Home | History | Annotate | Line # | Download | only in resize_ffs
resize_ffs.c revision 1.57.2.1
      1  1.57.2.1    martin /*	$NetBSD: resize_ffs.c,v 1.57.2.1 2023/05/13 11:51:14 martin Exp $	*/
      2       1.1       jtk /* From sources sent on February 17, 2003 */
      3       1.1       jtk /*-
      4       1.1       jtk  * As its sole author, I explicitly place this code in the public
      5       1.1       jtk  *  domain.  Anyone may use it for any purpose (though I would
      6       1.1       jtk  *  appreciate credit where it is due).
      7       1.1       jtk  *
      8       1.1       jtk  *					der Mouse
      9       1.1       jtk  *
     10       1.1       jtk  *			       mouse (at) rodents.montreal.qc.ca
     11       1.1       jtk  *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
     12       1.1       jtk  */
     13       1.1       jtk /*
     14       1.3       wiz  * resize_ffs:
     15       1.1       jtk  *
     16      1.24       wiz  * Resize a file system.  Is capable of both growing and shrinking.
     17       1.1       jtk  *
     18      1.24       wiz  * Usage: resize_ffs [-s newsize] [-y] file_system
     19       1.1       jtk  *
     20      1.15       riz  * Example: resize_ffs -s 29574 /dev/rsd1e
     21       1.1       jtk  *
     22       1.1       jtk  * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
     23       1.1       jtk  *  each).
     24       1.1       jtk  *
     25       1.1       jtk  * Note: this currently requires gcc to build, since it is written
     26       1.1       jtk  *  depending on gcc-specific features, notably nested function
     27       1.1       jtk  *  definitions (which in at least a few cases depend on the lexical
     28       1.1       jtk  *  scoping gcc provides, so they can't be trivially moved outside).
     29       1.1       jtk  *
     30       1.5      salo  * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
     31       1.1       jtk  *  one responsible for the "realloccgblk: can't find blk in cyl"
     32       1.1       jtk  *  problem and a more minor one which left fs_dsize wrong when
     33       1.1       jtk  *  shrinking.  (These actually indicate bugs in fsck too - it should
     34       1.1       jtk  *  have caught and fixed them.)
     35       1.1       jtk  *
     36       1.1       jtk  */
     37       1.1       jtk 
     38      1.11     perry #include <sys/cdefs.h>
     39  1.57.2.1    martin __RCSID("$NetBSD: resize_ffs.c,v 1.57.2.1 2023/05/13 11:51:14 martin Exp $");
     40      1.29  dholland 
     41      1.13      haad #include <sys/disk.h>
     42      1.13      haad #include <sys/disklabel.h>
     43      1.13      haad #include <sys/dkio.h>
     44      1.13      haad #include <sys/ioctl.h>
     45       1.1       jtk #include <sys/stat.h>
     46       1.1       jtk #include <sys/mman.h>
     47       1.1       jtk #include <sys/param.h>		/* MAXFRAG */
     48       1.1       jtk #include <ufs/ffs/fs.h>
     49      1.25       riz #include <ufs/ffs/ffs_extern.h>
     50       1.1       jtk #include <ufs/ufs/dir.h>
     51       1.1       jtk #include <ufs/ufs/dinode.h>
     52       1.1       jtk #include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */
     53       1.1       jtk 
     54      1.15       riz #include <err.h>
     55      1.15       riz #include <errno.h>
     56      1.15       riz #include <fcntl.h>
     57      1.15       riz #include <stdio.h>
     58      1.15       riz #include <stdlib.h>
     59      1.15       riz #include <strings.h>
     60      1.15       riz #include <unistd.h>
     61      1.55  jmcneill #include <util.h>
     62      1.15       riz 
     63      1.44  jmcneill #include "progress.h"
     64      1.44  jmcneill 
     65      1.24       wiz /* new size of file system, in sectors */
     66      1.30  dholland static int64_t newsize;
     67       1.1       jtk 
     68      1.23       riz /* fd open onto disk device or file */
     69       1.1       jtk static int fd;
     70       1.1       jtk 
     71      1.44  jmcneill /* disk device or file path */
     72      1.55  jmcneill const char *special;
     73      1.44  jmcneill 
     74       1.1       jtk /* must we break up big I/O operations - see checksmallio() */
     75       1.1       jtk static int smallio;
     76       1.1       jtk 
     77       1.1       jtk /* size of a cg, in bytes, rounded up to a frag boundary */
     78       1.1       jtk static int cgblksz;
     79       1.1       jtk 
     80       1.4  christos /* possible superblock localtions */
     81       1.4  christos static int search[] = SBLOCKSEARCH;
     82       1.4  christos /* location of the superblock */
     83       1.4  christos static off_t where;
     84       1.4  christos 
     85       1.1       jtk /* Superblocks. */
     86       1.1       jtk static struct fs *oldsb;	/* before we started */
     87       1.1       jtk static struct fs *newsb;	/* copy to work with */
     88       1.1       jtk /* Buffer to hold the above.  Make sure it's aligned correctly. */
     89      1.15       riz static char sbbuf[2 * SBLOCKSIZE]
     90      1.15       riz 	__attribute__((__aligned__(__alignof__(struct fs))));
     91       1.1       jtk 
     92      1.25       riz union dinode {
     93      1.25       riz 	struct ufs1_dinode dp1;
     94      1.25       riz 	struct ufs2_dinode dp2;
     95      1.25       riz };
     96      1.25       riz #define DIP(dp, field)							      \
     97      1.25       riz 	((is_ufs2) ?							      \
     98      1.25       riz 	    (dp)->dp2.field : (dp)->dp1.field)
     99      1.25       riz 
    100      1.25       riz #define DIP_ASSIGN(dp, field, value)					      \
    101      1.25       riz 	do {								      \
    102      1.25       riz 		if (is_ufs2)						      \
    103      1.25       riz 			(dp)->dp2.field = (value);			      \
    104      1.25       riz 		else							      \
    105      1.25       riz 			(dp)->dp1.field = (value);			      \
    106      1.25       riz 	} while (0)
    107      1.25       riz 
    108       1.1       jtk /* a cg's worth of brand new squeaky-clean inodes */
    109      1.47  dholland static struct ufs1_dinode *zinodes1;
    110      1.47  dholland static struct ufs2_dinode *zinodes2;
    111       1.1       jtk 
    112       1.1       jtk /* pointers to the in-core cgs, read off disk and possibly modified */
    113       1.1       jtk static struct cg **cgs;
    114       1.1       jtk 
    115       1.1       jtk /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
    116       1.1       jtk static struct csum *csums;
    117       1.1       jtk 
    118       1.1       jtk /* per-cg flags, indexed by cg number */
    119       1.1       jtk static unsigned char *cgflags;
    120       1.1       jtk #define CGF_DIRTY   0x01	/* needs to be written to disk */
    121       1.1       jtk #define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
    122       1.1       jtk #define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */
    123       1.1       jtk 
    124       1.1       jtk /* when shrinking, these two arrays record how we want blocks to move.	 */
    125       1.1       jtk /*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
    126       1.1       jtk /*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
    127       1.1       jtk /*  started out as inode i should end up as inode j.			 */
    128       1.1       jtk static unsigned int *blkmove;
    129       1.1       jtk static unsigned int *inomove;
    130       1.1       jtk 
    131       1.1       jtk /* in-core copies of all inodes in the fs, indexed by inumber */
    132      1.25       riz union dinode *inodes;
    133      1.25       riz 
    134      1.25       riz void *ibuf;	/* ptr to fs block-sized buffer for reading/writing inodes */
    135      1.25       riz 
    136      1.25       riz /* byteswapped inodes */
    137      1.25       riz union dinode *sinodes;
    138       1.1       jtk 
    139       1.1       jtk /* per-inode flags, indexed by inumber */
    140       1.1       jtk static unsigned char *iflags;
    141       1.1       jtk #define IF_DIRTY  0x01		/* needs to be written to disk */
    142       1.1       jtk #define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
    143       1.1       jtk 				 * block of inodes, and applies to the whole
    144       1.1       jtk 				 * block. */
    145       1.1       jtk 
    146      1.15       riz /* resize_ffs works directly on dinodes, adapt blksize() */
    147      1.30  dholland #define dblksize(fs, dip, lbn, filesize) \
    148      1.37  dholland 	(((lbn) >= UFS_NDADDR || (uint64_t)(filesize) >= ffs_lblktosize(fs, (lbn) + 1)) \
    149      1.25       riz 	    ? (fs)->fs_bsize						       \
    150      1.37  dholland 	    : (ffs_fragroundup(fs, ffs_blkoff(fs, (filesize)))))
    151       1.4  christos 
    152       1.4  christos 
    153       1.4  christos /*
    154      1.25       riz  * Number of disk sectors per block/fragment
    155      1.28  dholland  */
    156      1.36  dholland #define NSPB(fs)	(FFS_FSBTODB((fs),1) << (fs)->fs_fragshift)
    157      1.36  dholland #define NSPF(fs)	(FFS_FSBTODB((fs),1))
    158       1.4  christos 
    159      1.23       riz /* global flags */
    160      1.23       riz int is_ufs2 = 0;
    161      1.23       riz int needswap = 0;
    162      1.41    chopps int verbose = 0;
    163      1.44  jmcneill int progress = 0;
    164      1.23       riz 
    165      1.13      haad static void usage(void) __dead;
    166      1.13      haad 
    167       1.1       jtk /*
    168       1.1       jtk  * See if we need to break up large I/O operations.  This should never
    169       1.1       jtk  *  be needed, but under at least one <version,platform> combination,
    170       1.1       jtk  *  large enough disk transfers to the raw device hang.  So if we're
    171       1.1       jtk  *  talking to a character special device, play it safe; in this case,
    172       1.1       jtk  *  readat() and writeat() break everything up into pieces no larger
    173       1.1       jtk  *  than 8K, doing multiple syscalls for larger operations.
    174       1.1       jtk  */
    175       1.1       jtk static void
    176       1.1       jtk checksmallio(void)
    177       1.1       jtk {
    178       1.1       jtk 	struct stat stb;
    179       1.1       jtk 
    180       1.1       jtk 	fstat(fd, &stb);
    181       1.1       jtk 	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
    182       1.1       jtk }
    183      1.19       riz 
    184      1.19       riz static int
    185      1.19       riz isplainfile(void)
    186      1.19       riz {
    187      1.19       riz 	struct stat stb;
    188      1.19       riz 
    189      1.19       riz 	fstat(fd, &stb);
    190      1.19       riz 	return S_ISREG(stb.st_mode);
    191      1.19       riz }
    192       1.1       jtk /*
    193       1.1       jtk  * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
    194      1.36  dholland  *  units, ie, after FFS_FSBTODB(); size is in bytes.
    195       1.1       jtk  */
    196       1.1       jtk static void
    197       1.1       jtk readat(off_t blkno, void *buf, int size)
    198       1.1       jtk {
    199       1.1       jtk 	/* Seek to the correct place. */
    200       1.4  christos 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    201      1.15       riz 		err(EXIT_FAILURE, "lseek failed");
    202       1.4  christos 
    203       1.1       jtk 	/* See if we have to break up the transfer... */
    204       1.1       jtk 	if (smallio) {
    205       1.1       jtk 		char *bp;	/* pointer into buf */
    206       1.1       jtk 		int left;	/* bytes left to go */
    207       1.1       jtk 		int n;		/* number to do this time around */
    208       1.1       jtk 		int rv;		/* syscall return value */
    209       1.1       jtk 		bp = buf;
    210       1.1       jtk 		left = size;
    211       1.1       jtk 		while (left > 0) {
    212       1.1       jtk 			n = (left > 8192) ? 8192 : left;
    213       1.1       jtk 			rv = read(fd, bp, n);
    214       1.4  christos 			if (rv < 0)
    215      1.13      haad 				err(EXIT_FAILURE, "read failed");
    216       1.4  christos 			if (rv != n)
    217      1.15       riz 				errx(EXIT_FAILURE,
    218      1.15       riz 				    "read: wanted %d, got %d", n, rv);
    219       1.1       jtk 			bp += n;
    220       1.1       jtk 			left -= n;
    221       1.1       jtk 		}
    222       1.1       jtk 	} else {
    223       1.1       jtk 		int rv;
    224       1.1       jtk 		rv = read(fd, buf, size);
    225       1.4  christos 		if (rv < 0)
    226      1.13      haad 			err(EXIT_FAILURE, "read failed");
    227       1.4  christos 		if (rv != size)
    228      1.25       riz 			errx(EXIT_FAILURE, "read: wanted %d, got %d",
    229      1.25       riz 			    size, rv);
    230       1.1       jtk 	}
    231       1.1       jtk }
    232       1.1       jtk /*
    233       1.1       jtk  * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
    234      1.36  dholland  *  units, ie, after FFS_FSBTODB(); size is in bytes.
    235       1.1       jtk  */
    236       1.1       jtk static void
    237       1.1       jtk writeat(off_t blkno, const void *buf, int size)
    238       1.1       jtk {
    239       1.1       jtk 	/* Seek to the correct place. */
    240       1.4  christos 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    241      1.13      haad 		err(EXIT_FAILURE, "lseek failed");
    242       1.1       jtk 	/* See if we have to break up the transfer... */
    243       1.1       jtk 	if (smallio) {
    244       1.1       jtk 		const char *bp;	/* pointer into buf */
    245       1.1       jtk 		int left;	/* bytes left to go */
    246       1.1       jtk 		int n;		/* number to do this time around */
    247       1.1       jtk 		int rv;		/* syscall return value */
    248       1.1       jtk 		bp = buf;
    249       1.1       jtk 		left = size;
    250       1.1       jtk 		while (left > 0) {
    251       1.1       jtk 			n = (left > 8192) ? 8192 : left;
    252       1.1       jtk 			rv = write(fd, bp, n);
    253       1.4  christos 			if (rv < 0)
    254      1.13      haad 				err(EXIT_FAILURE, "write failed");
    255       1.4  christos 			if (rv != n)
    256      1.15       riz 				errx(EXIT_FAILURE,
    257      1.15       riz 				    "write: wanted %d, got %d", n, rv);
    258       1.1       jtk 			bp += n;
    259       1.1       jtk 			left -= n;
    260       1.1       jtk 		}
    261       1.1       jtk 	} else {
    262       1.1       jtk 		int rv;
    263       1.1       jtk 		rv = write(fd, buf, size);
    264       1.4  christos 		if (rv < 0)
    265      1.13      haad 			err(EXIT_FAILURE, "write failed");
    266       1.4  christos 		if (rv != size)
    267      1.15       riz 			errx(EXIT_FAILURE,
    268      1.15       riz 			    "write: wanted %d, got %d", size, rv);
    269       1.1       jtk 	}
    270       1.1       jtk }
    271       1.1       jtk /*
    272       1.1       jtk  * Never-fail versions of malloc() and realloc(), and an allocation
    273       1.1       jtk  *  routine (which also never fails) for allocating memory that will
    274       1.1       jtk  *  never be freed until exit.
    275       1.1       jtk  */
    276       1.1       jtk 
    277       1.1       jtk /*
    278       1.1       jtk  * Never-fail malloc.
    279       1.1       jtk  */
    280       1.1       jtk static void *
    281       1.1       jtk nfmalloc(size_t nb, const char *tag)
    282       1.1       jtk {
    283       1.1       jtk 	void *rv;
    284       1.1       jtk 
    285       1.1       jtk 	rv = malloc(nb);
    286       1.1       jtk 	if (rv)
    287       1.1       jtk 		return (rv);
    288      1.13      haad 	err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
    289       1.4  christos 	    (unsigned long int) nb, tag);
    290       1.1       jtk }
    291       1.1       jtk /*
    292       1.1       jtk  * Never-fail realloc.
    293       1.1       jtk  */
    294       1.1       jtk static void *
    295       1.1       jtk nfrealloc(void *blk, size_t nb, const char *tag)
    296       1.1       jtk {
    297       1.1       jtk 	void *rv;
    298       1.1       jtk 
    299       1.1       jtk 	rv = realloc(blk, nb);
    300       1.1       jtk 	if (rv)
    301       1.1       jtk 		return (rv);
    302      1.13      haad 	err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
    303       1.4  christos 	    (unsigned long int) nb, tag);
    304       1.1       jtk }
    305       1.1       jtk /*
    306       1.1       jtk  * Allocate memory that will never be freed or reallocated.  Arguably
    307       1.1       jtk  *  this routine should handle small allocations by chopping up pages,
    308       1.1       jtk  *  but that's not worth the bother; it's not called more than a
    309       1.1       jtk  *  handful of times per run, and if the allocations are that small the
    310       1.1       jtk  *  waste in giving each one its own page is ignorable.
    311       1.1       jtk  */
    312       1.1       jtk static void *
    313       1.1       jtk alloconce(size_t nb, const char *tag)
    314       1.1       jtk {
    315       1.1       jtk 	void *rv;
    316       1.1       jtk 
    317       1.1       jtk 	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
    318       1.1       jtk 	if (rv != MAP_FAILED)
    319       1.1       jtk 		return (rv);
    320      1.13      haad 	err(EXIT_FAILURE, "Can't map %lu bytes for %s",
    321       1.4  christos 	    (unsigned long int) nb, tag);
    322       1.1       jtk }
    323       1.1       jtk /*
    324       1.1       jtk  * Load the cgs and csums off disk.  Also allocates the space to load
    325       1.1       jtk  *  them into and initializes the per-cg flags.
    326       1.1       jtk  */
    327       1.1       jtk static void
    328       1.1       jtk loadcgs(void)
    329       1.1       jtk {
    330  1.57.2.1    martin 	uint32_t cg;
    331       1.1       jtk 	char *cgp;
    332       1.1       jtk 
    333       1.1       jtk 	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
    334      1.32  christos 	cgs = nfmalloc(oldsb->fs_ncg * sizeof(*cgs), "cg pointers");
    335       1.1       jtk 	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
    336       1.1       jtk 	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
    337       1.1       jtk 	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
    338       1.1       jtk 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
    339       1.1       jtk 		cgs[cg] = (struct cg *) cgp;
    340      1.36  dholland 		readat(FFS_FSBTODB(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
    341      1.25       riz 		if (needswap)
    342      1.25       riz 			ffs_cg_swap(cgs[cg],cgs[cg],oldsb);
    343       1.1       jtk 		cgflags[cg] = 0;
    344       1.1       jtk 		cgp += cgblksz;
    345       1.1       jtk 	}
    346      1.36  dholland 	readat(FFS_FSBTODB(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
    347      1.25       riz 	if (needswap)
    348      1.25       riz 		ffs_csum_swap(csums,csums,oldsb->fs_cssize);
    349       1.1       jtk }
    350       1.1       jtk /*
    351       1.1       jtk  * Set n bits, starting with bit #base, in the bitmap pointed to by
    352       1.1       jtk  *  bitvec (which is assumed to be large enough to include bits base
    353       1.1       jtk  *  through base+n-1).
    354       1.1       jtk  */
    355       1.1       jtk static void
    356       1.1       jtk set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
    357       1.1       jtk {
    358       1.1       jtk 	if (n < 1)
    359       1.1       jtk 		return;		/* nothing to do */
    360       1.1       jtk 	if (base & 7) {		/* partial byte at beginning */
    361       1.1       jtk 		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
    362       1.1       jtk 			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
    363       1.1       jtk 			return;
    364       1.1       jtk 		}
    365       1.1       jtk 		bitvec[base >> 3] |= (~0U) << (base & 7);
    366       1.1       jtk 		n -= 8 - (base & 7);
    367       1.1       jtk 		base = (base & ~7) + 8;
    368       1.1       jtk 	}
    369       1.1       jtk 	if (n >= 8) {		/* do full bytes */
    370       1.1       jtk 		memset(bitvec + (base >> 3), 0xff, n >> 3);
    371       1.1       jtk 		base += n & ~7;
    372       1.1       jtk 		n &= 7;
    373       1.1       jtk 	}
    374       1.1       jtk 	if (n) {		/* partial byte at end */
    375       1.1       jtk 		bitvec[base >> 3] |= ~((~0U) << n);
    376       1.1       jtk 	}
    377       1.1       jtk }
    378       1.1       jtk /*
    379       1.1       jtk  * Clear n bits, starting with bit #base, in the bitmap pointed to by
    380       1.1       jtk  *  bitvec (which is assumed to be large enough to include bits base
    381       1.1       jtk  *  through base+n-1).  Code parallels set_bits().
    382       1.1       jtk  */
    383       1.1       jtk static void
    384       1.1       jtk clr_bits(unsigned char *bitvec, int base, int n)
    385       1.1       jtk {
    386       1.1       jtk 	if (n < 1)
    387       1.1       jtk 		return;
    388       1.1       jtk 	if (base & 7) {
    389       1.1       jtk 		if (n <= 8 - (base & 7)) {
    390       1.1       jtk 			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
    391       1.1       jtk 			return;
    392       1.1       jtk 		}
    393       1.1       jtk 		bitvec[base >> 3] &= ~((~0U) << (base & 7));
    394       1.1       jtk 		n -= 8 - (base & 7);
    395       1.1       jtk 		base = (base & ~7) + 8;
    396       1.1       jtk 	}
    397       1.1       jtk 	if (n >= 8) {
    398      1.25       riz 		memset(bitvec + (base >> 3), 0, n >> 3);
    399       1.1       jtk 		base += n & ~7;
    400       1.1       jtk 		n &= 7;
    401       1.1       jtk 	}
    402       1.1       jtk 	if (n) {
    403       1.1       jtk 		bitvec[base >> 3] &= (~0U) << n;
    404       1.1       jtk 	}
    405       1.1       jtk }
    406       1.1       jtk /*
    407       1.1       jtk  * Test whether bit #bit is set in the bitmap pointed to by bitvec.
    408       1.1       jtk  */
    409      1.13      haad static int
    410       1.1       jtk bit_is_set(unsigned char *bitvec, int bit)
    411       1.1       jtk {
    412       1.1       jtk 	return (bitvec[bit >> 3] & (1 << (bit & 7)));
    413       1.1       jtk }
    414       1.1       jtk /*
    415       1.1       jtk  * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
    416       1.1       jtk  */
    417      1.13      haad static int
    418       1.1       jtk bit_is_clr(unsigned char *bitvec, int bit)
    419       1.1       jtk {
    420       1.1       jtk 	return (!bit_is_set(bitvec, bit));
    421       1.1       jtk }
    422       1.1       jtk /*
    423       1.1       jtk  * Test whether a whole block of bits is set in a bitmap.  This is
    424       1.1       jtk  *  designed for testing (aligned) disk blocks in a bit-per-frag
    425       1.1       jtk  *  bitmap; it has assumptions wired into it based on that, essentially
    426       1.1       jtk  *  that the entire block fits into a single byte.  This returns true
    427       1.1       jtk  *  iff _all_ the bits are set; it is not just the complement of
    428       1.1       jtk  *  blk_is_clr on the same arguments (unless blkfrags==1).
    429       1.1       jtk  */
    430      1.13      haad static int
    431       1.1       jtk blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
    432       1.1       jtk {
    433       1.1       jtk 	unsigned int mask;
    434       1.1       jtk 
    435       1.1       jtk 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    436       1.1       jtk 	return ((bitvec[blkbase >> 3] & mask) == mask);
    437       1.1       jtk }
    438       1.1       jtk /*
    439       1.1       jtk  * Test whether a whole block of bits is clear in a bitmap.  See
    440       1.1       jtk  *  blk_is_set (above) for assumptions.  This returns true iff _all_
    441       1.1       jtk  *  the bits are clear; it is not just the complement of blk_is_set on
    442       1.1       jtk  *  the same arguments (unless blkfrags==1).
    443       1.1       jtk  */
    444      1.13      haad static int
    445       1.1       jtk blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
    446       1.1       jtk {
    447       1.1       jtk 	unsigned int mask;
    448       1.1       jtk 
    449       1.1       jtk 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    450       1.1       jtk 	return ((bitvec[blkbase >> 3] & mask) == 0);
    451       1.1       jtk }
    452       1.1       jtk /*
    453       1.1       jtk  * Initialize a new cg.  Called when growing.  Assumes memory has been
    454       1.1       jtk  *  allocated but not otherwise set up.  This code sets the fields of
    455       1.1       jtk  *  the cg, initializes the bitmaps (and cluster summaries, if
    456       1.1       jtk  *  applicable), updates both per-cylinder summary info and the global
    457       1.1       jtk  *  summary info in newsb; it also writes out new inodes for the cg.
    458       1.1       jtk  *
    459       1.1       jtk  * This code knows it can never be called for cg 0, which makes it a
    460       1.1       jtk  *  bit simpler than it would otherwise be.
    461       1.1       jtk  */
    462       1.1       jtk static void
    463  1.57.2.1    martin initcg(uint32_t cgn)
    464       1.1       jtk {
    465       1.1       jtk 	struct cg *cg;		/* The in-core cg, of course */
    466      1.48  sborrill 	int64_t base;		/* Disk address of cg base */
    467      1.48  sborrill 	int64_t dlow;		/* Size of pre-cg data area */
    468      1.48  sborrill 	int64_t dhigh;		/* Offset of post-inode data area, from base */
    469      1.48  sborrill 	int64_t dmax;		/* Offset of end of post-inode data area */
    470       1.1       jtk 	int i;			/* Generic loop index */
    471       1.1       jtk 	int n;			/* Generic count */
    472      1.25       riz 	int start;		/* start of cg maps */
    473       1.1       jtk 
    474       1.1       jtk 	cg = cgs[cgn];
    475       1.1       jtk 	/* Place the data areas */
    476       1.1       jtk 	base = cgbase(newsb, cgn);
    477       1.1       jtk 	dlow = cgsblock(newsb, cgn) - base;
    478       1.1       jtk 	dhigh = cgdmin(newsb, cgn) - base;
    479       1.1       jtk 	dmax = newsb->fs_size - base;
    480       1.1       jtk 	if (dmax > newsb->fs_fpg)
    481       1.1       jtk 		dmax = newsb->fs_fpg;
    482      1.51   mlelstv 	start = (unsigned char *)&cg->cg_space[0] - (unsigned char *) cg;
    483       1.1       jtk 	/*
    484       1.1       jtk          * Clear out the cg - assumes all-0-bytes is the correct way
    485       1.1       jtk          * to initialize fields we don't otherwise touch, which is
    486       1.1       jtk          * perhaps not the right thing to do, but it's what fsck and
    487       1.1       jtk          * mkfs do.
    488       1.1       jtk          */
    489      1.25       riz 	memset(cg, 0, newsb->fs_cgsize);
    490      1.20    mhitch 	if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
    491      1.20    mhitch 		cg->cg_time = newsb->fs_time;
    492       1.1       jtk 	cg->cg_magic = CG_MAGIC;
    493       1.1       jtk 	cg->cg_cgx = cgn;
    494      1.25       riz 	cg->cg_niblk = newsb->fs_ipg;
    495      1.25       riz 	cg->cg_ndblk = dmax;
    496      1.25       riz 
    497      1.25       riz 	if (is_ufs2) {
    498      1.25       riz 		cg->cg_time = newsb->fs_time;
    499      1.35  dholland 		cg->cg_initediblk = newsb->fs_ipg < 2 * FFS_INOPB(newsb) ?
    500      1.35  dholland 		    newsb->fs_ipg : 2 * FFS_INOPB(newsb);
    501      1.25       riz 		cg->cg_iusedoff = start;
    502      1.25       riz 	} else {
    503      1.25       riz 		cg->cg_old_time = newsb->fs_time;
    504      1.25       riz 		cg->cg_old_niblk = cg->cg_niblk;
    505      1.25       riz 		cg->cg_niblk = 0;
    506      1.25       riz 		cg->cg_initediblk = 0;
    507      1.28  dholland 
    508      1.28  dholland 
    509      1.25       riz 		cg->cg_old_ncyl = newsb->fs_old_cpg;
    510      1.25       riz 		/* Update the cg_old_ncyl value for the last cylinder. */
    511      1.25       riz 		if (cgn == newsb->fs_ncg - 1) {
    512      1.25       riz 			if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
    513      1.25       riz 				cg->cg_old_ncyl = newsb->fs_old_ncyl %
    514      1.25       riz 				    newsb->fs_old_cpg;
    515      1.25       riz 		}
    516      1.25       riz 
    517      1.25       riz 		/* Set up the bitmap pointers.  We have to be careful
    518      1.25       riz 		 * to lay out the cg _exactly_ the way mkfs and fsck
    519      1.25       riz 		 * do it, since fsck compares the _entire_ cg against
    520      1.25       riz 		 * a recomputed cg, and whines if there is any
    521      1.25       riz 		 * mismatch, including the bitmap offsets. */
    522      1.25       riz 		/* XXX update this comment when fsck is fixed */
    523      1.25       riz 		cg->cg_old_btotoff = start;
    524      1.25       riz 		cg->cg_old_boff = cg->cg_old_btotoff
    525      1.25       riz 		    + (newsb->fs_old_cpg * sizeof(int32_t));
    526      1.25       riz 		cg->cg_iusedoff = cg->cg_old_boff +
    527      1.25       riz 		    (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
    528       1.1       jtk 	}
    529       1.1       jtk 	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
    530       1.1       jtk 	if (newsb->fs_contigsumsize > 0) {
    531       1.1       jtk 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
    532       1.1       jtk 		cg->cg_clustersumoff = cg->cg_freeoff +
    533      1.25       riz 		    howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t);
    534       1.1       jtk 		cg->cg_clustersumoff =
    535       1.1       jtk 		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
    536       1.1       jtk 		cg->cg_clusteroff = cg->cg_clustersumoff +
    537       1.1       jtk 		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
    538       1.1       jtk 		cg->cg_nextfreeoff = cg->cg_clusteroff +
    539      1.38  dholland 		    howmany(ffs_fragstoblks(newsb,newsb->fs_fpg), NBBY);
    540       1.1       jtk 		n = dlow / newsb->fs_frag;
    541       1.1       jtk 		if (n > 0) {
    542       1.1       jtk 			set_bits(cg_clustersfree(cg, 0), 0, n);
    543       1.1       jtk 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    544       1.1       jtk 			    newsb->fs_contigsumsize : n]++;
    545       1.1       jtk 		}
    546       1.1       jtk 	} else {
    547       1.1       jtk 		cg->cg_nextfreeoff = cg->cg_freeoff +
    548      1.25       riz 		    howmany(newsb->fs_fpg, NBBY);
    549       1.1       jtk 	}
    550       1.1       jtk 	/* Mark the data areas as free; everything else is marked busy by the
    551      1.25       riz 	 * memset() up at the top. */
    552       1.1       jtk 	set_bits(cg_blksfree(cg, 0), 0, dlow);
    553       1.1       jtk 	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
    554       1.1       jtk 	/* Initialize summary info */
    555       1.1       jtk 	cg->cg_cs.cs_ndir = 0;
    556       1.1       jtk 	cg->cg_cs.cs_nifree = newsb->fs_ipg;
    557       1.1       jtk 	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
    558       1.1       jtk 	cg->cg_cs.cs_nffree = 0;
    559      1.28  dholland 
    560      1.25       riz 	/* This is the simplest way of doing this; we perhaps could
    561      1.25       riz 	 * compute the correct cg_blktot()[] and cg_blks()[] values
    562      1.25       riz 	 * other ways, but it would be complicated and hardly seems
    563      1.25       riz 	 * worth the effort.  (The reason there isn't
    564      1.25       riz 	 * frag-at-beginning and frag-at-end code here, like the code
    565      1.25       riz 	 * below for the post-inode data area, is that the pre-sb data
    566      1.25       riz 	 * area always starts at 0, and thus is block-aligned, and
    567      1.25       riz 	 * always ends at the sb, which is block-aligned.) */
    568      1.50       kre 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
    569      1.49  riastrad 		int64_t di;
    570      1.50       kre 
    571      1.49  riastrad 		for (di = 0; di < dlow; di += newsb->fs_frag) {
    572      1.49  riastrad 			old_cg_blktot(cg, 0)[old_cbtocylno(newsb, di)]++;
    573      1.25       riz 			old_cg_blks(newsb, cg,
    574      1.49  riastrad 			    old_cbtocylno(newsb, di),
    575      1.49  riastrad 			    0)[old_cbtorpos(newsb, di)]++;
    576      1.25       riz 		}
    577      1.50       kre 	}
    578       1.1       jtk 
    579       1.1       jtk 	/* Deal with a partial block at the beginning of the post-inode area.
    580       1.1       jtk 	 * I'm not convinced this can happen - I think the inodes are always
    581       1.1       jtk 	 * block-aligned and always an integral number of blocks - but it's
    582       1.1       jtk 	 * cheap to do the right thing just in case. */
    583       1.1       jtk 	if (dhigh % newsb->fs_frag) {
    584       1.1       jtk 		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
    585       1.1       jtk 		cg->cg_frsum[n]++;
    586       1.1       jtk 		cg->cg_cs.cs_nffree += n;
    587       1.1       jtk 		dhigh += n;
    588       1.1       jtk 	}
    589       1.1       jtk 	n = (dmax - dhigh) / newsb->fs_frag;
    590       1.1       jtk 	/* We have n full-size blocks in the post-inode data area. */
    591       1.1       jtk 	if (n > 0) {
    592       1.1       jtk 		cg->cg_cs.cs_nbfree += n;
    593       1.1       jtk 		if (newsb->fs_contigsumsize > 0) {
    594       1.1       jtk 			i = dhigh / newsb->fs_frag;
    595       1.1       jtk 			set_bits(cg_clustersfree(cg, 0), i, n);
    596       1.1       jtk 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    597       1.1       jtk 			    newsb->fs_contigsumsize : n]++;
    598       1.1       jtk 		}
    599      1.53   mlelstv 		for (i = n; i > 0; i--) {
    600      1.53   mlelstv 			if (is_ufs2 == 0) {
    601      1.25       riz 				old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
    602      1.25       riz 					    dhigh)]++;
    603      1.25       riz 				old_cg_blks(newsb, cg,
    604      1.25       riz 				    old_cbtocylno(newsb, dhigh),
    605      1.25       riz 				    0)[old_cbtorpos(newsb,
    606      1.25       riz 					    dhigh)]++;
    607      1.25       riz 			}
    608      1.53   mlelstv 			dhigh += newsb->fs_frag;
    609      1.53   mlelstv 		}
    610      1.25       riz 	}
    611      1.51   mlelstv 	/* Deal with any leftover frag at the end of the cg. */
    612      1.51   mlelstv 	i = dmax - dhigh;
    613      1.51   mlelstv 	if (i) {
    614      1.51   mlelstv 		cg->cg_frsum[i]++;
    615      1.51   mlelstv 		cg->cg_cs.cs_nffree += i;
    616       1.1       jtk 	}
    617       1.1       jtk 	/* Update the csum info. */
    618       1.1       jtk 	csums[cgn] = cg->cg_cs;
    619       1.1       jtk 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
    620       1.1       jtk 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
    621       1.1       jtk 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
    622      1.47  dholland 	if (is_ufs2) {
    623      1.47  dholland 		/* Write out the cleared inodes. */
    624      1.47  dholland 		writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes2,
    625      1.47  dholland 		    cg->cg_initediblk * sizeof(*zinodes2));
    626      1.47  dholland 	} else {
    627      1.25       riz 		/* Write out the cleared inodes. */
    628      1.47  dholland 		writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes1,
    629      1.47  dholland 		    newsb->fs_ipg * sizeof(*zinodes1));
    630      1.47  dholland 	}
    631       1.1       jtk 	/* Dirty the cg. */
    632       1.1       jtk 	cgflags[cgn] |= CGF_DIRTY;
    633       1.1       jtk }
    634       1.1       jtk /*
    635       1.1       jtk  * Find free space, at least nfrags consecutive frags of it.  Pays no
    636       1.1       jtk  *  attention to block boundaries, but refuses to straddle cg
    637       1.1       jtk  *  boundaries, even if the disk blocks involved are in fact
    638       1.1       jtk  *  consecutive.  Return value is the frag number of the first frag of
    639       1.1       jtk  *  the block, or -1 if no space was found.  Uses newsb for sb values,
    640       1.1       jtk  *  and assumes the cgs[] structures correctly describe the area to be
    641       1.1       jtk  *  searched.
    642       1.1       jtk  *
    643       1.1       jtk  * XXX is there a bug lurking in the ignoring of block boundaries by
    644       1.1       jtk  *  the routine used by fragmove() in evict_data()?  Can an end-of-file
    645       1.1       jtk  *  frag legally straddle a block boundary?  If not, this should be
    646       1.1       jtk  *  cloned and fixed to stop at block boundaries for that use.  The
    647       1.1       jtk  *  current one may still be needed for csum info motion, in case that
    648       1.1       jtk  *  takes up more than a whole block (is the csum info allowed to begin
    649       1.1       jtk  *  partway through a block and continue into the following block?).
    650       1.1       jtk  *
    651      1.24       wiz  * If we wrap off the end of the file system back to the beginning, we
    652      1.24       wiz  *  can end up searching the end of the file system twice.  I ignore
    653       1.1       jtk  *  this inefficiency, since if that happens we're going to croak with
    654       1.1       jtk  *  a no-space error anyway, so it happens at most once.
    655       1.1       jtk  */
    656       1.1       jtk static int
    657       1.1       jtk find_freespace(unsigned int nfrags)
    658       1.1       jtk {
    659       1.1       jtk 	static int hand = 0;	/* hand rotates through all frags in the fs */
    660       1.1       jtk 	int cgsize;		/* size of the cg hand currently points into */
    661  1.57.2.1    martin 	uint32_t cgn;		/* number of cg hand currently points into */
    662       1.1       jtk 	int fwc;		/* frag-within-cg number of frag hand points
    663       1.1       jtk 				 * to */
    664      1.30  dholland 	unsigned int run;	/* length of run of free frags seen so far */
    665       1.1       jtk 	int secondpass;		/* have we wrapped from end of fs to
    666       1.1       jtk 				 * beginning? */
    667       1.1       jtk 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    668       1.1       jtk 
    669       1.1       jtk 	cgn = dtog(newsb, hand);
    670       1.1       jtk 	fwc = dtogd(newsb, hand);
    671       1.1       jtk 	secondpass = (hand == 0);
    672       1.1       jtk 	run = 0;
    673       1.1       jtk 	bits = cg_blksfree(cgs[cgn], 0);
    674       1.1       jtk 	cgsize = cgs[cgn]->cg_ndblk;
    675       1.1       jtk 	while (1) {
    676       1.1       jtk 		if (bit_is_set(bits, fwc)) {
    677       1.1       jtk 			run++;
    678       1.1       jtk 			if (run >= nfrags)
    679       1.1       jtk 				return (hand + 1 - run);
    680       1.1       jtk 		} else {
    681       1.1       jtk 			run = 0;
    682       1.1       jtk 		}
    683       1.1       jtk 		hand++;
    684       1.1       jtk 		fwc++;
    685       1.1       jtk 		if (fwc >= cgsize) {
    686       1.1       jtk 			fwc = 0;
    687       1.1       jtk 			cgn++;
    688       1.1       jtk 			if (cgn >= newsb->fs_ncg) {
    689       1.1       jtk 				hand = 0;
    690       1.1       jtk 				if (secondpass)
    691       1.1       jtk 					return (-1);
    692       1.1       jtk 				secondpass = 1;
    693       1.1       jtk 				cgn = 0;
    694       1.1       jtk 			}
    695       1.1       jtk 			bits = cg_blksfree(cgs[cgn], 0);
    696       1.1       jtk 			cgsize = cgs[cgn]->cg_ndblk;
    697       1.1       jtk 			run = 0;
    698       1.1       jtk 		}
    699       1.1       jtk 	}
    700       1.1       jtk }
    701       1.1       jtk /*
    702       1.1       jtk  * Find a free block of disk space.  Finds an entire block of frags,
    703       1.1       jtk  *  all of which are free.  Return value is the frag number of the
    704       1.1       jtk  *  first frag of the block, or -1 if no space was found.  Uses newsb
    705       1.1       jtk  *  for sb values, and assumes the cgs[] structures correctly describe
    706       1.1       jtk  *  the area to be searched.
    707       1.1       jtk  *
    708       1.1       jtk  * See find_freespace(), above, for remarks about hand wrapping around.
    709       1.1       jtk  */
    710       1.1       jtk static int
    711       1.1       jtk find_freeblock(void)
    712       1.1       jtk {
    713       1.1       jtk 	static int hand = 0;	/* hand rotates through all frags in fs */
    714  1.57.2.1    martin 	uint32_t cgn;		/* cg number of cg hand points into */
    715       1.1       jtk 	int fwc;		/* frag-within-cg number of frag hand points
    716       1.1       jtk 				 * to */
    717       1.1       jtk 	int cgsize;		/* size of cg hand points into */
    718       1.1       jtk 	int secondpass;		/* have we wrapped from end to beginning? */
    719       1.1       jtk 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    720       1.1       jtk 
    721       1.1       jtk 	cgn = dtog(newsb, hand);
    722       1.1       jtk 	fwc = dtogd(newsb, hand);
    723       1.1       jtk 	secondpass = (hand == 0);
    724       1.1       jtk 	bits = cg_blksfree(cgs[cgn], 0);
    725      1.38  dholland 	cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
    726       1.1       jtk 	while (1) {
    727       1.1       jtk 		if (blk_is_set(bits, fwc, newsb->fs_frag))
    728       1.1       jtk 			return (hand);
    729       1.1       jtk 		fwc += newsb->fs_frag;
    730       1.1       jtk 		hand += newsb->fs_frag;
    731       1.1       jtk 		if (fwc >= cgsize) {
    732       1.1       jtk 			fwc = 0;
    733       1.1       jtk 			cgn++;
    734       1.1       jtk 			if (cgn >= newsb->fs_ncg) {
    735       1.1       jtk 				hand = 0;
    736       1.1       jtk 				if (secondpass)
    737       1.1       jtk 					return (-1);
    738       1.1       jtk 				secondpass = 1;
    739       1.1       jtk 				cgn = 0;
    740       1.1       jtk 			}
    741       1.1       jtk 			bits = cg_blksfree(cgs[cgn], 0);
    742      1.38  dholland 			cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
    743       1.1       jtk 		}
    744       1.1       jtk 	}
    745       1.1       jtk }
    746       1.1       jtk /*
    747       1.1       jtk  * Find a free inode, returning its inumber or -1 if none was found.
    748       1.1       jtk  *  Uses newsb for sb values, and assumes the cgs[] structures
    749       1.1       jtk  *  correctly describe the area to be searched.
    750       1.1       jtk  *
    751       1.1       jtk  * See find_freespace(), above, for remarks about hand wrapping around.
    752       1.1       jtk  */
    753       1.1       jtk static int
    754       1.1       jtk find_freeinode(void)
    755       1.1       jtk {
    756       1.1       jtk 	static int hand = 0;	/* hand rotates through all inodes in fs */
    757  1.57.2.1    martin 	uint32_t cgn;		/* cg number of cg hand points into */
    758  1.57.2.1    martin 	uint32_t iwc;		/* inode-within-cg number of inode hand points
    759       1.1       jtk 				 * to */
    760       1.1       jtk 	int secondpass;		/* have we wrapped from end to beginning? */
    761       1.1       jtk 	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */
    762       1.1       jtk 
    763       1.1       jtk 	cgn = hand / newsb->fs_ipg;
    764       1.1       jtk 	iwc = hand % newsb->fs_ipg;
    765       1.1       jtk 	secondpass = (hand == 0);
    766       1.1       jtk 	bits = cg_inosused(cgs[cgn], 0);
    767       1.1       jtk 	while (1) {
    768       1.1       jtk 		if (bit_is_clr(bits, iwc))
    769       1.1       jtk 			return (hand);
    770       1.1       jtk 		hand++;
    771       1.1       jtk 		iwc++;
    772       1.1       jtk 		if (iwc >= newsb->fs_ipg) {
    773       1.1       jtk 			iwc = 0;
    774       1.1       jtk 			cgn++;
    775       1.1       jtk 			if (cgn >= newsb->fs_ncg) {
    776       1.1       jtk 				hand = 0;
    777       1.1       jtk 				if (secondpass)
    778       1.1       jtk 					return (-1);
    779       1.1       jtk 				secondpass = 1;
    780       1.1       jtk 				cgn = 0;
    781       1.1       jtk 			}
    782       1.1       jtk 			bits = cg_inosused(cgs[cgn], 0);
    783       1.1       jtk 		}
    784       1.1       jtk 	}
    785       1.1       jtk }
    786       1.1       jtk /*
    787       1.1       jtk  * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
    788       1.1       jtk  *  for the appropriate cg, and marks the cg as dirty.
    789       1.1       jtk  */
    790       1.1       jtk static void
    791       1.1       jtk free_frag(int fno)
    792       1.1       jtk {
    793       1.1       jtk 	int cgn;
    794       1.1       jtk 
    795       1.1       jtk 	cgn = dtog(newsb, fno);
    796       1.1       jtk 	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    797       1.1       jtk 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    798       1.1       jtk }
    799       1.1       jtk /*
    800       1.1       jtk  * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
    801       1.1       jtk  *  for the appropriate cg, and marks the cg as dirty.
    802       1.1       jtk  */
    803       1.1       jtk static void
    804       1.1       jtk alloc_frag(int fno)
    805       1.1       jtk {
    806       1.1       jtk 	int cgn;
    807       1.1       jtk 
    808       1.1       jtk 	cgn = dtog(newsb, fno);
    809       1.1       jtk 	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    810       1.1       jtk 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    811       1.1       jtk }
    812       1.1       jtk /*
    813       1.1       jtk  * Fix up the csum array.  If shrinking, this involves freeing zero or
    814       1.1       jtk  *  more frags; if growing, it involves allocating them, or if the
    815       1.1       jtk  *  frags being grown into aren't free, finding space elsewhere for the
    816       1.1       jtk  *  csum info.  (If the number of occupied frags doesn't change,
    817       1.1       jtk  *  nothing happens here.)
    818       1.1       jtk  */
    819       1.1       jtk static void
    820       1.1       jtk csum_fixup(void)
    821       1.1       jtk {
    822       1.1       jtk 	int nold;		/* # frags in old csum info */
    823       1.1       jtk 	int ntot;		/* # frags in new csum info */
    824       1.1       jtk 	int nnew;		/* ntot-nold */
    825       1.1       jtk 	int newloc;		/* new location for csum info, if necessary */
    826       1.1       jtk 	int i;			/* generic loop index */
    827       1.1       jtk 	int j;			/* generic loop index */
    828       1.1       jtk 	int f;			/* "from" frag number, if moving */
    829       1.1       jtk 	int t;			/* "to" frag number, if moving */
    830       1.1       jtk 	int cgn;		/* cg number, used when shrinking */
    831       1.1       jtk 
    832       1.1       jtk 	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
    833       1.1       jtk 	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
    834       1.1       jtk 	nnew = ntot - nold;
    835       1.1       jtk 	/* First, if there's no change in frag counts, it's easy. */
    836       1.1       jtk 	if (nnew == 0)
    837       1.1       jtk 		return;
    838       1.1       jtk 	/* Next, if we're shrinking, it's almost as easy.  Just free up any
    839       1.1       jtk 	 * frags in the old area we no longer need. */
    840       1.1       jtk 	if (nnew < 0) {
    841       1.1       jtk 		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
    842       1.1       jtk 		    j < 0;
    843       1.1       jtk 		    i--, j++) {
    844       1.1       jtk 			free_frag(i);
    845       1.1       jtk 		}
    846       1.1       jtk 		return;
    847       1.1       jtk 	}
    848       1.1       jtk 	/* We must be growing.  Check to see that the new csum area fits
    849      1.24       wiz 	 * within the file system.  I think this can never happen, since for
    850       1.1       jtk 	 * the csum area to grow, we must be adding at least one cg, so the
    851      1.24       wiz 	 * old csum area can't be this close to the end of the new file system.
    852       1.1       jtk 	 * But it's a cheap check. */
    853       1.1       jtk 	/* XXX what if csum info is at end of cg and grows into next cg, what
    854       1.1       jtk 	 * if it spills over onto the next cg's backup superblock?  Can this
    855       1.1       jtk 	 * happen? */
    856       1.1       jtk 	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
    857       1.1       jtk 		/* Okay, it fits - now,  see if the space we want is free. */
    858       1.1       jtk 		for ((i = newsb->fs_csaddr + nold), (j = nnew);
    859       1.1       jtk 		    j > 0;
    860       1.1       jtk 		    i++, j--) {
    861       1.1       jtk 			cgn = dtog(newsb, i);
    862       1.1       jtk 			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
    863       1.1       jtk 				dtogd(newsb, i)))
    864       1.1       jtk 				break;
    865       1.1       jtk 		}
    866       1.1       jtk 		if (j <= 0) {
    867       1.1       jtk 			/* Win win - all the frags we want are free. Allocate
    868       1.1       jtk 			 * 'em and we're all done.  */
    869      1.25       riz 			for ((i = newsb->fs_csaddr + ntot - nnew),
    870      1.25       riz 				 (j = nnew); j > 0; i++, j--) {
    871       1.1       jtk 				alloc_frag(i);
    872       1.1       jtk 			}
    873       1.1       jtk 			return;
    874       1.1       jtk 		}
    875       1.1       jtk 	}
    876       1.1       jtk 	/* We have to move the csum info, sigh.  Look for new space, free old
    877       1.1       jtk 	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
    878       1.1       jtk 	 * on disk at this point; the csum info will be written to the
    879       1.1       jtk 	 * then-current fs_csaddr as part of the final flush. */
    880       1.1       jtk 	newloc = find_freespace(ntot);
    881      1.32  christos 	if (newloc < 0)
    882      1.32  christos 		errx(EXIT_FAILURE, "Sorry, no space available for new csums");
    883       1.1       jtk 	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
    884       1.1       jtk 		if (i < nold) {
    885       1.1       jtk 			free_frag(f);
    886       1.1       jtk 		}
    887       1.1       jtk 		alloc_frag(t);
    888       1.1       jtk 	}
    889       1.1       jtk 	newsb->fs_csaddr = newloc;
    890       1.1       jtk }
    891       1.1       jtk /*
    892       1.1       jtk  * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
    893       1.1       jtk  *  data blocks in that cg to the total.
    894       1.1       jtk  */
    895       1.1       jtk static void
    896       1.1       jtk recompute_fs_dsize(void)
    897       1.1       jtk {
    898  1.57.2.1    martin 	uint32_t i;
    899       1.1       jtk 
    900       1.1       jtk 	newsb->fs_dsize = 0;
    901       1.1       jtk 	for (i = 0; i < newsb->fs_ncg; i++) {
    902      1.48  sborrill 		int64_t dlow;	/* size of before-sb data area */
    903      1.48  sborrill 		int64_t dhigh;	/* offset of post-inode data area */
    904      1.48  sborrill 		int64_t dmax;	/* total size of cg */
    905      1.48  sborrill 		int64_t base;	/* base of cg, since cgsblock() etc add it in */
    906       1.1       jtk 		base = cgbase(newsb, i);
    907       1.1       jtk 		dlow = cgsblock(newsb, i) - base;
    908       1.1       jtk 		dhigh = cgdmin(newsb, i) - base;
    909       1.1       jtk 		dmax = newsb->fs_size - base;
    910       1.1       jtk 		if (dmax > newsb->fs_fpg)
    911       1.1       jtk 			dmax = newsb->fs_fpg;
    912       1.1       jtk 		newsb->fs_dsize += dlow + dmax - dhigh;
    913       1.1       jtk 	}
    914       1.1       jtk 	/* Space in cg 0 before cgsblock is boot area, not free space! */
    915       1.1       jtk 	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
    916       1.1       jtk 	/* And of course the csum info takes up space. */
    917       1.1       jtk 	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
    918       1.1       jtk }
    919       1.1       jtk /*
    920       1.1       jtk  * Return the current time.  We call this and assign, rather than
    921       1.1       jtk  *  calling time() directly, as insulation against OSes where fs_time
    922       1.1       jtk  *  is not a time_t.
    923       1.1       jtk  */
    924       1.1       jtk static time_t
    925       1.1       jtk timestamp(void)
    926       1.1       jtk {
    927       1.1       jtk 	time_t t;
    928       1.1       jtk 
    929       1.1       jtk 	time(&t);
    930       1.1       jtk 	return (t);
    931       1.1       jtk }
    932      1.43   mlelstv 
    933       1.1       jtk /*
    934      1.43   mlelstv  * Calculate new filesystem geometry
    935      1.43   mlelstv  *  return 0 if geometry actually changed
    936       1.1       jtk  */
    937      1.43   mlelstv static int
    938      1.43   mlelstv makegeometry(int chatter)
    939       1.1       jtk {
    940       1.1       jtk 
    941       1.1       jtk 	/* Update the size. */
    942      1.36  dholland 	newsb->fs_size = FFS_DBTOFSB(newsb, newsize);
    943      1.25       riz 	if (is_ufs2)
    944      1.25       riz 		newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
    945      1.25       riz 	else {
    946      1.25       riz 		/* Update fs_old_ncyl and fs_ncg. */
    947      1.25       riz 		newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
    948      1.25       riz 		    newsb->fs_old_spc);
    949      1.25       riz 		newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
    950      1.25       riz 	}
    951      1.28  dholland 
    952       1.1       jtk 	/* Does the last cg end before the end of its inode area? There is no
    953       1.1       jtk 	 * reason why this couldn't be handled, but it would complicate a lot
    954      1.24       wiz 	 * of code (in all file system code - fsck, kernel, etc) because of the
    955       1.1       jtk 	 * potential partial inode area, and the gain in space would be
    956       1.1       jtk 	 * minimal, at most the pre-sb data area. */
    957       1.1       jtk 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
    958       1.1       jtk 		newsb->fs_ncg--;
    959      1.42   mlelstv 		if (is_ufs2)
    960      1.42   mlelstv 			newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg;
    961      1.42   mlelstv 		else {
    962      1.42   mlelstv 			newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
    963      1.42   mlelstv 			newsb->fs_size = (newsb->fs_old_ncyl *
    964      1.42   mlelstv 				newsb->fs_old_spc) / NSPF(newsb);
    965      1.42   mlelstv 		}
    966      1.43   mlelstv 		if (chatter || verbose) {
    967      1.43   mlelstv 			printf("Warning: last cylinder group is too small;\n");
    968      1.43   mlelstv 			printf("    dropping it.  New size = %lu.\n",
    969      1.43   mlelstv 			(unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size));
    970      1.43   mlelstv 		}
    971      1.43   mlelstv 	}
    972      1.43   mlelstv 
    973      1.43   mlelstv 	/* Did we actually not grow?  (This can happen if newsize is less than
    974      1.43   mlelstv 	 * a frag larger than the old size - unlikely, but no excuse to
    975      1.43   mlelstv 	 * misbehave if it happens.) */
    976      1.43   mlelstv 	if (newsb->fs_size == oldsb->fs_size)
    977      1.43   mlelstv 		return 1;
    978      1.43   mlelstv 
    979      1.43   mlelstv 	return 0;
    980      1.43   mlelstv }
    981      1.43   mlelstv 
    982      1.43   mlelstv 
    983      1.43   mlelstv /*
    984      1.43   mlelstv  * Grow the file system.
    985      1.43   mlelstv  */
    986      1.43   mlelstv static void
    987      1.43   mlelstv grow(void)
    988      1.43   mlelstv {
    989  1.57.2.1    martin 	uint32_t i;
    990      1.43   mlelstv 
    991      1.43   mlelstv 	if (makegeometry(1)) {
    992      1.43   mlelstv 		printf("New fs size %"PRIu64" = old fs size %"PRIu64
    993      1.43   mlelstv 		    ", not growing.\n", newsb->fs_size, oldsb->fs_size);
    994      1.43   mlelstv 		return;
    995       1.1       jtk 	}
    996      1.43   mlelstv 
    997      1.43   mlelstv 	if (verbose) {
    998      1.43   mlelstv 		printf("Growing fs from %"PRIu64" blocks to %"PRIu64
    999      1.43   mlelstv 		    " blocks.\n", oldsb->fs_size, newsb->fs_size);
   1000      1.43   mlelstv 	}
   1001      1.43   mlelstv 
   1002      1.43   mlelstv 	/* Update the timestamp. */
   1003      1.43   mlelstv 	newsb->fs_time = timestamp();
   1004      1.43   mlelstv 	/* Allocate and clear the new-inode area, in case we add any cgs. */
   1005      1.47  dholland 	if (is_ufs2) {
   1006      1.47  dholland 		zinodes2 = alloconce(newsb->fs_ipg * sizeof(*zinodes2),
   1007      1.47  dholland 			"zeroed inodes");
   1008      1.47  dholland 		memset(zinodes2, 0, newsb->fs_ipg * sizeof(*zinodes2));
   1009      1.47  dholland 	} else {
   1010      1.47  dholland 		zinodes1 = alloconce(newsb->fs_ipg * sizeof(*zinodes1),
   1011      1.47  dholland 			"zeroed inodes");
   1012      1.47  dholland 		memset(zinodes1, 0, newsb->fs_ipg * sizeof(*zinodes1));
   1013      1.47  dholland 	}
   1014      1.43   mlelstv 
   1015      1.43   mlelstv 	/* Check that the new last sector (frag, actually) is writable.  Since
   1016      1.43   mlelstv 	 * it's at least one frag larger than it used to be, we know we aren't
   1017      1.43   mlelstv 	 * overwriting anything important by this.  (The choice of sbbuf as
   1018      1.43   mlelstv 	 * what to write is irrelevant; it's just something handy that's known
   1019      1.43   mlelstv 	 * to be at least one frag in size.) */
   1020      1.43   mlelstv 	writeat(FFS_FSBTODB(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
   1021      1.43   mlelstv 
   1022       1.1       jtk 	/* Find out how big the csum area is, and realloc csums if bigger. */
   1023      1.37  dholland 	newsb->fs_cssize = ffs_fragroundup(newsb,
   1024       1.1       jtk 	    newsb->fs_ncg * sizeof(struct csum));
   1025       1.1       jtk 	if (newsb->fs_cssize > oldsb->fs_cssize)
   1026       1.1       jtk 		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
   1027      1.25       riz 	/* If we're adding any cgs, realloc structures and set up the new
   1028      1.25       riz 	   cgs. */
   1029       1.1       jtk 	if (newsb->fs_ncg > oldsb->fs_ncg) {
   1030       1.1       jtk 		char *cgp;
   1031      1.32  christos 		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(*cgs),
   1032       1.1       jtk                                 "cg pointers");
   1033       1.1       jtk 		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
   1034      1.25       riz 		memset(cgflags + oldsb->fs_ncg, 0,
   1035      1.25       riz 		    newsb->fs_ncg - oldsb->fs_ncg);
   1036       1.1       jtk 		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
   1037       1.1       jtk                                 "cgs");
   1038       1.1       jtk 		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
   1039       1.1       jtk 			cgs[i] = (struct cg *) cgp;
   1040      1.44  jmcneill 			progress_bar(special, "grow cg",
   1041      1.44  jmcneill 			    i - oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
   1042       1.1       jtk 			initcg(i);
   1043       1.1       jtk 			cgp += cgblksz;
   1044       1.1       jtk 		}
   1045       1.4  christos 		cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
   1046       1.1       jtk 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
   1047       1.1       jtk 	}
   1048       1.1       jtk 	/* If the old fs ended partway through a cg, we have to update the old
   1049       1.1       jtk 	 * last cg (though possibly not to a full cg!). */
   1050       1.1       jtk 	if (oldsb->fs_size % oldsb->fs_fpg) {
   1051       1.1       jtk 		struct cg *cg;
   1052      1.51   mlelstv 		int64_t newcgsize;
   1053      1.51   mlelstv 		int64_t prevcgtop;
   1054      1.51   mlelstv 		int64_t oldcgsize;
   1055       1.1       jtk 		cg = cgs[oldsb->fs_ncg - 1];
   1056       1.1       jtk 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
   1057       1.1       jtk 		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
   1058       1.1       jtk 		newcgsize = newsb->fs_size - prevcgtop;
   1059       1.1       jtk 		if (newcgsize > newsb->fs_fpg)
   1060       1.1       jtk 			newcgsize = newsb->fs_fpg;
   1061       1.1       jtk 		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
   1062       1.1       jtk 		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
   1063      1.20    mhitch 		cg->cg_old_ncyl = oldsb->fs_old_cpg;
   1064       1.1       jtk 		cg->cg_ndblk = newcgsize;
   1065       1.1       jtk 	}
   1066       1.1       jtk 	/* Fix up the csum info, if necessary. */
   1067       1.1       jtk 	csum_fixup();
   1068       1.1       jtk 	/* Make fs_dsize match the new reality. */
   1069       1.1       jtk 	recompute_fs_dsize();
   1070      1.44  jmcneill 
   1071      1.44  jmcneill 	progress_done();
   1072       1.1       jtk }
   1073       1.1       jtk /*
   1074       1.1       jtk  * Call (*fn)() for each inode, passing the inode and its inumber.  The
   1075      1.56    andvar  *  number of cylinder groups is passed in, so this can be used to map
   1076      1.24       wiz  *  over either the old or the new file system's set of inodes.
   1077       1.1       jtk  */
   1078       1.1       jtk static void
   1079      1.25       riz map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg),
   1080      1.15       riz 	   int ncg, void *cbarg) {
   1081       1.1       jtk 	int i;
   1082       1.1       jtk 	int ni;
   1083       1.1       jtk 
   1084       1.1       jtk 	ni = oldsb->fs_ipg * ncg;
   1085       1.1       jtk 	for (i = 0; i < ni; i++)
   1086       1.1       jtk 		(*fn) (inodes + i, i, cbarg);
   1087       1.1       jtk }
   1088       1.1       jtk /* Values for the third argument to the map function for
   1089       1.1       jtk  * map_inode_data_blocks.  MDB_DATA indicates the block is contains
   1090       1.1       jtk  * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
   1091       1.1       jtk  * indirect block.  The MDB_INDIR_PRE call is made before the indirect
   1092       1.1       jtk  * block pointers are followed and the pointed-to blocks scanned,
   1093       1.1       jtk  * MDB_INDIR_POST after.
   1094       1.1       jtk  */
   1095       1.1       jtk #define MDB_DATA       1
   1096       1.1       jtk #define MDB_INDIR_PRE  2
   1097       1.1       jtk #define MDB_INDIR_POST 3
   1098       1.1       jtk 
   1099      1.30  dholland typedef void (*mark_callback_t) (off_t blocknum, unsigned int nfrags,
   1100      1.15       riz 				 unsigned int blksize, int opcode);
   1101       1.1       jtk 
   1102       1.1       jtk /* Helper function - handles a data block.  Calls the callback
   1103       1.1       jtk  * function and returns number of bytes occupied in file (actually,
   1104       1.1       jtk  * rounded up to a frag boundary).  The name is historical.  */
   1105       1.1       jtk static int
   1106      1.30  dholland markblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o)
   1107       1.1       jtk {
   1108       1.1       jtk 	int sz;
   1109       1.1       jtk 	int nb;
   1110      1.30  dholland 	off_t filesize;
   1111      1.26  dholland 
   1112      1.30  dholland 	filesize = DIP(di,di_size);
   1113      1.30  dholland 	if (o >= filesize)
   1114       1.1       jtk 		return (0);
   1115      1.37  dholland 	sz = dblksize(newsb, di, ffs_lblkno(newsb, o), filesize);
   1116      1.30  dholland 	nb = (sz > filesize - o) ? filesize - o : sz;
   1117       1.1       jtk 	if (bn)
   1118      1.37  dholland 		(*fn) (bn, ffs_numfrags(newsb, sz), nb, MDB_DATA);
   1119       1.1       jtk 	return (sz);
   1120       1.1       jtk }
   1121       1.1       jtk /* Helper function - handles an indirect block.  Makes the
   1122       1.1       jtk  * MDB_INDIR_PRE callback for the indirect block, loops over the
   1123       1.1       jtk  * pointers and recurses, and makes the MDB_INDIR_POST callback.
   1124       1.1       jtk  * Returns the number of bytes occupied in file, as does markblk().
   1125       1.1       jtk  * For the sake of update_for_data_move(), we read the indirect block
   1126       1.1       jtk  * _after_ making the _PRE callback.  The name is historical.  */
   1127      1.51   mlelstv static off_t
   1128      1.30  dholland markiblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o, int lev)
   1129       1.1       jtk {
   1130       1.1       jtk 	int i;
   1131      1.30  dholland 	unsigned k;
   1132      1.51   mlelstv 	off_t j, tot;
   1133       1.2    martin 	static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
   1134       1.2    martin 	static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
   1135       1.2    martin 	static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
   1136       1.2    martin 	static int32_t *indirblks[3] = {
   1137       1.1       jtk 		&indirblk1[0], &indirblk2[0], &indirblk3[0]
   1138       1.1       jtk 	};
   1139      1.26  dholland 
   1140       1.1       jtk 	if (lev < 0)
   1141       1.1       jtk 		return (markblk(fn, di, bn, o));
   1142       1.1       jtk 	if (bn == 0) {
   1143      1.51   mlelstv 		for (j = newsb->fs_bsize;
   1144       1.1       jtk 		    lev >= 0;
   1145      1.51   mlelstv 		    j *= FFS_NINDIR(newsb), lev--);
   1146      1.51   mlelstv 		return (j);
   1147       1.1       jtk 	}
   1148       1.1       jtk 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
   1149      1.36  dholland 	readat(FFS_FSBTODB(newsb, bn), indirblks[lev], newsb->fs_bsize);
   1150      1.25       riz 	if (needswap)
   1151      1.30  dholland 		for (k = 0; k < howmany(MAXBSIZE, sizeof(int32_t)); k++)
   1152      1.30  dholland 			indirblks[lev][k] = bswap32(indirblks[lev][k]);
   1153       1.1       jtk 	tot = 0;
   1154      1.35  dholland 	for (i = 0; i < FFS_NINDIR(newsb); i++) {
   1155       1.1       jtk 		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
   1156       1.1       jtk 		if (j == 0)
   1157       1.1       jtk 			break;
   1158       1.1       jtk 		o += j;
   1159       1.1       jtk 		tot += j;
   1160       1.1       jtk 	}
   1161       1.1       jtk 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
   1162       1.1       jtk 	return (tot);
   1163       1.1       jtk }
   1164       1.1       jtk 
   1165       1.1       jtk 
   1166       1.1       jtk /*
   1167       1.1       jtk  * Call (*fn)() for each data block for an inode.  This routine assumes
   1168       1.1       jtk  *  the inode is known to be of a type that has data blocks (file,
   1169       1.1       jtk  *  directory, or non-fast symlink).  The called function is:
   1170       1.1       jtk  *
   1171       1.1       jtk  * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
   1172       1.1       jtk  *
   1173       1.1       jtk  *  where blkno is the frag number, nf is the number of frags starting
   1174       1.1       jtk  *  at blkno (always <= fs_frag), nb is the number of bytes that belong
   1175       1.1       jtk  *  to the file (usually nf*fs_frag, often less for the last block/frag
   1176       1.1       jtk  *  of a file).
   1177       1.1       jtk  */
   1178       1.1       jtk static void
   1179      1.25       riz map_inode_data_blocks(union dinode * di, mark_callback_t fn)
   1180       1.1       jtk {
   1181       1.1       jtk 	off_t o;		/* offset within  inode */
   1182      1.51   mlelstv 	off_t inc;		/* increment for o */
   1183       1.1       jtk 	int b;			/* index within di_db[] and di_ib[] arrays */
   1184       1.1       jtk 
   1185       1.1       jtk 	/* Scan the direct blocks... */
   1186       1.1       jtk 	o = 0;
   1187      1.34  dholland 	for (b = 0; b < UFS_NDADDR; b++) {
   1188      1.25       riz 		inc = markblk(fn, di, DIP(di,di_db[b]), o);
   1189       1.1       jtk 		if (inc == 0)
   1190       1.1       jtk 			break;
   1191       1.1       jtk 		o += inc;
   1192       1.1       jtk 	}
   1193       1.1       jtk 	/* ...and the indirect blocks. */
   1194       1.1       jtk 	if (inc) {
   1195      1.34  dholland 		for (b = 0; b < UFS_NIADDR; b++) {
   1196      1.25       riz 			inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b);
   1197       1.1       jtk 			if (inc == 0)
   1198       1.1       jtk 				return;
   1199       1.1       jtk 			o += inc;
   1200       1.1       jtk 		}
   1201       1.1       jtk 	}
   1202       1.1       jtk }
   1203       1.1       jtk 
   1204       1.1       jtk static void
   1205      1.25       riz dblk_callback(union dinode * di, unsigned int inum, void *arg)
   1206       1.1       jtk {
   1207       1.1       jtk 	mark_callback_t fn;
   1208      1.30  dholland 	off_t filesize;
   1209      1.26  dholland 
   1210      1.30  dholland 	filesize = DIP(di,di_size);
   1211       1.1       jtk 	fn = (mark_callback_t) arg;
   1212      1.25       riz 	switch (DIP(di,di_mode) & IFMT) {
   1213       1.1       jtk 	case IFLNK:
   1214      1.31  dholland 		if (filesize <= newsb->fs_maxsymlinklen) {
   1215      1.31  dholland 			break;
   1216      1.31  dholland 		}
   1217      1.31  dholland 		/* FALLTHROUGH */
   1218       1.1       jtk 	case IFDIR:
   1219       1.1       jtk 	case IFREG:
   1220      1.31  dholland 		map_inode_data_blocks(di, fn);
   1221       1.1       jtk 		break;
   1222       1.1       jtk 	}
   1223       1.1       jtk }
   1224       1.1       jtk /*
   1225       1.1       jtk  * Make a callback call, a la map_inode_data_blocks, for all data
   1226       1.1       jtk  *  blocks in the entire fs.  This is used only once, in
   1227       1.1       jtk  *  update_for_data_move, but it's out at top level because the complex
   1228       1.1       jtk  *  downward-funarg nesting that would otherwise result seems to give
   1229       1.1       jtk  *  gcc gastric distress.
   1230       1.1       jtk  */
   1231       1.1       jtk static void
   1232       1.1       jtk map_data_blocks(mark_callback_t fn, int ncg)
   1233       1.1       jtk {
   1234       1.1       jtk 	map_inodes(&dblk_callback, ncg, (void *) fn);
   1235       1.1       jtk }
   1236       1.1       jtk /*
   1237       1.1       jtk  * Initialize the blkmove array.
   1238       1.1       jtk  */
   1239       1.1       jtk static void
   1240       1.1       jtk blkmove_init(void)
   1241       1.1       jtk {
   1242       1.1       jtk 	int i;
   1243       1.1       jtk 
   1244       1.1       jtk 	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
   1245       1.1       jtk 	for (i = 0; i < oldsb->fs_size; i++)
   1246       1.1       jtk 		blkmove[i] = i;
   1247       1.1       jtk }
   1248       1.1       jtk /*
   1249       1.1       jtk  * Load the inodes off disk.  Allocates the structures and initializes
   1250       1.1       jtk  *  them - the inodes from disk, the flags to zero.
   1251       1.1       jtk  */
   1252       1.1       jtk static void
   1253       1.1       jtk loadinodes(void)
   1254       1.1       jtk {
   1255  1.57.2.1    martin 	int imax, ino, j;
   1256  1.57.2.1    martin 	uint32_t i;
   1257      1.25       riz 	struct ufs1_dinode *dp1 = NULL;
   1258      1.25       riz 	struct ufs2_dinode *dp2 = NULL;
   1259      1.28  dholland 
   1260      1.25       riz 	/* read inodes one fs block at a time and copy them */
   1261       1.1       jtk 
   1262      1.15       riz 	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
   1263      1.25       riz 	    sizeof(union dinode), "inodes");
   1264       1.1       jtk 	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
   1265      1.25       riz 	memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg);
   1266      1.28  dholland 
   1267      1.25       riz 	ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf");
   1268      1.25       riz 	if (is_ufs2)
   1269      1.25       riz 		dp2 = (struct ufs2_dinode *)ibuf;
   1270      1.25       riz 	else
   1271      1.25       riz 		dp1 = (struct ufs1_dinode *)ibuf;
   1272      1.28  dholland 
   1273      1.25       riz 	for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) {
   1274      1.36  dholland 		readat(FFS_FSBTODB(oldsb, ino_to_fsba(oldsb, ino)), ibuf,
   1275      1.25       riz 		    oldsb->fs_bsize);
   1276      1.25       riz 
   1277      1.25       riz 		for (i = 0; i < oldsb->fs_inopb; i++) {
   1278      1.25       riz 			if (is_ufs2) {
   1279      1.25       riz 				if (needswap) {
   1280      1.25       riz 					ffs_dinode2_swap(&(dp2[i]), &(dp2[i]));
   1281      1.45  christos 					for (j = 0; j < UFS_NDADDR; j++)
   1282      1.25       riz 						dp2[i].di_db[j] =
   1283      1.25       riz 						    bswap32(dp2[i].di_db[j]);
   1284      1.45  christos 					for (j = 0; j < UFS_NIADDR; j++)
   1285      1.45  christos 						dp2[i].di_ib[j] =
   1286      1.45  christos 						    bswap32(dp2[i].di_ib[j]);
   1287      1.25       riz 				}
   1288      1.25       riz 				memcpy(&inodes[ino].dp2, &dp2[i],
   1289      1.32  christos 				    sizeof(inodes[ino].dp2));
   1290      1.25       riz 			} else {
   1291      1.25       riz 				if (needswap) {
   1292      1.25       riz 					ffs_dinode1_swap(&(dp1[i]), &(dp1[i]));
   1293      1.46  christos 					for (j = 0; j < UFS_NDADDR; j++)
   1294      1.25       riz 						dp1[i].di_db[j] =
   1295      1.25       riz 						    bswap32(dp1[i].di_db[j]);
   1296      1.45  christos 					for (j = 0; j < UFS_NIADDR; j++)
   1297      1.45  christos 						dp1[i].di_ib[j] =
   1298      1.45  christos 						    bswap32(dp1[i].di_ib[j]);
   1299      1.25       riz 				}
   1300      1.25       riz 				memcpy(&inodes[ino].dp1, &dp1[i],
   1301      1.32  christos 				    sizeof(inodes[ino].dp1));
   1302      1.25       riz 			}
   1303      1.25       riz 			    if (++ino > imax)
   1304      1.25       riz 				    errx(EXIT_FAILURE,
   1305      1.25       riz 					"Exceeded number of inodes");
   1306      1.25       riz 		}
   1307      1.25       riz 
   1308       1.1       jtk 	}
   1309       1.1       jtk }
   1310       1.1       jtk /*
   1311      1.24       wiz  * Report a file-system-too-full problem.
   1312       1.1       jtk  */
   1313      1.32  christos __dead static void
   1314       1.1       jtk toofull(void)
   1315       1.1       jtk {
   1316      1.32  christos 	errx(EXIT_FAILURE, "Sorry, would run out of data blocks");
   1317       1.1       jtk }
   1318       1.1       jtk /*
   1319       1.1       jtk  * Record a desire to move "n" frags from "from" to "to".
   1320       1.1       jtk  */
   1321       1.1       jtk static void
   1322       1.1       jtk mark_move(unsigned int from, unsigned int to, unsigned int n)
   1323       1.1       jtk {
   1324       1.1       jtk 	for (; n > 0; n--)
   1325       1.1       jtk 		blkmove[from++] = to++;
   1326       1.1       jtk }
   1327       1.1       jtk /* Helper function - evict n frags, starting with start (cg-relative).
   1328       1.1       jtk  * The free bitmap is scanned, unallocated frags are ignored, and
   1329       1.1       jtk  * each block of consecutive allocated frags is moved as a unit.
   1330       1.1       jtk  */
   1331       1.1       jtk static void
   1332      1.51   mlelstv fragmove(struct cg * cg, int64_t base, unsigned int start, unsigned int n)
   1333       1.1       jtk {
   1334      1.30  dholland 	unsigned int i;
   1335       1.1       jtk 	int run;
   1336      1.26  dholland 
   1337       1.1       jtk 	run = 0;
   1338       1.1       jtk 	for (i = 0; i <= n; i++) {
   1339       1.1       jtk 		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
   1340       1.1       jtk 			run++;
   1341       1.1       jtk 		} else {
   1342       1.1       jtk 			if (run > 0) {
   1343       1.1       jtk 				int off;
   1344       1.1       jtk 				off = find_freespace(run);
   1345       1.1       jtk 				if (off < 0)
   1346       1.1       jtk 					toofull();
   1347       1.1       jtk 				mark_move(base + start + i - run, off, run);
   1348       1.1       jtk 				set_bits(cg_blksfree(cg, 0), start + i - run,
   1349       1.1       jtk 				    run);
   1350       1.1       jtk 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1351       1.1       jtk 				    dtogd(oldsb, off), run);
   1352       1.1       jtk 			}
   1353       1.1       jtk 			run = 0;
   1354       1.1       jtk 		}
   1355       1.1       jtk 	}
   1356       1.1       jtk }
   1357       1.1       jtk /*
   1358       1.1       jtk  * Evict all data blocks from the given cg, starting at minfrag (based
   1359       1.1       jtk  *  at the beginning of the cg), for length nfrag.  The eviction is
   1360       1.1       jtk  *  assumed to be entirely data-area; this should not be called with a
   1361       1.1       jtk  *  range overlapping the metadata structures in the cg.  It also
   1362       1.1       jtk  *  assumes minfrag points into the given cg; it will misbehave if this
   1363       1.1       jtk  *  is not true.
   1364       1.1       jtk  *
   1365       1.1       jtk  * See the comment header on find_freespace() for one possible bug
   1366       1.1       jtk  *  lurking here.
   1367       1.1       jtk  */
   1368       1.1       jtk static void
   1369      1.30  dholland evict_data(struct cg * cg, unsigned int minfrag, int nfrag)
   1370       1.1       jtk {
   1371      1.48  sborrill 	int64_t base;	/* base of cg (in frags from beginning of fs) */
   1372       1.1       jtk 
   1373       1.1       jtk 	base = cgbase(oldsb, cg->cg_cgx);
   1374      1.25       riz 	/* Does the boundary fall in the middle of a block?  To avoid
   1375      1.25       riz 	 * breaking between frags allocated as consecutive, we always
   1376      1.25       riz 	 * evict the whole block in this case, though one could argue
   1377      1.25       riz 	 * we should check to see if the frag before or after the
   1378      1.25       riz 	 * break is unallocated. */
   1379       1.1       jtk 	if (minfrag % oldsb->fs_frag) {
   1380       1.1       jtk 		int n;
   1381       1.1       jtk 		n = minfrag % oldsb->fs_frag;
   1382       1.1       jtk 		minfrag -= n;
   1383       1.1       jtk 		nfrag += n;
   1384       1.1       jtk 	}
   1385      1.25       riz 	/* Do whole blocks.  If a block is wholly free, skip it; if
   1386      1.25       riz 	 * wholly allocated, move it in toto.  If neither, call
   1387      1.25       riz 	 * fragmove() to move the frags to new locations. */
   1388       1.1       jtk 	while (nfrag >= oldsb->fs_frag) {
   1389       1.1       jtk 		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
   1390       1.1       jtk 			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
   1391       1.1       jtk 				oldsb->fs_frag)) {
   1392       1.1       jtk 				int off;
   1393       1.1       jtk 				off = find_freeblock();
   1394       1.1       jtk 				if (off < 0)
   1395       1.1       jtk 					toofull();
   1396       1.1       jtk 				mark_move(base + minfrag, off, oldsb->fs_frag);
   1397       1.1       jtk 				set_bits(cg_blksfree(cg, 0), minfrag,
   1398       1.1       jtk 				    oldsb->fs_frag);
   1399       1.1       jtk 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1400       1.1       jtk 				    dtogd(oldsb, off), oldsb->fs_frag);
   1401       1.1       jtk 			} else {
   1402       1.1       jtk 				fragmove(cg, base, minfrag, oldsb->fs_frag);
   1403       1.1       jtk 			}
   1404       1.1       jtk 		}
   1405       1.1       jtk 		minfrag += oldsb->fs_frag;
   1406       1.1       jtk 		nfrag -= oldsb->fs_frag;
   1407       1.1       jtk 	}
   1408       1.1       jtk 	/* Clean up any sub-block amount left over. */
   1409       1.1       jtk 	if (nfrag) {
   1410       1.1       jtk 		fragmove(cg, base, minfrag, nfrag);
   1411       1.1       jtk 	}
   1412       1.1       jtk }
   1413       1.1       jtk /*
   1414       1.1       jtk  * Move all data blocks according to blkmove.  We have to be careful,
   1415       1.1       jtk  *  because we may be updating indirect blocks that will themselves be
   1416       1.2    martin  *  getting moved, or inode int32_t arrays that point to indirect
   1417       1.1       jtk  *  blocks that will be moved.  We call this before
   1418       1.1       jtk  *  update_for_data_move, and update_for_data_move does inodes first,
   1419       1.1       jtk  *  then indirect blocks in preorder, so as to make sure that the
   1420      1.24       wiz  *  file system is self-consistent at all points, for better crash
   1421       1.1       jtk  *  tolerance.  (We can get away with this only because all the writes
   1422       1.1       jtk  *  done by perform_data_move() are writing into space that's not used
   1423      1.24       wiz  *  by the old file system.)  If we crash, some things may point to the
   1424       1.1       jtk  *  old data and some to the new, but both copies are the same.  The
   1425       1.1       jtk  *  only wrong things should be csum info and free bitmaps, which fsck
   1426       1.1       jtk  *  is entirely capable of cleaning up.
   1427       1.1       jtk  *
   1428       1.1       jtk  * Since blkmove_init() initializes all blocks to move to their current
   1429       1.1       jtk  *  locations, we can have two blocks marked as wanting to move to the
   1430       1.1       jtk  *  same location, but only two and only when one of them is the one
   1431       1.1       jtk  *  that was already there.  So if blkmove[i]==i, we ignore that entry
   1432       1.1       jtk  *  entirely - for unallocated blocks, we don't want it (and may be
   1433       1.1       jtk  *  putting something else there), and for allocated blocks, we don't
   1434       1.1       jtk  *  want to copy it anywhere.
   1435       1.1       jtk  */
   1436       1.1       jtk static void
   1437       1.1       jtk perform_data_move(void)
   1438       1.1       jtk {
   1439       1.1       jtk 	int i;
   1440       1.1       jtk 	int run;
   1441       1.1       jtk 	int maxrun;
   1442       1.1       jtk 	char buf[65536];
   1443       1.1       jtk 
   1444       1.1       jtk 	maxrun = sizeof(buf) / newsb->fs_fsize;
   1445       1.1       jtk 	run = 0;
   1446       1.1       jtk 	for (i = 0; i < oldsb->fs_size; i++) {
   1447      1.30  dholland 		if ((blkmove[i] == (unsigned)i /*XXX cast*/) ||
   1448       1.1       jtk 		    (run >= maxrun) ||
   1449       1.1       jtk 		    ((run > 0) &&
   1450       1.1       jtk 			(blkmove[i] != blkmove[i - 1] + 1))) {
   1451       1.1       jtk 			if (run > 0) {
   1452      1.36  dholland 				readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
   1453       1.1       jtk 				    run << oldsb->fs_fshift);
   1454      1.36  dholland 				writeat(FFS_FSBTODB(oldsb, blkmove[i - run]),
   1455       1.1       jtk 				    &buf[0], run << oldsb->fs_fshift);
   1456       1.1       jtk 			}
   1457       1.1       jtk 			run = 0;
   1458       1.1       jtk 		}
   1459      1.30  dholland 		if (blkmove[i] != (unsigned)i /*XXX cast*/)
   1460       1.1       jtk 			run++;
   1461       1.1       jtk 	}
   1462       1.1       jtk 	if (run > 0) {
   1463      1.36  dholland 		readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
   1464       1.1       jtk 		    run << oldsb->fs_fshift);
   1465      1.36  dholland 		writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), &buf[0],
   1466       1.1       jtk 		    run << oldsb->fs_fshift);
   1467       1.1       jtk 	}
   1468       1.1       jtk }
   1469       1.1       jtk /*
   1470       1.2    martin  * This modifies an array of int32_t, according to blkmove.  This is
   1471       1.1       jtk  *  used to update inode block arrays and indirect blocks to point to
   1472       1.1       jtk  *  the new locations of data blocks.
   1473       1.1       jtk  *
   1474       1.2    martin  * Return value is the number of int32_ts that needed updating; in
   1475       1.1       jtk  *  particular, the return value is zero iff nothing was modified.
   1476       1.1       jtk  */
   1477       1.1       jtk static int
   1478       1.2    martin movemap_blocks(int32_t * vec, int n)
   1479       1.1       jtk {
   1480       1.1       jtk 	int rv;
   1481      1.26  dholland 
   1482       1.1       jtk 	rv = 0;
   1483       1.1       jtk 	for (; n > 0; n--, vec++) {
   1484      1.30  dholland 		if (blkmove[*vec] != (unsigned)*vec /*XXX cast*/) {
   1485       1.1       jtk 			*vec = blkmove[*vec];
   1486       1.1       jtk 			rv++;
   1487       1.1       jtk 		}
   1488       1.1       jtk 	}
   1489       1.1       jtk 	return (rv);
   1490       1.1       jtk }
   1491       1.1       jtk static void
   1492      1.25       riz moveblocks_callback(union dinode * di, unsigned int inum, void *arg)
   1493       1.1       jtk {
   1494      1.30  dholland 	int32_t *dblkptr, *iblkptr;
   1495      1.26  dholland 
   1496      1.25       riz 	switch (DIP(di,di_mode) & IFMT) {
   1497       1.1       jtk 	case IFLNK:
   1498      1.30  dholland 		if ((off_t)DIP(di,di_size) <= oldsb->fs_maxsymlinklen) {
   1499      1.27  dholland 			break;
   1500      1.27  dholland 		}
   1501      1.27  dholland 		/* FALLTHROUGH */
   1502       1.1       jtk 	case IFDIR:
   1503       1.1       jtk 	case IFREG:
   1504      1.25       riz 		if (is_ufs2) {
   1505      1.30  dholland 			/* XXX these are not int32_t and this is WRONG! */
   1506      1.30  dholland 			dblkptr = (void *) &(di->dp2.di_db[0]);
   1507      1.30  dholland 			iblkptr = (void *) &(di->dp2.di_ib[0]);
   1508      1.25       riz 		} else {
   1509      1.25       riz 			dblkptr = &(di->dp1.di_db[0]);
   1510      1.25       riz 			iblkptr = &(di->dp1.di_ib[0]);
   1511      1.25       riz 		}
   1512      1.26  dholland 		/*
   1513      1.26  dholland 		 * Don't || these two calls; we need their
   1514      1.26  dholland 		 * side-effects.
   1515      1.26  dholland 		 */
   1516      1.34  dholland 		if (movemap_blocks(dblkptr, UFS_NDADDR)) {
   1517      1.28  dholland 			iflags[inum] |= IF_DIRTY;
   1518      1.28  dholland 		}
   1519      1.34  dholland 		if (movemap_blocks(iblkptr, UFS_NIADDR)) {
   1520      1.28  dholland 			iflags[inum] |= IF_DIRTY;
   1521      1.28  dholland 		}
   1522       1.1       jtk 		break;
   1523       1.1       jtk 	}
   1524       1.1       jtk }
   1525       1.1       jtk 
   1526       1.1       jtk static void
   1527      1.30  dholland moveindir_callback(off_t off, unsigned int nfrag, unsigned int nbytes,
   1528      1.15       riz 		   int kind)
   1529       1.1       jtk {
   1530      1.30  dholland 	unsigned int i;
   1531      1.26  dholland 
   1532       1.1       jtk 	if (kind == MDB_INDIR_PRE) {
   1533       1.2    martin 		int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
   1534      1.36  dholland 		readat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
   1535      1.25       riz 		if (needswap)
   1536      1.25       riz 			for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
   1537      1.25       riz 				blk[i] = bswap32(blk[i]);
   1538      1.35  dholland 		if (movemap_blocks(&blk[0], FFS_NINDIR(oldsb))) {
   1539      1.25       riz 			if (needswap)
   1540      1.25       riz 				for (i = 0; i < howmany(MAXBSIZE,
   1541      1.25       riz 					sizeof(int32_t)); i++)
   1542      1.25       riz 					blk[i] = bswap32(blk[i]);
   1543      1.36  dholland 			writeat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
   1544       1.1       jtk 		}
   1545       1.1       jtk 	}
   1546       1.1       jtk }
   1547       1.1       jtk /*
   1548       1.1       jtk  * Update all inode data arrays and indirect blocks to point to the new
   1549       1.1       jtk  *  locations of data blocks.  See the comment header on
   1550       1.1       jtk  *  perform_data_move for some ordering considerations.
   1551       1.1       jtk  */
   1552       1.1       jtk static void
   1553       1.1       jtk update_for_data_move(void)
   1554       1.1       jtk {
   1555       1.1       jtk 	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
   1556       1.1       jtk 	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
   1557       1.1       jtk }
   1558       1.1       jtk /*
   1559       1.1       jtk  * Initialize the inomove array.
   1560       1.1       jtk  */
   1561       1.1       jtk static void
   1562       1.1       jtk inomove_init(void)
   1563       1.1       jtk {
   1564       1.1       jtk 	int i;
   1565       1.1       jtk 
   1566       1.1       jtk 	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
   1567       1.1       jtk                             "inomove");
   1568       1.1       jtk 	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
   1569       1.1       jtk 		inomove[i] = i;
   1570       1.1       jtk }
   1571       1.1       jtk /*
   1572       1.1       jtk  * Flush all dirtied inodes to disk.  Scans the inode flags array; for
   1573       1.1       jtk  *  each dirty inode, it sets the BDIRTY bit on the first inode in the
   1574       1.1       jtk  *  block containing the dirty inode.  Then it scans by blocks, and for
   1575       1.1       jtk  *  each marked block, writes it.
   1576       1.1       jtk  */
   1577       1.1       jtk static void
   1578       1.1       jtk flush_inodes(void)
   1579       1.1       jtk {
   1580      1.45  christos 	int i, j, k, ni, m;
   1581      1.25       riz 	struct ufs1_dinode *dp1 = NULL;
   1582      1.25       riz 	struct ufs2_dinode *dp2 = NULL;
   1583       1.1       jtk 
   1584       1.1       jtk 	ni = newsb->fs_ipg * newsb->fs_ncg;
   1585      1.35  dholland 	m = FFS_INOPB(newsb) - 1;
   1586       1.1       jtk 	for (i = 0; i < ni; i++) {
   1587       1.1       jtk 		if (iflags[i] & IF_DIRTY) {
   1588       1.1       jtk 			iflags[i & ~m] |= IF_BDIRTY;
   1589       1.1       jtk 		}
   1590       1.1       jtk 	}
   1591       1.1       jtk 	m++;
   1592      1.25       riz 
   1593      1.25       riz 	if (is_ufs2)
   1594      1.25       riz 		dp2 = (struct ufs2_dinode *)ibuf;
   1595      1.25       riz 	else
   1596      1.25       riz 		dp1 = (struct ufs1_dinode *)ibuf;
   1597      1.28  dholland 
   1598       1.1       jtk 	for (i = 0; i < ni; i += m) {
   1599      1.45  christos 		if ((iflags[i] & IF_BDIRTY) == 0)
   1600      1.45  christos 			continue;
   1601      1.45  christos 		if (is_ufs2)
   1602      1.45  christos 			for (j = 0; j < m; j++) {
   1603      1.45  christos 				dp2[j] = inodes[i + j].dp2;
   1604      1.45  christos 				if (needswap) {
   1605      1.45  christos 					for (k = 0; k < UFS_NDADDR; k++)
   1606      1.45  christos 						dp2[j].di_db[k] =
   1607      1.45  christos 						    bswap32(dp2[j].di_db[k]);
   1608      1.45  christos 					for (k = 0; k < UFS_NIADDR; k++)
   1609      1.45  christos 						dp2[j].di_ib[k] =
   1610      1.45  christos 						    bswap32(dp2[j].di_ib[k]);
   1611      1.45  christos 					ffs_dinode2_swap(&dp2[j],
   1612      1.45  christos 					    &dp2[j]);
   1613      1.25       riz 				}
   1614      1.45  christos 			}
   1615      1.45  christos 		else
   1616      1.45  christos 			for (j = 0; j < m; j++) {
   1617      1.45  christos 				dp1[j] = inodes[i + j].dp1;
   1618      1.45  christos 				if (needswap) {
   1619      1.45  christos 					for (k = 0; k < UFS_NDADDR; k++)
   1620      1.45  christos 						dp1[j].di_db[k]=
   1621      1.45  christos 						    bswap32(dp1[j].di_db[k]);
   1622      1.45  christos 					for (k = 0; k < UFS_NIADDR; k++)
   1623      1.45  christos 						dp1[j].di_ib[k]=
   1624      1.45  christos 						    bswap32(dp1[j].di_ib[k]);
   1625      1.45  christos 					ffs_dinode1_swap(&dp1[j],
   1626      1.45  christos 					    &dp1[j]);
   1627      1.25       riz 				}
   1628      1.45  christos 			}
   1629      1.28  dholland 
   1630      1.45  christos 		writeat(FFS_FSBTODB(newsb, ino_to_fsba(newsb, i)),
   1631      1.45  christos 		    ibuf, newsb->fs_bsize);
   1632       1.1       jtk 	}
   1633       1.1       jtk }
   1634       1.1       jtk /*
   1635       1.1       jtk  * Evict all inodes from the specified cg.  shrink() already checked
   1636       1.1       jtk  *  that there were enough free inodes, so the no-free-inodes check is
   1637      1.24       wiz  *  a can't-happen.  If it does trip, the file system should be in good
   1638       1.1       jtk  *  enough shape for fsck to fix; see the comment on perform_data_move
   1639       1.1       jtk  *  for the considerations in question.
   1640       1.1       jtk  */
   1641       1.1       jtk static void
   1642       1.1       jtk evict_inodes(struct cg * cg)
   1643       1.1       jtk {
   1644       1.1       jtk 	int inum;
   1645       1.1       jtk 	int fi;
   1646  1.57.2.1    martin 	uint32_t i;
   1647       1.1       jtk 
   1648       1.1       jtk 	inum = newsb->fs_ipg * cg->cg_cgx;
   1649       1.1       jtk 	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
   1650      1.25       riz 		if (DIP(inodes + inum,di_mode) != 0) {
   1651       1.1       jtk 			fi = find_freeinode();
   1652      1.32  christos 			if (fi < 0)
   1653      1.32  christos 				errx(EXIT_FAILURE, "Sorry, inodes evaporated - "
   1654      1.32  christos 				    "file system probably needs fsck");
   1655       1.1       jtk 			inomove[inum] = fi;
   1656       1.1       jtk 			clr_bits(cg_inosused(cg, 0), i, 1);
   1657       1.1       jtk 			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
   1658       1.1       jtk 			    fi % newsb->fs_ipg, 1);
   1659       1.1       jtk 		}
   1660       1.1       jtk 	}
   1661       1.1       jtk }
   1662       1.1       jtk /*
   1663       1.1       jtk  * Move inodes from old locations to new.  Does not actually write
   1664       1.1       jtk  *  anything to disk; just copies in-core and sets dirty bits.
   1665       1.1       jtk  *
   1666       1.1       jtk  * We have to be careful here for reasons similar to those mentioned in
   1667       1.1       jtk  *  the comment header on perform_data_move, above: for the sake of
   1668       1.1       jtk  *  crash tolerance, we want to make sure everything is present at both
   1669       1.1       jtk  *  old and new locations before we update pointers.  So we call this
   1670       1.1       jtk  *  first, then flush_inodes() to get them out on disk, then update
   1671       1.1       jtk  *  directories to match.
   1672       1.1       jtk  */
   1673       1.1       jtk static void
   1674       1.1       jtk perform_inode_move(void)
   1675       1.1       jtk {
   1676      1.30  dholland 	unsigned int i;
   1677      1.30  dholland 	unsigned int ni;
   1678       1.1       jtk 
   1679       1.1       jtk 	ni = oldsb->fs_ipg * oldsb->fs_ncg;
   1680       1.1       jtk 	for (i = 0; i < ni; i++) {
   1681       1.1       jtk 		if (inomove[i] != i) {
   1682       1.1       jtk 			inodes[inomove[i]] = inodes[i];
   1683       1.1       jtk 			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
   1684       1.1       jtk 		}
   1685       1.1       jtk 	}
   1686       1.1       jtk }
   1687       1.1       jtk /*
   1688       1.1       jtk  * Update the directory contained in the nb bytes at buf, to point to
   1689       1.1       jtk  *  inodes' new locations.
   1690       1.1       jtk  */
   1691       1.1       jtk static int
   1692       1.1       jtk update_dirents(char *buf, int nb)
   1693       1.1       jtk {
   1694       1.1       jtk 	int rv;
   1695       1.1       jtk #define d ((struct direct *)buf)
   1696      1.25       riz #define s32(x) (needswap?bswap32((x)):(x))
   1697      1.25       riz #define s16(x) (needswap?bswap16((x)):(x))
   1698      1.28  dholland 
   1699       1.1       jtk 	rv = 0;
   1700       1.1       jtk 	while (nb > 0) {
   1701      1.25       riz 		if (inomove[s32(d->d_ino)] != s32(d->d_ino)) {
   1702       1.1       jtk 			rv++;
   1703      1.25       riz 			d->d_ino = s32(inomove[s32(d->d_ino)]);
   1704       1.1       jtk 		}
   1705      1.25       riz 		nb -= s16(d->d_reclen);
   1706      1.25       riz 		buf += s16(d->d_reclen);
   1707       1.1       jtk 	}
   1708       1.1       jtk 	return (rv);
   1709       1.1       jtk #undef d
   1710      1.25       riz #undef s32
   1711      1.25       riz #undef s16
   1712       1.1       jtk }
   1713       1.1       jtk /*
   1714       1.1       jtk  * Callback function for map_inode_data_blocks, for updating a
   1715       1.1       jtk  *  directory to point to new inode locations.
   1716       1.1       jtk  */
   1717       1.1       jtk static void
   1718      1.30  dholland update_dir_data(off_t bn, unsigned int size, unsigned int nb, int kind)
   1719       1.1       jtk {
   1720       1.1       jtk 	if (kind == MDB_DATA) {
   1721       1.1       jtk 		union {
   1722       1.1       jtk 			struct direct d;
   1723       1.1       jtk 			char ch[MAXBSIZE];
   1724       1.1       jtk 		}     buf;
   1725      1.36  dholland 		readat(FFS_FSBTODB(oldsb, bn), &buf, size << oldsb->fs_fshift);
   1726       1.1       jtk 		if (update_dirents((char *) &buf, nb)) {
   1727      1.36  dholland 			writeat(FFS_FSBTODB(oldsb, bn), &buf,
   1728       1.1       jtk 			    size << oldsb->fs_fshift);
   1729       1.1       jtk 		}
   1730       1.1       jtk 	}
   1731       1.1       jtk }
   1732       1.1       jtk static void
   1733      1.25       riz dirmove_callback(union dinode * di, unsigned int inum, void *arg)
   1734       1.1       jtk {
   1735      1.25       riz 	switch (DIP(di,di_mode) & IFMT) {
   1736       1.1       jtk 	case IFDIR:
   1737       1.1       jtk 		map_inode_data_blocks(di, &update_dir_data);
   1738       1.1       jtk 		break;
   1739       1.1       jtk 	}
   1740       1.1       jtk }
   1741       1.1       jtk /*
   1742       1.1       jtk  * Update directory entries to point to new inode locations.
   1743       1.1       jtk  */
   1744       1.1       jtk static void
   1745       1.1       jtk update_for_inode_move(void)
   1746       1.1       jtk {
   1747       1.1       jtk 	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
   1748       1.1       jtk }
   1749       1.1       jtk /*
   1750      1.24       wiz  * Shrink the file system.
   1751       1.1       jtk  */
   1752       1.1       jtk static void
   1753       1.1       jtk shrink(void)
   1754       1.1       jtk {
   1755  1.57.2.1    martin 	uint32_t i;
   1756       1.1       jtk 
   1757      1.43   mlelstv 	if (makegeometry(1)) {
   1758      1.43   mlelstv 		printf("New fs size %"PRIu64" = old fs size %"PRIu64
   1759      1.43   mlelstv 		    ", not shrinking.\n", newsb->fs_size, oldsb->fs_size);
   1760      1.43   mlelstv 		return;
   1761      1.25       riz 	}
   1762      1.42   mlelstv 
   1763       1.1       jtk 	/* Let's make sure we're not being shrunk into oblivion. */
   1764      1.32  christos 	if (newsb->fs_ncg < 1)
   1765      1.32  christos 		errx(EXIT_FAILURE, "Size too small - file system would "
   1766      1.32  christos 		    "have no cylinders");
   1767      1.43   mlelstv 
   1768      1.43   mlelstv 	if (verbose) {
   1769      1.43   mlelstv 		printf("Shrinking fs from %"PRIu64" blocks to %"PRIu64
   1770      1.43   mlelstv 		    " blocks.\n", oldsb->fs_size, newsb->fs_size);
   1771      1.43   mlelstv 	}
   1772      1.43   mlelstv 
   1773      1.43   mlelstv 	/* Load the inodes off disk - we'll need 'em. */
   1774      1.43   mlelstv 	loadinodes();
   1775      1.43   mlelstv 
   1776      1.43   mlelstv 	/* Update the timestamp. */
   1777      1.43   mlelstv 	newsb->fs_time = timestamp();
   1778      1.43   mlelstv 
   1779       1.1       jtk 	/* Initialize for block motion. */
   1780       1.1       jtk 	blkmove_init();
   1781       1.1       jtk 	/* Update csum size, then fix up for the new size */
   1782      1.37  dholland 	newsb->fs_cssize = ffs_fragroundup(newsb,
   1783       1.1       jtk 	    newsb->fs_ncg * sizeof(struct csum));
   1784       1.1       jtk 	csum_fixup();
   1785       1.8       snj 	/* Evict data from any cgs being wholly eliminated */
   1786       1.1       jtk 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
   1787      1.48  sborrill 		int64_t base;
   1788      1.48  sborrill 		int64_t dlow;
   1789      1.48  sborrill 		int64_t dhigh;
   1790      1.48  sborrill 		int64_t dmax;
   1791       1.1       jtk 		base = cgbase(oldsb, i);
   1792       1.1       jtk 		dlow = cgsblock(oldsb, i) - base;
   1793       1.1       jtk 		dhigh = cgdmin(oldsb, i) - base;
   1794       1.1       jtk 		dmax = oldsb->fs_size - base;
   1795       1.1       jtk 		if (dmax > cgs[i]->cg_ndblk)
   1796       1.1       jtk 			dmax = cgs[i]->cg_ndblk;
   1797       1.1       jtk 		evict_data(cgs[i], 0, dlow);
   1798       1.1       jtk 		evict_data(cgs[i], dhigh, dmax - dhigh);
   1799       1.1       jtk 		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
   1800       1.1       jtk 		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
   1801       1.1       jtk 		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
   1802       1.1       jtk 		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
   1803       1.1       jtk 	}
   1804       1.1       jtk 	/* Update the new last cg. */
   1805       1.1       jtk 	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
   1806       1.1       jtk 	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
   1807       1.1       jtk 	/* Is the new last cg partial?  If so, evict any data from the part
   1808       1.1       jtk 	 * being shrunken away. */
   1809       1.1       jtk 	if (newsb->fs_size % newsb->fs_fpg) {
   1810       1.1       jtk 		struct cg *cg;
   1811       1.1       jtk 		int oldcgsize;
   1812       1.1       jtk 		int newcgsize;
   1813       1.1       jtk 		cg = cgs[newsb->fs_ncg - 1];
   1814       1.1       jtk 		newcgsize = newsb->fs_size % newsb->fs_fpg;
   1815      1.15       riz 		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
   1816      1.15       riz 		    oldsb->fs_fpg);
   1817       1.1       jtk 		if (oldcgsize > oldsb->fs_fpg)
   1818       1.1       jtk 			oldcgsize = oldsb->fs_fpg;
   1819       1.1       jtk 		evict_data(cg, newcgsize, oldcgsize - newcgsize);
   1820       1.1       jtk 		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
   1821       1.1       jtk 	}
   1822      1.25       riz 	/* Find out whether we would run out of inodes.  (Note we
   1823      1.25       riz 	 * haven't actually done anything to the file system yet; all
   1824      1.25       riz 	 * those evict_data calls just update blkmove.) */
   1825       1.1       jtk 	{
   1826       1.1       jtk 		int slop;
   1827       1.1       jtk 		slop = 0;
   1828       1.1       jtk 		for (i = 0; i < newsb->fs_ncg; i++)
   1829       1.1       jtk 			slop += cgs[i]->cg_cs.cs_nifree;
   1830       1.1       jtk 		for (; i < oldsb->fs_ncg; i++)
   1831       1.1       jtk 			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
   1832      1.32  christos 		if (slop < 0)
   1833      1.32  christos 			errx(EXIT_FAILURE, "Sorry, would run out of inodes");
   1834       1.1       jtk 	}
   1835      1.25       riz 	/* Copy data, then update pointers to data.  See the comment
   1836      1.25       riz 	 * header on perform_data_move for ordering considerations. */
   1837       1.1       jtk 	perform_data_move();
   1838       1.1       jtk 	update_for_data_move();
   1839      1.25       riz 	/* Now do inodes.  Initialize, evict, move, update - see the
   1840      1.25       riz 	 * comment header on perform_inode_move. */
   1841       1.1       jtk 	inomove_init();
   1842       1.1       jtk 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
   1843       1.1       jtk 		evict_inodes(cgs[i]);
   1844       1.1       jtk 	perform_inode_move();
   1845       1.1       jtk 	flush_inodes();
   1846       1.1       jtk 	update_for_inode_move();
   1847       1.1       jtk 	/* Recompute all the bitmaps; most of them probably need it anyway,
   1848       1.1       jtk 	 * the rest are just paranoia and not wanting to have to bother
   1849       1.1       jtk 	 * keeping track of exactly which ones require it. */
   1850       1.1       jtk 	for (i = 0; i < newsb->fs_ncg; i++)
   1851       1.1       jtk 		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
   1852      1.14       riz 	/* Update the cg_old_ncyl value for the last cylinder. */
   1853      1.20    mhitch 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
   1854      1.14       riz 		cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
   1855      1.20    mhitch 		    newsb->fs_old_ncyl % newsb->fs_old_cpg;
   1856       1.1       jtk 	/* Make fs_dsize match the new reality. */
   1857       1.1       jtk 	recompute_fs_dsize();
   1858       1.1       jtk }
   1859       1.1       jtk /*
   1860       1.1       jtk  * Recompute the block totals, block cluster summaries, and rotational
   1861       1.1       jtk  *  position summaries, for a given cg (specified by number), based on
   1862       1.1       jtk  *  its free-frag bitmap (cg_blksfree()[]).
   1863       1.1       jtk  */
   1864       1.1       jtk static void
   1865       1.1       jtk rescan_blkmaps(int cgn)
   1866       1.1       jtk {
   1867       1.1       jtk 	struct cg *cg;
   1868  1.57.2.1    martin 	uint32_t f;
   1869       1.1       jtk 	int b;
   1870       1.1       jtk 	int blkfree;
   1871       1.1       jtk 	int blkrun;
   1872       1.1       jtk 	int fragrun;
   1873       1.1       jtk 	int fwb;
   1874       1.1       jtk 
   1875       1.1       jtk 	cg = cgs[cgn];
   1876       1.1       jtk 	/* Subtract off the current totals from the sb's summary info */
   1877       1.1       jtk 	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
   1878       1.1       jtk 	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
   1879       1.1       jtk 	/* Clear counters and bitmaps. */
   1880       1.1       jtk 	cg->cg_cs.cs_nffree = 0;
   1881       1.1       jtk 	cg->cg_cs.cs_nbfree = 0;
   1882      1.25       riz 	memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0]));
   1883      1.25       riz 	memset(&old_cg_blktot(cg, 0)[0], 0,
   1884      1.15       riz 	    newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
   1885      1.25       riz 	memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0,
   1886       1.4  christos 	    newsb->fs_old_cpg * newsb->fs_old_nrpos *
   1887      1.15       riz 	    sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
   1888       1.1       jtk 	if (newsb->fs_contigsumsize > 0) {
   1889       1.1       jtk 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
   1890      1.25       riz 		memset(&cg_clustersum(cg, 0)[1], 0,
   1891       1.1       jtk 		    newsb->fs_contigsumsize *
   1892       1.1       jtk 		    sizeof(cg_clustersum(cg, 0)[1]));
   1893      1.25       riz 		if (is_ufs2)
   1894      1.25       riz 			memset(&cg_clustersfree(cg, 0)[0], 0,
   1895      1.25       riz 			    howmany(newsb->fs_fpg / NSPB(newsb), NBBY));
   1896      1.25       riz 		else
   1897      1.25       riz 			memset(&cg_clustersfree(cg, 0)[0], 0,
   1898      1.25       riz 			    howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
   1899      1.25       riz 				NSPB(newsb), NBBY));
   1900      1.25       riz 	}
   1901      1.25       riz 	/* Scan the free-frag bitmap.  Runs of free frags are kept
   1902      1.25       riz 	 * track of with fragrun, and recorded into cg_frsum[] and
   1903      1.25       riz 	 * cg_cs.cs_nffree; on each block boundary, entire free blocks
   1904      1.25       riz 	 * are recorded as well. */
   1905       1.1       jtk 	blkfree = 1;
   1906       1.1       jtk 	blkrun = 0;
   1907       1.1       jtk 	fragrun = 0;
   1908       1.1       jtk 	f = 0;
   1909       1.1       jtk 	b = 0;
   1910       1.1       jtk 	fwb = 0;
   1911       1.1       jtk 	while (f < cg->cg_ndblk) {
   1912       1.1       jtk 		if (bit_is_set(cg_blksfree(cg, 0), f)) {
   1913       1.1       jtk 			fragrun++;
   1914       1.1       jtk 		} else {
   1915       1.1       jtk 			blkfree = 0;
   1916       1.1       jtk 			if (fragrun > 0) {
   1917       1.1       jtk 				cg->cg_frsum[fragrun]++;
   1918       1.1       jtk 				cg->cg_cs.cs_nffree += fragrun;
   1919       1.1       jtk 			}
   1920       1.1       jtk 			fragrun = 0;
   1921       1.1       jtk 		}
   1922       1.1       jtk 		f++;
   1923       1.1       jtk 		fwb++;
   1924       1.1       jtk 		if (fwb >= newsb->fs_frag) {
   1925       1.1       jtk 			if (blkfree) {
   1926       1.1       jtk 				cg->cg_cs.cs_nbfree++;
   1927       1.1       jtk 				if (newsb->fs_contigsumsize > 0)
   1928       1.1       jtk 					set_bits(cg_clustersfree(cg, 0), b, 1);
   1929      1.25       riz 				if (is_ufs2 == 0) {
   1930      1.25       riz 					old_cg_blktot(cg, 0)[
   1931      1.25       riz 						old_cbtocylno(newsb,
   1932      1.25       riz 						    f - newsb->fs_frag)]++;
   1933      1.25       riz 					old_cg_blks(newsb, cg,
   1934      1.25       riz 					    old_cbtocylno(newsb,
   1935      1.25       riz 						f - newsb->fs_frag),
   1936      1.25       riz 					    0)[old_cbtorpos(newsb,
   1937      1.25       riz 						    f - newsb->fs_frag)]++;
   1938      1.25       riz 				}
   1939       1.1       jtk 				blkrun++;
   1940       1.1       jtk 			} else {
   1941       1.1       jtk 				if (fragrun > 0) {
   1942       1.1       jtk 					cg->cg_frsum[fragrun]++;
   1943       1.1       jtk 					cg->cg_cs.cs_nffree += fragrun;
   1944       1.1       jtk 				}
   1945       1.1       jtk 				if (newsb->fs_contigsumsize > 0) {
   1946       1.1       jtk 					if (blkrun > 0) {
   1947      1.15       riz 						cg_clustersum(cg, 0)[(blkrun
   1948      1.15       riz 						    > newsb->fs_contigsumsize)
   1949      1.15       riz 						    ? newsb->fs_contigsumsize
   1950      1.15       riz 						    : blkrun]++;
   1951       1.1       jtk 					}
   1952       1.1       jtk 				}
   1953       1.1       jtk 				blkrun = 0;
   1954       1.1       jtk 			}
   1955       1.1       jtk 			fwb = 0;
   1956       1.1       jtk 			b++;
   1957       1.1       jtk 			blkfree = 1;
   1958       1.1       jtk 			fragrun = 0;
   1959       1.1       jtk 		}
   1960       1.1       jtk 	}
   1961       1.1       jtk 	if (fragrun > 0) {
   1962       1.1       jtk 		cg->cg_frsum[fragrun]++;
   1963       1.1       jtk 		cg->cg_cs.cs_nffree += fragrun;
   1964       1.1       jtk 	}
   1965       1.1       jtk 	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
   1966       1.1       jtk 		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
   1967       1.1       jtk 		    newsb->fs_contigsumsize : blkrun]++;
   1968       1.1       jtk 	}
   1969       1.1       jtk 	/*
   1970       1.1       jtk          * Put the updated summary info back into csums, and add it
   1971       1.1       jtk          * back into the sb's summary info.  Then mark the cg dirty.
   1972       1.1       jtk          */
   1973       1.1       jtk 	csums[cgn] = cg->cg_cs;
   1974       1.1       jtk 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
   1975       1.1       jtk 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
   1976       1.1       jtk 	cgflags[cgn] |= CGF_DIRTY;
   1977       1.1       jtk }
   1978       1.1       jtk /*
   1979       1.1       jtk  * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
   1980       1.1       jtk  *  values, for a cg, based on the in-core inodes for that cg.
   1981       1.1       jtk  */
   1982       1.1       jtk static void
   1983       1.1       jtk rescan_inomaps(int cgn)
   1984       1.1       jtk {
   1985       1.1       jtk 	struct cg *cg;
   1986       1.1       jtk 	int inum;
   1987  1.57.2.1    martin 	uint32_t iwc;
   1988       1.1       jtk 
   1989       1.1       jtk 	cg = cgs[cgn];
   1990       1.1       jtk 	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
   1991       1.1       jtk 	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
   1992       1.1       jtk 	cg->cg_cs.cs_ndir = 0;
   1993       1.1       jtk 	cg->cg_cs.cs_nifree = 0;
   1994      1.25       riz 	memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY));
   1995       1.1       jtk 	inum = cgn * newsb->fs_ipg;
   1996       1.1       jtk 	if (cgn == 0) {
   1997       1.1       jtk 		set_bits(cg_inosused(cg, 0), 0, 2);
   1998       1.1       jtk 		iwc = 2;
   1999       1.1       jtk 		inum += 2;
   2000       1.1       jtk 	} else {
   2001       1.1       jtk 		iwc = 0;
   2002       1.1       jtk 	}
   2003       1.1       jtk 	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
   2004      1.25       riz 		switch (DIP(inodes + inum, di_mode) & IFMT) {
   2005       1.1       jtk 		case 0:
   2006       1.1       jtk 			cg->cg_cs.cs_nifree++;
   2007       1.1       jtk 			break;
   2008       1.1       jtk 		case IFDIR:
   2009       1.1       jtk 			cg->cg_cs.cs_ndir++;
   2010      1.31  dholland 			/* FALLTHROUGH */
   2011       1.1       jtk 		default:
   2012       1.1       jtk 			set_bits(cg_inosused(cg, 0), iwc, 1);
   2013       1.1       jtk 			break;
   2014       1.1       jtk 		}
   2015       1.1       jtk 	}
   2016       1.1       jtk 	csums[cgn] = cg->cg_cs;
   2017       1.1       jtk 	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
   2018       1.1       jtk 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
   2019       1.1       jtk 	cgflags[cgn] |= CGF_DIRTY;
   2020       1.1       jtk }
   2021       1.1       jtk /*
   2022       1.1       jtk  * Flush cgs to disk, recomputing anything they're marked as needing.
   2023       1.1       jtk  */
   2024       1.1       jtk static void
   2025       1.1       jtk flush_cgs(void)
   2026       1.1       jtk {
   2027  1.57.2.1    martin 	uint32_t i;
   2028       1.1       jtk 
   2029       1.1       jtk 	for (i = 0; i < newsb->fs_ncg; i++) {
   2030      1.44  jmcneill 		progress_bar(special, "flush cg",
   2031      1.44  jmcneill 		    i, newsb->fs_ncg - 1);
   2032       1.1       jtk 		if (cgflags[i] & CGF_BLKMAPS) {
   2033       1.1       jtk 			rescan_blkmaps(i);
   2034       1.1       jtk 		}
   2035       1.1       jtk 		if (cgflags[i] & CGF_INOMAPS) {
   2036       1.1       jtk 			rescan_inomaps(i);
   2037       1.1       jtk 		}
   2038       1.1       jtk 		if (cgflags[i] & CGF_DIRTY) {
   2039       1.1       jtk 			cgs[i]->cg_rotor = 0;
   2040       1.1       jtk 			cgs[i]->cg_frotor = 0;
   2041       1.1       jtk 			cgs[i]->cg_irotor = 0;
   2042      1.25       riz 			if (needswap)
   2043      1.25       riz 				ffs_cg_swap(cgs[i],cgs[i],newsb);
   2044      1.36  dholland 			writeat(FFS_FSBTODB(newsb, cgtod(newsb, i)), cgs[i],
   2045       1.1       jtk 			    cgblksz);
   2046       1.1       jtk 		}
   2047       1.1       jtk 	}
   2048      1.25       riz 	if (needswap)
   2049      1.25       riz 		ffs_csum_swap(csums,csums,newsb->fs_cssize);
   2050      1.36  dholland 	writeat(FFS_FSBTODB(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
   2051      1.44  jmcneill 
   2052      1.44  jmcneill 	progress_done();
   2053       1.1       jtk }
   2054       1.1       jtk /*
   2055       1.1       jtk  * Write the superblock, both to the main superblock and to each cg's
   2056       1.1       jtk  *  alternative superblock.
   2057       1.1       jtk  */
   2058       1.1       jtk static void
   2059       1.1       jtk write_sbs(void)
   2060       1.1       jtk {
   2061  1.57.2.1    martin 	uint32_t i;
   2062       1.1       jtk 
   2063      1.20    mhitch 	if (newsb->fs_magic == FS_UFS1_MAGIC &&
   2064      1.20    mhitch 	    (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
   2065      1.20    mhitch 		newsb->fs_old_time = newsb->fs_time;
   2066      1.20    mhitch 	    	newsb->fs_old_size = newsb->fs_size;
   2067      1.20    mhitch 	    	/* we don't update fs_csaddr */
   2068      1.20    mhitch 	    	newsb->fs_old_dsize = newsb->fs_dsize;
   2069      1.20    mhitch 		newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
   2070      1.20    mhitch 		newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
   2071      1.20    mhitch 		newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
   2072      1.20    mhitch 		newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
   2073      1.20    mhitch 		/* fill fs_old_postbl_start with 256 bytes of 0xff? */
   2074      1.20    mhitch 	}
   2075      1.25       riz 	/* copy newsb back to oldsb, so we can use it for offsets if
   2076      1.25       riz 	   newsb has been swapped for writing to disk */
   2077      1.25       riz 	memcpy(oldsb, newsb, SBLOCKSIZE);
   2078      1.25       riz 	if (needswap)
   2079      1.25       riz 		ffs_sb_swap(newsb,newsb);
   2080      1.10    bouyer 	writeat(where /  DEV_BSIZE, newsb, SBLOCKSIZE);
   2081      1.25       riz 	for (i = 0; i < oldsb->fs_ncg; i++) {
   2082      1.44  jmcneill 		progress_bar(special, "write sb",
   2083      1.44  jmcneill 		    i, oldsb->fs_ncg - 1);
   2084      1.36  dholland 		writeat(FFS_FSBTODB(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE);
   2085       1.1       jtk 	}
   2086      1.44  jmcneill 
   2087      1.44  jmcneill 	progress_done();
   2088       1.1       jtk }
   2089      1.13      haad 
   2090      1.43   mlelstv /*
   2091      1.54      maya  * Check to see whether new size changes the filesystem
   2092      1.43   mlelstv  *  return exit code
   2093      1.43   mlelstv  */
   2094      1.43   mlelstv static int
   2095      1.43   mlelstv checkonly(void)
   2096      1.43   mlelstv {
   2097      1.43   mlelstv 	if (makegeometry(0)) {
   2098      1.43   mlelstv 		if (verbose) {
   2099      1.43   mlelstv 			printf("Wouldn't change: already %" PRId64
   2100      1.43   mlelstv 			    " blocks\n", (int64_t)oldsb->fs_size);
   2101      1.43   mlelstv 		}
   2102      1.43   mlelstv 		return 1;
   2103      1.43   mlelstv 	}
   2104      1.43   mlelstv 
   2105      1.43   mlelstv 	if (verbose) {
   2106      1.43   mlelstv 		printf("Would change: newsize: %" PRId64 " oldsize: %"
   2107      1.43   mlelstv 		    PRId64 " fsdb: %" PRId64 "\n", FFS_DBTOFSB(oldsb, newsize),
   2108      1.43   mlelstv 		    (int64_t)oldsb->fs_size,
   2109      1.43   mlelstv 		    (int64_t)oldsb->fs_fsbtodb);
   2110      1.43   mlelstv 	}
   2111      1.43   mlelstv 	return 0;
   2112      1.43   mlelstv }
   2113      1.43   mlelstv 
   2114      1.30  dholland static off_t
   2115      1.55  jmcneill get_dev_size(const char *dev_name)
   2116      1.13      haad {
   2117      1.13      haad 	struct dkwedge_info dkw;
   2118      1.13      haad 	struct partition *pp;
   2119      1.13      haad 	struct disklabel lp;
   2120      1.39  riastrad 	struct stat st;
   2121      1.13      haad 	size_t ptn;
   2122      1.28  dholland 
   2123      1.13      haad 	/* Get info about partition/wedge */
   2124      1.40  riastrad 	if (ioctl(fd, DIOCGWEDGEINFO, &dkw) != -1)
   2125      1.39  riastrad 		return dkw.dkw_size;
   2126      1.40  riastrad 	if (ioctl(fd, DIOCGDINFO, &lp) != -1) {
   2127      1.13      haad 		ptn = strchr(dev_name, '\0')[-1] - 'a';
   2128      1.13      haad 		if (ptn >= lp.d_npartitions)
   2129      1.13      haad 			return 0;
   2130      1.13      haad 		pp = &lp.d_partitions[ptn];
   2131      1.13      haad 		return pp->p_size;
   2132      1.13      haad 	}
   2133      1.40  riastrad 	if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
   2134      1.41    chopps 		return st.st_size / DEV_BSIZE;
   2135      1.13      haad 
   2136      1.39  riastrad 	return 0;
   2137      1.13      haad }
   2138      1.13      haad 
   2139       1.1       jtk /*
   2140       1.1       jtk  * main().
   2141       1.1       jtk  */
   2142       1.1       jtk int
   2143      1.13      haad main(int argc, char **argv)
   2144       1.1       jtk {
   2145      1.13      haad 	int ch;
   2146      1.41    chopps 	int CheckOnlyFlag;
   2147      1.13      haad 	int ExpertFlag;
   2148      1.13      haad 	int SFlag;
   2149       1.4  christos 	size_t i;
   2150      1.55  jmcneill 	char specname[MAXPATHLEN];
   2151      1.55  jmcneill 	char rawname[MAXPATHLEN];
   2152      1.55  jmcneill 	const char *raw;
   2153      1.13      haad 
   2154      1.13      haad 	char reply[5];
   2155      1.28  dholland 
   2156      1.13      haad 	newsize = 0;
   2157      1.13      haad 	ExpertFlag = 0;
   2158      1.13      haad 	SFlag = 0;
   2159      1.41    chopps         CheckOnlyFlag = 0;
   2160      1.28  dholland 
   2161      1.44  jmcneill 	while ((ch = getopt(argc, argv, "cps:vy")) != -1) {
   2162      1.13      haad 		switch (ch) {
   2163      1.41    chopps                 case 'c':
   2164      1.41    chopps 			CheckOnlyFlag = 1;
   2165      1.41    chopps 			break;
   2166      1.44  jmcneill 		case 'p':
   2167      1.44  jmcneill 			progress = 1;
   2168      1.44  jmcneill 			break;
   2169      1.13      haad 		case 's':
   2170      1.13      haad 			SFlag = 1;
   2171      1.30  dholland 			newsize = strtoll(optarg, NULL, 10);
   2172      1.13      haad 			if(newsize < 1) {
   2173      1.13      haad 				usage();
   2174      1.13      haad 			}
   2175      1.13      haad 			break;
   2176      1.41    chopps 		case 'v':
   2177      1.41    chopps 			verbose = 1;
   2178      1.41    chopps 			break;
   2179      1.13      haad 		case 'y':
   2180      1.13      haad 			ExpertFlag = 1;
   2181      1.13      haad 			break;
   2182      1.13      haad 		case '?':
   2183      1.13      haad 			/* FALLTHROUGH */
   2184      1.13      haad 		default:
   2185      1.13      haad 			usage();
   2186      1.13      haad 		}
   2187      1.13      haad 	}
   2188      1.13      haad 	argc -= optind;
   2189      1.13      haad 	argv += optind;
   2190      1.13      haad 
   2191      1.13      haad 	if (argc != 1) {
   2192      1.13      haad 		usage();
   2193      1.13      haad 	}
   2194      1.13      haad 
   2195      1.55  jmcneill 	special = getfsspecname(specname, sizeof(specname), argv[0]);
   2196      1.55  jmcneill 	if (special == NULL)
   2197      1.55  jmcneill 		err(EXIT_FAILURE, "%s: %s", argv[0], specname);
   2198      1.55  jmcneill 	raw = getdiskrawname(rawname, sizeof(rawname), special);
   2199      1.55  jmcneill 	if (raw != NULL)
   2200      1.55  jmcneill 		special = raw;
   2201      1.13      haad 
   2202      1.41    chopps 	if (ExpertFlag == 0 && CheckOnlyFlag == 0) {
   2203      1.24       wiz 		printf("It's required to manually run fsck on file system "
   2204      1.13      haad 		    "before you can resize it\n\n"
   2205      1.13      haad 		    " Did you run fsck on your disk (Yes/No) ? ");
   2206      1.13      haad 		fgets(reply, (int)sizeof(reply), stdin);
   2207      1.13      haad 		if (strcasecmp(reply, "Yes\n")) {
   2208      1.13      haad 			printf("\n Nothing done \n");
   2209      1.13      haad 			exit(EXIT_SUCCESS);
   2210      1.13      haad 		}
   2211       1.1       jtk 	}
   2212      1.28  dholland 
   2213      1.23       riz 	fd = open(special, O_RDWR, 0);
   2214       1.4  christos 	if (fd < 0)
   2215      1.23       riz 		err(EXIT_FAILURE, "Can't open `%s'", special);
   2216       1.1       jtk 	checksmallio();
   2217      1.13      haad 
   2218      1.13      haad 	if (SFlag == 0) {
   2219      1.23       riz 		newsize = get_dev_size(special);
   2220      1.13      haad 		if (newsize == 0)
   2221      1.15       riz 			err(EXIT_FAILURE,
   2222      1.24       wiz 			    "Can't resize file system, newsize not known.");
   2223      1.13      haad 	}
   2224      1.28  dholland 
   2225       1.1       jtk 	oldsb = (struct fs *) & sbbuf;
   2226       1.4  christos 	newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
   2227       1.4  christos 	for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
   2228       1.9    bouyer 		readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
   2229      1.23       riz 		switch (oldsb->fs_magic) {
   2230      1.23       riz 		case FS_UFS2_MAGIC:
   2231      1.57       chs 		case FS_UFS2EA_MAGIC:
   2232      1.31  dholland 			is_ufs2 = 1;
   2233      1.23       riz 			/* FALLTHROUGH */
   2234      1.23       riz 		case FS_UFS1_MAGIC:
   2235      1.23       riz 			needswap = 0;
   2236      1.23       riz 			break;
   2237      1.23       riz 		case FS_UFS2_MAGIC_SWAPPED:
   2238      1.57       chs 		case FS_UFS2EA_MAGIC_SWAPPED:
   2239      1.23       riz  			is_ufs2 = 1;
   2240      1.23       riz 			/* FALLTHROUGH */
   2241      1.23       riz 		case FS_UFS1_MAGIC_SWAPPED:
   2242      1.23       riz 			needswap = 1;
   2243      1.23       riz 			break;
   2244      1.23       riz 		default:
   2245      1.23       riz 			continue;
   2246      1.23       riz 		}
   2247      1.23       riz 		if (!is_ufs2 && where == SBLOCK_UFS2)
   2248      1.16       riz 			continue;
   2249      1.23       riz 		break;
   2250       1.1       jtk 	}
   2251       1.4  christos 	if (where == (off_t)-1)
   2252      1.13      haad 		errx(EXIT_FAILURE, "Bad magic number");
   2253      1.25       riz 	if (needswap)
   2254      1.25       riz 		ffs_sb_swap(oldsb,oldsb);
   2255      1.20    mhitch 	if (oldsb->fs_magic == FS_UFS1_MAGIC &&
   2256      1.20    mhitch 	    (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
   2257      1.20    mhitch 		oldsb->fs_csaddr = oldsb->fs_old_csaddr;
   2258      1.20    mhitch 		oldsb->fs_size = oldsb->fs_old_size;
   2259      1.20    mhitch 		oldsb->fs_dsize = oldsb->fs_old_dsize;
   2260      1.20    mhitch 		oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
   2261      1.20    mhitch 		oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
   2262      1.20    mhitch 		oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
   2263      1.20    mhitch 		oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
   2264      1.20    mhitch 		/* any others? */
   2265      1.20    mhitch 		printf("Resizing with ffsv1 superblock\n");
   2266      1.20    mhitch 	}
   2267      1.25       riz 
   2268       1.1       jtk 	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
   2269       1.1       jtk 	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
   2270      1.35  dholland 	if (oldsb->fs_ipg % FFS_INOPB(oldsb))
   2271      1.35  dholland 		errx(EXIT_FAILURE, "ipg[%d] %% FFS_INOPB[%d] != 0",
   2272      1.35  dholland 		    (int) oldsb->fs_ipg, (int) FFS_INOPB(oldsb));
   2273      1.25       riz 	/* The superblock is bigger than struct fs (there are trailing
   2274      1.25       riz 	 * tables, of non-fixed size); make sure we copy the whole
   2275      1.25       riz 	 * thing.  SBLOCKSIZE may be an over-estimate, but we do this
   2276      1.25       riz 	 * just once, so being generous is cheap. */
   2277      1.25       riz 	memcpy(newsb, oldsb, SBLOCKSIZE);
   2278      1.44  jmcneill 
   2279      1.44  jmcneill 	if (progress) {
   2280      1.44  jmcneill 		progress_ttywidth(0);
   2281      1.44  jmcneill 		signal(SIGWINCH, progress_ttywidth);
   2282      1.44  jmcneill 	}
   2283      1.44  jmcneill 
   2284       1.1       jtk 	loadcgs();
   2285      1.41    chopps 
   2286      1.44  jmcneill 	if (progress && !CheckOnlyFlag) {
   2287      1.44  jmcneill 		progress_switch(progress);
   2288      1.44  jmcneill 		progress_init();
   2289      1.44  jmcneill 	}
   2290      1.44  jmcneill 
   2291      1.36  dholland 	if (newsize > FFS_FSBTODB(oldsb, oldsb->fs_size)) {
   2292      1.43   mlelstv 		if (CheckOnlyFlag)
   2293      1.43   mlelstv 			exit(checkonly());
   2294       1.1       jtk 		grow();
   2295      1.36  dholland 	} else if (newsize < FFS_FSBTODB(oldsb, oldsb->fs_size)) {
   2296      1.25       riz 		if (is_ufs2)
   2297      1.25       riz 			errx(EXIT_FAILURE,"shrinking not supported for ufs2");
   2298      1.43   mlelstv 		if (CheckOnlyFlag)
   2299      1.43   mlelstv 			exit(checkonly());
   2300       1.1       jtk 		shrink();
   2301      1.43   mlelstv 	} else {
   2302      1.43   mlelstv 		if (CheckOnlyFlag)
   2303      1.43   mlelstv 			exit(checkonly());
   2304      1.43   mlelstv 		if (verbose)
   2305      1.43   mlelstv 			printf("No change requested: already %" PRId64
   2306      1.43   mlelstv 			    " blocks\n", (int64_t)oldsb->fs_size);
   2307       1.1       jtk 	}
   2308      1.43   mlelstv 
   2309       1.1       jtk 	flush_cgs();
   2310       1.1       jtk 	write_sbs();
   2311      1.19       riz 	if (isplainfile())
   2312      1.19       riz 		ftruncate(fd,newsize * DEV_BSIZE);
   2313      1.13      haad 	return 0;
   2314      1.13      haad }
   2315      1.13      haad 
   2316      1.13      haad static void
   2317      1.13      haad usage(void)
   2318      1.13      haad {
   2319      1.13      haad 
   2320      1.52  christos 	(void)fprintf(stderr, "usage: %s [-cpvy] [-s size] special\n",
   2321      1.25       riz 	    getprogname());
   2322      1.13      haad 	exit(EXIT_FAILURE);
   2323       1.1       jtk }
   2324