Home | History | Annotate | Line # | Download | only in resize_ffs
resize_ffs.c revision 1.1
      1 /*	$NetBSD: resize_ffs.c,v 1.1 2003/02/21 04:08:55 jtk Exp $	*/
      2 /* From sources sent on February 17, 2003 */
      3 /*-
      4  * As its sole author, I explicitly place this code in the public
      5  *  domain.  Anyone may use it for any purpose (though I would
      6  *  appreciate credit where it is due).
      7  *
      8  *					der Mouse
      9  *
     10  *			       mouse (at) rodents.montreal.qc.ca
     11  *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
     12  */
     13 /*
     14  * ffs_resize:
     15  *
     16  * Resize a filesystem.  Is capable of both growing and shrinking.
     17  *
     18  * Usage: fsresize filesystem newsize
     19  *
     20  * Example: fsresize /dev/rsd1e 29574
     21  *
     22  * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
     23  *  each).
     24  *
     25  * Note: this currently requires gcc to build, since it is written
     26  *  depending on gcc-specific features, notably nested function
     27  *  definitions (which in at least a few cases depend on the lexical
     28  *  scoping gcc provides, so they can't be trivially moved outside).
     29  *
     30  * It will not do anything useful with filesystems in other than
     31  *  host-native byte order.  This really should be fixed (it's largely
     32  *  a historical accident; the original version of this program is
     33  *  older than bi-endian support in FFS).
     34  *
     35  * Many thanks go to John Kohl <jtk (at) netbsd.org> for finding bugs: the
     36  *  one responsible for the "realloccgblk: can't find blk in cyl"
     37  *  problem and a more minor one which left fs_dsize wrong when
     38  *  shrinking.  (These actually indicate bugs in fsck too - it should
     39  *  have caught and fixed them.)
     40  *
     41  */
     42 
     43 #include <stdio.h>
     44 #include <errno.h>
     45 #include <fcntl.h>
     46 #include <stdlib.h>
     47 #include <unistd.h>
     48 #include <strings.h>
     49 #include <sys/stat.h>
     50 #include <sys/mman.h>
     51 #include <sys/param.h>		/* MAXFRAG */
     52 #include <ufs/ufs/dinode.h>	/* ufs_daddr_t */
     53 #include <ufs/ffs/fs.h>
     54 #include <ufs/ufs/dir.h>
     55 #include <ufs/ufs/dinode.h>
     56 #include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */
     57 
     58 extern const char *__progname;
     59 
     60 /* Patchup for systems that don't yet have __progname */
     61 #ifdef NO_PROGNAME
     62 const char *__progname;
     63 int main(int, char **);
     64 int main_(int, char **);
     65 int
     66 main(int ac, char **av)
     67 #define main main_
     68 {
     69 	__progname = av[0];
     70 	return (main(ac, av));
     71 }
     72 #endif
     73 
     74 /* Suppress warnings about unused arguments */
     75 #if	defined(__GNUC__) &&				\
     76 	( (__GNUC__ > 2) ||				\
     77 	  ( (__GNUC__ == 2) &&				\
     78 	    defined(__GNUC_MINOR__) &&			\
     79 	    (__GNUC_MINOR__ >= 7) ) )
     80 #define UNUSED_ARG(x) x __attribute__((__unused__))
     81 #define INLINE inline
     82 #else
     83 #define UNUSED_ARG(x) x
     84 #define INLINE			/**/
     85 #endif
     86 
     87 /* new size of filesystem, in sectors */
     88 static int newsize;
     89 
     90 /* fd open onto disk device */
     91 static int fd;
     92 
     93 /* must we break up big I/O operations - see checksmallio() */
     94 static int smallio;
     95 
     96 /* size of a cg, in bytes, rounded up to a frag boundary */
     97 static int cgblksz;
     98 
     99 /* Superblocks. */
    100 static struct fs *oldsb;	/* before we started */
    101 static struct fs *newsb;	/* copy to work with */
    102 /* Buffer to hold the above.  Make sure it's aligned correctly. */
    103 static char sbbuf[2 * SBSIZE] __attribute__((__aligned__(__alignof__(struct fs))));
    104 
    105 /* a cg's worth of brand new squeaky-clean inodes */
    106 static struct dinode *zinodes;
    107 
    108 /* pointers to the in-core cgs, read off disk and possibly modified */
    109 static struct cg **cgs;
    110 
    111 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
    112 static struct csum *csums;
    113 
    114 /* per-cg flags, indexed by cg number */
    115 static unsigned char *cgflags;
    116 #define CGF_DIRTY   0x01	/* needs to be written to disk */
    117 #define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
    118 #define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */
    119 
    120 /* when shrinking, these two arrays record how we want blocks to move.	 */
    121 /*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
    122 /*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
    123 /*  started out as inode i should end up as inode j.			 */
    124 static unsigned int *blkmove;
    125 static unsigned int *inomove;
    126 
    127 /* in-core copies of all inodes in the fs, indexed by inumber */
    128 static struct dinode *inodes;
    129 
    130 /* per-inode flags, indexed by inumber */
    131 static unsigned char *iflags;
    132 #define IF_DIRTY  0x01		/* needs to be written to disk */
    133 #define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
    134 				 * block of inodes, and applies to the whole
    135 				 * block. */
    136 
    137 /*
    138  * See if we need to break up large I/O operations.  This should never
    139  *  be needed, but under at least one <version,platform> combination,
    140  *  large enough disk transfers to the raw device hang.  So if we're
    141  *  talking to a character special device, play it safe; in this case,
    142  *  readat() and writeat() break everything up into pieces no larger
    143  *  than 8K, doing multiple syscalls for larger operations.
    144  */
    145 static void
    146 checksmallio(void)
    147 {
    148 	struct stat stb;
    149 
    150 	fstat(fd, &stb);
    151 	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
    152 }
    153 /*
    154  * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
    155  *  units, ie, after fsbtodb(); size is in bytes.
    156  */
    157 static void
    158 readat(off_t blkno, void *buf, int size)
    159 {
    160 	/* Seek to the correct place. */
    161 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0) {
    162 		fprintf(stderr, "%s: lseek: %s\n", __progname,
    163 		    strerror(errno));
    164 		exit(1);
    165 	}
    166 	/* See if we have to break up the transfer... */
    167 	if (smallio) {
    168 		char *bp;	/* pointer into buf */
    169 		int left;	/* bytes left to go */
    170 		int n;		/* number to do this time around */
    171 		int rv;		/* syscall return value */
    172 		bp = buf;
    173 		left = size;
    174 		while (left > 0) {
    175 			n = (left > 8192) ? 8192 : left;
    176 			rv = read(fd, bp, n);
    177 			if (rv < 0) {
    178 				fprintf(stderr, "%s: read: %s\n", __progname,
    179 				    strerror(errno));
    180 				exit(1);
    181 			}
    182 			if (rv != n) {
    183 				fprintf(stderr,
    184 				    "%s: read: wanted %d, got %d\n",
    185 				    __progname, n, rv);
    186 				exit(1);
    187 			}
    188 			bp += n;
    189 			left -= n;
    190 		}
    191 	} else {
    192 		int rv;
    193 		rv = read(fd, buf, size);
    194 		if (rv < 0) {
    195 			fprintf(stderr, "%s: read: %s\n", __progname,
    196 			    strerror(errno));
    197 			exit(1);
    198 		}
    199 		if (rv != size) {
    200 			fprintf(stderr, "%s: read: wanted %d, got %d\n",
    201 			    __progname, size, rv);
    202 			exit(1);
    203 		}
    204 	}
    205 }
    206 /*
    207  * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
    208  *  units, ie, after fsbtodb(); size is in bytes.
    209  */
    210 static void
    211 writeat(off_t blkno, const void *buf, int size)
    212 {
    213 	/* Seek to the correct place. */
    214 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0) {
    215 		fprintf(stderr, "%s: lseek: %s\n", __progname,
    216 		    strerror(errno));
    217 		exit(1);
    218 	}
    219 	/* See if we have to break up the transfer... */
    220 	if (smallio) {
    221 		const char *bp;	/* pointer into buf */
    222 		int left;	/* bytes left to go */
    223 		int n;		/* number to do this time around */
    224 		int rv;		/* syscall return value */
    225 		bp = buf;
    226 		left = size;
    227 		while (left > 0) {
    228 			n = (left > 8192) ? 8192 : left;
    229 			rv = write(fd, bp, n);
    230 			if (rv < 0) {
    231 				fprintf(stderr, "%s: write: %s\n", __progname,
    232 				    strerror(errno));
    233 				exit(1);
    234 			}
    235 			if (rv != n) {
    236 				fprintf(stderr,
    237 				    "%s: write: wanted %d, got %d\n",
    238 				    __progname, n, rv);
    239 				exit(1);
    240 			}
    241 			bp += n;
    242 			left -= n;
    243 		}
    244 	} else {
    245 		int rv;
    246 		rv = write(fd, buf, size);
    247 		if (rv < 0) {
    248 			fprintf(stderr, "%s: write: %s\n", __progname,
    249 			    strerror(errno));
    250 			exit(1);
    251 		}
    252 		if (rv != size) {
    253 			fprintf(stderr, "%s: write: wanted %d, got %d\n",
    254 			    __progname, size, rv);
    255 			exit(1);
    256 		}
    257 	}
    258 }
    259 /*
    260  * Never-fail versions of malloc() and realloc(), and an allocation
    261  *  routine (which also never fails) for allocating memory that will
    262  *  never be freed until exit.
    263  */
    264 
    265 /*
    266  * Never-fail malloc.
    267  */
    268 static void *
    269 nfmalloc(size_t nb, const char *tag)
    270 {
    271 	void *rv;
    272 
    273 	rv = malloc(nb);
    274 	if (rv)
    275 		return (rv);
    276 	fprintf(stderr, "%s: can't allocate %lu bytes for %s\n",
    277                 __progname, (unsigned long int) nb, tag);
    278 	exit(1);
    279 }
    280 /*
    281  * Never-fail realloc.
    282  */
    283 static void *
    284 nfrealloc(void *blk, size_t nb, const char *tag)
    285 {
    286 	void *rv;
    287 
    288 	rv = realloc(blk, nb);
    289 	if (rv)
    290 		return (rv);
    291 	fprintf(stderr, "%s: can't reallocate to %lu bytes for %s\n",
    292                 __progname, (unsigned long int) nb, tag);
    293 	exit(1);
    294 }
    295 /*
    296  * Allocate memory that will never be freed or reallocated.  Arguably
    297  *  this routine should handle small allocations by chopping up pages,
    298  *  but that's not worth the bother; it's not called more than a
    299  *  handful of times per run, and if the allocations are that small the
    300  *  waste in giving each one its own page is ignorable.
    301  */
    302 static void *
    303 alloconce(size_t nb, const char *tag)
    304 {
    305 	void *rv;
    306 
    307 	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
    308 	if (rv != MAP_FAILED)
    309 		return (rv);
    310 	fprintf(stderr, "%s: can't allocate %lu bytes for %s\n", __progname,
    311                 (unsigned long int) nb, tag);
    312 	exit(1);
    313 }
    314 /*
    315  * Load the cgs and csums off disk.  Also allocates the space to load
    316  *  them into and initializes the per-cg flags.
    317  */
    318 static void
    319 loadcgs(void)
    320 {
    321 	int cg;
    322 	char *cgp;
    323 
    324 	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
    325 	cgs = nfmalloc(oldsb->fs_ncg * sizeof(struct cg *), "cg pointers");
    326 	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
    327 	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
    328 	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
    329 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
    330 		cgs[cg] = (struct cg *) cgp;
    331 		readat(fsbtodb(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
    332 		cgflags[cg] = 0;
    333 		cgp += cgblksz;
    334 	}
    335 	readat(fsbtodb(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
    336 }
    337 /*
    338  * Set n bits, starting with bit #base, in the bitmap pointed to by
    339  *  bitvec (which is assumed to be large enough to include bits base
    340  *  through base+n-1).
    341  */
    342 static void
    343 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
    344 {
    345 	if (n < 1)
    346 		return;		/* nothing to do */
    347 	if (base & 7) {		/* partial byte at beginning */
    348 		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
    349 			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
    350 			return;
    351 		}
    352 		bitvec[base >> 3] |= (~0U) << (base & 7);
    353 		n -= 8 - (base & 7);
    354 		base = (base & ~7) + 8;
    355 	}
    356 	if (n >= 8) {		/* do full bytes */
    357 		memset(bitvec + (base >> 3), 0xff, n >> 3);
    358 		base += n & ~7;
    359 		n &= 7;
    360 	}
    361 	if (n) {		/* partial byte at end */
    362 		bitvec[base >> 3] |= ~((~0U) << n);
    363 	}
    364 }
    365 /*
    366  * Clear n bits, starting with bit #base, in the bitmap pointed to by
    367  *  bitvec (which is assumed to be large enough to include bits base
    368  *  through base+n-1).  Code parallels set_bits().
    369  */
    370 static void
    371 clr_bits(unsigned char *bitvec, int base, int n)
    372 {
    373 	if (n < 1)
    374 		return;
    375 	if (base & 7) {
    376 		if (n <= 8 - (base & 7)) {
    377 			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
    378 			return;
    379 		}
    380 		bitvec[base >> 3] &= ~((~0U) << (base & 7));
    381 		n -= 8 - (base & 7);
    382 		base = (base & ~7) + 8;
    383 	}
    384 	if (n >= 8) {
    385 		bzero(bitvec + (base >> 3), n >> 3);
    386 		base += n & ~7;
    387 		n &= 7;
    388 	}
    389 	if (n) {
    390 		bitvec[base >> 3] &= (~0U) << n;
    391 	}
    392 }
    393 /*
    394  * Test whether bit #bit is set in the bitmap pointed to by bitvec.
    395  */
    396 INLINE static int
    397 bit_is_set(unsigned char *bitvec, int bit)
    398 {
    399 	return (bitvec[bit >> 3] & (1 << (bit & 7)));
    400 }
    401 /*
    402  * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
    403  */
    404 INLINE static int
    405 bit_is_clr(unsigned char *bitvec, int bit)
    406 {
    407 	return (!bit_is_set(bitvec, bit));
    408 }
    409 /*
    410  * Test whether a whole block of bits is set in a bitmap.  This is
    411  *  designed for testing (aligned) disk blocks in a bit-per-frag
    412  *  bitmap; it has assumptions wired into it based on that, essentially
    413  *  that the entire block fits into a single byte.  This returns true
    414  *  iff _all_ the bits are set; it is not just the complement of
    415  *  blk_is_clr on the same arguments (unless blkfrags==1).
    416  */
    417 INLINE static int
    418 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
    419 {
    420 	unsigned int mask;
    421 
    422 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    423 	return ((bitvec[blkbase >> 3] & mask) == mask);
    424 }
    425 /*
    426  * Test whether a whole block of bits is clear in a bitmap.  See
    427  *  blk_is_set (above) for assumptions.  This returns true iff _all_
    428  *  the bits are clear; it is not just the complement of blk_is_set on
    429  *  the same arguments (unless blkfrags==1).
    430  */
    431 INLINE static int
    432 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
    433 {
    434 	unsigned int mask;
    435 
    436 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    437 	return ((bitvec[blkbase >> 3] & mask) == 0);
    438 }
    439 /*
    440  * Initialize a new cg.  Called when growing.  Assumes memory has been
    441  *  allocated but not otherwise set up.  This code sets the fields of
    442  *  the cg, initializes the bitmaps (and cluster summaries, if
    443  *  applicable), updates both per-cylinder summary info and the global
    444  *  summary info in newsb; it also writes out new inodes for the cg.
    445  *
    446  * This code knows it can never be called for cg 0, which makes it a
    447  *  bit simpler than it would otherwise be.
    448  */
    449 static void
    450 initcg(int cgn)
    451 {
    452 	struct cg *cg;		/* The in-core cg, of course */
    453 	int base;		/* Disk address of cg base */
    454 	int dlow;		/* Size of pre-cg data area */
    455 	int dhigh;		/* Offset of post-inode data area, from base */
    456 	int dmax;		/* Offset of end of post-inode data area */
    457 	int i;			/* Generic loop index */
    458 	int n;			/* Generic count */
    459 
    460 	cg = cgs[cgn];
    461 	/* Place the data areas */
    462 	base = cgbase(newsb, cgn);
    463 	dlow = cgsblock(newsb, cgn) - base;
    464 	dhigh = cgdmin(newsb, cgn) - base;
    465 	dmax = newsb->fs_size - base;
    466 	if (dmax > newsb->fs_fpg)
    467 		dmax = newsb->fs_fpg;
    468 	/*
    469          * Clear out the cg - assumes all-0-bytes is the correct way
    470          * to initialize fields we don't otherwise touch, which is
    471          * perhaps not the right thing to do, but it's what fsck and
    472          * mkfs do.
    473          */
    474 	bzero(cg, newsb->fs_cgsize);
    475 	cg->cg_time = newsb->fs_time;
    476 	cg->cg_magic = CG_MAGIC;
    477 	cg->cg_cgx = cgn;
    478 	cg->cg_ncyl = newsb->fs_cpg;
    479 	/* fsck whines if the cg->cg_ncyl value in the last cg is fs_cpg
    480 	 * instead of zero, when fs_cpg is the correct value. */
    481 	/* XXX fix once fsck is fixed */
    482 	if ((cgn == newsb->fs_ncg - 1) /* && (newsb->fs_ncyl % newsb->fs_cpg) */ ) {
    483 		cg->cg_ncyl = newsb->fs_ncyl % newsb->fs_cpg;
    484 	}
    485 	cg->cg_niblk = newsb->fs_ipg;
    486 	cg->cg_ndblk = dmax;
    487 	/* Set up the bitmap pointers.  We have to be careful to lay out the
    488 	 * cg _exactly_ the way mkfs and fsck do it, since fsck compares the
    489 	 * _entire_ cg against a recomputed cg, and whines if there is any
    490 	 * mismatch, including the bitmap offsets. */
    491 	/* XXX update this comment when fsck is fixed */
    492 	cg->cg_btotoff = &cg->cg_space[0] - (unsigned char *) cg;
    493 	cg->cg_boff = cg->cg_btotoff + (newsb->fs_cpg * sizeof(int32_t));
    494 	cg->cg_iusedoff = cg->cg_boff +
    495 	    (newsb->fs_cpg * newsb->fs_nrpos * sizeof(int16_t));
    496 	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
    497 	if (newsb->fs_contigsumsize > 0) {
    498 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
    499 		cg->cg_clustersumoff = cg->cg_freeoff +
    500 		    howmany(newsb->fs_cpg * newsb->fs_spc / NSPF(newsb),
    501 		    NBBY) - sizeof(int32_t);
    502 		cg->cg_clustersumoff =
    503 		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
    504 		cg->cg_clusteroff = cg->cg_clustersumoff +
    505 		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
    506 		cg->cg_nextfreeoff = cg->cg_clusteroff +
    507 		    howmany(newsb->fs_cpg * newsb->fs_spc / NSPB(newsb),
    508 		    NBBY);
    509 		n = dlow / newsb->fs_frag;
    510 		if (n > 0) {
    511 			set_bits(cg_clustersfree(cg, 0), 0, n);
    512 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    513 			    newsb->fs_contigsumsize : n]++;
    514 		}
    515 	} else {
    516 		cg->cg_nextfreeoff = cg->cg_freeoff +
    517 		    howmany(newsb->fs_cpg * newsb->fs_spc / NSPF(newsb),
    518 		    NBBY);
    519 	}
    520 	/* Mark the data areas as free; everything else is marked busy by the
    521 	 * bzero up at the top. */
    522 	set_bits(cg_blksfree(cg, 0), 0, dlow);
    523 	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
    524 	/* Initialize summary info */
    525 	cg->cg_cs.cs_ndir = 0;
    526 	cg->cg_cs.cs_nifree = newsb->fs_ipg;
    527 	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
    528 	cg->cg_cs.cs_nffree = 0;
    529 
    530 	/* This is the simplest way of doing this; we perhaps could compute
    531 	 * the correct cg_blktot()[] and cg_blks()[] values other ways, but it
    532 	 * would be complicated and hardly seems worth the effort.  (The
    533 	 * reason there isn't frag-at-beginning and frag-at-end code here,
    534 	 * like the code below for the post-inode data area, is that the
    535 	 * pre-sb data area always starts at 0, and thus is block-aligned, and
    536 	 * always ends at the sb, which is block-aligned.) */
    537 	for (i = 0; i < dlow; i += newsb->fs_frag) {
    538 		cg_blktot(cg, 0)[cbtocylno(newsb, i)]++;
    539 		cg_blks(newsb, cg, cbtocylno(newsb, i), 0)[cbtorpos(newsb, i)]++;
    540 	}
    541 	/* Deal with a partial block at the beginning of the post-inode area.
    542 	 * I'm not convinced this can happen - I think the inodes are always
    543 	 * block-aligned and always an integral number of blocks - but it's
    544 	 * cheap to do the right thing just in case. */
    545 	if (dhigh % newsb->fs_frag) {
    546 		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
    547 		cg->cg_frsum[n]++;
    548 		cg->cg_cs.cs_nffree += n;
    549 		dhigh += n;
    550 	}
    551 	n = (dmax - dhigh) / newsb->fs_frag;
    552 	/* We have n full-size blocks in the post-inode data area. */
    553 	if (n > 0) {
    554 		cg->cg_cs.cs_nbfree += n;
    555 		if (newsb->fs_contigsumsize > 0) {
    556 			i = dhigh / newsb->fs_frag;
    557 			set_bits(cg_clustersfree(cg, 0), i, n);
    558 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    559 			    newsb->fs_contigsumsize : n]++;
    560 		}
    561 		for (i = n; i > 0; i--) {
    562 			cg_blktot(cg, 0)[cbtocylno(newsb, dhigh)]++;
    563 			cg_blks(newsb, cg,
    564 			    cbtocylno(newsb, dhigh), 0)[cbtorpos(newsb,
    565 				dhigh)]++;
    566 			dhigh += newsb->fs_frag;
    567 		}
    568 	}
    569 	/* Deal with any leftover frag at the end of the cg. */
    570 	i = dmax - dhigh;
    571 	if (i) {
    572 		cg->cg_frsum[i]++;
    573 		cg->cg_cs.cs_nffree += i;
    574 	}
    575 	/* Update the csum info. */
    576 	csums[cgn] = cg->cg_cs;
    577 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
    578 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
    579 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
    580 	/* Write out the cleared inodes. */
    581 	writeat(fsbtodb(newsb, cgimin(newsb, cgn)), zinodes,
    582 	    newsb->fs_ipg * sizeof(struct dinode));
    583 	/* Dirty the cg. */
    584 	cgflags[cgn] |= CGF_DIRTY;
    585 }
    586 /*
    587  * Find free space, at least nfrags consecutive frags of it.  Pays no
    588  *  attention to block boundaries, but refuses to straddle cg
    589  *  boundaries, even if the disk blocks involved are in fact
    590  *  consecutive.  Return value is the frag number of the first frag of
    591  *  the block, or -1 if no space was found.  Uses newsb for sb values,
    592  *  and assumes the cgs[] structures correctly describe the area to be
    593  *  searched.
    594  *
    595  * XXX is there a bug lurking in the ignoring of block boundaries by
    596  *  the routine used by fragmove() in evict_data()?  Can an end-of-file
    597  *  frag legally straddle a block boundary?  If not, this should be
    598  *  cloned and fixed to stop at block boundaries for that use.  The
    599  *  current one may still be needed for csum info motion, in case that
    600  *  takes up more than a whole block (is the csum info allowed to begin
    601  *  partway through a block and continue into the following block?).
    602  *
    603  * If we wrap off the end of the filesystem back to the beginning, we
    604  *  can end up searching the end of the filesystem twice.  I ignore
    605  *  this inefficiency, since if that happens we're going to croak with
    606  *  a no-space error anyway, so it happens at most once.
    607  */
    608 static int
    609 find_freespace(unsigned int nfrags)
    610 {
    611 	static int hand = 0;	/* hand rotates through all frags in the fs */
    612 	int cgsize;		/* size of the cg hand currently points into */
    613 	int cgn;		/* number of cg hand currently points into */
    614 	int fwc;		/* frag-within-cg number of frag hand points
    615 				 * to */
    616 	int run;		/* length of run of free frags seen so far */
    617 	int secondpass;		/* have we wrapped from end of fs to
    618 				 * beginning? */
    619 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    620 
    621 	cgn = dtog(newsb, hand);
    622 	fwc = dtogd(newsb, hand);
    623 	secondpass = (hand == 0);
    624 	run = 0;
    625 	bits = cg_blksfree(cgs[cgn], 0);
    626 	cgsize = cgs[cgn]->cg_ndblk;
    627 	while (1) {
    628 		if (bit_is_set(bits, fwc)) {
    629 			run++;
    630 			if (run >= nfrags)
    631 				return (hand + 1 - run);
    632 		} else {
    633 			run = 0;
    634 		}
    635 		hand++;
    636 		fwc++;
    637 		if (fwc >= cgsize) {
    638 			fwc = 0;
    639 			cgn++;
    640 			if (cgn >= newsb->fs_ncg) {
    641 				hand = 0;
    642 				if (secondpass)
    643 					return (-1);
    644 				secondpass = 1;
    645 				cgn = 0;
    646 			}
    647 			bits = cg_blksfree(cgs[cgn], 0);
    648 			cgsize = cgs[cgn]->cg_ndblk;
    649 			run = 0;
    650 		}
    651 	}
    652 }
    653 /*
    654  * Find a free block of disk space.  Finds an entire block of frags,
    655  *  all of which are free.  Return value is the frag number of the
    656  *  first frag of the block, or -1 if no space was found.  Uses newsb
    657  *  for sb values, and assumes the cgs[] structures correctly describe
    658  *  the area to be searched.
    659  *
    660  * See find_freespace(), above, for remarks about hand wrapping around.
    661  */
    662 static int
    663 find_freeblock(void)
    664 {
    665 	static int hand = 0;	/* hand rotates through all frags in fs */
    666 	int cgn;		/* cg number of cg hand points into */
    667 	int fwc;		/* frag-within-cg number of frag hand points
    668 				 * to */
    669 	int cgsize;		/* size of cg hand points into */
    670 	int secondpass;		/* have we wrapped from end to beginning? */
    671 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    672 
    673 	cgn = dtog(newsb, hand);
    674 	fwc = dtogd(newsb, hand);
    675 	secondpass = (hand == 0);
    676 	bits = cg_blksfree(cgs[cgn], 0);
    677 	cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
    678 	while (1) {
    679 		if (blk_is_set(bits, fwc, newsb->fs_frag))
    680 			return (hand);
    681 		fwc += newsb->fs_frag;
    682 		hand += newsb->fs_frag;
    683 		if (fwc >= cgsize) {
    684 			fwc = 0;
    685 			cgn++;
    686 			if (cgn >= newsb->fs_ncg) {
    687 				hand = 0;
    688 				if (secondpass)
    689 					return (-1);
    690 				secondpass = 1;
    691 				cgn = 0;
    692 			}
    693 			bits = cg_blksfree(cgs[cgn], 0);
    694 			cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
    695 		}
    696 	}
    697 }
    698 /*
    699  * Find a free inode, returning its inumber or -1 if none was found.
    700  *  Uses newsb for sb values, and assumes the cgs[] structures
    701  *  correctly describe the area to be searched.
    702  *
    703  * See find_freespace(), above, for remarks about hand wrapping around.
    704  */
    705 static int
    706 find_freeinode(void)
    707 {
    708 	static int hand = 0;	/* hand rotates through all inodes in fs */
    709 	int cgn;		/* cg number of cg hand points into */
    710 	int iwc;		/* inode-within-cg number of inode hand points
    711 				 * to */
    712 	int secondpass;		/* have we wrapped from end to beginning? */
    713 	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */
    714 
    715 	cgn = hand / newsb->fs_ipg;
    716 	iwc = hand % newsb->fs_ipg;
    717 	secondpass = (hand == 0);
    718 	bits = cg_inosused(cgs[cgn], 0);
    719 	while (1) {
    720 		if (bit_is_clr(bits, iwc))
    721 			return (hand);
    722 		hand++;
    723 		iwc++;
    724 		if (iwc >= newsb->fs_ipg) {
    725 			iwc = 0;
    726 			cgn++;
    727 			if (cgn >= newsb->fs_ncg) {
    728 				hand = 0;
    729 				if (secondpass)
    730 					return (-1);
    731 				secondpass = 1;
    732 				cgn = 0;
    733 			}
    734 			bits = cg_inosused(cgs[cgn], 0);
    735 		}
    736 	}
    737 }
    738 /*
    739  * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
    740  *  for the appropriate cg, and marks the cg as dirty.
    741  */
    742 static void
    743 free_frag(int fno)
    744 {
    745 	int cgn;
    746 
    747 	cgn = dtog(newsb, fno);
    748 	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    749 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    750 }
    751 /*
    752  * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
    753  *  for the appropriate cg, and marks the cg as dirty.
    754  */
    755 static void
    756 alloc_frag(int fno)
    757 {
    758 	int cgn;
    759 
    760 	cgn = dtog(newsb, fno);
    761 	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    762 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    763 }
    764 /*
    765  * Fix up the csum array.  If shrinking, this involves freeing zero or
    766  *  more frags; if growing, it involves allocating them, or if the
    767  *  frags being grown into aren't free, finding space elsewhere for the
    768  *  csum info.  (If the number of occupied frags doesn't change,
    769  *  nothing happens here.)
    770  */
    771 static void
    772 csum_fixup(void)
    773 {
    774 	int nold;		/* # frags in old csum info */
    775 	int ntot;		/* # frags in new csum info */
    776 	int nnew;		/* ntot-nold */
    777 	int newloc;		/* new location for csum info, if necessary */
    778 	int i;			/* generic loop index */
    779 	int j;			/* generic loop index */
    780 	int f;			/* "from" frag number, if moving */
    781 	int t;			/* "to" frag number, if moving */
    782 	int cgn;		/* cg number, used when shrinking */
    783 
    784 	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
    785 	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
    786 	nnew = ntot - nold;
    787 	/* First, if there's no change in frag counts, it's easy. */
    788 	if (nnew == 0)
    789 		return;
    790 	/* Next, if we're shrinking, it's almost as easy.  Just free up any
    791 	 * frags in the old area we no longer need. */
    792 	if (nnew < 0) {
    793 		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
    794 		    j < 0;
    795 		    i--, j++) {
    796 			free_frag(i);
    797 		}
    798 		return;
    799 	}
    800 	/* We must be growing.  Check to see that the new csum area fits
    801 	 * within the filesystem.  I think this can never happen, since for
    802 	 * the csum area to grow, we must be adding at least one cg, so the
    803 	 * old csum area can't be this close to the end of the new filesystem.
    804 	 * But it's a cheap check. */
    805 	/* XXX what if csum info is at end of cg and grows into next cg, what
    806 	 * if it spills over onto the next cg's backup superblock?  Can this
    807 	 * happen? */
    808 	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
    809 		/* Okay, it fits - now,  see if the space we want is free. */
    810 		for ((i = newsb->fs_csaddr + nold), (j = nnew);
    811 		    j > 0;
    812 		    i++, j--) {
    813 			cgn = dtog(newsb, i);
    814 			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
    815 				dtogd(newsb, i)))
    816 				break;
    817 		}
    818 		if (j <= 0) {
    819 			/* Win win - all the frags we want are free. Allocate
    820 			 * 'em and we're all done.  */
    821 			for ((i = newsb->fs_csaddr + ntot - nnew), (j = nnew); j > 0; i++, j--) {
    822 				alloc_frag(i);
    823 			}
    824 			return;
    825 		}
    826 	}
    827 	/* We have to move the csum info, sigh.  Look for new space, free old
    828 	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
    829 	 * on disk at this point; the csum info will be written to the
    830 	 * then-current fs_csaddr as part of the final flush. */
    831 	newloc = find_freespace(ntot);
    832 	if (newloc < 0) {
    833 		printf("Sorry, no space available for new csums\n");
    834 		exit(1);
    835 	}
    836 	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
    837 		if (i < nold) {
    838 			free_frag(f);
    839 		}
    840 		alloc_frag(t);
    841 	}
    842 	newsb->fs_csaddr = newloc;
    843 }
    844 /*
    845  * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
    846  *  data blocks in that cg to the total.
    847  */
    848 static void
    849 recompute_fs_dsize(void)
    850 {
    851 	int i;
    852 
    853 	newsb->fs_dsize = 0;
    854 	for (i = 0; i < newsb->fs_ncg; i++) {
    855 		int dlow;	/* size of before-sb data area */
    856 		int dhigh;	/* offset of post-inode data area */
    857 		int dmax;	/* total size of cg */
    858 		int base;	/* base of cg, since cgsblock() etc add it in */
    859 		base = cgbase(newsb, i);
    860 		dlow = cgsblock(newsb, i) - base;
    861 		dhigh = cgdmin(newsb, i) - base;
    862 		dmax = newsb->fs_size - base;
    863 		if (dmax > newsb->fs_fpg)
    864 			dmax = newsb->fs_fpg;
    865 		newsb->fs_dsize += dlow + dmax - dhigh;
    866 	}
    867 	/* Space in cg 0 before cgsblock is boot area, not free space! */
    868 	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
    869 	/* And of course the csum info takes up space. */
    870 	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
    871 }
    872 /*
    873  * Return the current time.  We call this and assign, rather than
    874  *  calling time() directly, as insulation against OSes where fs_time
    875  *  is not a time_t.
    876  */
    877 static time_t
    878 timestamp(void)
    879 {
    880 	time_t t;
    881 
    882 	time(&t);
    883 	return (t);
    884 }
    885 /*
    886  * Grow the filesystem.
    887  */
    888 static void
    889 grow(void)
    890 {
    891 	int i;
    892 
    893 	/* Update the timestamp. */
    894 	newsb->fs_time = timestamp();
    895 	/* Allocate and clear the new-inode area, in case we add any cgs. */
    896 	zinodes = alloconce(newsb->fs_ipg * sizeof(struct dinode),
    897                             "zeroed inodes");
    898 	bzero(zinodes, newsb->fs_ipg * sizeof(struct dinode));
    899 	/* Update the size. */
    900 	newsb->fs_size = dbtofsb(newsb, newsize);
    901 	/* Did we actually not grow?  (This can happen if newsize is less than
    902 	 * a frag larger than the old size - unlikely, but no excuse to
    903 	 * misbehave if it happens.) */
    904 	if (newsb->fs_size == oldsb->fs_size)
    905 		return;
    906 	/* Check that the new last sector (frag, actually) is writable.  Since
    907 	 * it's at least one frag larger than it used to be, we know we aren't
    908 	 * overwriting anything important by this.  (The choice of sbbuf as
    909 	 * what to write is irrelevant; it's just something handy that's known
    910 	 * to be at least one frag in size.) */
    911 	writeat(newsb->fs_size - 1, &sbbuf, newsb->fs_fsize);
    912 	/* Update fs_ncyl and fs_ncg. */
    913 	newsb->fs_ncyl = (newsb->fs_size * NSPF(newsb)) / newsb->fs_spc;
    914 	newsb->fs_ncg = howmany(newsb->fs_ncyl, newsb->fs_cpg);
    915 	/* Does the last cg end before the end of its inode area? There is no
    916 	 * reason why this couldn't be handled, but it would complicate a lot
    917 	 * of code (in all filesystem code - fsck, kernel, etc) because of the
    918 	 * potential partial inode area, and the gain in space would be
    919 	 * minimal, at most the pre-sb data area. */
    920 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
    921 		newsb->fs_ncg--;
    922 		newsb->fs_ncyl = newsb->fs_ncg * newsb->fs_cpg;
    923 		newsb->fs_size = (newsb->fs_ncyl * newsb->fs_spc) / NSPF(newsb);
    924 		printf("Warning: last cylinder group is too small;\n");
    925 		printf("    dropping it.  New size = %lu.\n",
    926 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
    927 	}
    928 	/* Find out how big the csum area is, and realloc csums if bigger. */
    929 	newsb->fs_cssize = fragroundup(newsb,
    930 	    newsb->fs_ncg * sizeof(struct csum));
    931 	if (newsb->fs_cssize > oldsb->fs_cssize)
    932 		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
    933 	/* If we're adding any cgs, realloc structures and set up the new cgs. */
    934 	if (newsb->fs_ncg > oldsb->fs_ncg) {
    935 		char *cgp;
    936 		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(struct cg *),
    937                                 "cg pointers");
    938 		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
    939 		bzero(cgflags + oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
    940 		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
    941                                 "cgs");
    942 		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
    943 			cgs[i] = (struct cg *) cgp;
    944 			initcg(i);
    945 			cgp += cgblksz;
    946 		}
    947 		cgs[oldsb->fs_ncg - 1]->cg_ncyl = oldsb->fs_cpg;
    948 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
    949 	}
    950 	/* If the old fs ended partway through a cg, we have to update the old
    951 	 * last cg (though possibly not to a full cg!). */
    952 	if (oldsb->fs_size % oldsb->fs_fpg) {
    953 		struct cg *cg;
    954 		int newcgsize;
    955 		int prevcgtop;
    956 		int oldcgsize;
    957 		cg = cgs[oldsb->fs_ncg - 1];
    958 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
    959 		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
    960 		newcgsize = newsb->fs_size - prevcgtop;
    961 		if (newcgsize > newsb->fs_fpg)
    962 			newcgsize = newsb->fs_fpg;
    963 		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
    964 		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
    965 		cg->cg_ncyl = howmany(newcgsize * NSPF(newsb), newsb->fs_spc);
    966 		cg->cg_ndblk = newcgsize;
    967 	}
    968 	/* Fix up the csum info, if necessary. */
    969 	csum_fixup();
    970 	/* Make fs_dsize match the new reality. */
    971 	recompute_fs_dsize();
    972 }
    973 /*
    974  * Call (*fn)() for each inode, passing the inode and its inumber.  The
    975  *  number of cylinder groups is pased in, so this can be used to map
    976  *  over either the old or the new filesystem's set of inodes.
    977  */
    978 static void
    979      map_inodes(void (*fn) (struct dinode * di, unsigned int, void *arg), int ncg, void *cbarg) {
    980 	int i;
    981 	int ni;
    982 
    983 	ni = oldsb->fs_ipg * ncg;
    984 	for (i = 0; i < ni; i++)
    985 		(*fn) (inodes + i, i, cbarg);
    986 }
    987 /* Values for the third argument to the map function for
    988  * map_inode_data_blocks.  MDB_DATA indicates the block is contains
    989  * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
    990  * indirect block.  The MDB_INDIR_PRE call is made before the indirect
    991  * block pointers are followed and the pointed-to blocks scanned,
    992  * MDB_INDIR_POST after.
    993  */
    994 #define MDB_DATA       1
    995 #define MDB_INDIR_PRE  2
    996 #define MDB_INDIR_POST 3
    997 
    998 typedef void (*mark_callback_t) (unsigned int blocknum, unsigned int nfrags, unsigned int blksize, int opcode);
    999 
   1000 /* Helper function - handles a data block.  Calls the callback
   1001  * function and returns number of bytes occupied in file (actually,
   1002  * rounded up to a frag boundary).  The name is historical.  */
   1003 static int
   1004 markblk(mark_callback_t fn, struct dinode * di, int bn, off_t o)
   1005 {
   1006 	int sz;
   1007 	int nb;
   1008 	if (o >= di->di_size)
   1009 		return (0);
   1010 	sz = dblksize(newsb, di, lblkno(newsb, o));
   1011 	nb = (sz > di->di_size - o) ? di->di_size - o : sz;
   1012 	if (bn)
   1013 		(*fn) (bn, numfrags(newsb, sz), nb, MDB_DATA);
   1014 	return (sz);
   1015 }
   1016 /* Helper function - handles an indirect block.  Makes the
   1017  * MDB_INDIR_PRE callback for the indirect block, loops over the
   1018  * pointers and recurses, and makes the MDB_INDIR_POST callback.
   1019  * Returns the number of bytes occupied in file, as does markblk().
   1020  * For the sake of update_for_data_move(), we read the indirect block
   1021  * _after_ making the _PRE callback.  The name is historical.  */
   1022 static int
   1023 markiblk(mark_callback_t fn, struct dinode * di, int bn, off_t o, int lev)
   1024 {
   1025 	int i;
   1026 	int j;
   1027 	int tot;
   1028 	static daddr_t indirblk1[howmany(MAXBSIZE, sizeof(daddr_t))];
   1029 	static daddr_t indirblk2[howmany(MAXBSIZE, sizeof(daddr_t))];
   1030 	static daddr_t indirblk3[howmany(MAXBSIZE, sizeof(daddr_t))];
   1031 	static daddr_t *indirblks[3] = {
   1032 		&indirblk1[0], &indirblk2[0], &indirblk3[0]
   1033 	};
   1034 	if (lev < 0)
   1035 		return (markblk(fn, di, bn, o));
   1036 	if (bn == 0) {
   1037 		for (i = newsb->fs_bsize;
   1038 		    lev >= 0;
   1039 		    i *= NINDIR(newsb), lev--);
   1040 		return (i);
   1041 	}
   1042 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
   1043 	readat(fsbtodb(newsb, bn), indirblks[lev], newsb->fs_bsize);
   1044 	tot = 0;
   1045 	for (i = 0; i < NINDIR(newsb); i++) {
   1046 		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
   1047 		if (j == 0)
   1048 			break;
   1049 		o += j;
   1050 		tot += j;
   1051 	}
   1052 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
   1053 	return (tot);
   1054 }
   1055 
   1056 
   1057 /*
   1058  * Call (*fn)() for each data block for an inode.  This routine assumes
   1059  *  the inode is known to be of a type that has data blocks (file,
   1060  *  directory, or non-fast symlink).  The called function is:
   1061  *
   1062  * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
   1063  *
   1064  *  where blkno is the frag number, nf is the number of frags starting
   1065  *  at blkno (always <= fs_frag), nb is the number of bytes that belong
   1066  *  to the file (usually nf*fs_frag, often less for the last block/frag
   1067  *  of a file).
   1068  */
   1069 static void
   1070 map_inode_data_blocks(struct dinode * di, mark_callback_t fn)
   1071 {
   1072 	off_t o;		/* offset within  inode */
   1073 	int inc;		/* increment for o - maybe should be off_t? */
   1074 	int b;			/* index within di_db[] and di_ib[] arrays */
   1075 
   1076 	/* Scan the direct blocks... */
   1077 	o = 0;
   1078 	for (b = 0; b < NDADDR; b++) {
   1079 		inc = markblk(fn, di, di->di_db[b], o);
   1080 		if (inc == 0)
   1081 			break;
   1082 		o += inc;
   1083 	}
   1084 	/* ...and the indirect blocks. */
   1085 	if (inc) {
   1086 		for (b = 0; b < NIADDR; b++) {
   1087 			inc = markiblk(fn, di, di->di_ib[b], o, b);
   1088 			if (inc == 0)
   1089 				return;
   1090 			o += inc;
   1091 		}
   1092 	}
   1093 }
   1094 
   1095 static void
   1096 dblk_callback(struct dinode * di, unsigned int inum, void *arg)
   1097 {
   1098 	mark_callback_t fn;
   1099 	fn = (mark_callback_t) arg;
   1100 	switch (di->di_mode & IFMT) {
   1101 	case IFLNK:
   1102 		if (di->di_size > newsb->fs_maxsymlinklen) {
   1103 	case IFDIR:
   1104 	case IFREG:
   1105 			map_inode_data_blocks(di, fn);
   1106 		}
   1107 		break;
   1108 	}
   1109 }
   1110 /*
   1111  * Make a callback call, a la map_inode_data_blocks, for all data
   1112  *  blocks in the entire fs.  This is used only once, in
   1113  *  update_for_data_move, but it's out at top level because the complex
   1114  *  downward-funarg nesting that would otherwise result seems to give
   1115  *  gcc gastric distress.
   1116  */
   1117 static void
   1118 map_data_blocks(mark_callback_t fn, int ncg)
   1119 {
   1120 	map_inodes(&dblk_callback, ncg, (void *) fn);
   1121 }
   1122 /*
   1123  * Initialize the blkmove array.
   1124  */
   1125 static void
   1126 blkmove_init(void)
   1127 {
   1128 	int i;
   1129 
   1130 	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
   1131 	for (i = 0; i < oldsb->fs_size; i++)
   1132 		blkmove[i] = i;
   1133 }
   1134 /*
   1135  * Load the inodes off disk.  Allocates the structures and initializes
   1136  *  them - the inodes from disk, the flags to zero.
   1137  */
   1138 static void
   1139 loadinodes(void)
   1140 {
   1141 	int cg;
   1142 	struct dinode *iptr;
   1143 
   1144 	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg * sizeof(struct dinode), "inodes");
   1145 	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
   1146 	bzero(iflags, oldsb->fs_ncg * oldsb->fs_ipg);
   1147 	iptr = inodes;
   1148 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
   1149 		readat(fsbtodb(oldsb, cgimin(oldsb, cg)), iptr,
   1150 		    oldsb->fs_ipg * sizeof(struct dinode));
   1151 		iptr += oldsb->fs_ipg;
   1152 	}
   1153 }
   1154 /*
   1155  * Report a filesystem-too-full problem.
   1156  */
   1157 static void
   1158 toofull(void)
   1159 {
   1160 	printf("Sorry, would run out of data blocks\n");
   1161 	exit(1);
   1162 }
   1163 /*
   1164  * Record a desire to move "n" frags from "from" to "to".
   1165  */
   1166 static void
   1167 mark_move(unsigned int from, unsigned int to, unsigned int n)
   1168 {
   1169 	for (; n > 0; n--)
   1170 		blkmove[from++] = to++;
   1171 }
   1172 /* Helper function - evict n frags, starting with start (cg-relative).
   1173  * The free bitmap is scanned, unallocated frags are ignored, and
   1174  * each block of consecutive allocated frags is moved as a unit.
   1175  */
   1176 static void
   1177 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
   1178 {
   1179 	int i;
   1180 	int run;
   1181 	run = 0;
   1182 	for (i = 0; i <= n; i++) {
   1183 		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
   1184 			run++;
   1185 		} else {
   1186 			if (run > 0) {
   1187 				int off;
   1188 				off = find_freespace(run);
   1189 				if (off < 0)
   1190 					toofull();
   1191 				mark_move(base + start + i - run, off, run);
   1192 				set_bits(cg_blksfree(cg, 0), start + i - run,
   1193 				    run);
   1194 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1195 				    dtogd(oldsb, off), run);
   1196 			}
   1197 			run = 0;
   1198 		}
   1199 	}
   1200 }
   1201 /*
   1202  * Evict all data blocks from the given cg, starting at minfrag (based
   1203  *  at the beginning of the cg), for length nfrag.  The eviction is
   1204  *  assumed to be entirely data-area; this should not be called with a
   1205  *  range overlapping the metadata structures in the cg.  It also
   1206  *  assumes minfrag points into the given cg; it will misbehave if this
   1207  *  is not true.
   1208  *
   1209  * See the comment header on find_freespace() for one possible bug
   1210  *  lurking here.
   1211  */
   1212 static void
   1213 evict_data(struct cg * cg, unsigned int minfrag, unsigned int nfrag)
   1214 {
   1215 	int base;		/* base of cg (in frags from beginning of fs) */
   1216 
   1217 
   1218 	base = cgbase(oldsb, cg->cg_cgx);
   1219 	/* Does the boundary fall in the middle of a block?  To avoid breaking
   1220 	 * between frags allocated as consecutive, we always evict the whole
   1221 	 * block in this case, though one could argue we should check to see
   1222 	 * if the frag before or after the break is unallocated. */
   1223 	if (minfrag % oldsb->fs_frag) {
   1224 		int n;
   1225 		n = minfrag % oldsb->fs_frag;
   1226 		minfrag -= n;
   1227 		nfrag += n;
   1228 	}
   1229 	/* Do whole blocks.  If a block is wholly free, skip it; if wholly
   1230 	 * allocated, move it in toto.  If neither, call fragmove() to move
   1231 	 * the frags to new locations. */
   1232 	while (nfrag >= oldsb->fs_frag) {
   1233 		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
   1234 			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
   1235 				oldsb->fs_frag)) {
   1236 				int off;
   1237 				off = find_freeblock();
   1238 				if (off < 0)
   1239 					toofull();
   1240 				mark_move(base + minfrag, off, oldsb->fs_frag);
   1241 				set_bits(cg_blksfree(cg, 0), minfrag,
   1242 				    oldsb->fs_frag);
   1243 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1244 				    dtogd(oldsb, off), oldsb->fs_frag);
   1245 			} else {
   1246 				fragmove(cg, base, minfrag, oldsb->fs_frag);
   1247 			}
   1248 		}
   1249 		minfrag += oldsb->fs_frag;
   1250 		nfrag -= oldsb->fs_frag;
   1251 	}
   1252 	/* Clean up any sub-block amount left over. */
   1253 	if (nfrag) {
   1254 		fragmove(cg, base, minfrag, nfrag);
   1255 	}
   1256 }
   1257 /*
   1258  * Move all data blocks according to blkmove.  We have to be careful,
   1259  *  because we may be updating indirect blocks that will themselves be
   1260  *  getting moved, or inode daddr_t arrays that point to indirect
   1261  *  blocks that will be moved.  We call this before
   1262  *  update_for_data_move, and update_for_data_move does inodes first,
   1263  *  then indirect blocks in preorder, so as to make sure that the
   1264  *  filesystem is self-consistent at all points, for better crash
   1265  *  tolerance.  (We can get away with this only because all the writes
   1266  *  done by perform_data_move() are writing into space that's not used
   1267  *  by the old filesystem.)  If we crash, some things may point to the
   1268  *  old data and some to the new, but both copies are the same.  The
   1269  *  only wrong things should be csum info and free bitmaps, which fsck
   1270  *  is entirely capable of cleaning up.
   1271  *
   1272  * Since blkmove_init() initializes all blocks to move to their current
   1273  *  locations, we can have two blocks marked as wanting to move to the
   1274  *  same location, but only two and only when one of them is the one
   1275  *  that was already there.  So if blkmove[i]==i, we ignore that entry
   1276  *  entirely - for unallocated blocks, we don't want it (and may be
   1277  *  putting something else there), and for allocated blocks, we don't
   1278  *  want to copy it anywhere.
   1279  */
   1280 static void
   1281 perform_data_move(void)
   1282 {
   1283 	int i;
   1284 	int run;
   1285 	int maxrun;
   1286 	char buf[65536];
   1287 
   1288 	maxrun = sizeof(buf) / newsb->fs_fsize;
   1289 	run = 0;
   1290 	for (i = 0; i < oldsb->fs_size; i++) {
   1291 		if ((blkmove[i] == i) ||
   1292 		    (run >= maxrun) ||
   1293 		    ((run > 0) &&
   1294 			(blkmove[i] != blkmove[i - 1] + 1))) {
   1295 			if (run > 0) {
   1296 				readat(fsbtodb(oldsb, i - run), &buf[0],
   1297 				    run << oldsb->fs_fshift);
   1298 				writeat(fsbtodb(oldsb, blkmove[i - run]),
   1299 				    &buf[0], run << oldsb->fs_fshift);
   1300 			}
   1301 			run = 0;
   1302 		}
   1303 		if (blkmove[i] != i)
   1304 			run++;
   1305 	}
   1306 	if (run > 0) {
   1307 		readat(fsbtodb(oldsb, i - run), &buf[0],
   1308 		    run << oldsb->fs_fshift);
   1309 		writeat(fsbtodb(oldsb, blkmove[i - run]), &buf[0],
   1310 		    run << oldsb->fs_fshift);
   1311 	}
   1312 }
   1313 /*
   1314  * This modifies an array of daddr_t, according to blkmove.  This is
   1315  *  used to update inode block arrays and indirect blocks to point to
   1316  *  the new locations of data blocks.
   1317  *
   1318  * Return value is the number of daddr_ts that needed updating; in
   1319  *  particular, the return value is zero iff nothing was modified.
   1320  */
   1321 static int
   1322 movemap_blocks(daddr_t * vec, int n)
   1323 {
   1324 	int rv;
   1325 
   1326 	rv = 0;
   1327 	for (; n > 0; n--, vec++) {
   1328 		if (blkmove[*vec] != *vec) {
   1329 			*vec = blkmove[*vec];
   1330 			rv++;
   1331 		}
   1332 	}
   1333 	return (rv);
   1334 }
   1335 static void
   1336 moveblocks_callback(struct dinode * di, unsigned int inum, void *arg)
   1337 {
   1338 	switch (di->di_mode & IFMT) {
   1339 	case IFLNK:
   1340 		if (di->di_size > oldsb->fs_maxsymlinklen) {
   1341 	case IFDIR:
   1342 	case IFREG:
   1343 			/* don't || these two calls; we need their
   1344 			 * side-effects */
   1345 			if (movemap_blocks(&di->di_db[0], NDADDR)) {
   1346 				iflags[inum] |= IF_DIRTY;
   1347 			}
   1348 			if (movemap_blocks(&di->di_ib[0], NIADDR)) {
   1349 				iflags[inum] |= IF_DIRTY;
   1350 			}
   1351 		}
   1352 		break;
   1353 	}
   1354 }
   1355 
   1356 static void
   1357 moveindir_callback(unsigned int off, unsigned int nfrag, unsigned int nbytes, int kind)
   1358 {
   1359 	if (kind == MDB_INDIR_PRE) {
   1360 		daddr_t blk[howmany(MAXBSIZE, sizeof(daddr_t))];
   1361 		readat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
   1362 		if (movemap_blocks(&blk[0], NINDIR(oldsb))) {
   1363 			writeat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
   1364 		}
   1365 	}
   1366 }
   1367 /*
   1368  * Update all inode data arrays and indirect blocks to point to the new
   1369  *  locations of data blocks.  See the comment header on
   1370  *  perform_data_move for some ordering considerations.
   1371  */
   1372 static void
   1373 update_for_data_move(void)
   1374 {
   1375 	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
   1376 	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
   1377 }
   1378 /*
   1379  * Initialize the inomove array.
   1380  */
   1381 static void
   1382 inomove_init(void)
   1383 {
   1384 	int i;
   1385 
   1386 	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
   1387                             "inomove");
   1388 	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
   1389 		inomove[i] = i;
   1390 }
   1391 /*
   1392  * Flush all dirtied inodes to disk.  Scans the inode flags array; for
   1393  *  each dirty inode, it sets the BDIRTY bit on the first inode in the
   1394  *  block containing the dirty inode.  Then it scans by blocks, and for
   1395  *  each marked block, writes it.
   1396  */
   1397 static void
   1398 flush_inodes(void)
   1399 {
   1400 	int i;
   1401 	int ni;
   1402 	int m;
   1403 
   1404 	ni = newsb->fs_ipg * newsb->fs_ncg;
   1405 	m = INOPB(newsb) - 1;
   1406 	for (i = 0; i < ni; i++) {
   1407 		if (iflags[i] & IF_DIRTY) {
   1408 			iflags[i & ~m] |= IF_BDIRTY;
   1409 		}
   1410 	}
   1411 	m++;
   1412 	for (i = 0; i < ni; i += m) {
   1413 		if (iflags[i] & IF_BDIRTY) {
   1414 			writeat(fsbtodb(newsb, ino_to_fsba(newsb, i)),
   1415 			    inodes + i, newsb->fs_bsize);
   1416 		}
   1417 	}
   1418 }
   1419 /*
   1420  * Evict all inodes from the specified cg.  shrink() already checked
   1421  *  that there were enough free inodes, so the no-free-inodes check is
   1422  *  a can't-happen.  If it does trip, the filesystem should be in good
   1423  *  enough shape for fsck to fix; see the comment on perform_data_move
   1424  *  for the considerations in question.
   1425  */
   1426 static void
   1427 evict_inodes(struct cg * cg)
   1428 {
   1429 	int inum;
   1430 	int i;
   1431 	int fi;
   1432 
   1433 	inum = newsb->fs_ipg * cg->cg_cgx;
   1434 	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
   1435 		if (inodes[inum].di_mode != 0) {
   1436 			fi = find_freeinode();
   1437 			if (fi < 0) {
   1438 				printf("Sorry, inodes evaporated - "
   1439 				    "filesystem probably needs fsck\n");
   1440 				exit(1);
   1441 			}
   1442 			inomove[inum] = fi;
   1443 			clr_bits(cg_inosused(cg, 0), i, 1);
   1444 			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
   1445 			    fi % newsb->fs_ipg, 1);
   1446 		}
   1447 	}
   1448 }
   1449 /*
   1450  * Move inodes from old locations to new.  Does not actually write
   1451  *  anything to disk; just copies in-core and sets dirty bits.
   1452  *
   1453  * We have to be careful here for reasons similar to those mentioned in
   1454  *  the comment header on perform_data_move, above: for the sake of
   1455  *  crash tolerance, we want to make sure everything is present at both
   1456  *  old and new locations before we update pointers.  So we call this
   1457  *  first, then flush_inodes() to get them out on disk, then update
   1458  *  directories to match.
   1459  */
   1460 static void
   1461 perform_inode_move(void)
   1462 {
   1463 	int i;
   1464 	int ni;
   1465 
   1466 	ni = oldsb->fs_ipg * oldsb->fs_ncg;
   1467 	for (i = 0; i < ni; i++) {
   1468 		if (inomove[i] != i) {
   1469 			inodes[inomove[i]] = inodes[i];
   1470 			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
   1471 		}
   1472 	}
   1473 }
   1474 /*
   1475  * Update the directory contained in the nb bytes at buf, to point to
   1476  *  inodes' new locations.
   1477  */
   1478 static int
   1479 update_dirents(char *buf, int nb)
   1480 {
   1481 	int rv;
   1482 #define d ((struct direct *)buf)
   1483 
   1484 	rv = 0;
   1485 	while (nb > 0) {
   1486 		if (inomove[d->d_ino] != d->d_ino) {
   1487 			rv++;
   1488 			d->d_ino = inomove[d->d_ino];
   1489 		}
   1490 		nb -= d->d_reclen;
   1491 		buf += d->d_reclen;
   1492 	}
   1493 	return (rv);
   1494 #undef d
   1495 }
   1496 /*
   1497  * Callback function for map_inode_data_blocks, for updating a
   1498  *  directory to point to new inode locations.
   1499  */
   1500 static void
   1501 update_dir_data(unsigned int bn, unsigned int size, unsigned int nb, int kind)
   1502 {
   1503 	if (kind == MDB_DATA) {
   1504 		union {
   1505 			struct direct d;
   1506 			char ch[MAXBSIZE];
   1507 		}     buf;
   1508 		readat(fsbtodb(oldsb, bn), &buf, size << oldsb->fs_fshift);
   1509 		if (update_dirents((char *) &buf, nb)) {
   1510 			writeat(fsbtodb(oldsb, bn), &buf,
   1511 			    size << oldsb->fs_fshift);
   1512 		}
   1513 	}
   1514 }
   1515 static void
   1516 dirmove_callback(struct dinode * di, unsigned int inum, void *arg)
   1517 {
   1518 	switch (di->di_mode & IFMT) {
   1519 	case IFDIR:
   1520 		map_inode_data_blocks(di, &update_dir_data);
   1521 		break;
   1522 	}
   1523 }
   1524 /*
   1525  * Update directory entries to point to new inode locations.
   1526  */
   1527 static void
   1528 update_for_inode_move(void)
   1529 {
   1530 	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
   1531 }
   1532 /*
   1533  * Shrink the filesystem.
   1534  */
   1535 static void
   1536 shrink(void)
   1537 {
   1538 	int i;
   1539 
   1540 	/* Load the inodes off disk - we'll need 'em. */
   1541 	loadinodes();
   1542 	/* Update the timestamp. */
   1543 	newsb->fs_time = timestamp();
   1544 	/* Update the size figures. */
   1545 	newsb->fs_size = dbtofsb(newsb, newsize);
   1546 	newsb->fs_ncyl = (newsb->fs_size * NSPF(newsb)) / newsb->fs_spc;
   1547 	newsb->fs_ncg = howmany(newsb->fs_ncyl, newsb->fs_cpg);
   1548 	/* Does the (new) last cg end before the end of its inode area?  See
   1549 	 * the similar code in grow() for more on this. */
   1550 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
   1551 		newsb->fs_ncg--;
   1552 		newsb->fs_ncyl = newsb->fs_ncg * newsb->fs_cpg;
   1553 		newsb->fs_size = (newsb->fs_ncyl * newsb->fs_spc) / NSPF(newsb);
   1554 		printf("Warning: last cylinder group is too small;\n");
   1555 		printf("    dropping it.  New size = %lu.\n",
   1556 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
   1557 	}
   1558 	/* Let's make sure we're not being shrunk into oblivion. */
   1559 	if (newsb->fs_ncg < 1) {
   1560 		printf("Size too small - filesystem would have no cylinders\n");
   1561 		exit(1);
   1562 	}
   1563 	/* Initialize for block motion. */
   1564 	blkmove_init();
   1565 	/* Update csum size, then fix up for the new size */
   1566 	newsb->fs_cssize = fragroundup(newsb,
   1567 	    newsb->fs_ncg * sizeof(struct csum));
   1568 	csum_fixup();
   1569 	/* Evict data from any cgs being wholly eliminiated */
   1570 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
   1571 		int base;
   1572 		int dlow;
   1573 		int dhigh;
   1574 		int dmax;
   1575 		base = cgbase(oldsb, i);
   1576 		dlow = cgsblock(oldsb, i) - base;
   1577 		dhigh = cgdmin(oldsb, i) - base;
   1578 		dmax = oldsb->fs_size - base;
   1579 		if (dmax > cgs[i]->cg_ndblk)
   1580 			dmax = cgs[i]->cg_ndblk;
   1581 		evict_data(cgs[i], 0, dlow);
   1582 		evict_data(cgs[i], dhigh, dmax - dhigh);
   1583 		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
   1584 		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
   1585 		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
   1586 		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
   1587 	}
   1588 	/* Update the new last cg. */
   1589 	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
   1590 	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
   1591 	/* Is the new last cg partial?  If so, evict any data from the part
   1592 	 * being shrunken away. */
   1593 	if (newsb->fs_size % newsb->fs_fpg) {
   1594 		struct cg *cg;
   1595 		int oldcgsize;
   1596 		int newcgsize;
   1597 		cg = cgs[newsb->fs_ncg - 1];
   1598 		newcgsize = newsb->fs_size % newsb->fs_fpg;
   1599 		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) & oldsb->fs_fpg);
   1600 		if (oldcgsize > oldsb->fs_fpg)
   1601 			oldcgsize = oldsb->fs_fpg;
   1602 		evict_data(cg, newcgsize, oldcgsize - newcgsize);
   1603 		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
   1604 	}
   1605 	/* Find out whether we would run out of inodes.  (Note we haven't
   1606 	 * actually done anything to the filesystem yet; all those evict_data
   1607 	 * calls just update blkmove.) */
   1608 	{
   1609 		int slop;
   1610 		slop = 0;
   1611 		for (i = 0; i < newsb->fs_ncg; i++)
   1612 			slop += cgs[i]->cg_cs.cs_nifree;
   1613 		for (; i < oldsb->fs_ncg; i++)
   1614 			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
   1615 		if (slop < 0) {
   1616 			printf("Sorry, would run out of inodes\n");
   1617 			exit(1);
   1618 		}
   1619 	}
   1620 	/* Copy data, then update pointers to data.  See the comment header on
   1621 	 * perform_data_move for ordering considerations. */
   1622 	perform_data_move();
   1623 	update_for_data_move();
   1624 	/* Now do inodes.  Initialize, evict, move, update - see the comment
   1625 	 * header on perform_inode_move. */
   1626 	inomove_init();
   1627 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
   1628 		evict_inodes(cgs[i]);
   1629 	perform_inode_move();
   1630 	flush_inodes();
   1631 	update_for_inode_move();
   1632 	/* Recompute all the bitmaps; most of them probably need it anyway,
   1633 	 * the rest are just paranoia and not wanting to have to bother
   1634 	 * keeping track of exactly which ones require it. */
   1635 	for (i = 0; i < newsb->fs_ncg; i++)
   1636 		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
   1637 	/* Update the cg_ncyl value for the last cylinder.  The condition is
   1638 	 * commented out because fsck whines if not - see the similar
   1639 	 * condition in grow() for more. */
   1640 	/* XXX fix once fsck is fixed */
   1641 	/* if (newsb->fs_ncyl % newsb->fs_cpg) XXX */
   1642 /*XXXJTK*/
   1643 	cgs[newsb->fs_ncg - 1]->cg_ncyl =
   1644 	    newsb->fs_ncyl % newsb->fs_cpg;
   1645 	/* Make fs_dsize match the new reality. */
   1646 	recompute_fs_dsize();
   1647 }
   1648 /*
   1649  * Recompute the block totals, block cluster summaries, and rotational
   1650  *  position summaries, for a given cg (specified by number), based on
   1651  *  its free-frag bitmap (cg_blksfree()[]).
   1652  */
   1653 static void
   1654 rescan_blkmaps(int cgn)
   1655 {
   1656 	struct cg *cg;
   1657 	int f;
   1658 	int b;
   1659 	int blkfree;
   1660 	int blkrun;
   1661 	int fragrun;
   1662 	int fwb;
   1663 
   1664 	cg = cgs[cgn];
   1665 	/* Subtract off the current totals from the sb's summary info */
   1666 	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
   1667 	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
   1668 	/* Clear counters and bitmaps. */
   1669 	cg->cg_cs.cs_nffree = 0;
   1670 	cg->cg_cs.cs_nbfree = 0;
   1671 	bzero(&cg->cg_frsum[0], MAXFRAG * sizeof(cg->cg_frsum[0]));
   1672 	bzero(&cg_blktot(cg, 0)[0],
   1673 	    newsb->fs_cpg * sizeof(cg_blktot(cg, 0)[0]));
   1674 	bzero(&cg_blks(newsb, cg, 0, 0)[0],
   1675 	    newsb->fs_cpg * newsb->fs_nrpos *
   1676 	    sizeof(cg_blks(newsb, cg, 0, 0)[0]));
   1677 	if (newsb->fs_contigsumsize > 0) {
   1678 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
   1679 		bzero(&cg_clustersum(cg, 0)[1],
   1680 		    newsb->fs_contigsumsize *
   1681 		    sizeof(cg_clustersum(cg, 0)[1]));
   1682 		bzero(&cg_clustersfree(cg, 0)[0],
   1683 		    howmany((newsb->fs_cpg * newsb->fs_spc) / NSPB(newsb),
   1684 			NBBY));
   1685 	}
   1686 	/* Scan the free-frag bitmap.  Runs of free frags are kept track of
   1687 	 * with fragrun, and recorded into cg_frsum[] and cg_cs.cs_nffree; on
   1688 	 * each block boundary, entire free blocks are recorded as well. */
   1689 	blkfree = 1;
   1690 	blkrun = 0;
   1691 	fragrun = 0;
   1692 	f = 0;
   1693 	b = 0;
   1694 	fwb = 0;
   1695 	while (f < cg->cg_ndblk) {
   1696 		if (bit_is_set(cg_blksfree(cg, 0), f)) {
   1697 			fragrun++;
   1698 		} else {
   1699 			blkfree = 0;
   1700 			if (fragrun > 0) {
   1701 				cg->cg_frsum[fragrun]++;
   1702 				cg->cg_cs.cs_nffree += fragrun;
   1703 			}
   1704 			fragrun = 0;
   1705 		}
   1706 		f++;
   1707 		fwb++;
   1708 		if (fwb >= newsb->fs_frag) {
   1709 			if (blkfree) {
   1710 				cg->cg_cs.cs_nbfree++;
   1711 				if (newsb->fs_contigsumsize > 0)
   1712 					set_bits(cg_clustersfree(cg, 0), b, 1);
   1713 				cg_blktot(cg, 0)[cbtocylno(newsb, f - newsb->fs_frag)]++;
   1714 				cg_blks(newsb, cg,
   1715 				    cbtocylno(newsb, f - newsb->fs_frag),
   1716 				    0)[cbtorpos(newsb, f - newsb->fs_frag)]++;
   1717 				blkrun++;
   1718 			} else {
   1719 				if (fragrun > 0) {
   1720 					cg->cg_frsum[fragrun]++;
   1721 					cg->cg_cs.cs_nffree += fragrun;
   1722 				}
   1723 				if (newsb->fs_contigsumsize > 0) {
   1724 					if (blkrun > 0) {
   1725 						cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ? newsb->fs_contigsumsize : blkrun]++;
   1726 					}
   1727 				}
   1728 				blkrun = 0;
   1729 			}
   1730 			fwb = 0;
   1731 			b++;
   1732 			blkfree = 1;
   1733 			fragrun = 0;
   1734 		}
   1735 	}
   1736 	if (fragrun > 0) {
   1737 		cg->cg_frsum[fragrun]++;
   1738 		cg->cg_cs.cs_nffree += fragrun;
   1739 	}
   1740 	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
   1741 		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
   1742 		    newsb->fs_contigsumsize : blkrun]++;
   1743 	}
   1744 	/*
   1745          * Put the updated summary info back into csums, and add it
   1746          * back into the sb's summary info.  Then mark the cg dirty.
   1747          */
   1748 	csums[cgn] = cg->cg_cs;
   1749 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
   1750 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
   1751 	cgflags[cgn] |= CGF_DIRTY;
   1752 }
   1753 /*
   1754  * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
   1755  *  values, for a cg, based on the in-core inodes for that cg.
   1756  */
   1757 static void
   1758 rescan_inomaps(int cgn)
   1759 {
   1760 	struct cg *cg;
   1761 	int inum;
   1762 	int iwc;
   1763 
   1764 	cg = cgs[cgn];
   1765 	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
   1766 	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
   1767 	cg->cg_cs.cs_ndir = 0;
   1768 	cg->cg_cs.cs_nifree = 0;
   1769 	bzero(&cg_inosused(cg, 0)[0], howmany(newsb->fs_ipg, NBBY));
   1770 	inum = cgn * newsb->fs_ipg;
   1771 	if (cgn == 0) {
   1772 		set_bits(cg_inosused(cg, 0), 0, 2);
   1773 		iwc = 2;
   1774 		inum += 2;
   1775 	} else {
   1776 		iwc = 0;
   1777 	}
   1778 	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
   1779 		switch (inodes[inum].di_mode & IFMT) {
   1780 		case 0:
   1781 			cg->cg_cs.cs_nifree++;
   1782 			break;
   1783 		case IFDIR:
   1784 			cg->cg_cs.cs_ndir++;
   1785 			/* fall through */
   1786 		default:
   1787 			set_bits(cg_inosused(cg, 0), iwc, 1);
   1788 			break;
   1789 		}
   1790 	}
   1791 	csums[cgn] = cg->cg_cs;
   1792 	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
   1793 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
   1794 	cgflags[cgn] |= CGF_DIRTY;
   1795 }
   1796 /*
   1797  * Flush cgs to disk, recomputing anything they're marked as needing.
   1798  */
   1799 static void
   1800 flush_cgs(void)
   1801 {
   1802 	int i;
   1803 
   1804 	for (i = 0; i < newsb->fs_ncg; i++) {
   1805 		if (cgflags[i] & CGF_BLKMAPS) {
   1806 			rescan_blkmaps(i);
   1807 		}
   1808 		if (cgflags[i] & CGF_INOMAPS) {
   1809 			rescan_inomaps(i);
   1810 		}
   1811 		if (cgflags[i] & CGF_DIRTY) {
   1812 			cgs[i]->cg_rotor = 0;
   1813 			cgs[i]->cg_frotor = 0;
   1814 			cgs[i]->cg_irotor = 0;
   1815 			writeat(fsbtodb(newsb, cgtod(newsb, i)), cgs[i],
   1816 			    cgblksz);
   1817 		}
   1818 	}
   1819 	writeat(fsbtodb(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
   1820 }
   1821 /*
   1822  * Write the superblock, both to the main superblock and to each cg's
   1823  *  alternative superblock.
   1824  */
   1825 static void
   1826 write_sbs(void)
   1827 {
   1828 	int i;
   1829 
   1830 	writeat(SBLOCK, newsb, SBSIZE);
   1831 	for (i = 0; i < newsb->fs_ncg; i++) {
   1832 		writeat(fsbtodb(newsb, cgsblock(newsb, i)), newsb, SBSIZE);
   1833 	}
   1834 }
   1835 /*
   1836  * main().
   1837  */
   1838 int main(int, char **);
   1839 int
   1840 main(int ac, char **av)
   1841 {
   1842 	if (ac != 3) {
   1843 		fprintf(stderr, "Usage: %s filesystem new-size\n", __progname);
   1844 		exit(1);
   1845 	}
   1846 	fd = open(av[1], O_RDWR, 0);
   1847 	if (fd < 0) {
   1848 		fprintf(stderr, "%s: %s: %s\n", __progname, av[1],
   1849 		    strerror(errno));
   1850 		exit(1);
   1851 	}
   1852 	checksmallio();
   1853 	newsize = atoi(av[2]);
   1854 	oldsb = (struct fs *) & sbbuf;
   1855 	newsb = (struct fs *) (SBSIZE + (char *) &sbbuf);
   1856 	readat(SBLOCK, oldsb, SBSIZE);
   1857 	if (oldsb->fs_magic != FS_MAGIC) {
   1858 		fprintf(stderr, "%s: %s: bad magic number\n", __progname,
   1859 		    av[1]);
   1860 		exit(1);
   1861 	}
   1862 	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
   1863 	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
   1864 	if (oldsb->fs_ipg % INOPB(oldsb)) {
   1865 		printf("ipg[%d] %% INOPB[%d] != 0\n", (int) oldsb->fs_ipg,
   1866 		    (int) INOPB(oldsb));
   1867 		exit(1);
   1868 	}
   1869 	/* The superblock is bigger than struct fs (there are trailing tables,
   1870 	 * of non-fixed size); make sure we copy the whole thing.  SBSIZE may
   1871 	 * be an over-estimate, but we do this just once, so being generous is
   1872 	 * cheap. */
   1873 	bcopy(oldsb, newsb, SBSIZE);
   1874 	loadcgs();
   1875 	if (newsize > fsbtodb(oldsb, oldsb->fs_size)) {
   1876 		grow();
   1877 	} else if (newsize < fsbtodb(oldsb, oldsb->fs_size)) {
   1878 		shrink();
   1879 	}
   1880 	flush_cgs();
   1881 	write_sbs();
   1882 	exit(0);
   1883 }
   1884