resize_ffs.c revision 1.5 1 1.5 salo /* $NetBSD: resize_ffs.c,v 1.5 2003/07/26 19:46:34 salo Exp $ */
2 1.1 jtk /* From sources sent on February 17, 2003 */
3 1.1 jtk /*-
4 1.1 jtk * As its sole author, I explicitly place this code in the public
5 1.1 jtk * domain. Anyone may use it for any purpose (though I would
6 1.1 jtk * appreciate credit where it is due).
7 1.1 jtk *
8 1.1 jtk * der Mouse
9 1.1 jtk *
10 1.1 jtk * mouse (at) rodents.montreal.qc.ca
11 1.1 jtk * 7D C8 61 52 5D E7 2D 39 4E F1 31 3E E8 B3 27 4B
12 1.1 jtk */
13 1.1 jtk /*
14 1.3 wiz * resize_ffs:
15 1.1 jtk *
16 1.1 jtk * Resize a filesystem. Is capable of both growing and shrinking.
17 1.1 jtk *
18 1.3 wiz * Usage: resize_ffs filesystem newsize
19 1.1 jtk *
20 1.3 wiz * Example: resize_ffs /dev/rsd1e 29574
21 1.1 jtk *
22 1.1 jtk * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
23 1.1 jtk * each).
24 1.1 jtk *
25 1.1 jtk * Note: this currently requires gcc to build, since it is written
26 1.1 jtk * depending on gcc-specific features, notably nested function
27 1.1 jtk * definitions (which in at least a few cases depend on the lexical
28 1.1 jtk * scoping gcc provides, so they can't be trivially moved outside).
29 1.1 jtk *
30 1.1 jtk * It will not do anything useful with filesystems in other than
31 1.1 jtk * host-native byte order. This really should be fixed (it's largely
32 1.1 jtk * a historical accident; the original version of this program is
33 1.1 jtk * older than bi-endian support in FFS).
34 1.1 jtk *
35 1.5 salo * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
36 1.1 jtk * one responsible for the "realloccgblk: can't find blk in cyl"
37 1.1 jtk * problem and a more minor one which left fs_dsize wrong when
38 1.1 jtk * shrinking. (These actually indicate bugs in fsck too - it should
39 1.1 jtk * have caught and fixed them.)
40 1.1 jtk *
41 1.1 jtk */
42 1.1 jtk
43 1.1 jtk #include <stdio.h>
44 1.1 jtk #include <errno.h>
45 1.1 jtk #include <fcntl.h>
46 1.1 jtk #include <stdlib.h>
47 1.1 jtk #include <unistd.h>
48 1.1 jtk #include <strings.h>
49 1.4 christos #include <err.h>
50 1.1 jtk #include <sys/stat.h>
51 1.1 jtk #include <sys/mman.h>
52 1.1 jtk #include <sys/param.h> /* MAXFRAG */
53 1.1 jtk #include <ufs/ffs/fs.h>
54 1.1 jtk #include <ufs/ufs/dir.h>
55 1.1 jtk #include <ufs/ufs/dinode.h>
56 1.1 jtk #include <ufs/ufs/ufs_bswap.h> /* ufs_rw32 */
57 1.1 jtk
58 1.1 jtk /* Suppress warnings about unused arguments */
59 1.1 jtk #if defined(__GNUC__) && \
60 1.1 jtk ( (__GNUC__ > 2) || \
61 1.1 jtk ( (__GNUC__ == 2) && \
62 1.1 jtk defined(__GNUC_MINOR__) && \
63 1.1 jtk (__GNUC_MINOR__ >= 7) ) )
64 1.1 jtk #define UNUSED_ARG(x) x __attribute__((__unused__))
65 1.1 jtk #define INLINE inline
66 1.1 jtk #else
67 1.1 jtk #define UNUSED_ARG(x) x
68 1.1 jtk #define INLINE /**/
69 1.1 jtk #endif
70 1.1 jtk
71 1.1 jtk /* new size of filesystem, in sectors */
72 1.1 jtk static int newsize;
73 1.1 jtk
74 1.1 jtk /* fd open onto disk device */
75 1.1 jtk static int fd;
76 1.1 jtk
77 1.1 jtk /* must we break up big I/O operations - see checksmallio() */
78 1.1 jtk static int smallio;
79 1.1 jtk
80 1.1 jtk /* size of a cg, in bytes, rounded up to a frag boundary */
81 1.1 jtk static int cgblksz;
82 1.1 jtk
83 1.4 christos /* possible superblock localtions */
84 1.4 christos static int search[] = SBLOCKSEARCH;
85 1.4 christos /* location of the superblock */
86 1.4 christos static off_t where;
87 1.4 christos
88 1.1 jtk /* Superblocks. */
89 1.1 jtk static struct fs *oldsb; /* before we started */
90 1.1 jtk static struct fs *newsb; /* copy to work with */
91 1.1 jtk /* Buffer to hold the above. Make sure it's aligned correctly. */
92 1.4 christos static char sbbuf[2 * SBLOCKSIZE] __attribute__((__aligned__(__alignof__(struct fs))));
93 1.1 jtk
94 1.1 jtk /* a cg's worth of brand new squeaky-clean inodes */
95 1.4 christos static struct ufs1_dinode *zinodes;
96 1.1 jtk
97 1.1 jtk /* pointers to the in-core cgs, read off disk and possibly modified */
98 1.1 jtk static struct cg **cgs;
99 1.1 jtk
100 1.1 jtk /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
101 1.1 jtk static struct csum *csums;
102 1.1 jtk
103 1.1 jtk /* per-cg flags, indexed by cg number */
104 1.1 jtk static unsigned char *cgflags;
105 1.1 jtk #define CGF_DIRTY 0x01 /* needs to be written to disk */
106 1.1 jtk #define CGF_BLKMAPS 0x02 /* block bitmaps need rebuilding */
107 1.1 jtk #define CGF_INOMAPS 0x04 /* inode bitmaps need rebuilding */
108 1.1 jtk
109 1.1 jtk /* when shrinking, these two arrays record how we want blocks to move. */
110 1.1 jtk /* if blkmove[i] is j, the frag that started out as frag #i should end */
111 1.1 jtk /* up as frag #j. inomove[i]=j means, similarly, that the inode that */
112 1.1 jtk /* started out as inode i should end up as inode j. */
113 1.1 jtk static unsigned int *blkmove;
114 1.1 jtk static unsigned int *inomove;
115 1.1 jtk
116 1.1 jtk /* in-core copies of all inodes in the fs, indexed by inumber */
117 1.4 christos static struct ufs1_dinode *inodes;
118 1.1 jtk
119 1.1 jtk /* per-inode flags, indexed by inumber */
120 1.1 jtk static unsigned char *iflags;
121 1.1 jtk #define IF_DIRTY 0x01 /* needs to be written to disk */
122 1.1 jtk #define IF_BDIRTY 0x02 /* like DIRTY, but is set on first inode in a
123 1.1 jtk * block of inodes, and applies to the whole
124 1.1 jtk * block. */
125 1.1 jtk
126 1.4 christos /* Old FFS1 macros */
127 1.4 christos #define cg_blktot(cgp, ns) \
128 1.4 christos (cg_chkmagic(cgp, ns) ? \
129 1.4 christos ((int32_t *)((u_int8_t *)(cgp) + ufs_rw32((cgp)->cg_old_btotoff, (ns)))) \
130 1.4 christos : (((struct ocg *)(cgp))->cg_btot))
131 1.4 christos #define cg_blks(fs, cgp, cylno, ns) \
132 1.4 christos (cg_chkmagic(cgp, ns) ? \
133 1.4 christos ((int16_t *)((u_int8_t *)(cgp) + ufs_rw32((cgp)->cg_old_boff, (ns))) + \
134 1.4 christos (cylno) * (fs)->fs_old_nrpos) \
135 1.4 christos : (((struct ocg *)(cgp))->cg_b[cylno]))
136 1.4 christos #define cbtocylno(fs, bno) \
137 1.4 christos (fsbtodb(fs, bno) / (fs)->fs_old_spc)
138 1.4 christos #define cbtorpos(fs, bno) \
139 1.4 christos ((fs)->fs_old_nrpos <= 1 ? 0 : \
140 1.4 christos (fsbtodb(fs, bno) % (fs)->fs_old_spc / \
141 1.4 christos (fs)->fs_old_nsect * (fs)->fs_old_trackskew + \
142 1.4 christos fsbtodb(fs, bno) % (fs)->fs_old_spc % \
143 1.4 christos (fs)->fs_old_nsect * (fs)->fs_old_interleave) %\
144 1.4 christos (fs)->fs_old_nsect * (fs)->fs_old_nrpos / (fs)->fs_old_npsect)
145 1.4 christos #define dblksize(fs, dip, lbn) \
146 1.4 christos (((lbn) >= NDADDR || (dip)->di_size >= lblktosize(fs, (lbn) + 1)) \
147 1.4 christos ? (fs)->fs_bsize \
148 1.4 christos : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
149 1.4 christos
150 1.4 christos
151 1.4 christos /*
152 1.4 christos * Number of disk sectors per block/fragment; assumes DEV_BSIZE byte
153 1.4 christos * sector size.
154 1.4 christos */
155 1.4 christos #define NSPB(fs) ((fs)->fs_old_nspf << (fs)->fs_fragshift)
156 1.4 christos #define NSPF(fs) ((fs)->fs_old_nspf)
157 1.4 christos
158 1.1 jtk /*
159 1.1 jtk * See if we need to break up large I/O operations. This should never
160 1.1 jtk * be needed, but under at least one <version,platform> combination,
161 1.1 jtk * large enough disk transfers to the raw device hang. So if we're
162 1.1 jtk * talking to a character special device, play it safe; in this case,
163 1.1 jtk * readat() and writeat() break everything up into pieces no larger
164 1.1 jtk * than 8K, doing multiple syscalls for larger operations.
165 1.1 jtk */
166 1.1 jtk static void
167 1.1 jtk checksmallio(void)
168 1.1 jtk {
169 1.1 jtk struct stat stb;
170 1.1 jtk
171 1.1 jtk fstat(fd, &stb);
172 1.1 jtk smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
173 1.1 jtk }
174 1.1 jtk /*
175 1.1 jtk * Read size bytes starting at blkno into buf. blkno is in DEV_BSIZE
176 1.1 jtk * units, ie, after fsbtodb(); size is in bytes.
177 1.1 jtk */
178 1.1 jtk static void
179 1.1 jtk readat(off_t blkno, void *buf, int size)
180 1.1 jtk {
181 1.1 jtk /* Seek to the correct place. */
182 1.4 christos if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
183 1.4 christos err(1, "lseek failed");
184 1.4 christos
185 1.1 jtk /* See if we have to break up the transfer... */
186 1.1 jtk if (smallio) {
187 1.1 jtk char *bp; /* pointer into buf */
188 1.1 jtk int left; /* bytes left to go */
189 1.1 jtk int n; /* number to do this time around */
190 1.1 jtk int rv; /* syscall return value */
191 1.1 jtk bp = buf;
192 1.1 jtk left = size;
193 1.1 jtk while (left > 0) {
194 1.1 jtk n = (left > 8192) ? 8192 : left;
195 1.1 jtk rv = read(fd, bp, n);
196 1.4 christos if (rv < 0)
197 1.4 christos err(1, "read failed");
198 1.4 christos if (rv != n)
199 1.4 christos errx(1, "read: wanted %d, got %d", n, rv);
200 1.1 jtk bp += n;
201 1.1 jtk left -= n;
202 1.1 jtk }
203 1.1 jtk } else {
204 1.1 jtk int rv;
205 1.1 jtk rv = read(fd, buf, size);
206 1.4 christos if (rv < 0)
207 1.4 christos err(1, "read failed");
208 1.4 christos if (rv != size)
209 1.4 christos errx(1, "read: wanted %d, got %d", size, rv);
210 1.1 jtk }
211 1.1 jtk }
212 1.1 jtk /*
213 1.1 jtk * Write size bytes from buf starting at blkno. blkno is in DEV_BSIZE
214 1.1 jtk * units, ie, after fsbtodb(); size is in bytes.
215 1.1 jtk */
216 1.1 jtk static void
217 1.1 jtk writeat(off_t blkno, const void *buf, int size)
218 1.1 jtk {
219 1.1 jtk /* Seek to the correct place. */
220 1.4 christos if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
221 1.4 christos err(1, "lseek failed");
222 1.1 jtk /* See if we have to break up the transfer... */
223 1.1 jtk if (smallio) {
224 1.1 jtk const char *bp; /* pointer into buf */
225 1.1 jtk int left; /* bytes left to go */
226 1.1 jtk int n; /* number to do this time around */
227 1.1 jtk int rv; /* syscall return value */
228 1.1 jtk bp = buf;
229 1.1 jtk left = size;
230 1.1 jtk while (left > 0) {
231 1.1 jtk n = (left > 8192) ? 8192 : left;
232 1.1 jtk rv = write(fd, bp, n);
233 1.4 christos if (rv < 0)
234 1.4 christos err(1, "write failed");
235 1.4 christos if (rv != n)
236 1.4 christos errx(1, "write: wanted %d, got %d", n, rv);
237 1.1 jtk bp += n;
238 1.1 jtk left -= n;
239 1.1 jtk }
240 1.1 jtk } else {
241 1.1 jtk int rv;
242 1.1 jtk rv = write(fd, buf, size);
243 1.4 christos if (rv < 0)
244 1.4 christos err(1, "write failed");
245 1.4 christos if (rv != size)
246 1.4 christos errx(1, "write: wanted %d, got %d", size, rv);
247 1.1 jtk }
248 1.1 jtk }
249 1.1 jtk /*
250 1.1 jtk * Never-fail versions of malloc() and realloc(), and an allocation
251 1.1 jtk * routine (which also never fails) for allocating memory that will
252 1.1 jtk * never be freed until exit.
253 1.1 jtk */
254 1.1 jtk
255 1.1 jtk /*
256 1.1 jtk * Never-fail malloc.
257 1.1 jtk */
258 1.1 jtk static void *
259 1.1 jtk nfmalloc(size_t nb, const char *tag)
260 1.1 jtk {
261 1.1 jtk void *rv;
262 1.1 jtk
263 1.1 jtk rv = malloc(nb);
264 1.1 jtk if (rv)
265 1.1 jtk return (rv);
266 1.4 christos err(1, "Can't allocate %lu bytes for %s",
267 1.4 christos (unsigned long int) nb, tag);
268 1.1 jtk }
269 1.1 jtk /*
270 1.1 jtk * Never-fail realloc.
271 1.1 jtk */
272 1.1 jtk static void *
273 1.1 jtk nfrealloc(void *blk, size_t nb, const char *tag)
274 1.1 jtk {
275 1.1 jtk void *rv;
276 1.1 jtk
277 1.1 jtk rv = realloc(blk, nb);
278 1.1 jtk if (rv)
279 1.1 jtk return (rv);
280 1.4 christos err(1, "Can't re-allocate %lu bytes for %s",
281 1.4 christos (unsigned long int) nb, tag);
282 1.1 jtk }
283 1.1 jtk /*
284 1.1 jtk * Allocate memory that will never be freed or reallocated. Arguably
285 1.1 jtk * this routine should handle small allocations by chopping up pages,
286 1.1 jtk * but that's not worth the bother; it's not called more than a
287 1.1 jtk * handful of times per run, and if the allocations are that small the
288 1.1 jtk * waste in giving each one its own page is ignorable.
289 1.1 jtk */
290 1.1 jtk static void *
291 1.1 jtk alloconce(size_t nb, const char *tag)
292 1.1 jtk {
293 1.1 jtk void *rv;
294 1.1 jtk
295 1.1 jtk rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
296 1.1 jtk if (rv != MAP_FAILED)
297 1.1 jtk return (rv);
298 1.4 christos err(1, "Can't map %lu bytes for %s",
299 1.4 christos (unsigned long int) nb, tag);
300 1.1 jtk }
301 1.1 jtk /*
302 1.1 jtk * Load the cgs and csums off disk. Also allocates the space to load
303 1.1 jtk * them into and initializes the per-cg flags.
304 1.1 jtk */
305 1.1 jtk static void
306 1.1 jtk loadcgs(void)
307 1.1 jtk {
308 1.1 jtk int cg;
309 1.1 jtk char *cgp;
310 1.1 jtk
311 1.1 jtk cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
312 1.1 jtk cgs = nfmalloc(oldsb->fs_ncg * sizeof(struct cg *), "cg pointers");
313 1.1 jtk cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
314 1.1 jtk cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
315 1.1 jtk csums = nfmalloc(oldsb->fs_cssize, "cg summary");
316 1.1 jtk for (cg = 0; cg < oldsb->fs_ncg; cg++) {
317 1.1 jtk cgs[cg] = (struct cg *) cgp;
318 1.1 jtk readat(fsbtodb(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
319 1.1 jtk cgflags[cg] = 0;
320 1.1 jtk cgp += cgblksz;
321 1.1 jtk }
322 1.1 jtk readat(fsbtodb(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
323 1.1 jtk }
324 1.1 jtk /*
325 1.1 jtk * Set n bits, starting with bit #base, in the bitmap pointed to by
326 1.1 jtk * bitvec (which is assumed to be large enough to include bits base
327 1.1 jtk * through base+n-1).
328 1.1 jtk */
329 1.1 jtk static void
330 1.1 jtk set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
331 1.1 jtk {
332 1.1 jtk if (n < 1)
333 1.1 jtk return; /* nothing to do */
334 1.1 jtk if (base & 7) { /* partial byte at beginning */
335 1.1 jtk if (n <= 8 - (base & 7)) { /* entirely within one byte */
336 1.1 jtk bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
337 1.1 jtk return;
338 1.1 jtk }
339 1.1 jtk bitvec[base >> 3] |= (~0U) << (base & 7);
340 1.1 jtk n -= 8 - (base & 7);
341 1.1 jtk base = (base & ~7) + 8;
342 1.1 jtk }
343 1.1 jtk if (n >= 8) { /* do full bytes */
344 1.1 jtk memset(bitvec + (base >> 3), 0xff, n >> 3);
345 1.1 jtk base += n & ~7;
346 1.1 jtk n &= 7;
347 1.1 jtk }
348 1.1 jtk if (n) { /* partial byte at end */
349 1.1 jtk bitvec[base >> 3] |= ~((~0U) << n);
350 1.1 jtk }
351 1.1 jtk }
352 1.1 jtk /*
353 1.1 jtk * Clear n bits, starting with bit #base, in the bitmap pointed to by
354 1.1 jtk * bitvec (which is assumed to be large enough to include bits base
355 1.1 jtk * through base+n-1). Code parallels set_bits().
356 1.1 jtk */
357 1.1 jtk static void
358 1.1 jtk clr_bits(unsigned char *bitvec, int base, int n)
359 1.1 jtk {
360 1.1 jtk if (n < 1)
361 1.1 jtk return;
362 1.1 jtk if (base & 7) {
363 1.1 jtk if (n <= 8 - (base & 7)) {
364 1.1 jtk bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
365 1.1 jtk return;
366 1.1 jtk }
367 1.1 jtk bitvec[base >> 3] &= ~((~0U) << (base & 7));
368 1.1 jtk n -= 8 - (base & 7);
369 1.1 jtk base = (base & ~7) + 8;
370 1.1 jtk }
371 1.1 jtk if (n >= 8) {
372 1.1 jtk bzero(bitvec + (base >> 3), n >> 3);
373 1.1 jtk base += n & ~7;
374 1.1 jtk n &= 7;
375 1.1 jtk }
376 1.1 jtk if (n) {
377 1.1 jtk bitvec[base >> 3] &= (~0U) << n;
378 1.1 jtk }
379 1.1 jtk }
380 1.1 jtk /*
381 1.1 jtk * Test whether bit #bit is set in the bitmap pointed to by bitvec.
382 1.1 jtk */
383 1.1 jtk INLINE static int
384 1.1 jtk bit_is_set(unsigned char *bitvec, int bit)
385 1.1 jtk {
386 1.1 jtk return (bitvec[bit >> 3] & (1 << (bit & 7)));
387 1.1 jtk }
388 1.1 jtk /*
389 1.1 jtk * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
390 1.1 jtk */
391 1.1 jtk INLINE static int
392 1.1 jtk bit_is_clr(unsigned char *bitvec, int bit)
393 1.1 jtk {
394 1.1 jtk return (!bit_is_set(bitvec, bit));
395 1.1 jtk }
396 1.1 jtk /*
397 1.1 jtk * Test whether a whole block of bits is set in a bitmap. This is
398 1.1 jtk * designed for testing (aligned) disk blocks in a bit-per-frag
399 1.1 jtk * bitmap; it has assumptions wired into it based on that, essentially
400 1.1 jtk * that the entire block fits into a single byte. This returns true
401 1.1 jtk * iff _all_ the bits are set; it is not just the complement of
402 1.1 jtk * blk_is_clr on the same arguments (unless blkfrags==1).
403 1.1 jtk */
404 1.1 jtk INLINE static int
405 1.1 jtk blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
406 1.1 jtk {
407 1.1 jtk unsigned int mask;
408 1.1 jtk
409 1.1 jtk mask = (~((~0U) << blkfrags)) << (blkbase & 7);
410 1.1 jtk return ((bitvec[blkbase >> 3] & mask) == mask);
411 1.1 jtk }
412 1.1 jtk /*
413 1.1 jtk * Test whether a whole block of bits is clear in a bitmap. See
414 1.1 jtk * blk_is_set (above) for assumptions. This returns true iff _all_
415 1.1 jtk * the bits are clear; it is not just the complement of blk_is_set on
416 1.1 jtk * the same arguments (unless blkfrags==1).
417 1.1 jtk */
418 1.1 jtk INLINE static int
419 1.1 jtk blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
420 1.1 jtk {
421 1.1 jtk unsigned int mask;
422 1.1 jtk
423 1.1 jtk mask = (~((~0U) << blkfrags)) << (blkbase & 7);
424 1.1 jtk return ((bitvec[blkbase >> 3] & mask) == 0);
425 1.1 jtk }
426 1.1 jtk /*
427 1.1 jtk * Initialize a new cg. Called when growing. Assumes memory has been
428 1.1 jtk * allocated but not otherwise set up. This code sets the fields of
429 1.1 jtk * the cg, initializes the bitmaps (and cluster summaries, if
430 1.1 jtk * applicable), updates both per-cylinder summary info and the global
431 1.1 jtk * summary info in newsb; it also writes out new inodes for the cg.
432 1.1 jtk *
433 1.1 jtk * This code knows it can never be called for cg 0, which makes it a
434 1.1 jtk * bit simpler than it would otherwise be.
435 1.1 jtk */
436 1.1 jtk static void
437 1.1 jtk initcg(int cgn)
438 1.1 jtk {
439 1.1 jtk struct cg *cg; /* The in-core cg, of course */
440 1.1 jtk int base; /* Disk address of cg base */
441 1.1 jtk int dlow; /* Size of pre-cg data area */
442 1.1 jtk int dhigh; /* Offset of post-inode data area, from base */
443 1.1 jtk int dmax; /* Offset of end of post-inode data area */
444 1.1 jtk int i; /* Generic loop index */
445 1.1 jtk int n; /* Generic count */
446 1.1 jtk
447 1.1 jtk cg = cgs[cgn];
448 1.1 jtk /* Place the data areas */
449 1.1 jtk base = cgbase(newsb, cgn);
450 1.1 jtk dlow = cgsblock(newsb, cgn) - base;
451 1.1 jtk dhigh = cgdmin(newsb, cgn) - base;
452 1.1 jtk dmax = newsb->fs_size - base;
453 1.1 jtk if (dmax > newsb->fs_fpg)
454 1.1 jtk dmax = newsb->fs_fpg;
455 1.1 jtk /*
456 1.1 jtk * Clear out the cg - assumes all-0-bytes is the correct way
457 1.1 jtk * to initialize fields we don't otherwise touch, which is
458 1.1 jtk * perhaps not the right thing to do, but it's what fsck and
459 1.1 jtk * mkfs do.
460 1.1 jtk */
461 1.1 jtk bzero(cg, newsb->fs_cgsize);
462 1.1 jtk cg->cg_time = newsb->fs_time;
463 1.1 jtk cg->cg_magic = CG_MAGIC;
464 1.1 jtk cg->cg_cgx = cgn;
465 1.4 christos cg->cg_old_ncyl = newsb->fs_old_cpg;
466 1.4 christos /* fsck whines if the cg->cg_old_ncyl value in the last cg is fs_old_cpg
467 1.4 christos * instead of zero, when fs_old_cpg is the correct value. */
468 1.1 jtk /* XXX fix once fsck is fixed */
469 1.4 christos if ((cgn == newsb->fs_ncg - 1) /* && (newsb->fs_old_ncyl % newsb->fs_old_cpg) */ ) {
470 1.4 christos cg->cg_old_ncyl = newsb->fs_old_ncyl % newsb->fs_old_cpg;
471 1.1 jtk }
472 1.1 jtk cg->cg_niblk = newsb->fs_ipg;
473 1.1 jtk cg->cg_ndblk = dmax;
474 1.1 jtk /* Set up the bitmap pointers. We have to be careful to lay out the
475 1.1 jtk * cg _exactly_ the way mkfs and fsck do it, since fsck compares the
476 1.1 jtk * _entire_ cg against a recomputed cg, and whines if there is any
477 1.1 jtk * mismatch, including the bitmap offsets. */
478 1.1 jtk /* XXX update this comment when fsck is fixed */
479 1.4 christos cg->cg_old_btotoff = &cg->cg_space[0] - (unsigned char *) cg;
480 1.4 christos cg->cg_old_boff = cg->cg_old_btotoff
481 1.4 christos + (newsb->fs_old_cpg * sizeof(int32_t));
482 1.4 christos cg->cg_iusedoff = cg->cg_old_boff +
483 1.4 christos (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
484 1.1 jtk cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
485 1.1 jtk if (newsb->fs_contigsumsize > 0) {
486 1.1 jtk cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
487 1.1 jtk cg->cg_clustersumoff = cg->cg_freeoff +
488 1.4 christos howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb),
489 1.1 jtk NBBY) - sizeof(int32_t);
490 1.1 jtk cg->cg_clustersumoff =
491 1.1 jtk roundup(cg->cg_clustersumoff, sizeof(int32_t));
492 1.1 jtk cg->cg_clusteroff = cg->cg_clustersumoff +
493 1.1 jtk ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
494 1.1 jtk cg->cg_nextfreeoff = cg->cg_clusteroff +
495 1.4 christos howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPB(newsb),
496 1.1 jtk NBBY);
497 1.1 jtk n = dlow / newsb->fs_frag;
498 1.1 jtk if (n > 0) {
499 1.1 jtk set_bits(cg_clustersfree(cg, 0), 0, n);
500 1.1 jtk cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
501 1.1 jtk newsb->fs_contigsumsize : n]++;
502 1.1 jtk }
503 1.1 jtk } else {
504 1.1 jtk cg->cg_nextfreeoff = cg->cg_freeoff +
505 1.4 christos howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb),
506 1.1 jtk NBBY);
507 1.1 jtk }
508 1.1 jtk /* Mark the data areas as free; everything else is marked busy by the
509 1.1 jtk * bzero up at the top. */
510 1.1 jtk set_bits(cg_blksfree(cg, 0), 0, dlow);
511 1.1 jtk set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
512 1.1 jtk /* Initialize summary info */
513 1.1 jtk cg->cg_cs.cs_ndir = 0;
514 1.1 jtk cg->cg_cs.cs_nifree = newsb->fs_ipg;
515 1.1 jtk cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
516 1.1 jtk cg->cg_cs.cs_nffree = 0;
517 1.1 jtk
518 1.1 jtk /* This is the simplest way of doing this; we perhaps could compute
519 1.1 jtk * the correct cg_blktot()[] and cg_blks()[] values other ways, but it
520 1.1 jtk * would be complicated and hardly seems worth the effort. (The
521 1.1 jtk * reason there isn't frag-at-beginning and frag-at-end code here,
522 1.1 jtk * like the code below for the post-inode data area, is that the
523 1.1 jtk * pre-sb data area always starts at 0, and thus is block-aligned, and
524 1.1 jtk * always ends at the sb, which is block-aligned.) */
525 1.1 jtk for (i = 0; i < dlow; i += newsb->fs_frag) {
526 1.1 jtk cg_blktot(cg, 0)[cbtocylno(newsb, i)]++;
527 1.1 jtk cg_blks(newsb, cg, cbtocylno(newsb, i), 0)[cbtorpos(newsb, i)]++;
528 1.1 jtk }
529 1.1 jtk /* Deal with a partial block at the beginning of the post-inode area.
530 1.1 jtk * I'm not convinced this can happen - I think the inodes are always
531 1.1 jtk * block-aligned and always an integral number of blocks - but it's
532 1.1 jtk * cheap to do the right thing just in case. */
533 1.1 jtk if (dhigh % newsb->fs_frag) {
534 1.1 jtk n = newsb->fs_frag - (dhigh % newsb->fs_frag);
535 1.1 jtk cg->cg_frsum[n]++;
536 1.1 jtk cg->cg_cs.cs_nffree += n;
537 1.1 jtk dhigh += n;
538 1.1 jtk }
539 1.1 jtk n = (dmax - dhigh) / newsb->fs_frag;
540 1.1 jtk /* We have n full-size blocks in the post-inode data area. */
541 1.1 jtk if (n > 0) {
542 1.1 jtk cg->cg_cs.cs_nbfree += n;
543 1.1 jtk if (newsb->fs_contigsumsize > 0) {
544 1.1 jtk i = dhigh / newsb->fs_frag;
545 1.1 jtk set_bits(cg_clustersfree(cg, 0), i, n);
546 1.1 jtk cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
547 1.1 jtk newsb->fs_contigsumsize : n]++;
548 1.1 jtk }
549 1.1 jtk for (i = n; i > 0; i--) {
550 1.1 jtk cg_blktot(cg, 0)[cbtocylno(newsb, dhigh)]++;
551 1.1 jtk cg_blks(newsb, cg,
552 1.1 jtk cbtocylno(newsb, dhigh), 0)[cbtorpos(newsb,
553 1.1 jtk dhigh)]++;
554 1.1 jtk dhigh += newsb->fs_frag;
555 1.1 jtk }
556 1.1 jtk }
557 1.1 jtk /* Deal with any leftover frag at the end of the cg. */
558 1.1 jtk i = dmax - dhigh;
559 1.1 jtk if (i) {
560 1.1 jtk cg->cg_frsum[i]++;
561 1.1 jtk cg->cg_cs.cs_nffree += i;
562 1.1 jtk }
563 1.1 jtk /* Update the csum info. */
564 1.1 jtk csums[cgn] = cg->cg_cs;
565 1.1 jtk newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
566 1.1 jtk newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
567 1.1 jtk newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
568 1.1 jtk /* Write out the cleared inodes. */
569 1.1 jtk writeat(fsbtodb(newsb, cgimin(newsb, cgn)), zinodes,
570 1.4 christos newsb->fs_ipg * sizeof(struct ufs1_dinode));
571 1.1 jtk /* Dirty the cg. */
572 1.1 jtk cgflags[cgn] |= CGF_DIRTY;
573 1.1 jtk }
574 1.1 jtk /*
575 1.1 jtk * Find free space, at least nfrags consecutive frags of it. Pays no
576 1.1 jtk * attention to block boundaries, but refuses to straddle cg
577 1.1 jtk * boundaries, even if the disk blocks involved are in fact
578 1.1 jtk * consecutive. Return value is the frag number of the first frag of
579 1.1 jtk * the block, or -1 if no space was found. Uses newsb for sb values,
580 1.1 jtk * and assumes the cgs[] structures correctly describe the area to be
581 1.1 jtk * searched.
582 1.1 jtk *
583 1.1 jtk * XXX is there a bug lurking in the ignoring of block boundaries by
584 1.1 jtk * the routine used by fragmove() in evict_data()? Can an end-of-file
585 1.1 jtk * frag legally straddle a block boundary? If not, this should be
586 1.1 jtk * cloned and fixed to stop at block boundaries for that use. The
587 1.1 jtk * current one may still be needed for csum info motion, in case that
588 1.1 jtk * takes up more than a whole block (is the csum info allowed to begin
589 1.1 jtk * partway through a block and continue into the following block?).
590 1.1 jtk *
591 1.1 jtk * If we wrap off the end of the filesystem back to the beginning, we
592 1.1 jtk * can end up searching the end of the filesystem twice. I ignore
593 1.1 jtk * this inefficiency, since if that happens we're going to croak with
594 1.1 jtk * a no-space error anyway, so it happens at most once.
595 1.1 jtk */
596 1.1 jtk static int
597 1.1 jtk find_freespace(unsigned int nfrags)
598 1.1 jtk {
599 1.1 jtk static int hand = 0; /* hand rotates through all frags in the fs */
600 1.1 jtk int cgsize; /* size of the cg hand currently points into */
601 1.1 jtk int cgn; /* number of cg hand currently points into */
602 1.1 jtk int fwc; /* frag-within-cg number of frag hand points
603 1.1 jtk * to */
604 1.1 jtk int run; /* length of run of free frags seen so far */
605 1.1 jtk int secondpass; /* have we wrapped from end of fs to
606 1.1 jtk * beginning? */
607 1.1 jtk unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
608 1.1 jtk
609 1.1 jtk cgn = dtog(newsb, hand);
610 1.1 jtk fwc = dtogd(newsb, hand);
611 1.1 jtk secondpass = (hand == 0);
612 1.1 jtk run = 0;
613 1.1 jtk bits = cg_blksfree(cgs[cgn], 0);
614 1.1 jtk cgsize = cgs[cgn]->cg_ndblk;
615 1.1 jtk while (1) {
616 1.1 jtk if (bit_is_set(bits, fwc)) {
617 1.1 jtk run++;
618 1.1 jtk if (run >= nfrags)
619 1.1 jtk return (hand + 1 - run);
620 1.1 jtk } else {
621 1.1 jtk run = 0;
622 1.1 jtk }
623 1.1 jtk hand++;
624 1.1 jtk fwc++;
625 1.1 jtk if (fwc >= cgsize) {
626 1.1 jtk fwc = 0;
627 1.1 jtk cgn++;
628 1.1 jtk if (cgn >= newsb->fs_ncg) {
629 1.1 jtk hand = 0;
630 1.1 jtk if (secondpass)
631 1.1 jtk return (-1);
632 1.1 jtk secondpass = 1;
633 1.1 jtk cgn = 0;
634 1.1 jtk }
635 1.1 jtk bits = cg_blksfree(cgs[cgn], 0);
636 1.1 jtk cgsize = cgs[cgn]->cg_ndblk;
637 1.1 jtk run = 0;
638 1.1 jtk }
639 1.1 jtk }
640 1.1 jtk }
641 1.1 jtk /*
642 1.1 jtk * Find a free block of disk space. Finds an entire block of frags,
643 1.1 jtk * all of which are free. Return value is the frag number of the
644 1.1 jtk * first frag of the block, or -1 if no space was found. Uses newsb
645 1.1 jtk * for sb values, and assumes the cgs[] structures correctly describe
646 1.1 jtk * the area to be searched.
647 1.1 jtk *
648 1.1 jtk * See find_freespace(), above, for remarks about hand wrapping around.
649 1.1 jtk */
650 1.1 jtk static int
651 1.1 jtk find_freeblock(void)
652 1.1 jtk {
653 1.1 jtk static int hand = 0; /* hand rotates through all frags in fs */
654 1.1 jtk int cgn; /* cg number of cg hand points into */
655 1.1 jtk int fwc; /* frag-within-cg number of frag hand points
656 1.1 jtk * to */
657 1.1 jtk int cgsize; /* size of cg hand points into */
658 1.1 jtk int secondpass; /* have we wrapped from end to beginning? */
659 1.1 jtk unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
660 1.1 jtk
661 1.1 jtk cgn = dtog(newsb, hand);
662 1.1 jtk fwc = dtogd(newsb, hand);
663 1.1 jtk secondpass = (hand == 0);
664 1.1 jtk bits = cg_blksfree(cgs[cgn], 0);
665 1.1 jtk cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
666 1.1 jtk while (1) {
667 1.1 jtk if (blk_is_set(bits, fwc, newsb->fs_frag))
668 1.1 jtk return (hand);
669 1.1 jtk fwc += newsb->fs_frag;
670 1.1 jtk hand += newsb->fs_frag;
671 1.1 jtk if (fwc >= cgsize) {
672 1.1 jtk fwc = 0;
673 1.1 jtk cgn++;
674 1.1 jtk if (cgn >= newsb->fs_ncg) {
675 1.1 jtk hand = 0;
676 1.1 jtk if (secondpass)
677 1.1 jtk return (-1);
678 1.1 jtk secondpass = 1;
679 1.1 jtk cgn = 0;
680 1.1 jtk }
681 1.1 jtk bits = cg_blksfree(cgs[cgn], 0);
682 1.1 jtk cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
683 1.1 jtk }
684 1.1 jtk }
685 1.1 jtk }
686 1.1 jtk /*
687 1.1 jtk * Find a free inode, returning its inumber or -1 if none was found.
688 1.1 jtk * Uses newsb for sb values, and assumes the cgs[] structures
689 1.1 jtk * correctly describe the area to be searched.
690 1.1 jtk *
691 1.1 jtk * See find_freespace(), above, for remarks about hand wrapping around.
692 1.1 jtk */
693 1.1 jtk static int
694 1.1 jtk find_freeinode(void)
695 1.1 jtk {
696 1.1 jtk static int hand = 0; /* hand rotates through all inodes in fs */
697 1.1 jtk int cgn; /* cg number of cg hand points into */
698 1.1 jtk int iwc; /* inode-within-cg number of inode hand points
699 1.1 jtk * to */
700 1.1 jtk int secondpass; /* have we wrapped from end to beginning? */
701 1.1 jtk unsigned char *bits; /* cg_inosused()[] for cg hand points into */
702 1.1 jtk
703 1.1 jtk cgn = hand / newsb->fs_ipg;
704 1.1 jtk iwc = hand % newsb->fs_ipg;
705 1.1 jtk secondpass = (hand == 0);
706 1.1 jtk bits = cg_inosused(cgs[cgn], 0);
707 1.1 jtk while (1) {
708 1.1 jtk if (bit_is_clr(bits, iwc))
709 1.1 jtk return (hand);
710 1.1 jtk hand++;
711 1.1 jtk iwc++;
712 1.1 jtk if (iwc >= newsb->fs_ipg) {
713 1.1 jtk iwc = 0;
714 1.1 jtk cgn++;
715 1.1 jtk if (cgn >= newsb->fs_ncg) {
716 1.1 jtk hand = 0;
717 1.1 jtk if (secondpass)
718 1.1 jtk return (-1);
719 1.1 jtk secondpass = 1;
720 1.1 jtk cgn = 0;
721 1.1 jtk }
722 1.1 jtk bits = cg_inosused(cgs[cgn], 0);
723 1.1 jtk }
724 1.1 jtk }
725 1.1 jtk }
726 1.1 jtk /*
727 1.1 jtk * Mark a frag as free. Sets the frag's bit in the cg_blksfree bitmap
728 1.1 jtk * for the appropriate cg, and marks the cg as dirty.
729 1.1 jtk */
730 1.1 jtk static void
731 1.1 jtk free_frag(int fno)
732 1.1 jtk {
733 1.1 jtk int cgn;
734 1.1 jtk
735 1.1 jtk cgn = dtog(newsb, fno);
736 1.1 jtk set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
737 1.1 jtk cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
738 1.1 jtk }
739 1.1 jtk /*
740 1.1 jtk * Allocate a frag. Clears the frag's bit in the cg_blksfree bitmap
741 1.1 jtk * for the appropriate cg, and marks the cg as dirty.
742 1.1 jtk */
743 1.1 jtk static void
744 1.1 jtk alloc_frag(int fno)
745 1.1 jtk {
746 1.1 jtk int cgn;
747 1.1 jtk
748 1.1 jtk cgn = dtog(newsb, fno);
749 1.1 jtk clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
750 1.1 jtk cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
751 1.1 jtk }
752 1.1 jtk /*
753 1.1 jtk * Fix up the csum array. If shrinking, this involves freeing zero or
754 1.1 jtk * more frags; if growing, it involves allocating them, or if the
755 1.1 jtk * frags being grown into aren't free, finding space elsewhere for the
756 1.1 jtk * csum info. (If the number of occupied frags doesn't change,
757 1.1 jtk * nothing happens here.)
758 1.1 jtk */
759 1.1 jtk static void
760 1.1 jtk csum_fixup(void)
761 1.1 jtk {
762 1.1 jtk int nold; /* # frags in old csum info */
763 1.1 jtk int ntot; /* # frags in new csum info */
764 1.1 jtk int nnew; /* ntot-nold */
765 1.1 jtk int newloc; /* new location for csum info, if necessary */
766 1.1 jtk int i; /* generic loop index */
767 1.1 jtk int j; /* generic loop index */
768 1.1 jtk int f; /* "from" frag number, if moving */
769 1.1 jtk int t; /* "to" frag number, if moving */
770 1.1 jtk int cgn; /* cg number, used when shrinking */
771 1.1 jtk
772 1.1 jtk ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
773 1.1 jtk nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
774 1.1 jtk nnew = ntot - nold;
775 1.1 jtk /* First, if there's no change in frag counts, it's easy. */
776 1.1 jtk if (nnew == 0)
777 1.1 jtk return;
778 1.1 jtk /* Next, if we're shrinking, it's almost as easy. Just free up any
779 1.1 jtk * frags in the old area we no longer need. */
780 1.1 jtk if (nnew < 0) {
781 1.1 jtk for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
782 1.1 jtk j < 0;
783 1.1 jtk i--, j++) {
784 1.1 jtk free_frag(i);
785 1.1 jtk }
786 1.1 jtk return;
787 1.1 jtk }
788 1.1 jtk /* We must be growing. Check to see that the new csum area fits
789 1.1 jtk * within the filesystem. I think this can never happen, since for
790 1.1 jtk * the csum area to grow, we must be adding at least one cg, so the
791 1.1 jtk * old csum area can't be this close to the end of the new filesystem.
792 1.1 jtk * But it's a cheap check. */
793 1.1 jtk /* XXX what if csum info is at end of cg and grows into next cg, what
794 1.1 jtk * if it spills over onto the next cg's backup superblock? Can this
795 1.1 jtk * happen? */
796 1.1 jtk if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
797 1.1 jtk /* Okay, it fits - now, see if the space we want is free. */
798 1.1 jtk for ((i = newsb->fs_csaddr + nold), (j = nnew);
799 1.1 jtk j > 0;
800 1.1 jtk i++, j--) {
801 1.1 jtk cgn = dtog(newsb, i);
802 1.1 jtk if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
803 1.1 jtk dtogd(newsb, i)))
804 1.1 jtk break;
805 1.1 jtk }
806 1.1 jtk if (j <= 0) {
807 1.1 jtk /* Win win - all the frags we want are free. Allocate
808 1.1 jtk * 'em and we're all done. */
809 1.1 jtk for ((i = newsb->fs_csaddr + ntot - nnew), (j = nnew); j > 0; i++, j--) {
810 1.1 jtk alloc_frag(i);
811 1.1 jtk }
812 1.1 jtk return;
813 1.1 jtk }
814 1.1 jtk }
815 1.1 jtk /* We have to move the csum info, sigh. Look for new space, free old
816 1.1 jtk * space, and allocate new. Update fs_csaddr. We don't copy anything
817 1.1 jtk * on disk at this point; the csum info will be written to the
818 1.1 jtk * then-current fs_csaddr as part of the final flush. */
819 1.1 jtk newloc = find_freespace(ntot);
820 1.1 jtk if (newloc < 0) {
821 1.1 jtk printf("Sorry, no space available for new csums\n");
822 1.1 jtk exit(1);
823 1.1 jtk }
824 1.1 jtk for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
825 1.1 jtk if (i < nold) {
826 1.1 jtk free_frag(f);
827 1.1 jtk }
828 1.1 jtk alloc_frag(t);
829 1.1 jtk }
830 1.1 jtk newsb->fs_csaddr = newloc;
831 1.1 jtk }
832 1.1 jtk /*
833 1.1 jtk * Recompute newsb->fs_dsize. Just scans all cgs, adding the number of
834 1.1 jtk * data blocks in that cg to the total.
835 1.1 jtk */
836 1.1 jtk static void
837 1.1 jtk recompute_fs_dsize(void)
838 1.1 jtk {
839 1.1 jtk int i;
840 1.1 jtk
841 1.1 jtk newsb->fs_dsize = 0;
842 1.1 jtk for (i = 0; i < newsb->fs_ncg; i++) {
843 1.1 jtk int dlow; /* size of before-sb data area */
844 1.1 jtk int dhigh; /* offset of post-inode data area */
845 1.1 jtk int dmax; /* total size of cg */
846 1.1 jtk int base; /* base of cg, since cgsblock() etc add it in */
847 1.1 jtk base = cgbase(newsb, i);
848 1.1 jtk dlow = cgsblock(newsb, i) - base;
849 1.1 jtk dhigh = cgdmin(newsb, i) - base;
850 1.1 jtk dmax = newsb->fs_size - base;
851 1.1 jtk if (dmax > newsb->fs_fpg)
852 1.1 jtk dmax = newsb->fs_fpg;
853 1.1 jtk newsb->fs_dsize += dlow + dmax - dhigh;
854 1.1 jtk }
855 1.1 jtk /* Space in cg 0 before cgsblock is boot area, not free space! */
856 1.1 jtk newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
857 1.1 jtk /* And of course the csum info takes up space. */
858 1.1 jtk newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
859 1.1 jtk }
860 1.1 jtk /*
861 1.1 jtk * Return the current time. We call this and assign, rather than
862 1.1 jtk * calling time() directly, as insulation against OSes where fs_time
863 1.1 jtk * is not a time_t.
864 1.1 jtk */
865 1.1 jtk static time_t
866 1.1 jtk timestamp(void)
867 1.1 jtk {
868 1.1 jtk time_t t;
869 1.1 jtk
870 1.1 jtk time(&t);
871 1.1 jtk return (t);
872 1.1 jtk }
873 1.1 jtk /*
874 1.1 jtk * Grow the filesystem.
875 1.1 jtk */
876 1.1 jtk static void
877 1.1 jtk grow(void)
878 1.1 jtk {
879 1.1 jtk int i;
880 1.1 jtk
881 1.1 jtk /* Update the timestamp. */
882 1.1 jtk newsb->fs_time = timestamp();
883 1.1 jtk /* Allocate and clear the new-inode area, in case we add any cgs. */
884 1.4 christos zinodes = alloconce(newsb->fs_ipg * sizeof(struct ufs1_dinode),
885 1.1 jtk "zeroed inodes");
886 1.4 christos bzero(zinodes, newsb->fs_ipg * sizeof(struct ufs1_dinode));
887 1.1 jtk /* Update the size. */
888 1.1 jtk newsb->fs_size = dbtofsb(newsb, newsize);
889 1.1 jtk /* Did we actually not grow? (This can happen if newsize is less than
890 1.1 jtk * a frag larger than the old size - unlikely, but no excuse to
891 1.1 jtk * misbehave if it happens.) */
892 1.1 jtk if (newsb->fs_size == oldsb->fs_size)
893 1.1 jtk return;
894 1.1 jtk /* Check that the new last sector (frag, actually) is writable. Since
895 1.1 jtk * it's at least one frag larger than it used to be, we know we aren't
896 1.1 jtk * overwriting anything important by this. (The choice of sbbuf as
897 1.1 jtk * what to write is irrelevant; it's just something handy that's known
898 1.1 jtk * to be at least one frag in size.) */
899 1.1 jtk writeat(newsb->fs_size - 1, &sbbuf, newsb->fs_fsize);
900 1.4 christos /* Update fs_old_ncyl and fs_ncg. */
901 1.4 christos newsb->fs_old_ncyl = (newsb->fs_size * NSPF(newsb)) / newsb->fs_old_spc;
902 1.4 christos newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
903 1.1 jtk /* Does the last cg end before the end of its inode area? There is no
904 1.1 jtk * reason why this couldn't be handled, but it would complicate a lot
905 1.1 jtk * of code (in all filesystem code - fsck, kernel, etc) because of the
906 1.1 jtk * potential partial inode area, and the gain in space would be
907 1.1 jtk * minimal, at most the pre-sb data area. */
908 1.1 jtk if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
909 1.1 jtk newsb->fs_ncg--;
910 1.4 christos newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
911 1.4 christos newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc) / NSPF(newsb);
912 1.1 jtk printf("Warning: last cylinder group is too small;\n");
913 1.1 jtk printf(" dropping it. New size = %lu.\n",
914 1.1 jtk (unsigned long int) fsbtodb(newsb, newsb->fs_size));
915 1.1 jtk }
916 1.1 jtk /* Find out how big the csum area is, and realloc csums if bigger. */
917 1.1 jtk newsb->fs_cssize = fragroundup(newsb,
918 1.1 jtk newsb->fs_ncg * sizeof(struct csum));
919 1.1 jtk if (newsb->fs_cssize > oldsb->fs_cssize)
920 1.1 jtk csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
921 1.1 jtk /* If we're adding any cgs, realloc structures and set up the new cgs. */
922 1.1 jtk if (newsb->fs_ncg > oldsb->fs_ncg) {
923 1.1 jtk char *cgp;
924 1.1 jtk cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(struct cg *),
925 1.1 jtk "cg pointers");
926 1.1 jtk cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
927 1.1 jtk bzero(cgflags + oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
928 1.1 jtk cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
929 1.1 jtk "cgs");
930 1.1 jtk for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
931 1.1 jtk cgs[i] = (struct cg *) cgp;
932 1.1 jtk initcg(i);
933 1.1 jtk cgp += cgblksz;
934 1.1 jtk }
935 1.4 christos cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
936 1.1 jtk cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
937 1.1 jtk }
938 1.1 jtk /* If the old fs ended partway through a cg, we have to update the old
939 1.1 jtk * last cg (though possibly not to a full cg!). */
940 1.1 jtk if (oldsb->fs_size % oldsb->fs_fpg) {
941 1.1 jtk struct cg *cg;
942 1.1 jtk int newcgsize;
943 1.1 jtk int prevcgtop;
944 1.1 jtk int oldcgsize;
945 1.1 jtk cg = cgs[oldsb->fs_ncg - 1];
946 1.1 jtk cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
947 1.1 jtk prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
948 1.1 jtk newcgsize = newsb->fs_size - prevcgtop;
949 1.1 jtk if (newcgsize > newsb->fs_fpg)
950 1.1 jtk newcgsize = newsb->fs_fpg;
951 1.1 jtk oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
952 1.1 jtk set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
953 1.4 christos cg->cg_old_ncyl = howmany(newcgsize * NSPF(newsb), newsb->fs_old_spc);
954 1.1 jtk cg->cg_ndblk = newcgsize;
955 1.1 jtk }
956 1.1 jtk /* Fix up the csum info, if necessary. */
957 1.1 jtk csum_fixup();
958 1.1 jtk /* Make fs_dsize match the new reality. */
959 1.1 jtk recompute_fs_dsize();
960 1.1 jtk }
961 1.1 jtk /*
962 1.1 jtk * Call (*fn)() for each inode, passing the inode and its inumber. The
963 1.1 jtk * number of cylinder groups is pased in, so this can be used to map
964 1.1 jtk * over either the old or the new filesystem's set of inodes.
965 1.1 jtk */
966 1.1 jtk static void
967 1.4 christos map_inodes(void (*fn) (struct ufs1_dinode * di, unsigned int, void *arg), int ncg, void *cbarg) {
968 1.1 jtk int i;
969 1.1 jtk int ni;
970 1.1 jtk
971 1.1 jtk ni = oldsb->fs_ipg * ncg;
972 1.1 jtk for (i = 0; i < ni; i++)
973 1.1 jtk (*fn) (inodes + i, i, cbarg);
974 1.1 jtk }
975 1.1 jtk /* Values for the third argument to the map function for
976 1.1 jtk * map_inode_data_blocks. MDB_DATA indicates the block is contains
977 1.1 jtk * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
978 1.1 jtk * indirect block. The MDB_INDIR_PRE call is made before the indirect
979 1.1 jtk * block pointers are followed and the pointed-to blocks scanned,
980 1.1 jtk * MDB_INDIR_POST after.
981 1.1 jtk */
982 1.1 jtk #define MDB_DATA 1
983 1.1 jtk #define MDB_INDIR_PRE 2
984 1.1 jtk #define MDB_INDIR_POST 3
985 1.1 jtk
986 1.1 jtk typedef void (*mark_callback_t) (unsigned int blocknum, unsigned int nfrags, unsigned int blksize, int opcode);
987 1.1 jtk
988 1.1 jtk /* Helper function - handles a data block. Calls the callback
989 1.1 jtk * function and returns number of bytes occupied in file (actually,
990 1.1 jtk * rounded up to a frag boundary). The name is historical. */
991 1.1 jtk static int
992 1.4 christos markblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o)
993 1.1 jtk {
994 1.1 jtk int sz;
995 1.1 jtk int nb;
996 1.1 jtk if (o >= di->di_size)
997 1.1 jtk return (0);
998 1.1 jtk sz = dblksize(newsb, di, lblkno(newsb, o));
999 1.1 jtk nb = (sz > di->di_size - o) ? di->di_size - o : sz;
1000 1.1 jtk if (bn)
1001 1.1 jtk (*fn) (bn, numfrags(newsb, sz), nb, MDB_DATA);
1002 1.1 jtk return (sz);
1003 1.1 jtk }
1004 1.1 jtk /* Helper function - handles an indirect block. Makes the
1005 1.1 jtk * MDB_INDIR_PRE callback for the indirect block, loops over the
1006 1.1 jtk * pointers and recurses, and makes the MDB_INDIR_POST callback.
1007 1.1 jtk * Returns the number of bytes occupied in file, as does markblk().
1008 1.1 jtk * For the sake of update_for_data_move(), we read the indirect block
1009 1.1 jtk * _after_ making the _PRE callback. The name is historical. */
1010 1.1 jtk static int
1011 1.4 christos markiblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o, int lev)
1012 1.1 jtk {
1013 1.1 jtk int i;
1014 1.1 jtk int j;
1015 1.1 jtk int tot;
1016 1.2 martin static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
1017 1.2 martin static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
1018 1.2 martin static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
1019 1.2 martin static int32_t *indirblks[3] = {
1020 1.1 jtk &indirblk1[0], &indirblk2[0], &indirblk3[0]
1021 1.1 jtk };
1022 1.1 jtk if (lev < 0)
1023 1.1 jtk return (markblk(fn, di, bn, o));
1024 1.1 jtk if (bn == 0) {
1025 1.1 jtk for (i = newsb->fs_bsize;
1026 1.1 jtk lev >= 0;
1027 1.1 jtk i *= NINDIR(newsb), lev--);
1028 1.1 jtk return (i);
1029 1.1 jtk }
1030 1.1 jtk (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
1031 1.1 jtk readat(fsbtodb(newsb, bn), indirblks[lev], newsb->fs_bsize);
1032 1.1 jtk tot = 0;
1033 1.1 jtk for (i = 0; i < NINDIR(newsb); i++) {
1034 1.1 jtk j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
1035 1.1 jtk if (j == 0)
1036 1.1 jtk break;
1037 1.1 jtk o += j;
1038 1.1 jtk tot += j;
1039 1.1 jtk }
1040 1.1 jtk (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
1041 1.1 jtk return (tot);
1042 1.1 jtk }
1043 1.1 jtk
1044 1.1 jtk
1045 1.1 jtk /*
1046 1.1 jtk * Call (*fn)() for each data block for an inode. This routine assumes
1047 1.1 jtk * the inode is known to be of a type that has data blocks (file,
1048 1.1 jtk * directory, or non-fast symlink). The called function is:
1049 1.1 jtk *
1050 1.1 jtk * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
1051 1.1 jtk *
1052 1.1 jtk * where blkno is the frag number, nf is the number of frags starting
1053 1.1 jtk * at blkno (always <= fs_frag), nb is the number of bytes that belong
1054 1.1 jtk * to the file (usually nf*fs_frag, often less for the last block/frag
1055 1.1 jtk * of a file).
1056 1.1 jtk */
1057 1.1 jtk static void
1058 1.4 christos map_inode_data_blocks(struct ufs1_dinode * di, mark_callback_t fn)
1059 1.1 jtk {
1060 1.1 jtk off_t o; /* offset within inode */
1061 1.1 jtk int inc; /* increment for o - maybe should be off_t? */
1062 1.1 jtk int b; /* index within di_db[] and di_ib[] arrays */
1063 1.1 jtk
1064 1.1 jtk /* Scan the direct blocks... */
1065 1.1 jtk o = 0;
1066 1.1 jtk for (b = 0; b < NDADDR; b++) {
1067 1.1 jtk inc = markblk(fn, di, di->di_db[b], o);
1068 1.1 jtk if (inc == 0)
1069 1.1 jtk break;
1070 1.1 jtk o += inc;
1071 1.1 jtk }
1072 1.1 jtk /* ...and the indirect blocks. */
1073 1.1 jtk if (inc) {
1074 1.1 jtk for (b = 0; b < NIADDR; b++) {
1075 1.1 jtk inc = markiblk(fn, di, di->di_ib[b], o, b);
1076 1.1 jtk if (inc == 0)
1077 1.1 jtk return;
1078 1.1 jtk o += inc;
1079 1.1 jtk }
1080 1.1 jtk }
1081 1.1 jtk }
1082 1.1 jtk
1083 1.1 jtk static void
1084 1.4 christos dblk_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
1085 1.1 jtk {
1086 1.1 jtk mark_callback_t fn;
1087 1.1 jtk fn = (mark_callback_t) arg;
1088 1.1 jtk switch (di->di_mode & IFMT) {
1089 1.1 jtk case IFLNK:
1090 1.1 jtk if (di->di_size > newsb->fs_maxsymlinklen) {
1091 1.1 jtk case IFDIR:
1092 1.1 jtk case IFREG:
1093 1.1 jtk map_inode_data_blocks(di, fn);
1094 1.1 jtk }
1095 1.1 jtk break;
1096 1.1 jtk }
1097 1.1 jtk }
1098 1.1 jtk /*
1099 1.1 jtk * Make a callback call, a la map_inode_data_blocks, for all data
1100 1.1 jtk * blocks in the entire fs. This is used only once, in
1101 1.1 jtk * update_for_data_move, but it's out at top level because the complex
1102 1.1 jtk * downward-funarg nesting that would otherwise result seems to give
1103 1.1 jtk * gcc gastric distress.
1104 1.1 jtk */
1105 1.1 jtk static void
1106 1.1 jtk map_data_blocks(mark_callback_t fn, int ncg)
1107 1.1 jtk {
1108 1.1 jtk map_inodes(&dblk_callback, ncg, (void *) fn);
1109 1.1 jtk }
1110 1.1 jtk /*
1111 1.1 jtk * Initialize the blkmove array.
1112 1.1 jtk */
1113 1.1 jtk static void
1114 1.1 jtk blkmove_init(void)
1115 1.1 jtk {
1116 1.1 jtk int i;
1117 1.1 jtk
1118 1.1 jtk blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
1119 1.1 jtk for (i = 0; i < oldsb->fs_size; i++)
1120 1.1 jtk blkmove[i] = i;
1121 1.1 jtk }
1122 1.1 jtk /*
1123 1.1 jtk * Load the inodes off disk. Allocates the structures and initializes
1124 1.1 jtk * them - the inodes from disk, the flags to zero.
1125 1.1 jtk */
1126 1.1 jtk static void
1127 1.1 jtk loadinodes(void)
1128 1.1 jtk {
1129 1.1 jtk int cg;
1130 1.4 christos struct ufs1_dinode *iptr;
1131 1.1 jtk
1132 1.4 christos inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg * sizeof(struct ufs1_dinode), "inodes");
1133 1.1 jtk iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
1134 1.1 jtk bzero(iflags, oldsb->fs_ncg * oldsb->fs_ipg);
1135 1.1 jtk iptr = inodes;
1136 1.1 jtk for (cg = 0; cg < oldsb->fs_ncg; cg++) {
1137 1.1 jtk readat(fsbtodb(oldsb, cgimin(oldsb, cg)), iptr,
1138 1.4 christos oldsb->fs_ipg * sizeof(struct ufs1_dinode));
1139 1.1 jtk iptr += oldsb->fs_ipg;
1140 1.1 jtk }
1141 1.1 jtk }
1142 1.1 jtk /*
1143 1.1 jtk * Report a filesystem-too-full problem.
1144 1.1 jtk */
1145 1.1 jtk static void
1146 1.1 jtk toofull(void)
1147 1.1 jtk {
1148 1.1 jtk printf("Sorry, would run out of data blocks\n");
1149 1.1 jtk exit(1);
1150 1.1 jtk }
1151 1.1 jtk /*
1152 1.1 jtk * Record a desire to move "n" frags from "from" to "to".
1153 1.1 jtk */
1154 1.1 jtk static void
1155 1.1 jtk mark_move(unsigned int from, unsigned int to, unsigned int n)
1156 1.1 jtk {
1157 1.1 jtk for (; n > 0; n--)
1158 1.1 jtk blkmove[from++] = to++;
1159 1.1 jtk }
1160 1.1 jtk /* Helper function - evict n frags, starting with start (cg-relative).
1161 1.1 jtk * The free bitmap is scanned, unallocated frags are ignored, and
1162 1.1 jtk * each block of consecutive allocated frags is moved as a unit.
1163 1.1 jtk */
1164 1.1 jtk static void
1165 1.1 jtk fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
1166 1.1 jtk {
1167 1.1 jtk int i;
1168 1.1 jtk int run;
1169 1.1 jtk run = 0;
1170 1.1 jtk for (i = 0; i <= n; i++) {
1171 1.1 jtk if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
1172 1.1 jtk run++;
1173 1.1 jtk } else {
1174 1.1 jtk if (run > 0) {
1175 1.1 jtk int off;
1176 1.1 jtk off = find_freespace(run);
1177 1.1 jtk if (off < 0)
1178 1.1 jtk toofull();
1179 1.1 jtk mark_move(base + start + i - run, off, run);
1180 1.1 jtk set_bits(cg_blksfree(cg, 0), start + i - run,
1181 1.1 jtk run);
1182 1.1 jtk clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1183 1.1 jtk dtogd(oldsb, off), run);
1184 1.1 jtk }
1185 1.1 jtk run = 0;
1186 1.1 jtk }
1187 1.1 jtk }
1188 1.1 jtk }
1189 1.1 jtk /*
1190 1.1 jtk * Evict all data blocks from the given cg, starting at minfrag (based
1191 1.1 jtk * at the beginning of the cg), for length nfrag. The eviction is
1192 1.1 jtk * assumed to be entirely data-area; this should not be called with a
1193 1.1 jtk * range overlapping the metadata structures in the cg. It also
1194 1.1 jtk * assumes minfrag points into the given cg; it will misbehave if this
1195 1.1 jtk * is not true.
1196 1.1 jtk *
1197 1.1 jtk * See the comment header on find_freespace() for one possible bug
1198 1.1 jtk * lurking here.
1199 1.1 jtk */
1200 1.1 jtk static void
1201 1.1 jtk evict_data(struct cg * cg, unsigned int minfrag, unsigned int nfrag)
1202 1.1 jtk {
1203 1.1 jtk int base; /* base of cg (in frags from beginning of fs) */
1204 1.1 jtk
1205 1.1 jtk
1206 1.1 jtk base = cgbase(oldsb, cg->cg_cgx);
1207 1.1 jtk /* Does the boundary fall in the middle of a block? To avoid breaking
1208 1.1 jtk * between frags allocated as consecutive, we always evict the whole
1209 1.1 jtk * block in this case, though one could argue we should check to see
1210 1.1 jtk * if the frag before or after the break is unallocated. */
1211 1.1 jtk if (minfrag % oldsb->fs_frag) {
1212 1.1 jtk int n;
1213 1.1 jtk n = minfrag % oldsb->fs_frag;
1214 1.1 jtk minfrag -= n;
1215 1.1 jtk nfrag += n;
1216 1.1 jtk }
1217 1.1 jtk /* Do whole blocks. If a block is wholly free, skip it; if wholly
1218 1.1 jtk * allocated, move it in toto. If neither, call fragmove() to move
1219 1.1 jtk * the frags to new locations. */
1220 1.1 jtk while (nfrag >= oldsb->fs_frag) {
1221 1.1 jtk if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
1222 1.1 jtk if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
1223 1.1 jtk oldsb->fs_frag)) {
1224 1.1 jtk int off;
1225 1.1 jtk off = find_freeblock();
1226 1.1 jtk if (off < 0)
1227 1.1 jtk toofull();
1228 1.1 jtk mark_move(base + minfrag, off, oldsb->fs_frag);
1229 1.1 jtk set_bits(cg_blksfree(cg, 0), minfrag,
1230 1.1 jtk oldsb->fs_frag);
1231 1.1 jtk clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1232 1.1 jtk dtogd(oldsb, off), oldsb->fs_frag);
1233 1.1 jtk } else {
1234 1.1 jtk fragmove(cg, base, minfrag, oldsb->fs_frag);
1235 1.1 jtk }
1236 1.1 jtk }
1237 1.1 jtk minfrag += oldsb->fs_frag;
1238 1.1 jtk nfrag -= oldsb->fs_frag;
1239 1.1 jtk }
1240 1.1 jtk /* Clean up any sub-block amount left over. */
1241 1.1 jtk if (nfrag) {
1242 1.1 jtk fragmove(cg, base, minfrag, nfrag);
1243 1.1 jtk }
1244 1.1 jtk }
1245 1.1 jtk /*
1246 1.1 jtk * Move all data blocks according to blkmove. We have to be careful,
1247 1.1 jtk * because we may be updating indirect blocks that will themselves be
1248 1.2 martin * getting moved, or inode int32_t arrays that point to indirect
1249 1.1 jtk * blocks that will be moved. We call this before
1250 1.1 jtk * update_for_data_move, and update_for_data_move does inodes first,
1251 1.1 jtk * then indirect blocks in preorder, so as to make sure that the
1252 1.1 jtk * filesystem is self-consistent at all points, for better crash
1253 1.1 jtk * tolerance. (We can get away with this only because all the writes
1254 1.1 jtk * done by perform_data_move() are writing into space that's not used
1255 1.1 jtk * by the old filesystem.) If we crash, some things may point to the
1256 1.1 jtk * old data and some to the new, but both copies are the same. The
1257 1.1 jtk * only wrong things should be csum info and free bitmaps, which fsck
1258 1.1 jtk * is entirely capable of cleaning up.
1259 1.1 jtk *
1260 1.1 jtk * Since blkmove_init() initializes all blocks to move to their current
1261 1.1 jtk * locations, we can have two blocks marked as wanting to move to the
1262 1.1 jtk * same location, but only two and only when one of them is the one
1263 1.1 jtk * that was already there. So if blkmove[i]==i, we ignore that entry
1264 1.1 jtk * entirely - for unallocated blocks, we don't want it (and may be
1265 1.1 jtk * putting something else there), and for allocated blocks, we don't
1266 1.1 jtk * want to copy it anywhere.
1267 1.1 jtk */
1268 1.1 jtk static void
1269 1.1 jtk perform_data_move(void)
1270 1.1 jtk {
1271 1.1 jtk int i;
1272 1.1 jtk int run;
1273 1.1 jtk int maxrun;
1274 1.1 jtk char buf[65536];
1275 1.1 jtk
1276 1.1 jtk maxrun = sizeof(buf) / newsb->fs_fsize;
1277 1.1 jtk run = 0;
1278 1.1 jtk for (i = 0; i < oldsb->fs_size; i++) {
1279 1.1 jtk if ((blkmove[i] == i) ||
1280 1.1 jtk (run >= maxrun) ||
1281 1.1 jtk ((run > 0) &&
1282 1.1 jtk (blkmove[i] != blkmove[i - 1] + 1))) {
1283 1.1 jtk if (run > 0) {
1284 1.1 jtk readat(fsbtodb(oldsb, i - run), &buf[0],
1285 1.1 jtk run << oldsb->fs_fshift);
1286 1.1 jtk writeat(fsbtodb(oldsb, blkmove[i - run]),
1287 1.1 jtk &buf[0], run << oldsb->fs_fshift);
1288 1.1 jtk }
1289 1.1 jtk run = 0;
1290 1.1 jtk }
1291 1.1 jtk if (blkmove[i] != i)
1292 1.1 jtk run++;
1293 1.1 jtk }
1294 1.1 jtk if (run > 0) {
1295 1.1 jtk readat(fsbtodb(oldsb, i - run), &buf[0],
1296 1.1 jtk run << oldsb->fs_fshift);
1297 1.1 jtk writeat(fsbtodb(oldsb, blkmove[i - run]), &buf[0],
1298 1.1 jtk run << oldsb->fs_fshift);
1299 1.1 jtk }
1300 1.1 jtk }
1301 1.1 jtk /*
1302 1.2 martin * This modifies an array of int32_t, according to blkmove. This is
1303 1.1 jtk * used to update inode block arrays and indirect blocks to point to
1304 1.1 jtk * the new locations of data blocks.
1305 1.1 jtk *
1306 1.2 martin * Return value is the number of int32_ts that needed updating; in
1307 1.1 jtk * particular, the return value is zero iff nothing was modified.
1308 1.1 jtk */
1309 1.1 jtk static int
1310 1.2 martin movemap_blocks(int32_t * vec, int n)
1311 1.1 jtk {
1312 1.1 jtk int rv;
1313 1.1 jtk
1314 1.1 jtk rv = 0;
1315 1.1 jtk for (; n > 0; n--, vec++) {
1316 1.1 jtk if (blkmove[*vec] != *vec) {
1317 1.1 jtk *vec = blkmove[*vec];
1318 1.1 jtk rv++;
1319 1.1 jtk }
1320 1.1 jtk }
1321 1.1 jtk return (rv);
1322 1.1 jtk }
1323 1.1 jtk static void
1324 1.4 christos moveblocks_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
1325 1.1 jtk {
1326 1.1 jtk switch (di->di_mode & IFMT) {
1327 1.1 jtk case IFLNK:
1328 1.1 jtk if (di->di_size > oldsb->fs_maxsymlinklen) {
1329 1.1 jtk case IFDIR:
1330 1.1 jtk case IFREG:
1331 1.1 jtk /* don't || these two calls; we need their
1332 1.1 jtk * side-effects */
1333 1.1 jtk if (movemap_blocks(&di->di_db[0], NDADDR)) {
1334 1.1 jtk iflags[inum] |= IF_DIRTY;
1335 1.1 jtk }
1336 1.1 jtk if (movemap_blocks(&di->di_ib[0], NIADDR)) {
1337 1.1 jtk iflags[inum] |= IF_DIRTY;
1338 1.1 jtk }
1339 1.1 jtk }
1340 1.1 jtk break;
1341 1.1 jtk }
1342 1.1 jtk }
1343 1.1 jtk
1344 1.1 jtk static void
1345 1.1 jtk moveindir_callback(unsigned int off, unsigned int nfrag, unsigned int nbytes, int kind)
1346 1.1 jtk {
1347 1.1 jtk if (kind == MDB_INDIR_PRE) {
1348 1.2 martin int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
1349 1.1 jtk readat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
1350 1.1 jtk if (movemap_blocks(&blk[0], NINDIR(oldsb))) {
1351 1.1 jtk writeat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
1352 1.1 jtk }
1353 1.1 jtk }
1354 1.1 jtk }
1355 1.1 jtk /*
1356 1.1 jtk * Update all inode data arrays and indirect blocks to point to the new
1357 1.1 jtk * locations of data blocks. See the comment header on
1358 1.1 jtk * perform_data_move for some ordering considerations.
1359 1.1 jtk */
1360 1.1 jtk static void
1361 1.1 jtk update_for_data_move(void)
1362 1.1 jtk {
1363 1.1 jtk map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
1364 1.1 jtk map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
1365 1.1 jtk }
1366 1.1 jtk /*
1367 1.1 jtk * Initialize the inomove array.
1368 1.1 jtk */
1369 1.1 jtk static void
1370 1.1 jtk inomove_init(void)
1371 1.1 jtk {
1372 1.1 jtk int i;
1373 1.1 jtk
1374 1.1 jtk inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
1375 1.1 jtk "inomove");
1376 1.1 jtk for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
1377 1.1 jtk inomove[i] = i;
1378 1.1 jtk }
1379 1.1 jtk /*
1380 1.1 jtk * Flush all dirtied inodes to disk. Scans the inode flags array; for
1381 1.1 jtk * each dirty inode, it sets the BDIRTY bit on the first inode in the
1382 1.1 jtk * block containing the dirty inode. Then it scans by blocks, and for
1383 1.1 jtk * each marked block, writes it.
1384 1.1 jtk */
1385 1.1 jtk static void
1386 1.1 jtk flush_inodes(void)
1387 1.1 jtk {
1388 1.1 jtk int i;
1389 1.1 jtk int ni;
1390 1.1 jtk int m;
1391 1.1 jtk
1392 1.1 jtk ni = newsb->fs_ipg * newsb->fs_ncg;
1393 1.1 jtk m = INOPB(newsb) - 1;
1394 1.1 jtk for (i = 0; i < ni; i++) {
1395 1.1 jtk if (iflags[i] & IF_DIRTY) {
1396 1.1 jtk iflags[i & ~m] |= IF_BDIRTY;
1397 1.1 jtk }
1398 1.1 jtk }
1399 1.1 jtk m++;
1400 1.1 jtk for (i = 0; i < ni; i += m) {
1401 1.1 jtk if (iflags[i] & IF_BDIRTY) {
1402 1.1 jtk writeat(fsbtodb(newsb, ino_to_fsba(newsb, i)),
1403 1.1 jtk inodes + i, newsb->fs_bsize);
1404 1.1 jtk }
1405 1.1 jtk }
1406 1.1 jtk }
1407 1.1 jtk /*
1408 1.1 jtk * Evict all inodes from the specified cg. shrink() already checked
1409 1.1 jtk * that there were enough free inodes, so the no-free-inodes check is
1410 1.1 jtk * a can't-happen. If it does trip, the filesystem should be in good
1411 1.1 jtk * enough shape for fsck to fix; see the comment on perform_data_move
1412 1.1 jtk * for the considerations in question.
1413 1.1 jtk */
1414 1.1 jtk static void
1415 1.1 jtk evict_inodes(struct cg * cg)
1416 1.1 jtk {
1417 1.1 jtk int inum;
1418 1.1 jtk int i;
1419 1.1 jtk int fi;
1420 1.1 jtk
1421 1.1 jtk inum = newsb->fs_ipg * cg->cg_cgx;
1422 1.1 jtk for (i = 0; i < newsb->fs_ipg; i++, inum++) {
1423 1.1 jtk if (inodes[inum].di_mode != 0) {
1424 1.1 jtk fi = find_freeinode();
1425 1.1 jtk if (fi < 0) {
1426 1.1 jtk printf("Sorry, inodes evaporated - "
1427 1.1 jtk "filesystem probably needs fsck\n");
1428 1.1 jtk exit(1);
1429 1.1 jtk }
1430 1.1 jtk inomove[inum] = fi;
1431 1.1 jtk clr_bits(cg_inosused(cg, 0), i, 1);
1432 1.1 jtk set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
1433 1.1 jtk fi % newsb->fs_ipg, 1);
1434 1.1 jtk }
1435 1.1 jtk }
1436 1.1 jtk }
1437 1.1 jtk /*
1438 1.1 jtk * Move inodes from old locations to new. Does not actually write
1439 1.1 jtk * anything to disk; just copies in-core and sets dirty bits.
1440 1.1 jtk *
1441 1.1 jtk * We have to be careful here for reasons similar to those mentioned in
1442 1.1 jtk * the comment header on perform_data_move, above: for the sake of
1443 1.1 jtk * crash tolerance, we want to make sure everything is present at both
1444 1.1 jtk * old and new locations before we update pointers. So we call this
1445 1.1 jtk * first, then flush_inodes() to get them out on disk, then update
1446 1.1 jtk * directories to match.
1447 1.1 jtk */
1448 1.1 jtk static void
1449 1.1 jtk perform_inode_move(void)
1450 1.1 jtk {
1451 1.1 jtk int i;
1452 1.1 jtk int ni;
1453 1.1 jtk
1454 1.1 jtk ni = oldsb->fs_ipg * oldsb->fs_ncg;
1455 1.1 jtk for (i = 0; i < ni; i++) {
1456 1.1 jtk if (inomove[i] != i) {
1457 1.1 jtk inodes[inomove[i]] = inodes[i];
1458 1.1 jtk iflags[inomove[i]] = iflags[i] | IF_DIRTY;
1459 1.1 jtk }
1460 1.1 jtk }
1461 1.1 jtk }
1462 1.1 jtk /*
1463 1.1 jtk * Update the directory contained in the nb bytes at buf, to point to
1464 1.1 jtk * inodes' new locations.
1465 1.1 jtk */
1466 1.1 jtk static int
1467 1.1 jtk update_dirents(char *buf, int nb)
1468 1.1 jtk {
1469 1.1 jtk int rv;
1470 1.1 jtk #define d ((struct direct *)buf)
1471 1.1 jtk
1472 1.1 jtk rv = 0;
1473 1.1 jtk while (nb > 0) {
1474 1.1 jtk if (inomove[d->d_ino] != d->d_ino) {
1475 1.1 jtk rv++;
1476 1.1 jtk d->d_ino = inomove[d->d_ino];
1477 1.1 jtk }
1478 1.1 jtk nb -= d->d_reclen;
1479 1.1 jtk buf += d->d_reclen;
1480 1.1 jtk }
1481 1.1 jtk return (rv);
1482 1.1 jtk #undef d
1483 1.1 jtk }
1484 1.1 jtk /*
1485 1.1 jtk * Callback function for map_inode_data_blocks, for updating a
1486 1.1 jtk * directory to point to new inode locations.
1487 1.1 jtk */
1488 1.1 jtk static void
1489 1.1 jtk update_dir_data(unsigned int bn, unsigned int size, unsigned int nb, int kind)
1490 1.1 jtk {
1491 1.1 jtk if (kind == MDB_DATA) {
1492 1.1 jtk union {
1493 1.1 jtk struct direct d;
1494 1.1 jtk char ch[MAXBSIZE];
1495 1.1 jtk } buf;
1496 1.1 jtk readat(fsbtodb(oldsb, bn), &buf, size << oldsb->fs_fshift);
1497 1.1 jtk if (update_dirents((char *) &buf, nb)) {
1498 1.1 jtk writeat(fsbtodb(oldsb, bn), &buf,
1499 1.1 jtk size << oldsb->fs_fshift);
1500 1.1 jtk }
1501 1.1 jtk }
1502 1.1 jtk }
1503 1.1 jtk static void
1504 1.4 christos dirmove_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
1505 1.1 jtk {
1506 1.1 jtk switch (di->di_mode & IFMT) {
1507 1.1 jtk case IFDIR:
1508 1.1 jtk map_inode_data_blocks(di, &update_dir_data);
1509 1.1 jtk break;
1510 1.1 jtk }
1511 1.1 jtk }
1512 1.1 jtk /*
1513 1.1 jtk * Update directory entries to point to new inode locations.
1514 1.1 jtk */
1515 1.1 jtk static void
1516 1.1 jtk update_for_inode_move(void)
1517 1.1 jtk {
1518 1.1 jtk map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
1519 1.1 jtk }
1520 1.1 jtk /*
1521 1.1 jtk * Shrink the filesystem.
1522 1.1 jtk */
1523 1.1 jtk static void
1524 1.1 jtk shrink(void)
1525 1.1 jtk {
1526 1.1 jtk int i;
1527 1.1 jtk
1528 1.1 jtk /* Load the inodes off disk - we'll need 'em. */
1529 1.1 jtk loadinodes();
1530 1.1 jtk /* Update the timestamp. */
1531 1.1 jtk newsb->fs_time = timestamp();
1532 1.1 jtk /* Update the size figures. */
1533 1.1 jtk newsb->fs_size = dbtofsb(newsb, newsize);
1534 1.4 christos newsb->fs_old_ncyl = (newsb->fs_size * NSPF(newsb)) / newsb->fs_old_spc;
1535 1.4 christos newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
1536 1.1 jtk /* Does the (new) last cg end before the end of its inode area? See
1537 1.1 jtk * the similar code in grow() for more on this. */
1538 1.1 jtk if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
1539 1.1 jtk newsb->fs_ncg--;
1540 1.4 christos newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
1541 1.4 christos newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc) / NSPF(newsb);
1542 1.1 jtk printf("Warning: last cylinder group is too small;\n");
1543 1.1 jtk printf(" dropping it. New size = %lu.\n",
1544 1.1 jtk (unsigned long int) fsbtodb(newsb, newsb->fs_size));
1545 1.1 jtk }
1546 1.1 jtk /* Let's make sure we're not being shrunk into oblivion. */
1547 1.1 jtk if (newsb->fs_ncg < 1) {
1548 1.1 jtk printf("Size too small - filesystem would have no cylinders\n");
1549 1.1 jtk exit(1);
1550 1.1 jtk }
1551 1.1 jtk /* Initialize for block motion. */
1552 1.1 jtk blkmove_init();
1553 1.1 jtk /* Update csum size, then fix up for the new size */
1554 1.1 jtk newsb->fs_cssize = fragroundup(newsb,
1555 1.1 jtk newsb->fs_ncg * sizeof(struct csum));
1556 1.1 jtk csum_fixup();
1557 1.1 jtk /* Evict data from any cgs being wholly eliminiated */
1558 1.1 jtk for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
1559 1.1 jtk int base;
1560 1.1 jtk int dlow;
1561 1.1 jtk int dhigh;
1562 1.1 jtk int dmax;
1563 1.1 jtk base = cgbase(oldsb, i);
1564 1.1 jtk dlow = cgsblock(oldsb, i) - base;
1565 1.1 jtk dhigh = cgdmin(oldsb, i) - base;
1566 1.1 jtk dmax = oldsb->fs_size - base;
1567 1.1 jtk if (dmax > cgs[i]->cg_ndblk)
1568 1.1 jtk dmax = cgs[i]->cg_ndblk;
1569 1.1 jtk evict_data(cgs[i], 0, dlow);
1570 1.1 jtk evict_data(cgs[i], dhigh, dmax - dhigh);
1571 1.1 jtk newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
1572 1.1 jtk newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
1573 1.1 jtk newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
1574 1.1 jtk newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
1575 1.1 jtk }
1576 1.1 jtk /* Update the new last cg. */
1577 1.1 jtk cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
1578 1.1 jtk ((newsb->fs_ncg - 1) * newsb->fs_fpg);
1579 1.1 jtk /* Is the new last cg partial? If so, evict any data from the part
1580 1.1 jtk * being shrunken away. */
1581 1.1 jtk if (newsb->fs_size % newsb->fs_fpg) {
1582 1.1 jtk struct cg *cg;
1583 1.1 jtk int oldcgsize;
1584 1.1 jtk int newcgsize;
1585 1.1 jtk cg = cgs[newsb->fs_ncg - 1];
1586 1.1 jtk newcgsize = newsb->fs_size % newsb->fs_fpg;
1587 1.1 jtk oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) & oldsb->fs_fpg);
1588 1.1 jtk if (oldcgsize > oldsb->fs_fpg)
1589 1.1 jtk oldcgsize = oldsb->fs_fpg;
1590 1.1 jtk evict_data(cg, newcgsize, oldcgsize - newcgsize);
1591 1.1 jtk clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
1592 1.1 jtk }
1593 1.1 jtk /* Find out whether we would run out of inodes. (Note we haven't
1594 1.1 jtk * actually done anything to the filesystem yet; all those evict_data
1595 1.1 jtk * calls just update blkmove.) */
1596 1.1 jtk {
1597 1.1 jtk int slop;
1598 1.1 jtk slop = 0;
1599 1.1 jtk for (i = 0; i < newsb->fs_ncg; i++)
1600 1.1 jtk slop += cgs[i]->cg_cs.cs_nifree;
1601 1.1 jtk for (; i < oldsb->fs_ncg; i++)
1602 1.1 jtk slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
1603 1.1 jtk if (slop < 0) {
1604 1.1 jtk printf("Sorry, would run out of inodes\n");
1605 1.1 jtk exit(1);
1606 1.1 jtk }
1607 1.1 jtk }
1608 1.1 jtk /* Copy data, then update pointers to data. See the comment header on
1609 1.1 jtk * perform_data_move for ordering considerations. */
1610 1.1 jtk perform_data_move();
1611 1.1 jtk update_for_data_move();
1612 1.1 jtk /* Now do inodes. Initialize, evict, move, update - see the comment
1613 1.1 jtk * header on perform_inode_move. */
1614 1.1 jtk inomove_init();
1615 1.1 jtk for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
1616 1.1 jtk evict_inodes(cgs[i]);
1617 1.1 jtk perform_inode_move();
1618 1.1 jtk flush_inodes();
1619 1.1 jtk update_for_inode_move();
1620 1.1 jtk /* Recompute all the bitmaps; most of them probably need it anyway,
1621 1.1 jtk * the rest are just paranoia and not wanting to have to bother
1622 1.1 jtk * keeping track of exactly which ones require it. */
1623 1.1 jtk for (i = 0; i < newsb->fs_ncg; i++)
1624 1.1 jtk cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
1625 1.4 christos /* Update the cg_old_ncyl value for the last cylinder. The condition is
1626 1.1 jtk * commented out because fsck whines if not - see the similar
1627 1.1 jtk * condition in grow() for more. */
1628 1.1 jtk /* XXX fix once fsck is fixed */
1629 1.4 christos /* if (newsb->fs_old_ncyl % newsb->fs_old_cpg) XXX */
1630 1.1 jtk /*XXXJTK*/
1631 1.4 christos cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
1632 1.4 christos newsb->fs_old_ncyl % newsb->fs_old_cpg;
1633 1.1 jtk /* Make fs_dsize match the new reality. */
1634 1.1 jtk recompute_fs_dsize();
1635 1.1 jtk }
1636 1.1 jtk /*
1637 1.1 jtk * Recompute the block totals, block cluster summaries, and rotational
1638 1.1 jtk * position summaries, for a given cg (specified by number), based on
1639 1.1 jtk * its free-frag bitmap (cg_blksfree()[]).
1640 1.1 jtk */
1641 1.1 jtk static void
1642 1.1 jtk rescan_blkmaps(int cgn)
1643 1.1 jtk {
1644 1.1 jtk struct cg *cg;
1645 1.1 jtk int f;
1646 1.1 jtk int b;
1647 1.1 jtk int blkfree;
1648 1.1 jtk int blkrun;
1649 1.1 jtk int fragrun;
1650 1.1 jtk int fwb;
1651 1.1 jtk
1652 1.1 jtk cg = cgs[cgn];
1653 1.1 jtk /* Subtract off the current totals from the sb's summary info */
1654 1.1 jtk newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
1655 1.1 jtk newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
1656 1.1 jtk /* Clear counters and bitmaps. */
1657 1.1 jtk cg->cg_cs.cs_nffree = 0;
1658 1.1 jtk cg->cg_cs.cs_nbfree = 0;
1659 1.1 jtk bzero(&cg->cg_frsum[0], MAXFRAG * sizeof(cg->cg_frsum[0]));
1660 1.1 jtk bzero(&cg_blktot(cg, 0)[0],
1661 1.4 christos newsb->fs_old_cpg * sizeof(cg_blktot(cg, 0)[0]));
1662 1.1 jtk bzero(&cg_blks(newsb, cg, 0, 0)[0],
1663 1.4 christos newsb->fs_old_cpg * newsb->fs_old_nrpos *
1664 1.1 jtk sizeof(cg_blks(newsb, cg, 0, 0)[0]));
1665 1.1 jtk if (newsb->fs_contigsumsize > 0) {
1666 1.1 jtk cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
1667 1.1 jtk bzero(&cg_clustersum(cg, 0)[1],
1668 1.1 jtk newsb->fs_contigsumsize *
1669 1.1 jtk sizeof(cg_clustersum(cg, 0)[1]));
1670 1.1 jtk bzero(&cg_clustersfree(cg, 0)[0],
1671 1.4 christos howmany((newsb->fs_old_cpg * newsb->fs_old_spc) / NSPB(newsb),
1672 1.1 jtk NBBY));
1673 1.1 jtk }
1674 1.1 jtk /* Scan the free-frag bitmap. Runs of free frags are kept track of
1675 1.1 jtk * with fragrun, and recorded into cg_frsum[] and cg_cs.cs_nffree; on
1676 1.1 jtk * each block boundary, entire free blocks are recorded as well. */
1677 1.1 jtk blkfree = 1;
1678 1.1 jtk blkrun = 0;
1679 1.1 jtk fragrun = 0;
1680 1.1 jtk f = 0;
1681 1.1 jtk b = 0;
1682 1.1 jtk fwb = 0;
1683 1.1 jtk while (f < cg->cg_ndblk) {
1684 1.1 jtk if (bit_is_set(cg_blksfree(cg, 0), f)) {
1685 1.1 jtk fragrun++;
1686 1.1 jtk } else {
1687 1.1 jtk blkfree = 0;
1688 1.1 jtk if (fragrun > 0) {
1689 1.1 jtk cg->cg_frsum[fragrun]++;
1690 1.1 jtk cg->cg_cs.cs_nffree += fragrun;
1691 1.1 jtk }
1692 1.1 jtk fragrun = 0;
1693 1.1 jtk }
1694 1.1 jtk f++;
1695 1.1 jtk fwb++;
1696 1.1 jtk if (fwb >= newsb->fs_frag) {
1697 1.1 jtk if (blkfree) {
1698 1.1 jtk cg->cg_cs.cs_nbfree++;
1699 1.1 jtk if (newsb->fs_contigsumsize > 0)
1700 1.1 jtk set_bits(cg_clustersfree(cg, 0), b, 1);
1701 1.1 jtk cg_blktot(cg, 0)[cbtocylno(newsb, f - newsb->fs_frag)]++;
1702 1.1 jtk cg_blks(newsb, cg,
1703 1.1 jtk cbtocylno(newsb, f - newsb->fs_frag),
1704 1.1 jtk 0)[cbtorpos(newsb, f - newsb->fs_frag)]++;
1705 1.1 jtk blkrun++;
1706 1.1 jtk } else {
1707 1.1 jtk if (fragrun > 0) {
1708 1.1 jtk cg->cg_frsum[fragrun]++;
1709 1.1 jtk cg->cg_cs.cs_nffree += fragrun;
1710 1.1 jtk }
1711 1.1 jtk if (newsb->fs_contigsumsize > 0) {
1712 1.1 jtk if (blkrun > 0) {
1713 1.1 jtk cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ? newsb->fs_contigsumsize : blkrun]++;
1714 1.1 jtk }
1715 1.1 jtk }
1716 1.1 jtk blkrun = 0;
1717 1.1 jtk }
1718 1.1 jtk fwb = 0;
1719 1.1 jtk b++;
1720 1.1 jtk blkfree = 1;
1721 1.1 jtk fragrun = 0;
1722 1.1 jtk }
1723 1.1 jtk }
1724 1.1 jtk if (fragrun > 0) {
1725 1.1 jtk cg->cg_frsum[fragrun]++;
1726 1.1 jtk cg->cg_cs.cs_nffree += fragrun;
1727 1.1 jtk }
1728 1.1 jtk if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
1729 1.1 jtk cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
1730 1.1 jtk newsb->fs_contigsumsize : blkrun]++;
1731 1.1 jtk }
1732 1.1 jtk /*
1733 1.1 jtk * Put the updated summary info back into csums, and add it
1734 1.1 jtk * back into the sb's summary info. Then mark the cg dirty.
1735 1.1 jtk */
1736 1.1 jtk csums[cgn] = cg->cg_cs;
1737 1.1 jtk newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
1738 1.1 jtk newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
1739 1.1 jtk cgflags[cgn] |= CGF_DIRTY;
1740 1.1 jtk }
1741 1.1 jtk /*
1742 1.1 jtk * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
1743 1.1 jtk * values, for a cg, based on the in-core inodes for that cg.
1744 1.1 jtk */
1745 1.1 jtk static void
1746 1.1 jtk rescan_inomaps(int cgn)
1747 1.1 jtk {
1748 1.1 jtk struct cg *cg;
1749 1.1 jtk int inum;
1750 1.1 jtk int iwc;
1751 1.1 jtk
1752 1.1 jtk cg = cgs[cgn];
1753 1.1 jtk newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
1754 1.1 jtk newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
1755 1.1 jtk cg->cg_cs.cs_ndir = 0;
1756 1.1 jtk cg->cg_cs.cs_nifree = 0;
1757 1.1 jtk bzero(&cg_inosused(cg, 0)[0], howmany(newsb->fs_ipg, NBBY));
1758 1.1 jtk inum = cgn * newsb->fs_ipg;
1759 1.1 jtk if (cgn == 0) {
1760 1.1 jtk set_bits(cg_inosused(cg, 0), 0, 2);
1761 1.1 jtk iwc = 2;
1762 1.1 jtk inum += 2;
1763 1.1 jtk } else {
1764 1.1 jtk iwc = 0;
1765 1.1 jtk }
1766 1.1 jtk for (; iwc < newsb->fs_ipg; iwc++, inum++) {
1767 1.1 jtk switch (inodes[inum].di_mode & IFMT) {
1768 1.1 jtk case 0:
1769 1.1 jtk cg->cg_cs.cs_nifree++;
1770 1.1 jtk break;
1771 1.1 jtk case IFDIR:
1772 1.1 jtk cg->cg_cs.cs_ndir++;
1773 1.1 jtk /* fall through */
1774 1.1 jtk default:
1775 1.1 jtk set_bits(cg_inosused(cg, 0), iwc, 1);
1776 1.1 jtk break;
1777 1.1 jtk }
1778 1.1 jtk }
1779 1.1 jtk csums[cgn] = cg->cg_cs;
1780 1.1 jtk newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
1781 1.1 jtk newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
1782 1.1 jtk cgflags[cgn] |= CGF_DIRTY;
1783 1.1 jtk }
1784 1.1 jtk /*
1785 1.1 jtk * Flush cgs to disk, recomputing anything they're marked as needing.
1786 1.1 jtk */
1787 1.1 jtk static void
1788 1.1 jtk flush_cgs(void)
1789 1.1 jtk {
1790 1.1 jtk int i;
1791 1.1 jtk
1792 1.1 jtk for (i = 0; i < newsb->fs_ncg; i++) {
1793 1.1 jtk if (cgflags[i] & CGF_BLKMAPS) {
1794 1.1 jtk rescan_blkmaps(i);
1795 1.1 jtk }
1796 1.1 jtk if (cgflags[i] & CGF_INOMAPS) {
1797 1.1 jtk rescan_inomaps(i);
1798 1.1 jtk }
1799 1.1 jtk if (cgflags[i] & CGF_DIRTY) {
1800 1.1 jtk cgs[i]->cg_rotor = 0;
1801 1.1 jtk cgs[i]->cg_frotor = 0;
1802 1.1 jtk cgs[i]->cg_irotor = 0;
1803 1.1 jtk writeat(fsbtodb(newsb, cgtod(newsb, i)), cgs[i],
1804 1.1 jtk cgblksz);
1805 1.1 jtk }
1806 1.1 jtk }
1807 1.1 jtk writeat(fsbtodb(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
1808 1.1 jtk }
1809 1.1 jtk /*
1810 1.1 jtk * Write the superblock, both to the main superblock and to each cg's
1811 1.1 jtk * alternative superblock.
1812 1.1 jtk */
1813 1.1 jtk static void
1814 1.1 jtk write_sbs(void)
1815 1.1 jtk {
1816 1.1 jtk int i;
1817 1.1 jtk
1818 1.4 christos writeat(where, newsb, SBLOCKSIZE);
1819 1.1 jtk for (i = 0; i < newsb->fs_ncg; i++) {
1820 1.4 christos writeat(fsbtodb(newsb, cgsblock(newsb, i)), newsb, SBLOCKSIZE);
1821 1.1 jtk }
1822 1.1 jtk }
1823 1.1 jtk /*
1824 1.1 jtk * main().
1825 1.1 jtk */
1826 1.1 jtk int main(int, char **);
1827 1.1 jtk int
1828 1.1 jtk main(int ac, char **av)
1829 1.1 jtk {
1830 1.4 christos size_t i;
1831 1.1 jtk if (ac != 3) {
1832 1.4 christos fprintf(stderr, "Usage: %s filesystem new-size\n",
1833 1.4 christos getprogname());
1834 1.1 jtk exit(1);
1835 1.1 jtk }
1836 1.1 jtk fd = open(av[1], O_RDWR, 0);
1837 1.4 christos if (fd < 0)
1838 1.4 christos err(1, "Cannot open `%s'", av[1]);
1839 1.1 jtk checksmallio();
1840 1.1 jtk newsize = atoi(av[2]);
1841 1.1 jtk oldsb = (struct fs *) & sbbuf;
1842 1.4 christos newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
1843 1.4 christos for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
1844 1.4 christos readat(where, oldsb, SBLOCKSIZE);
1845 1.4 christos if (oldsb->fs_magic == FS_UFS1_MAGIC)
1846 1.4 christos break;
1847 1.1 jtk }
1848 1.4 christos if (where == (off_t)-1)
1849 1.4 christos errx(1, "Bad magic number");
1850 1.1 jtk oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
1851 1.1 jtk oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
1852 1.1 jtk if (oldsb->fs_ipg % INOPB(oldsb)) {
1853 1.1 jtk printf("ipg[%d] %% INOPB[%d] != 0\n", (int) oldsb->fs_ipg,
1854 1.1 jtk (int) INOPB(oldsb));
1855 1.1 jtk exit(1);
1856 1.1 jtk }
1857 1.1 jtk /* The superblock is bigger than struct fs (there are trailing tables,
1858 1.4 christos * of non-fixed size); make sure we copy the whole thing. SBLOCKSIZE may
1859 1.1 jtk * be an over-estimate, but we do this just once, so being generous is
1860 1.1 jtk * cheap. */
1861 1.4 christos bcopy(oldsb, newsb, SBLOCKSIZE);
1862 1.1 jtk loadcgs();
1863 1.1 jtk if (newsize > fsbtodb(oldsb, oldsb->fs_size)) {
1864 1.1 jtk grow();
1865 1.1 jtk } else if (newsize < fsbtodb(oldsb, oldsb->fs_size)) {
1866 1.1 jtk shrink();
1867 1.1 jtk }
1868 1.1 jtk flush_cgs();
1869 1.1 jtk write_sbs();
1870 1.1 jtk exit(0);
1871 1.1 jtk }
1872