
   1941           1.1       jtk 		    newsb->fs_contigsumsize : blkrun]++;
   1942           1.1       jtk 	}
   1943           1.1       jtk 	/*
   1944           1.1       jtk          * Put the updated summary info back into csums, and add it
   1945           1.1       jtk          * back into the sb's summary info.  Then mark the cg dirty.
   1946           1.1       jtk          */
   1947           1.1       jtk 	csums[cgn] = cg->cg_cs;
   1948           1.1       jtk 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
   1949           1.1       jtk 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
   1950           1.1       jtk 	cgflags[cgn] |= CGF_DIRTY;
   1951           1.1       jtk }
   1952           1.1       jtk /*
   1953           1.1       jtk  * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
   1954           1.1       jtk  *  values, for a cg, based on the in-core inodes for that cg.
   1955           1.1       jtk  */
   1956           1.1       jtk static void
   1957           1.1       jtk rescan_inomaps(int cgn)
   1958           1.1       jtk {
   1959           1.1       jtk 	struct cg *cg;
   1960           1.1       jtk 	int inum;
   1961           1.1       jtk 	int iwc;
   1962           1.1       jtk 
   1963           1.1       jtk 	cg = cgs[cgn];
   1964           1.1       jtk 	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
   1965           1.1       jtk 	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
   1966           1.1       jtk 	cg->cg_cs.cs_ndir = 0;
   1967           1.1       jtk 	cg->cg_cs.cs_nifree = 0;
   1968          1.25       riz 	memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY));
   1969           1.1       jtk 	inum = cgn * newsb->fs_ipg;
   1970           1.1       jtk 	if (cgn == 0) {
   1971           1.1       jtk 		set_bits(cg_inosused(cg, 0), 0, 2);
   1972           1.1       jtk 		iwc = 2;
   1973           1.1       jtk 		inum += 2;
   1974           1.1       jtk 	} else {
   1975           1.1       jtk 		iwc = 0;
   1976           1.1       jtk 	}
   1977           1.1       jtk 	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
   1978          1.25       riz 		switch (DIP(inodes + inum, di_mode) & IFMT) {
   1979           1.1       jtk 		case 0:
   1980           1.1       jtk 			cg->cg_cs.cs_nifree++;
   1981           1.1       jtk 			break;
   1982           1.1       jtk 		case IFDIR:
   1983           1.1       jtk 			cg->cg_cs.cs_ndir++;
   1984          1.31  dholland 			/* FALLTHROUGH */
   1985           1.1       jtk 		default:
   1986           1.1       jtk 			set_bits(cg_inosused(cg, 0), iwc, 1);
   1987           1.1       jtk 			break;
   1988           1.1       jtk 		}
   1989           1.1       jtk 	}
   1990           1.1       jtk 	csums[cgn] = cg->cg_cs;
   1991           1.1       jtk 	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
   1992           1.1       jtk 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
   1993           1.1       jtk 	cgflags[cgn] |= CGF_DIRTY;
   1994           1.1       jtk }
   1995           1.1       jtk /*
   1996           1.1       jtk  * Flush cgs to disk, recomputing anything they're marked as needing.
   1997           1.1       jtk  */
   1998           1.1       jtk static void
   1999           1.1       jtk flush_cgs(void)
   2000           1.1       jtk {
   2001           1.1       jtk 	int i;
   2002           1.1       jtk 
   2003           1.1       jtk 	for (i = 0; i < newsb->fs_ncg; i++) {
   2004      1.38.6.1       snj 		progress_bar(special, "flush cg",
   2005      1.38.6.1       snj 		    i, newsb->fs_ncg - 1);
   2006           1.1       jtk 		if (cgflags[i] & CGF_BLKMAPS) {
   2007           1.1       jtk 			rescan_blkmaps(i);
   2008           1.1       jtk 		}
   2009           1.1       jtk 		if (cgflags[i] & CGF_INOMAPS) {
   2010           1.1       jtk 			rescan_inomaps(i);
   2011           1.1       jtk 		}
   2012           1.1       jtk 		if (cgflags[i] & CGF_DIRTY) {
   2013           1.1       jtk 			cgs[i]->cg_rotor = 0;
   2014           1.1       jtk 			cgs[i]->cg_frotor = 0;
   2015           1.1       jtk 			cgs[i]->cg_irotor = 0;
   2016          1.25       riz 			if (needswap)
   2017          1.25       riz 				ffs_cg_swap(cgs[i],cgs[i],newsb);
   2018          1.36  dholland 			writeat(FFS_FSBTODB(newsb, cgtod(newsb, i)), cgs[i],
   2019           1.1       jtk 			    cgblksz);
   2020           1.1       jtk 		}
   2021           1.1       jtk 	}
   2022          1.25       riz 	if (needswap)
   2023          1.25       riz 		ffs_csum_swap(csums,csums,newsb->fs_cssize);
   2024          1.36  dholland 	writeat(FFS_FSBTODB(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
   2025      1.38.6.1       snj 
   2026      1.38.6.1       snj 	progress_done();
   2027           1.1       jtk }
   2028           1.1       jtk /*
   2029           1.1       jtk  * Write the superblock, both to the main superblock and to each cg's
   2030           1.1       jtk  *  alternative superblock.
   2031           1.1       jtk  */
   2032           1.1       jtk static void
   2033           1.1       jtk write_sbs(void)
   2034           1.1       jtk {
   2035           1.1       jtk 	int i;
   2036           1.1       jtk 
   2037          1.20    mhitch 	if (newsb->fs_magic == FS_UFS1_MAGIC &&
   2038          1.20    mhitch 	    (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
   2039          1.20    mhitch 		newsb->fs_old_time = newsb->fs_time;
   2040          1.20    mhitch 	    	newsb->fs_old_size = newsb->fs_size;
   2041          1.20    mhitch 	    	/* we don't update fs_csaddr */
   2042          1.20    mhitch 	    	newsb->fs_old_dsize = newsb->fs_dsize;
   2043          1.20    mhitch 		newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
   2044          1.20    mhitch 		newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
   2045          1.20    mhitch 		newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
   2046          1.20    mhitch 		newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
   2047          1.20    mhitch 		/* fill fs_old_postbl_start with 256 bytes of 0xff? */
   2048          1.20    mhitch 	}
   2049          1.25       riz 	/* copy newsb back to oldsb, so we can use it for offsets if
   2050          1.25       riz 	   newsb has been swapped for writing to disk */
   2051          1.25       riz 	memcpy(oldsb, newsb, SBLOCKSIZE);
   2052          1.25       riz 	if (needswap)
   2053          1.25       riz 		ffs_sb_swap(newsb,newsb);
   2054          1.10    bouyer 	writeat(where /  DEV_BSIZE, newsb, SBLOCKSIZE);
   2055          1.25       riz 	for (i = 0; i < oldsb->fs_ncg; i++) {
   2056      1.38.6.1       snj 		progress_bar(special, "write sb",
   2057      1.38.6.1       snj 		    i, oldsb->fs_ncg - 1);
   2058          1.36  dholland 		writeat(FFS_FSBTODB(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE);
   2059           1.1       jtk 	}
   2060      1.38.6.1       snj 
   2061      1.38.6.1       snj 	progress_done();
   2062      1.38.6.1       snj }
   2063      1.38.6.1       snj 
   2064      1.38.6.1       snj /*
   2065      1.38.6.1       snj  * Check to see wether new size changes the filesystem
   2066      1.38.6.1       snj  *  return exit code
   2067      1.38.6.1       snj  */
   2068      1.38.6.1       snj static int
   2069      1.38.6.1       snj checkonly(void)
   2070      1.38.6.1       snj {
   2071      1.38.6.1       snj 	if (makegeometry(0)) {
   2072      1.38.6.1       snj 		if (verbose) {
   2073      1.38.6.1       snj 			printf("Wouldn't change: already %" PRId64
   2074      1.38.6.1       snj 			    " blocks\n", (int64_t)oldsb->fs_size);
   2075      1.38.6.1       snj 		}
   2076      1.38.6.1       snj 		return 1;
   2077      1.38.6.1       snj 	}
   2078      1.38.6.1       snj 
   2079      1.38.6.1       snj 	if (verbose) {
   2080      1.38.6.1       snj 		printf("Would change: newsize: %" PRId64 " oldsize: %"
   2081      1.38.6.1       snj 		    PRId64 " fsdb: %" PRId64 "\n", FFS_DBTOFSB(oldsb, newsize),
   2082      1.38.6.1       snj 		    (int64_t)oldsb->fs_size,
   2083      1.38.6.1       snj 		    (int64_t)oldsb->fs_fsbtodb);
   2084      1.38.6.1       snj 	}
   2085      1.38.6.1       snj 	return 0;
   2086           1.1       jtk }
   2087          1.13      haad 
   2088          1.30  dholland static off_t
   2089          1.13      haad get_dev_size(char *dev_name)
   2090          1.13      haad {
   2091          1.13      haad 	struct dkwedge_info dkw;
   2092          1.13      haad 	struct partition *pp;
   2093          1.13      haad 	struct disklabel lp;
   2094      1.38.6.1       snj 	struct stat st;
   2095          1.13      haad 	size_t ptn;
   2096          1.28  dholland 
   2097          1.13      haad 	/* Get info about partition/wedge */
   2098      1.38.6.1       snj 	if (ioctl(fd, DIOCGWEDGEINFO, &dkw) != -1)
   2099      1.38.6.1       snj 		return dkw.dkw_size;
   2100      1.38.6.1       snj 	if (ioctl(fd, DIOCGDINFO, &lp) != -1) {
   2101          1.13      haad 		ptn = strchr(dev_name, '\0')[-1] - 'a';
   2102          1.13      haad 		if (ptn >= lp.d_npartitions)
   2103          1.13      haad 			return 0;
   2104          1.13      haad 		pp = &lp.d_partitions[ptn];
   2105          1.13      haad 		return pp->p_size;
   2106          1.13      haad 	}
   2107      1.38.6.1       snj 	if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
   2108      1.38.6.1       snj 		return st.st_size / DEV_BSIZE;
   2109          1.13      haad 
   2110      1.38.6.1       snj 	return 0;
   2111          1.13      haad }
   2112          1.13      haad 
   2113           1.1       jtk /*
   2114           1.1       jtk  * main().
   2115           1.1       jtk  */
   2116           1.1       jtk int
   2117          1.13      haad main(int argc, char **argv)
   2118           1.1       jtk {
   2119          1.13      haad 	int ch;
   2120      1.38.6.1       snj 	int CheckOnlyFlag;
   2121          1.13      haad 	int ExpertFlag;
   2122          1.13      haad 	int SFlag;
   2123           1.4  christos 	size_t i;
   2124          1.13      haad 
   2125          1.13      haad 	char reply[5];
   2126          1.28  dholland 
   2127          1.13      haad 	newsize = 0;
   2128          1.13      haad 	ExpertFlag = 0;
   2129          1.13      haad 	SFlag = 0;
   2130      1.38.6.1       snj         CheckOnlyFlag = 0;
   2131          1.28  dholland 
   2132      1.38.6.1       snj 	while ((ch = getopt(argc, argv, "cps:vy")) != -1) {
   2133          1.13      haad 		switch (ch) {
   2134      1.38.6.1       snj                 case 'c':
   2135      1.38.6.1       snj 			CheckOnlyFlag = 1;
   2136      1.38.6.1       snj 			break;
   2137      1.38.6.1       snj 		case 'p':
   2138      1.38.6.1       snj 			progress = 1;
   2139      1.38.6.1       snj 			break;
   2140          1.13      haad 		case 's':
   2141          1.13      haad 			SFlag = 1;
   2142          1.30  dholland 			newsize = strtoll(optarg, NULL, 10);
   2143          1.13      haad 			if(newsize < 1) {
   2144          1.13      haad 				usage();
   2145          1.13      haad 			}
   2146          1.13      haad 			break;
   2147      1.38.6.1       snj 		case 'v':
   2148      1.38.6.1       snj 			verbose = 1;
   2149      1.38.6.1       snj 			break;
   2150          1.13      haad 		case 'y':
   2151          1.13      haad 			ExpertFlag = 1;
   2152          1.13      haad 			break;
   2153          1.13      haad 		case '?':
   2154          1.13      haad 			/* FALLTHROUGH */
   2155          1.13      haad 		default:
   2156          1.13      haad 			usage();
   2157          1.13      haad 		}
   2158          1.13      haad 	}
   2159          1.13      haad 	argc -= optind;
   2160          1.13      haad 	argv += optind;
   2161          1.13      haad 
   2162          1.13      haad 	if (argc != 1) {
   2163          1.13      haad 		usage();
   2164          1.13      haad 	}
   2165          1.13      haad 
   2166          1.23       riz 	special = *argv;
   2167          1.13      haad 
   2168      1.38.6.1       snj 	if (ExpertFlag == 0 && CheckOnlyFlag == 0) {
   2169          1.24       wiz 		printf("It's required to manually run fsck on file system "
   2170          1.13      haad 		    "before you can resize it\n\n"
   2171          1.13      haad 		    " Did you run fsck on your disk (Yes/No) ? ");
   2172          1.13      haad 		fgets(reply, (int)sizeof(reply), stdin);
   2173          1.13      haad 		if (strcasecmp(reply, "Yes\n")) {
   2174          1.13      haad 			printf("\n Nothing done \n");
   2175          1.13      haad 			exit(EXIT_SUCCESS);
   2176          1.13      haad 		}
   2177           1.1       jtk 	}
   2178          1.28  dholland 
   2179          1.23       riz 	fd = open(special, O_RDWR, 0);
   2180           1.4  christos 	if (fd < 0)
   2181          1.23       riz 		err(EXIT_FAILURE, "Can't open `%s'", special);
   2182           1.1       jtk 	checksmallio();
   2183          1.13      haad 
   2184          1.13      haad 	if (SFlag == 0) {
   2185          1.23       riz 		newsize = get_dev_size(special);
   2186          1.13      haad 		if (newsize == 0)
   2187          1.15       riz 			err(EXIT_FAILURE,
   2188          1.24       wiz 			    "Can't resize file system, newsize not known.");
   2189          1.13      haad 	}
   2190          1.28  dholland 
   2191           1.1       jtk 	oldsb = (struct fs *) & sbbuf;
   2192           1.4  christos 	newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
   2193           1.4  christos 	for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
   2194           1.9    bouyer 		readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
   2195          1.23       riz 		switch (oldsb->fs_magic) {
   2196          1.23       riz 		case FS_UFS2_MAGIC:
   2197          1.31  dholland 			is_ufs2 = 1;
   2198          1.23       riz 			/* FALLTHROUGH */
   2199          1.23       riz 		case FS_UFS1_MAGIC:
   2200          1.23       riz 			needswap = 0;
   2201          1.23       riz 			break;
   2202          1.23       riz 		case FS_UFS2_MAGIC_SWAPPED:
   2203          1.23       riz  			is_ufs2 = 1;
   2204          1.23       riz 			/* FALLTHROUGH */
   2205          1.23       riz 		case FS_UFS1_MAGIC_SWAPPED:
   2206          1.23       riz 			needswap = 1;
   2207          1.23       riz 			break;
   2208          1.23       riz 		default:
   2209          1.23       riz 			continue;
   2210          1.23       riz 		}
   2211          1.23       riz 		if (!is_ufs2 && where == SBLOCK_UFS2)
   2212          1.16       riz 			continue;
   2213          1.23       riz 		break;
   2214           1.1       jtk 	}
   2215           1.4  christos 	if (where == (off_t)-1)
   2216          1.13      haad 		errx(EXIT_FAILURE, "Bad magic number");
   2217          1.25       riz 	if (needswap)
   2218          1.25       riz 		ffs_sb_swap(oldsb,oldsb);
   2219          1.20    mhitch 	if (oldsb->fs_magic == FS_UFS1_MAGIC &&
   2220          1.20    mhitch 	    (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
   2221          1.20    mhitch 		oldsb->fs_csaddr = oldsb->fs_old_csaddr;
   2222          1.20    mhitch 		oldsb->fs_size = oldsb->fs_old_size;
   2223          1.20    mhitch 		oldsb->fs_dsize = oldsb->fs_old_dsize;
   2224          1.20    mhitch 		oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
   2225          1.20    mhitch 		oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
   2226          1.20    mhitch 		oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
   2227          1.20    mhitch 		oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
   2228          1.20    mhitch 		/* any others? */
   2229          1.20    mhitch 		printf("Resizing with ffsv1 superblock\n");
   2230          1.20    mhitch 	}
   2231          1.25       riz 
   2232           1.1       jtk 	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
   2233           1.1       jtk 	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
   2234          1.35  dholland 	if (oldsb->fs_ipg % FFS_INOPB(oldsb))
   2235          1.35  dholland 		errx(EXIT_FAILURE, "ipg[%d] %% FFS_INOPB[%d] != 0",
   2236          1.35  dholland 		    (int) oldsb->fs_ipg, (int) FFS_INOPB(oldsb));
   2237          1.25       riz 	/* The superblock is bigger than struct fs (there are trailing
   2238          1.25       riz 	 * tables, of non-fixed size); make sure we copy the whole
   2239          1.25       riz 	 * thing.  SBLOCKSIZE may be an over-estimate, but we do this
   2240          1.25       riz 	 * just once, so being generous is cheap. */
   2241          1.25       riz 	memcpy(newsb, oldsb, SBLOCKSIZE);
   2242      1.38.6.1       snj 
   2243      1.38.6.1       snj 	if (progress) {
   2244      1.38.6.1       snj 		progress_ttywidth(0);
   2245      1.38.6.1       snj 		signal(SIGWINCH, progress_ttywidth);
   2246      1.38.6.1       snj 	}
   2247      1.38.6.1       snj 
   2248           1.1       jtk 	loadcgs();
   2249      1.38.6.1       snj 
   2250      1.38.6.1       snj 	if (progress && !CheckOnlyFlag) {
   2251      1.38.6.1       snj 		progress_switch(progress);
   2252      1.38.6.1       snj 		progress_init();
   2253      1.38.6.1       snj 	}
   2254      1.38.6.1       snj 
   2255          1.36  dholland 	if (newsize > FFS_FSBTODB(oldsb, oldsb->fs_size)) {
   2256      1.38.6.1       snj 		if (CheckOnlyFlag)
   2257      1.38.6.1       snj 			exit(checkonly());
   2258           1.1       jtk 		grow();
   2259          1.36  dholland 	} else if (newsize < FFS_FSBTODB(oldsb, oldsb->fs_size)) {
   2260          1.25       riz 		if (is_ufs2)
   2261          1.25       riz 			errx(EXIT_FAILURE,"shrinking not supported for ufs2");
   2262      1.38.6.1       snj 		if (CheckOnlyFlag)
   2263      1.38.6.1       snj 			exit(checkonly());
   2264           1.1       jtk 		shrink();
   2265      1.38.6.1       snj 	} else {
   2266      1.38.6.1       snj 		if (CheckOnlyFlag)
   2267      1.38.6.1       snj 			exit(checkonly());
   2268      1.38.6.1       snj 		if (verbose)
   2269      1.38.6.1       snj 			printf("No change requested: already %" PRId64
   2270      1.38.6.1       snj 			    " blocks\n", (int64_t)oldsb->fs_size);
   2271           1.1       jtk 	}
   2272      1.38.6.1       snj 
   2273           1.1       jtk 	flush_cgs();
   2274           1.1       jtk 	write_sbs();
   2275          1.19       riz 	if (isplainfile())
   2276          1.19       riz 		ftruncate(fd,newsize * DEV_BSIZE);
   2277          1.13      haad 	return 0;
   2278          1.13      haad }
   2279          1.13      haad 
   2280          1.13      haad static void
   2281          1.13      haad usage(void)
   2282          1.13      haad {
   2283          1.13      haad 
   2284  1.38.6.1.2.1       snj 	(void)fprintf(stderr, "usage: %s [-cpvy] [-s size] special\n",
   2285          1.25       riz 	    getprogname());
   2286          1.13      haad 	exit(EXIT_FAILURE);
   2287           1.1       jtk }
   2288