Home | History | Annotate | Line # | Download | only in resize_ffs
resize_ffs.c revision 1.19
      1 /*	$NetBSD: resize_ffs.c,v 1.19 2010/12/08 00:25:54 riz Exp $	*/
      2 /* From sources sent on February 17, 2003 */
      3 /*-
      4  * As its sole author, I explicitly place this code in the public
      5  *  domain.  Anyone may use it for any purpose (though I would
      6  *  appreciate credit where it is due).
      7  *
      8  *					der Mouse
      9  *
     10  *			       mouse (at) rodents.montreal.qc.ca
     11  *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
     12  */
     13 /*
     14  * resize_ffs:
     15  *
     16  * Resize a filesystem.  Is capable of both growing and shrinking.
     17  *
     18  * Usage: resize_ffs [-s newsize] [-y] filesystem
     19  *
     20  * Example: resize_ffs -s 29574 /dev/rsd1e
     21  *
     22  * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
     23  *  each).
     24  *
     25  * Note: this currently requires gcc to build, since it is written
     26  *  depending on gcc-specific features, notably nested function
     27  *  definitions (which in at least a few cases depend on the lexical
     28  *  scoping gcc provides, so they can't be trivially moved outside).
     29  *
     30  * It will not do anything useful with filesystems in other than
     31  *  host-native byte order.  This really should be fixed (it's largely
     32  *  a historical accident; the original version of this program is
     33  *  older than bi-endian support in FFS).
     34  *
     35  * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
     36  *  one responsible for the "realloccgblk: can't find blk in cyl"
     37  *  problem and a more minor one which left fs_dsize wrong when
     38  *  shrinking.  (These actually indicate bugs in fsck too - it should
     39  *  have caught and fixed them.)
     40  *
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 #include <sys/disk.h>
     45 #include <sys/disklabel.h>
     46 #include <sys/dkio.h>
     47 #include <sys/ioctl.h>
     48 #include <sys/stat.h>
     49 #include <sys/mman.h>
     50 #include <sys/param.h>		/* MAXFRAG */
     51 #include <ufs/ffs/fs.h>
     52 #include <ufs/ufs/dir.h>
     53 #include <ufs/ufs/dinode.h>
     54 #include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */
     55 
     56 #include <err.h>
     57 #include <errno.h>
     58 #include <fcntl.h>
     59 #include <stdio.h>
     60 #include <stdlib.h>
     61 #include <strings.h>
     62 #include <unistd.h>
     63 
     64 /* new size of filesystem, in sectors */
     65 static uint32_t newsize;
     66 
     67 /* fd open onto disk device */
     68 static int fd;
     69 
     70 /* must we break up big I/O operations - see checksmallio() */
     71 static int smallio;
     72 
     73 /* size of a cg, in bytes, rounded up to a frag boundary */
     74 static int cgblksz;
     75 
     76 /* possible superblock localtions */
     77 static int search[] = SBLOCKSEARCH;
     78 /* location of the superblock */
     79 static off_t where;
     80 
     81 /* Superblocks. */
     82 static struct fs *oldsb;	/* before we started */
     83 static struct fs *newsb;	/* copy to work with */
     84 /* Buffer to hold the above.  Make sure it's aligned correctly. */
     85 static char sbbuf[2 * SBLOCKSIZE]
     86 	__attribute__((__aligned__(__alignof__(struct fs))));
     87 
     88 /* a cg's worth of brand new squeaky-clean inodes */
     89 static struct ufs1_dinode *zinodes;
     90 
     91 /* pointers to the in-core cgs, read off disk and possibly modified */
     92 static struct cg **cgs;
     93 
     94 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
     95 static struct csum *csums;
     96 
     97 /* per-cg flags, indexed by cg number */
     98 static unsigned char *cgflags;
     99 #define CGF_DIRTY   0x01	/* needs to be written to disk */
    100 #define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
    101 #define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */
    102 
    103 /* when shrinking, these two arrays record how we want blocks to move.	 */
    104 /*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
    105 /*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
    106 /*  started out as inode i should end up as inode j.			 */
    107 static unsigned int *blkmove;
    108 static unsigned int *inomove;
    109 
    110 /* in-core copies of all inodes in the fs, indexed by inumber */
    111 static struct ufs1_dinode *inodes;
    112 
    113 /* per-inode flags, indexed by inumber */
    114 static unsigned char *iflags;
    115 #define IF_DIRTY  0x01		/* needs to be written to disk */
    116 #define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
    117 				 * block of inodes, and applies to the whole
    118 				 * block. */
    119 
    120 /* resize_ffs works directly on dinodes, adapt blksize() */
    121 #define dblksize(fs, dip, lbn) \
    122     (((lbn) >= NDADDR || (dip)->di_size >= lblktosize(fs, (lbn) + 1)) \
    123     ? (fs)->fs_bsize \
    124     : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
    125 
    126 
    127 /*
    128  * Number of disk sectors per block/fragment; assumes DEV_BSIZE byte
    129  * sector size.
    130  */
    131 #define NSPB(fs)	((fs)->fs_old_nspf << (fs)->fs_fragshift)
    132 #define NSPF(fs)	((fs)->fs_old_nspf)
    133 
    134 static void usage(void) __dead;
    135 
    136 /*
    137  * See if we need to break up large I/O operations.  This should never
    138  *  be needed, but under at least one <version,platform> combination,
    139  *  large enough disk transfers to the raw device hang.  So if we're
    140  *  talking to a character special device, play it safe; in this case,
    141  *  readat() and writeat() break everything up into pieces no larger
    142  *  than 8K, doing multiple syscalls for larger operations.
    143  */
    144 static void
    145 checksmallio(void)
    146 {
    147 	struct stat stb;
    148 
    149 	fstat(fd, &stb);
    150 	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
    151 }
    152 
    153 static int
    154 isplainfile(void)
    155 {
    156 	struct stat stb;
    157 
    158 	fstat(fd, &stb);
    159 	return S_ISREG(stb.st_mode);
    160 }
    161 /*
    162  * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
    163  *  units, ie, after fsbtodb(); size is in bytes.
    164  */
    165 static void
    166 readat(off_t blkno, void *buf, int size)
    167 {
    168 	/* Seek to the correct place. */
    169 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    170 		err(EXIT_FAILURE, "lseek failed");
    171 
    172 	/* See if we have to break up the transfer... */
    173 	if (smallio) {
    174 		char *bp;	/* pointer into buf */
    175 		int left;	/* bytes left to go */
    176 		int n;		/* number to do this time around */
    177 		int rv;		/* syscall return value */
    178 		bp = buf;
    179 		left = size;
    180 		while (left > 0) {
    181 			n = (left > 8192) ? 8192 : left;
    182 			rv = read(fd, bp, n);
    183 			if (rv < 0)
    184 				err(EXIT_FAILURE, "read failed");
    185 			if (rv != n)
    186 				errx(EXIT_FAILURE,
    187 				    "read: wanted %d, got %d", n, rv);
    188 			bp += n;
    189 			left -= n;
    190 		}
    191 	} else {
    192 		int rv;
    193 		rv = read(fd, buf, size);
    194 		if (rv < 0)
    195 			err(EXIT_FAILURE, "read failed");
    196 		if (rv != size)
    197 			errx(EXIT_FAILURE, "read: wanted %d, got %d", size, rv);
    198 	}
    199 }
    200 /*
    201  * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
    202  *  units, ie, after fsbtodb(); size is in bytes.
    203  */
    204 static void
    205 writeat(off_t blkno, const void *buf, int size)
    206 {
    207 	/* Seek to the correct place. */
    208 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    209 		err(EXIT_FAILURE, "lseek failed");
    210 	/* See if we have to break up the transfer... */
    211 	if (smallio) {
    212 		const char *bp;	/* pointer into buf */
    213 		int left;	/* bytes left to go */
    214 		int n;		/* number to do this time around */
    215 		int rv;		/* syscall return value */
    216 		bp = buf;
    217 		left = size;
    218 		while (left > 0) {
    219 			n = (left > 8192) ? 8192 : left;
    220 			rv = write(fd, bp, n);
    221 			if (rv < 0)
    222 				err(EXIT_FAILURE, "write failed");
    223 			if (rv != n)
    224 				errx(EXIT_FAILURE,
    225 				    "write: wanted %d, got %d", n, rv);
    226 			bp += n;
    227 			left -= n;
    228 		}
    229 	} else {
    230 		int rv;
    231 		rv = write(fd, buf, size);
    232 		if (rv < 0)
    233 			err(EXIT_FAILURE, "write failed");
    234 		if (rv != size)
    235 			errx(EXIT_FAILURE,
    236 			    "write: wanted %d, got %d", size, rv);
    237 	}
    238 }
    239 /*
    240  * Never-fail versions of malloc() and realloc(), and an allocation
    241  *  routine (which also never fails) for allocating memory that will
    242  *  never be freed until exit.
    243  */
    244 
    245 /*
    246  * Never-fail malloc.
    247  */
    248 static void *
    249 nfmalloc(size_t nb, const char *tag)
    250 {
    251 	void *rv;
    252 
    253 	rv = malloc(nb);
    254 	if (rv)
    255 		return (rv);
    256 	err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
    257 	    (unsigned long int) nb, tag);
    258 }
    259 /*
    260  * Never-fail realloc.
    261  */
    262 static void *
    263 nfrealloc(void *blk, size_t nb, const char *tag)
    264 {
    265 	void *rv;
    266 
    267 	rv = realloc(blk, nb);
    268 	if (rv)
    269 		return (rv);
    270 	err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
    271 	    (unsigned long int) nb, tag);
    272 }
    273 /*
    274  * Allocate memory that will never be freed or reallocated.  Arguably
    275  *  this routine should handle small allocations by chopping up pages,
    276  *  but that's not worth the bother; it's not called more than a
    277  *  handful of times per run, and if the allocations are that small the
    278  *  waste in giving each one its own page is ignorable.
    279  */
    280 static void *
    281 alloconce(size_t nb, const char *tag)
    282 {
    283 	void *rv;
    284 
    285 	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
    286 	if (rv != MAP_FAILED)
    287 		return (rv);
    288 	err(EXIT_FAILURE, "Can't map %lu bytes for %s",
    289 	    (unsigned long int) nb, tag);
    290 }
    291 /*
    292  * Load the cgs and csums off disk.  Also allocates the space to load
    293  *  them into and initializes the per-cg flags.
    294  */
    295 static void
    296 loadcgs(void)
    297 {
    298 	int cg;
    299 	char *cgp;
    300 
    301 	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
    302 	cgs = nfmalloc(oldsb->fs_ncg * sizeof(struct cg *), "cg pointers");
    303 	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
    304 	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
    305 	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
    306 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
    307 		cgs[cg] = (struct cg *) cgp;
    308 		readat(fsbtodb(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
    309 		cgflags[cg] = 0;
    310 		cgp += cgblksz;
    311 	}
    312 	readat(fsbtodb(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
    313 }
    314 /*
    315  * Set n bits, starting with bit #base, in the bitmap pointed to by
    316  *  bitvec (which is assumed to be large enough to include bits base
    317  *  through base+n-1).
    318  */
    319 static void
    320 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
    321 {
    322 	if (n < 1)
    323 		return;		/* nothing to do */
    324 	if (base & 7) {		/* partial byte at beginning */
    325 		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
    326 			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
    327 			return;
    328 		}
    329 		bitvec[base >> 3] |= (~0U) << (base & 7);
    330 		n -= 8 - (base & 7);
    331 		base = (base & ~7) + 8;
    332 	}
    333 	if (n >= 8) {		/* do full bytes */
    334 		memset(bitvec + (base >> 3), 0xff, n >> 3);
    335 		base += n & ~7;
    336 		n &= 7;
    337 	}
    338 	if (n) {		/* partial byte at end */
    339 		bitvec[base >> 3] |= ~((~0U) << n);
    340 	}
    341 }
    342 /*
    343  * Clear n bits, starting with bit #base, in the bitmap pointed to by
    344  *  bitvec (which is assumed to be large enough to include bits base
    345  *  through base+n-1).  Code parallels set_bits().
    346  */
    347 static void
    348 clr_bits(unsigned char *bitvec, int base, int n)
    349 {
    350 	if (n < 1)
    351 		return;
    352 	if (base & 7) {
    353 		if (n <= 8 - (base & 7)) {
    354 			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
    355 			return;
    356 		}
    357 		bitvec[base >> 3] &= ~((~0U) << (base & 7));
    358 		n -= 8 - (base & 7);
    359 		base = (base & ~7) + 8;
    360 	}
    361 	if (n >= 8) {
    362 		bzero(bitvec + (base >> 3), n >> 3);
    363 		base += n & ~7;
    364 		n &= 7;
    365 	}
    366 	if (n) {
    367 		bitvec[base >> 3] &= (~0U) << n;
    368 	}
    369 }
    370 /*
    371  * Test whether bit #bit is set in the bitmap pointed to by bitvec.
    372  */
    373 static int
    374 bit_is_set(unsigned char *bitvec, int bit)
    375 {
    376 	return (bitvec[bit >> 3] & (1 << (bit & 7)));
    377 }
    378 /*
    379  * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
    380  */
    381 static int
    382 bit_is_clr(unsigned char *bitvec, int bit)
    383 {
    384 	return (!bit_is_set(bitvec, bit));
    385 }
    386 /*
    387  * Test whether a whole block of bits is set in a bitmap.  This is
    388  *  designed for testing (aligned) disk blocks in a bit-per-frag
    389  *  bitmap; it has assumptions wired into it based on that, essentially
    390  *  that the entire block fits into a single byte.  This returns true
    391  *  iff _all_ the bits are set; it is not just the complement of
    392  *  blk_is_clr on the same arguments (unless blkfrags==1).
    393  */
    394 static int
    395 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
    396 {
    397 	unsigned int mask;
    398 
    399 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    400 	return ((bitvec[blkbase >> 3] & mask) == mask);
    401 }
    402 /*
    403  * Test whether a whole block of bits is clear in a bitmap.  See
    404  *  blk_is_set (above) for assumptions.  This returns true iff _all_
    405  *  the bits are clear; it is not just the complement of blk_is_set on
    406  *  the same arguments (unless blkfrags==1).
    407  */
    408 static int
    409 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
    410 {
    411 	unsigned int mask;
    412 
    413 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    414 	return ((bitvec[blkbase >> 3] & mask) == 0);
    415 }
    416 /*
    417  * Initialize a new cg.  Called when growing.  Assumes memory has been
    418  *  allocated but not otherwise set up.  This code sets the fields of
    419  *  the cg, initializes the bitmaps (and cluster summaries, if
    420  *  applicable), updates both per-cylinder summary info and the global
    421  *  summary info in newsb; it also writes out new inodes for the cg.
    422  *
    423  * This code knows it can never be called for cg 0, which makes it a
    424  *  bit simpler than it would otherwise be.
    425  */
    426 static void
    427 initcg(int cgn)
    428 {
    429 	struct cg *cg;		/* The in-core cg, of course */
    430 	int base;		/* Disk address of cg base */
    431 	int dlow;		/* Size of pre-cg data area */
    432 	int dhigh;		/* Offset of post-inode data area, from base */
    433 	int dmax;		/* Offset of end of post-inode data area */
    434 	int i;			/* Generic loop index */
    435 	int n;			/* Generic count */
    436 
    437 	cg = cgs[cgn];
    438 	/* Place the data areas */
    439 	base = cgbase(newsb, cgn);
    440 	dlow = cgsblock(newsb, cgn) - base;
    441 	dhigh = cgdmin(newsb, cgn) - base;
    442 	dmax = newsb->fs_size - base;
    443 	if (dmax > newsb->fs_fpg)
    444 		dmax = newsb->fs_fpg;
    445 	/*
    446          * Clear out the cg - assumes all-0-bytes is the correct way
    447          * to initialize fields we don't otherwise touch, which is
    448          * perhaps not the right thing to do, but it's what fsck and
    449          * mkfs do.
    450          */
    451 	bzero(cg, newsb->fs_cgsize);
    452 	cg->cg_time = newsb->fs_time;
    453 	cg->cg_magic = CG_MAGIC;
    454 	cg->cg_cgx = cgn;
    455 	cg->cg_old_ncyl = newsb->fs_old_cpg;
    456 	/* Update the cg_old_ncyl value for the last cylinder. */
    457 	if ((cgn == newsb->fs_ncg - 1) &&
    458 	    (newsb->fs_old_ncyl % newsb->fs_old_cpg) ) {
    459 		cg->cg_old_ncyl = newsb->fs_old_ncyl % newsb->fs_old_cpg;
    460 	}
    461 	cg->cg_old_niblk = newsb->fs_ipg;
    462 	cg->cg_ndblk = dmax;
    463 	/* Set up the bitmap pointers.  We have to be careful to lay out the
    464 	 * cg _exactly_ the way mkfs and fsck do it, since fsck compares the
    465 	 * _entire_ cg against a recomputed cg, and whines if there is any
    466 	 * mismatch, including the bitmap offsets. */
    467 	/* XXX update this comment when fsck is fixed */
    468 	cg->cg_old_btotoff = &cg->cg_space[0] - (unsigned char *) cg;
    469 	cg->cg_old_boff = cg->cg_old_btotoff
    470 	    + (newsb->fs_old_cpg * sizeof(int32_t));
    471 	cg->cg_iusedoff = cg->cg_old_boff +
    472 	    (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
    473 	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
    474 	if (newsb->fs_contigsumsize > 0) {
    475 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
    476 		cg->cg_clustersumoff = cg->cg_freeoff +
    477 		    howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb),
    478 		    NBBY) - sizeof(int32_t);
    479 		cg->cg_clustersumoff =
    480 		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
    481 		cg->cg_clusteroff = cg->cg_clustersumoff +
    482 		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
    483 		cg->cg_nextfreeoff = cg->cg_clusteroff +
    484 		    howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPB(newsb),
    485 		    NBBY);
    486 		n = dlow / newsb->fs_frag;
    487 		if (n > 0) {
    488 			set_bits(cg_clustersfree(cg, 0), 0, n);
    489 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    490 			    newsb->fs_contigsumsize : n]++;
    491 		}
    492 	} else {
    493 		cg->cg_nextfreeoff = cg->cg_freeoff +
    494 		    howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb),
    495 		    NBBY);
    496 	}
    497 	/* Mark the data areas as free; everything else is marked busy by the
    498 	 * bzero up at the top. */
    499 	set_bits(cg_blksfree(cg, 0), 0, dlow);
    500 	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
    501 	/* Initialize summary info */
    502 	cg->cg_cs.cs_ndir = 0;
    503 	cg->cg_cs.cs_nifree = newsb->fs_ipg;
    504 	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
    505 	cg->cg_cs.cs_nffree = 0;
    506 
    507 	/* This is the simplest way of doing this; we perhaps could compute
    508 	 * the correct cg_blktot()[] and cg_blks()[] values other ways, but it
    509 	 * would be complicated and hardly seems worth the effort.  (The
    510 	 * reason there isn't frag-at-beginning and frag-at-end code here,
    511 	 * like the code below for the post-inode data area, is that the
    512 	 * pre-sb data area always starts at 0, and thus is block-aligned, and
    513 	 * always ends at the sb, which is block-aligned.) */
    514 	for (i = 0; i < dlow; i += newsb->fs_frag) {
    515 		old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++;
    516 		old_cg_blks(newsb, cg,
    517 		    old_cbtocylno(newsb, i), 0)[old_cbtorpos(newsb, i)]++;
    518 	}
    519 	/* Deal with a partial block at the beginning of the post-inode area.
    520 	 * I'm not convinced this can happen - I think the inodes are always
    521 	 * block-aligned and always an integral number of blocks - but it's
    522 	 * cheap to do the right thing just in case. */
    523 	if (dhigh % newsb->fs_frag) {
    524 		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
    525 		cg->cg_frsum[n]++;
    526 		cg->cg_cs.cs_nffree += n;
    527 		dhigh += n;
    528 	}
    529 	n = (dmax - dhigh) / newsb->fs_frag;
    530 	/* We have n full-size blocks in the post-inode data area. */
    531 	if (n > 0) {
    532 		cg->cg_cs.cs_nbfree += n;
    533 		if (newsb->fs_contigsumsize > 0) {
    534 			i = dhigh / newsb->fs_frag;
    535 			set_bits(cg_clustersfree(cg, 0), i, n);
    536 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    537 			    newsb->fs_contigsumsize : n]++;
    538 		}
    539 		for (i = n; i > 0; i--) {
    540 			old_cg_blktot(cg, 0)[old_cbtocylno(newsb, dhigh)]++;
    541 			old_cg_blks(newsb, cg,
    542 			    old_cbtocylno(newsb, dhigh), 0)[old_cbtorpos(newsb,
    543 				dhigh)]++;
    544 			dhigh += newsb->fs_frag;
    545 		}
    546 	}
    547 	/* Deal with any leftover frag at the end of the cg. */
    548 	i = dmax - dhigh;
    549 	if (i) {
    550 		cg->cg_frsum[i]++;
    551 		cg->cg_cs.cs_nffree += i;
    552 	}
    553 	/* Update the csum info. */
    554 	csums[cgn] = cg->cg_cs;
    555 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
    556 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
    557 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
    558 	/* Write out the cleared inodes. */
    559 	writeat(fsbtodb(newsb, cgimin(newsb, cgn)), zinodes,
    560 	    newsb->fs_ipg * sizeof(struct ufs1_dinode));
    561 	/* Dirty the cg. */
    562 	cgflags[cgn] |= CGF_DIRTY;
    563 }
    564 /*
    565  * Find free space, at least nfrags consecutive frags of it.  Pays no
    566  *  attention to block boundaries, but refuses to straddle cg
    567  *  boundaries, even if the disk blocks involved are in fact
    568  *  consecutive.  Return value is the frag number of the first frag of
    569  *  the block, or -1 if no space was found.  Uses newsb for sb values,
    570  *  and assumes the cgs[] structures correctly describe the area to be
    571  *  searched.
    572  *
    573  * XXX is there a bug lurking in the ignoring of block boundaries by
    574  *  the routine used by fragmove() in evict_data()?  Can an end-of-file
    575  *  frag legally straddle a block boundary?  If not, this should be
    576  *  cloned and fixed to stop at block boundaries for that use.  The
    577  *  current one may still be needed for csum info motion, in case that
    578  *  takes up more than a whole block (is the csum info allowed to begin
    579  *  partway through a block and continue into the following block?).
    580  *
    581  * If we wrap off the end of the filesystem back to the beginning, we
    582  *  can end up searching the end of the filesystem twice.  I ignore
    583  *  this inefficiency, since if that happens we're going to croak with
    584  *  a no-space error anyway, so it happens at most once.
    585  */
    586 static int
    587 find_freespace(unsigned int nfrags)
    588 {
    589 	static int hand = 0;	/* hand rotates through all frags in the fs */
    590 	int cgsize;		/* size of the cg hand currently points into */
    591 	int cgn;		/* number of cg hand currently points into */
    592 	int fwc;		/* frag-within-cg number of frag hand points
    593 				 * to */
    594 	int run;		/* length of run of free frags seen so far */
    595 	int secondpass;		/* have we wrapped from end of fs to
    596 				 * beginning? */
    597 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    598 
    599 	cgn = dtog(newsb, hand);
    600 	fwc = dtogd(newsb, hand);
    601 	secondpass = (hand == 0);
    602 	run = 0;
    603 	bits = cg_blksfree(cgs[cgn], 0);
    604 	cgsize = cgs[cgn]->cg_ndblk;
    605 	while (1) {
    606 		if (bit_is_set(bits, fwc)) {
    607 			run++;
    608 			if (run >= nfrags)
    609 				return (hand + 1 - run);
    610 		} else {
    611 			run = 0;
    612 		}
    613 		hand++;
    614 		fwc++;
    615 		if (fwc >= cgsize) {
    616 			fwc = 0;
    617 			cgn++;
    618 			if (cgn >= newsb->fs_ncg) {
    619 				hand = 0;
    620 				if (secondpass)
    621 					return (-1);
    622 				secondpass = 1;
    623 				cgn = 0;
    624 			}
    625 			bits = cg_blksfree(cgs[cgn], 0);
    626 			cgsize = cgs[cgn]->cg_ndblk;
    627 			run = 0;
    628 		}
    629 	}
    630 }
    631 /*
    632  * Find a free block of disk space.  Finds an entire block of frags,
    633  *  all of which are free.  Return value is the frag number of the
    634  *  first frag of the block, or -1 if no space was found.  Uses newsb
    635  *  for sb values, and assumes the cgs[] structures correctly describe
    636  *  the area to be searched.
    637  *
    638  * See find_freespace(), above, for remarks about hand wrapping around.
    639  */
    640 static int
    641 find_freeblock(void)
    642 {
    643 	static int hand = 0;	/* hand rotates through all frags in fs */
    644 	int cgn;		/* cg number of cg hand points into */
    645 	int fwc;		/* frag-within-cg number of frag hand points
    646 				 * to */
    647 	int cgsize;		/* size of cg hand points into */
    648 	int secondpass;		/* have we wrapped from end to beginning? */
    649 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    650 
    651 	cgn = dtog(newsb, hand);
    652 	fwc = dtogd(newsb, hand);
    653 	secondpass = (hand == 0);
    654 	bits = cg_blksfree(cgs[cgn], 0);
    655 	cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
    656 	while (1) {
    657 		if (blk_is_set(bits, fwc, newsb->fs_frag))
    658 			return (hand);
    659 		fwc += newsb->fs_frag;
    660 		hand += newsb->fs_frag;
    661 		if (fwc >= cgsize) {
    662 			fwc = 0;
    663 			cgn++;
    664 			if (cgn >= newsb->fs_ncg) {
    665 				hand = 0;
    666 				if (secondpass)
    667 					return (-1);
    668 				secondpass = 1;
    669 				cgn = 0;
    670 			}
    671 			bits = cg_blksfree(cgs[cgn], 0);
    672 			cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
    673 		}
    674 	}
    675 }
    676 /*
    677  * Find a free inode, returning its inumber or -1 if none was found.
    678  *  Uses newsb for sb values, and assumes the cgs[] structures
    679  *  correctly describe the area to be searched.
    680  *
    681  * See find_freespace(), above, for remarks about hand wrapping around.
    682  */
    683 static int
    684 find_freeinode(void)
    685 {
    686 	static int hand = 0;	/* hand rotates through all inodes in fs */
    687 	int cgn;		/* cg number of cg hand points into */
    688 	int iwc;		/* inode-within-cg number of inode hand points
    689 				 * to */
    690 	int secondpass;		/* have we wrapped from end to beginning? */
    691 	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */
    692 
    693 	cgn = hand / newsb->fs_ipg;
    694 	iwc = hand % newsb->fs_ipg;
    695 	secondpass = (hand == 0);
    696 	bits = cg_inosused(cgs[cgn], 0);
    697 	while (1) {
    698 		if (bit_is_clr(bits, iwc))
    699 			return (hand);
    700 		hand++;
    701 		iwc++;
    702 		if (iwc >= newsb->fs_ipg) {
    703 			iwc = 0;
    704 			cgn++;
    705 			if (cgn >= newsb->fs_ncg) {
    706 				hand = 0;
    707 				if (secondpass)
    708 					return (-1);
    709 				secondpass = 1;
    710 				cgn = 0;
    711 			}
    712 			bits = cg_inosused(cgs[cgn], 0);
    713 		}
    714 	}
    715 }
    716 /*
    717  * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
    718  *  for the appropriate cg, and marks the cg as dirty.
    719  */
    720 static void
    721 free_frag(int fno)
    722 {
    723 	int cgn;
    724 
    725 	cgn = dtog(newsb, fno);
    726 	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    727 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    728 }
    729 /*
    730  * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
    731  *  for the appropriate cg, and marks the cg as dirty.
    732  */
    733 static void
    734 alloc_frag(int fno)
    735 {
    736 	int cgn;
    737 
    738 	cgn = dtog(newsb, fno);
    739 	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    740 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    741 }
    742 /*
    743  * Fix up the csum array.  If shrinking, this involves freeing zero or
    744  *  more frags; if growing, it involves allocating them, or if the
    745  *  frags being grown into aren't free, finding space elsewhere for the
    746  *  csum info.  (If the number of occupied frags doesn't change,
    747  *  nothing happens here.)
    748  */
    749 static void
    750 csum_fixup(void)
    751 {
    752 	int nold;		/* # frags in old csum info */
    753 	int ntot;		/* # frags in new csum info */
    754 	int nnew;		/* ntot-nold */
    755 	int newloc;		/* new location for csum info, if necessary */
    756 	int i;			/* generic loop index */
    757 	int j;			/* generic loop index */
    758 	int f;			/* "from" frag number, if moving */
    759 	int t;			/* "to" frag number, if moving */
    760 	int cgn;		/* cg number, used when shrinking */
    761 
    762 	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
    763 	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
    764 	nnew = ntot - nold;
    765 	/* First, if there's no change in frag counts, it's easy. */
    766 	if (nnew == 0)
    767 		return;
    768 	/* Next, if we're shrinking, it's almost as easy.  Just free up any
    769 	 * frags in the old area we no longer need. */
    770 	if (nnew < 0) {
    771 		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
    772 		    j < 0;
    773 		    i--, j++) {
    774 			free_frag(i);
    775 		}
    776 		return;
    777 	}
    778 	/* We must be growing.  Check to see that the new csum area fits
    779 	 * within the filesystem.  I think this can never happen, since for
    780 	 * the csum area to grow, we must be adding at least one cg, so the
    781 	 * old csum area can't be this close to the end of the new filesystem.
    782 	 * But it's a cheap check. */
    783 	/* XXX what if csum info is at end of cg and grows into next cg, what
    784 	 * if it spills over onto the next cg's backup superblock?  Can this
    785 	 * happen? */
    786 	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
    787 		/* Okay, it fits - now,  see if the space we want is free. */
    788 		for ((i = newsb->fs_csaddr + nold), (j = nnew);
    789 		    j > 0;
    790 		    i++, j--) {
    791 			cgn = dtog(newsb, i);
    792 			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
    793 				dtogd(newsb, i)))
    794 				break;
    795 		}
    796 		if (j <= 0) {
    797 			/* Win win - all the frags we want are free. Allocate
    798 			 * 'em and we're all done.  */
    799 			for ((i = newsb->fs_csaddr + ntot - nnew), (j = nnew); j > 0; i++, j--) {
    800 				alloc_frag(i);
    801 			}
    802 			return;
    803 		}
    804 	}
    805 	/* We have to move the csum info, sigh.  Look for new space, free old
    806 	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
    807 	 * on disk at this point; the csum info will be written to the
    808 	 * then-current fs_csaddr as part of the final flush. */
    809 	newloc = find_freespace(ntot);
    810 	if (newloc < 0) {
    811 		printf("Sorry, no space available for new csums\n");
    812 		exit(EXIT_FAILURE);
    813 	}
    814 	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
    815 		if (i < nold) {
    816 			free_frag(f);
    817 		}
    818 		alloc_frag(t);
    819 	}
    820 	newsb->fs_csaddr = newloc;
    821 }
    822 /*
    823  * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
    824  *  data blocks in that cg to the total.
    825  */
    826 static void
    827 recompute_fs_dsize(void)
    828 {
    829 	int i;
    830 
    831 	newsb->fs_dsize = 0;
    832 	for (i = 0; i < newsb->fs_ncg; i++) {
    833 		int dlow;	/* size of before-sb data area */
    834 		int dhigh;	/* offset of post-inode data area */
    835 		int dmax;	/* total size of cg */
    836 		int base;	/* base of cg, since cgsblock() etc add it in */
    837 		base = cgbase(newsb, i);
    838 		dlow = cgsblock(newsb, i) - base;
    839 		dhigh = cgdmin(newsb, i) - base;
    840 		dmax = newsb->fs_size - base;
    841 		if (dmax > newsb->fs_fpg)
    842 			dmax = newsb->fs_fpg;
    843 		newsb->fs_dsize += dlow + dmax - dhigh;
    844 	}
    845 	/* Space in cg 0 before cgsblock is boot area, not free space! */
    846 	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
    847 	/* And of course the csum info takes up space. */
    848 	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
    849 }
    850 /*
    851  * Return the current time.  We call this and assign, rather than
    852  *  calling time() directly, as insulation against OSes where fs_time
    853  *  is not a time_t.
    854  */
    855 static time_t
    856 timestamp(void)
    857 {
    858 	time_t t;
    859 
    860 	time(&t);
    861 	return (t);
    862 }
    863 /*
    864  * Grow the filesystem.
    865  */
    866 static void
    867 grow(void)
    868 {
    869 	int i;
    870 
    871 	/* Update the timestamp. */
    872 	newsb->fs_time = timestamp();
    873 	/* Allocate and clear the new-inode area, in case we add any cgs. */
    874 	zinodes = alloconce(newsb->fs_ipg * sizeof(struct ufs1_dinode),
    875                             "zeroed inodes");
    876 	bzero(zinodes, newsb->fs_ipg * sizeof(struct ufs1_dinode));
    877 	/* Update the size. */
    878 	newsb->fs_size = dbtofsb(newsb, newsize);
    879 	/* Did we actually not grow?  (This can happen if newsize is less than
    880 	 * a frag larger than the old size - unlikely, but no excuse to
    881 	 * misbehave if it happens.) */
    882 	if (newsb->fs_size == oldsb->fs_size) {
    883 		printf("New fs size %"PRIu64" = odl fs size %"PRIu64
    884 		    ", not growing.\n", newsb->fs_size, oldsb->fs_size);
    885 		return;
    886 	}
    887 	/* Check that the new last sector (frag, actually) is writable.  Since
    888 	 * it's at least one frag larger than it used to be, we know we aren't
    889 	 * overwriting anything important by this.  (The choice of sbbuf as
    890 	 * what to write is irrelevant; it's just something handy that's known
    891 	 * to be at least one frag in size.) */
    892 	writeat(fsbtodb(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
    893 	/* Update fs_old_ncyl and fs_ncg. */
    894 	newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
    895 	    newsb->fs_old_spc);
    896 	newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
    897 	/* Does the last cg end before the end of its inode area? There is no
    898 	 * reason why this couldn't be handled, but it would complicate a lot
    899 	 * of code (in all filesystem code - fsck, kernel, etc) because of the
    900 	 * potential partial inode area, and the gain in space would be
    901 	 * minimal, at most the pre-sb data area. */
    902 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
    903 		newsb->fs_ncg--;
    904 		newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
    905 		newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc)
    906 		    / NSPF(newsb);
    907 		printf("Warning: last cylinder group is too small;\n");
    908 		printf("    dropping it.  New size = %lu.\n",
    909 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
    910 	}
    911 	/* Find out how big the csum area is, and realloc csums if bigger. */
    912 	newsb->fs_cssize = fragroundup(newsb,
    913 	    newsb->fs_ncg * sizeof(struct csum));
    914 	if (newsb->fs_cssize > oldsb->fs_cssize)
    915 		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
    916 	/* If we're adding any cgs, realloc structures and set up the new cgs. */
    917 	if (newsb->fs_ncg > oldsb->fs_ncg) {
    918 		char *cgp;
    919 		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(struct cg *),
    920                                 "cg pointers");
    921 		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
    922 		bzero(cgflags + oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
    923 		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
    924                                 "cgs");
    925 		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
    926 			cgs[i] = (struct cg *) cgp;
    927 			initcg(i);
    928 			cgp += cgblksz;
    929 		}
    930 		cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
    931 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
    932 	}
    933 	/* If the old fs ended partway through a cg, we have to update the old
    934 	 * last cg (though possibly not to a full cg!). */
    935 	if (oldsb->fs_size % oldsb->fs_fpg) {
    936 		struct cg *cg;
    937 		int newcgsize;
    938 		int prevcgtop;
    939 		int oldcgsize;
    940 		cg = cgs[oldsb->fs_ncg - 1];
    941 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
    942 		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
    943 		newcgsize = newsb->fs_size - prevcgtop;
    944 		if (newcgsize > newsb->fs_fpg)
    945 			newcgsize = newsb->fs_fpg;
    946 		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
    947 		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
    948 		cg->cg_old_ncyl = howmany(newcgsize * NSPF(newsb),
    949 		    newsb->fs_old_spc);
    950 		cg->cg_ndblk = newcgsize;
    951 	}
    952 	/* Fix up the csum info, if necessary. */
    953 	csum_fixup();
    954 	/* Make fs_dsize match the new reality. */
    955 	recompute_fs_dsize();
    956 }
    957 /*
    958  * Call (*fn)() for each inode, passing the inode and its inumber.  The
    959  *  number of cylinder groups is pased in, so this can be used to map
    960  *  over either the old or the new filesystem's set of inodes.
    961  */
    962 static void
    963 map_inodes(void (*fn) (struct ufs1_dinode * di, unsigned int, void *arg),
    964 	   int ncg, void *cbarg) {
    965 	int i;
    966 	int ni;
    967 
    968 	ni = oldsb->fs_ipg * ncg;
    969 	for (i = 0; i < ni; i++)
    970 		(*fn) (inodes + i, i, cbarg);
    971 }
    972 /* Values for the third argument to the map function for
    973  * map_inode_data_blocks.  MDB_DATA indicates the block is contains
    974  * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
    975  * indirect block.  The MDB_INDIR_PRE call is made before the indirect
    976  * block pointers are followed and the pointed-to blocks scanned,
    977  * MDB_INDIR_POST after.
    978  */
    979 #define MDB_DATA       1
    980 #define MDB_INDIR_PRE  2
    981 #define MDB_INDIR_POST 3
    982 
    983 typedef void (*mark_callback_t) (unsigned int blocknum, unsigned int nfrags,
    984 				 unsigned int blksize, int opcode);
    985 
    986 /* Helper function - handles a data block.  Calls the callback
    987  * function and returns number of bytes occupied in file (actually,
    988  * rounded up to a frag boundary).  The name is historical.  */
    989 static int
    990 markblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o)
    991 {
    992 	int sz;
    993 	int nb;
    994 	if (o >= di->di_size)
    995 		return (0);
    996 	sz = dblksize(newsb, di, lblkno(newsb, o));
    997 	nb = (sz > di->di_size - o) ? di->di_size - o : sz;
    998 	if (bn)
    999 		(*fn) (bn, numfrags(newsb, sz), nb, MDB_DATA);
   1000 	return (sz);
   1001 }
   1002 /* Helper function - handles an indirect block.  Makes the
   1003  * MDB_INDIR_PRE callback for the indirect block, loops over the
   1004  * pointers and recurses, and makes the MDB_INDIR_POST callback.
   1005  * Returns the number of bytes occupied in file, as does markblk().
   1006  * For the sake of update_for_data_move(), we read the indirect block
   1007  * _after_ making the _PRE callback.  The name is historical.  */
   1008 static int
   1009 markiblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o, int lev)
   1010 {
   1011 	int i;
   1012 	int j;
   1013 	int tot;
   1014 	static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
   1015 	static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
   1016 	static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
   1017 	static int32_t *indirblks[3] = {
   1018 		&indirblk1[0], &indirblk2[0], &indirblk3[0]
   1019 	};
   1020 	if (lev < 0)
   1021 		return (markblk(fn, di, bn, o));
   1022 	if (bn == 0) {
   1023 		for (i = newsb->fs_bsize;
   1024 		    lev >= 0;
   1025 		    i *= NINDIR(newsb), lev--);
   1026 		return (i);
   1027 	}
   1028 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
   1029 	readat(fsbtodb(newsb, bn), indirblks[lev], newsb->fs_bsize);
   1030 	tot = 0;
   1031 	for (i = 0; i < NINDIR(newsb); i++) {
   1032 		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
   1033 		if (j == 0)
   1034 			break;
   1035 		o += j;
   1036 		tot += j;
   1037 	}
   1038 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
   1039 	return (tot);
   1040 }
   1041 
   1042 
   1043 /*
   1044  * Call (*fn)() for each data block for an inode.  This routine assumes
   1045  *  the inode is known to be of a type that has data blocks (file,
   1046  *  directory, or non-fast symlink).  The called function is:
   1047  *
   1048  * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
   1049  *
   1050  *  where blkno is the frag number, nf is the number of frags starting
   1051  *  at blkno (always <= fs_frag), nb is the number of bytes that belong
   1052  *  to the file (usually nf*fs_frag, often less for the last block/frag
   1053  *  of a file).
   1054  */
   1055 static void
   1056 map_inode_data_blocks(struct ufs1_dinode * di, mark_callback_t fn)
   1057 {
   1058 	off_t o;		/* offset within  inode */
   1059 	int inc;		/* increment for o - maybe should be off_t? */
   1060 	int b;			/* index within di_db[] and di_ib[] arrays */
   1061 
   1062 	/* Scan the direct blocks... */
   1063 	o = 0;
   1064 	for (b = 0; b < NDADDR; b++) {
   1065 		inc = markblk(fn, di, di->di_db[b], o);
   1066 		if (inc == 0)
   1067 			break;
   1068 		o += inc;
   1069 	}
   1070 	/* ...and the indirect blocks. */
   1071 	if (inc) {
   1072 		for (b = 0; b < NIADDR; b++) {
   1073 			inc = markiblk(fn, di, di->di_ib[b], o, b);
   1074 			if (inc == 0)
   1075 				return;
   1076 			o += inc;
   1077 		}
   1078 	}
   1079 }
   1080 
   1081 static void
   1082 dblk_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
   1083 {
   1084 	mark_callback_t fn;
   1085 	fn = (mark_callback_t) arg;
   1086 	switch (di->di_mode & IFMT) {
   1087 	case IFLNK:
   1088 		if (di->di_size > newsb->fs_maxsymlinklen) {
   1089 	case IFDIR:
   1090 	case IFREG:
   1091 			map_inode_data_blocks(di, fn);
   1092 		}
   1093 		break;
   1094 	}
   1095 }
   1096 /*
   1097  * Make a callback call, a la map_inode_data_blocks, for all data
   1098  *  blocks in the entire fs.  This is used only once, in
   1099  *  update_for_data_move, but it's out at top level because the complex
   1100  *  downward-funarg nesting that would otherwise result seems to give
   1101  *  gcc gastric distress.
   1102  */
   1103 static void
   1104 map_data_blocks(mark_callback_t fn, int ncg)
   1105 {
   1106 	map_inodes(&dblk_callback, ncg, (void *) fn);
   1107 }
   1108 /*
   1109  * Initialize the blkmove array.
   1110  */
   1111 static void
   1112 blkmove_init(void)
   1113 {
   1114 	int i;
   1115 
   1116 	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
   1117 	for (i = 0; i < oldsb->fs_size; i++)
   1118 		blkmove[i] = i;
   1119 }
   1120 /*
   1121  * Load the inodes off disk.  Allocates the structures and initializes
   1122  *  them - the inodes from disk, the flags to zero.
   1123  */
   1124 static void
   1125 loadinodes(void)
   1126 {
   1127 	int cg;
   1128 	struct ufs1_dinode *iptr;
   1129 
   1130 	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
   1131 	    sizeof(struct ufs1_dinode), "inodes");
   1132 	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
   1133 	bzero(iflags, oldsb->fs_ncg * oldsb->fs_ipg);
   1134 	iptr = inodes;
   1135 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
   1136 		readat(fsbtodb(oldsb, cgimin(oldsb, cg)), iptr,
   1137 		    oldsb->fs_ipg * sizeof(struct ufs1_dinode));
   1138 		iptr += oldsb->fs_ipg;
   1139 	}
   1140 }
   1141 /*
   1142  * Report a filesystem-too-full problem.
   1143  */
   1144 static void
   1145 toofull(void)
   1146 {
   1147 	printf("Sorry, would run out of data blocks\n");
   1148 	exit(EXIT_FAILURE);
   1149 }
   1150 /*
   1151  * Record a desire to move "n" frags from "from" to "to".
   1152  */
   1153 static void
   1154 mark_move(unsigned int from, unsigned int to, unsigned int n)
   1155 {
   1156 	for (; n > 0; n--)
   1157 		blkmove[from++] = to++;
   1158 }
   1159 /* Helper function - evict n frags, starting with start (cg-relative).
   1160  * The free bitmap is scanned, unallocated frags are ignored, and
   1161  * each block of consecutive allocated frags is moved as a unit.
   1162  */
   1163 static void
   1164 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
   1165 {
   1166 	int i;
   1167 	int run;
   1168 	run = 0;
   1169 	for (i = 0; i <= n; i++) {
   1170 		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
   1171 			run++;
   1172 		} else {
   1173 			if (run > 0) {
   1174 				int off;
   1175 				off = find_freespace(run);
   1176 				if (off < 0)
   1177 					toofull();
   1178 				mark_move(base + start + i - run, off, run);
   1179 				set_bits(cg_blksfree(cg, 0), start + i - run,
   1180 				    run);
   1181 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1182 				    dtogd(oldsb, off), run);
   1183 			}
   1184 			run = 0;
   1185 		}
   1186 	}
   1187 }
   1188 /*
   1189  * Evict all data blocks from the given cg, starting at minfrag (based
   1190  *  at the beginning of the cg), for length nfrag.  The eviction is
   1191  *  assumed to be entirely data-area; this should not be called with a
   1192  *  range overlapping the metadata structures in the cg.  It also
   1193  *  assumes minfrag points into the given cg; it will misbehave if this
   1194  *  is not true.
   1195  *
   1196  * See the comment header on find_freespace() for one possible bug
   1197  *  lurking here.
   1198  */
   1199 static void
   1200 evict_data(struct cg * cg, unsigned int minfrag, unsigned int nfrag)
   1201 {
   1202 	int base;		/* base of cg (in frags from beginning of fs) */
   1203 
   1204 
   1205 	base = cgbase(oldsb, cg->cg_cgx);
   1206 	/* Does the boundary fall in the middle of a block?  To avoid breaking
   1207 	 * between frags allocated as consecutive, we always evict the whole
   1208 	 * block in this case, though one could argue we should check to see
   1209 	 * if the frag before or after the break is unallocated. */
   1210 	if (minfrag % oldsb->fs_frag) {
   1211 		int n;
   1212 		n = minfrag % oldsb->fs_frag;
   1213 		minfrag -= n;
   1214 		nfrag += n;
   1215 	}
   1216 	/* Do whole blocks.  If a block is wholly free, skip it; if wholly
   1217 	 * allocated, move it in toto.  If neither, call fragmove() to move
   1218 	 * the frags to new locations. */
   1219 	while (nfrag >= oldsb->fs_frag) {
   1220 		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
   1221 			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
   1222 				oldsb->fs_frag)) {
   1223 				int off;
   1224 				off = find_freeblock();
   1225 				if (off < 0)
   1226 					toofull();
   1227 				mark_move(base + minfrag, off, oldsb->fs_frag);
   1228 				set_bits(cg_blksfree(cg, 0), minfrag,
   1229 				    oldsb->fs_frag);
   1230 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1231 				    dtogd(oldsb, off), oldsb->fs_frag);
   1232 			} else {
   1233 				fragmove(cg, base, minfrag, oldsb->fs_frag);
   1234 			}
   1235 		}
   1236 		minfrag += oldsb->fs_frag;
   1237 		nfrag -= oldsb->fs_frag;
   1238 	}
   1239 	/* Clean up any sub-block amount left over. */
   1240 	if (nfrag) {
   1241 		fragmove(cg, base, minfrag, nfrag);
   1242 	}
   1243 }
   1244 /*
   1245  * Move all data blocks according to blkmove.  We have to be careful,
   1246  *  because we may be updating indirect blocks that will themselves be
   1247  *  getting moved, or inode int32_t arrays that point to indirect
   1248  *  blocks that will be moved.  We call this before
   1249  *  update_for_data_move, and update_for_data_move does inodes first,
   1250  *  then indirect blocks in preorder, so as to make sure that the
   1251  *  filesystem is self-consistent at all points, for better crash
   1252  *  tolerance.  (We can get away with this only because all the writes
   1253  *  done by perform_data_move() are writing into space that's not used
   1254  *  by the old filesystem.)  If we crash, some things may point to the
   1255  *  old data and some to the new, but both copies are the same.  The
   1256  *  only wrong things should be csum info and free bitmaps, which fsck
   1257  *  is entirely capable of cleaning up.
   1258  *
   1259  * Since blkmove_init() initializes all blocks to move to their current
   1260  *  locations, we can have two blocks marked as wanting to move to the
   1261  *  same location, but only two and only when one of them is the one
   1262  *  that was already there.  So if blkmove[i]==i, we ignore that entry
   1263  *  entirely - for unallocated blocks, we don't want it (and may be
   1264  *  putting something else there), and for allocated blocks, we don't
   1265  *  want to copy it anywhere.
   1266  */
   1267 static void
   1268 perform_data_move(void)
   1269 {
   1270 	int i;
   1271 	int run;
   1272 	int maxrun;
   1273 	char buf[65536];
   1274 
   1275 	maxrun = sizeof(buf) / newsb->fs_fsize;
   1276 	run = 0;
   1277 	for (i = 0; i < oldsb->fs_size; i++) {
   1278 		if ((blkmove[i] == i) ||
   1279 		    (run >= maxrun) ||
   1280 		    ((run > 0) &&
   1281 			(blkmove[i] != blkmove[i - 1] + 1))) {
   1282 			if (run > 0) {
   1283 				readat(fsbtodb(oldsb, i - run), &buf[0],
   1284 				    run << oldsb->fs_fshift);
   1285 				writeat(fsbtodb(oldsb, blkmove[i - run]),
   1286 				    &buf[0], run << oldsb->fs_fshift);
   1287 			}
   1288 			run = 0;
   1289 		}
   1290 		if (blkmove[i] != i)
   1291 			run++;
   1292 	}
   1293 	if (run > 0) {
   1294 		readat(fsbtodb(oldsb, i - run), &buf[0],
   1295 		    run << oldsb->fs_fshift);
   1296 		writeat(fsbtodb(oldsb, blkmove[i - run]), &buf[0],
   1297 		    run << oldsb->fs_fshift);
   1298 	}
   1299 }
   1300 /*
   1301  * This modifies an array of int32_t, according to blkmove.  This is
   1302  *  used to update inode block arrays and indirect blocks to point to
   1303  *  the new locations of data blocks.
   1304  *
   1305  * Return value is the number of int32_ts that needed updating; in
   1306  *  particular, the return value is zero iff nothing was modified.
   1307  */
   1308 static int
   1309 movemap_blocks(int32_t * vec, int n)
   1310 {
   1311 	int rv;
   1312 
   1313 	rv = 0;
   1314 	for (; n > 0; n--, vec++) {
   1315 		if (blkmove[*vec] != *vec) {
   1316 			*vec = blkmove[*vec];
   1317 			rv++;
   1318 		}
   1319 	}
   1320 	return (rv);
   1321 }
   1322 static void
   1323 moveblocks_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
   1324 {
   1325 	switch (di->di_mode & IFMT) {
   1326 	case IFLNK:
   1327 		if (di->di_size > oldsb->fs_maxsymlinklen) {
   1328 	case IFDIR:
   1329 	case IFREG:
   1330 			/* don't || these two calls; we need their
   1331 			 * side-effects */
   1332 			if (movemap_blocks(&di->di_db[0], NDADDR)) {
   1333 				iflags[inum] |= IF_DIRTY;
   1334 			}
   1335 			if (movemap_blocks(&di->di_ib[0], NIADDR)) {
   1336 				iflags[inum] |= IF_DIRTY;
   1337 			}
   1338 		}
   1339 		break;
   1340 	}
   1341 }
   1342 
   1343 static void
   1344 moveindir_callback(unsigned int off, unsigned int nfrag, unsigned int nbytes,
   1345 		   int kind)
   1346 {
   1347 	if (kind == MDB_INDIR_PRE) {
   1348 		int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
   1349 		readat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
   1350 		if (movemap_blocks(&blk[0], NINDIR(oldsb))) {
   1351 			writeat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
   1352 		}
   1353 	}
   1354 }
   1355 /*
   1356  * Update all inode data arrays and indirect blocks to point to the new
   1357  *  locations of data blocks.  See the comment header on
   1358  *  perform_data_move for some ordering considerations.
   1359  */
   1360 static void
   1361 update_for_data_move(void)
   1362 {
   1363 	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
   1364 	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
   1365 }
   1366 /*
   1367  * Initialize the inomove array.
   1368  */
   1369 static void
   1370 inomove_init(void)
   1371 {
   1372 	int i;
   1373 
   1374 	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
   1375                             "inomove");
   1376 	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
   1377 		inomove[i] = i;
   1378 }
   1379 /*
   1380  * Flush all dirtied inodes to disk.  Scans the inode flags array; for
   1381  *  each dirty inode, it sets the BDIRTY bit on the first inode in the
   1382  *  block containing the dirty inode.  Then it scans by blocks, and for
   1383  *  each marked block, writes it.
   1384  */
   1385 static void
   1386 flush_inodes(void)
   1387 {
   1388 	int i;
   1389 	int ni;
   1390 	int m;
   1391 
   1392 	ni = newsb->fs_ipg * newsb->fs_ncg;
   1393 	m = INOPB(newsb) - 1;
   1394 	for (i = 0; i < ni; i++) {
   1395 		if (iflags[i] & IF_DIRTY) {
   1396 			iflags[i & ~m] |= IF_BDIRTY;
   1397 		}
   1398 	}
   1399 	m++;
   1400 	for (i = 0; i < ni; i += m) {
   1401 		if (iflags[i] & IF_BDIRTY) {
   1402 			writeat(fsbtodb(newsb, ino_to_fsba(newsb, i)),
   1403 			    inodes + i, newsb->fs_bsize);
   1404 		}
   1405 	}
   1406 }
   1407 /*
   1408  * Evict all inodes from the specified cg.  shrink() already checked
   1409  *  that there were enough free inodes, so the no-free-inodes check is
   1410  *  a can't-happen.  If it does trip, the filesystem should be in good
   1411  *  enough shape for fsck to fix; see the comment on perform_data_move
   1412  *  for the considerations in question.
   1413  */
   1414 static void
   1415 evict_inodes(struct cg * cg)
   1416 {
   1417 	int inum;
   1418 	int i;
   1419 	int fi;
   1420 
   1421 	inum = newsb->fs_ipg * cg->cg_cgx;
   1422 	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
   1423 		if (inodes[inum].di_mode != 0) {
   1424 			fi = find_freeinode();
   1425 			if (fi < 0) {
   1426 				printf("Sorry, inodes evaporated - "
   1427 				    "filesystem probably needs fsck\n");
   1428 				exit(EXIT_FAILURE);
   1429 			}
   1430 			inomove[inum] = fi;
   1431 			clr_bits(cg_inosused(cg, 0), i, 1);
   1432 			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
   1433 			    fi % newsb->fs_ipg, 1);
   1434 		}
   1435 	}
   1436 }
   1437 /*
   1438  * Move inodes from old locations to new.  Does not actually write
   1439  *  anything to disk; just copies in-core and sets dirty bits.
   1440  *
   1441  * We have to be careful here for reasons similar to those mentioned in
   1442  *  the comment header on perform_data_move, above: for the sake of
   1443  *  crash tolerance, we want to make sure everything is present at both
   1444  *  old and new locations before we update pointers.  So we call this
   1445  *  first, then flush_inodes() to get them out on disk, then update
   1446  *  directories to match.
   1447  */
   1448 static void
   1449 perform_inode_move(void)
   1450 {
   1451 	int i;
   1452 	int ni;
   1453 
   1454 	ni = oldsb->fs_ipg * oldsb->fs_ncg;
   1455 	for (i = 0; i < ni; i++) {
   1456 		if (inomove[i] != i) {
   1457 			inodes[inomove[i]] = inodes[i];
   1458 			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
   1459 		}
   1460 	}
   1461 }
   1462 /*
   1463  * Update the directory contained in the nb bytes at buf, to point to
   1464  *  inodes' new locations.
   1465  */
   1466 static int
   1467 update_dirents(char *buf, int nb)
   1468 {
   1469 	int rv;
   1470 #define d ((struct direct *)buf)
   1471 
   1472 	rv = 0;
   1473 	while (nb > 0) {
   1474 		if (inomove[d->d_ino] != d->d_ino) {
   1475 			rv++;
   1476 			d->d_ino = inomove[d->d_ino];
   1477 		}
   1478 		nb -= d->d_reclen;
   1479 		buf += d->d_reclen;
   1480 	}
   1481 	return (rv);
   1482 #undef d
   1483 }
   1484 /*
   1485  * Callback function for map_inode_data_blocks, for updating a
   1486  *  directory to point to new inode locations.
   1487  */
   1488 static void
   1489 update_dir_data(unsigned int bn, unsigned int size, unsigned int nb, int kind)
   1490 {
   1491 	if (kind == MDB_DATA) {
   1492 		union {
   1493 			struct direct d;
   1494 			char ch[MAXBSIZE];
   1495 		}     buf;
   1496 		readat(fsbtodb(oldsb, bn), &buf, size << oldsb->fs_fshift);
   1497 		if (update_dirents((char *) &buf, nb)) {
   1498 			writeat(fsbtodb(oldsb, bn), &buf,
   1499 			    size << oldsb->fs_fshift);
   1500 		}
   1501 	}
   1502 }
   1503 static void
   1504 dirmove_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
   1505 {
   1506 	switch (di->di_mode & IFMT) {
   1507 	case IFDIR:
   1508 		map_inode_data_blocks(di, &update_dir_data);
   1509 		break;
   1510 	}
   1511 }
   1512 /*
   1513  * Update directory entries to point to new inode locations.
   1514  */
   1515 static void
   1516 update_for_inode_move(void)
   1517 {
   1518 	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
   1519 }
   1520 /*
   1521  * Shrink the filesystem.
   1522  */
   1523 static void
   1524 shrink(void)
   1525 {
   1526 	int i;
   1527 
   1528 	/* Load the inodes off disk - we'll need 'em. */
   1529 	loadinodes();
   1530 	/* Update the timestamp. */
   1531 	newsb->fs_time = timestamp();
   1532 	/* Update the size figures. */
   1533 	newsb->fs_size = dbtofsb(newsb, newsize);
   1534 	newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
   1535 	    newsb->fs_old_spc);
   1536 	newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
   1537 	/* Does the (new) last cg end before the end of its inode area?  See
   1538 	 * the similar code in grow() for more on this. */
   1539 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
   1540 		newsb->fs_ncg--;
   1541 		newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
   1542 		newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc) /
   1543 		    NSPF(newsb);
   1544 		printf("Warning: last cylinder group is too small;\n");
   1545 		printf("    dropping it.  New size = %lu.\n",
   1546 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
   1547 	}
   1548 	/* Let's make sure we're not being shrunk into oblivion. */
   1549 	if (newsb->fs_ncg < 1) {
   1550 		printf("Size too small - filesystem would have no cylinders\n");
   1551 		exit(EXIT_FAILURE);
   1552 	}
   1553 	/* Initialize for block motion. */
   1554 	blkmove_init();
   1555 	/* Update csum size, then fix up for the new size */
   1556 	newsb->fs_cssize = fragroundup(newsb,
   1557 	    newsb->fs_ncg * sizeof(struct csum));
   1558 	csum_fixup();
   1559 	/* Evict data from any cgs being wholly eliminated */
   1560 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
   1561 		int base;
   1562 		int dlow;
   1563 		int dhigh;
   1564 		int dmax;
   1565 		base = cgbase(oldsb, i);
   1566 		dlow = cgsblock(oldsb, i) - base;
   1567 		dhigh = cgdmin(oldsb, i) - base;
   1568 		dmax = oldsb->fs_size - base;
   1569 		if (dmax > cgs[i]->cg_ndblk)
   1570 			dmax = cgs[i]->cg_ndblk;
   1571 		evict_data(cgs[i], 0, dlow);
   1572 		evict_data(cgs[i], dhigh, dmax - dhigh);
   1573 		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
   1574 		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
   1575 		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
   1576 		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
   1577 	}
   1578 	/* Update the new last cg. */
   1579 	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
   1580 	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
   1581 	/* Is the new last cg partial?  If so, evict any data from the part
   1582 	 * being shrunken away. */
   1583 	if (newsb->fs_size % newsb->fs_fpg) {
   1584 		struct cg *cg;
   1585 		int oldcgsize;
   1586 		int newcgsize;
   1587 		cg = cgs[newsb->fs_ncg - 1];
   1588 		newcgsize = newsb->fs_size % newsb->fs_fpg;
   1589 		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
   1590 		    oldsb->fs_fpg);
   1591 		if (oldcgsize > oldsb->fs_fpg)
   1592 			oldcgsize = oldsb->fs_fpg;
   1593 		evict_data(cg, newcgsize, oldcgsize - newcgsize);
   1594 		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
   1595 	}
   1596 	/* Find out whether we would run out of inodes.  (Note we haven't
   1597 	 * actually done anything to the filesystem yet; all those evict_data
   1598 	 * calls just update blkmove.) */
   1599 	{
   1600 		int slop;
   1601 		slop = 0;
   1602 		for (i = 0; i < newsb->fs_ncg; i++)
   1603 			slop += cgs[i]->cg_cs.cs_nifree;
   1604 		for (; i < oldsb->fs_ncg; i++)
   1605 			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
   1606 		if (slop < 0) {
   1607 			printf("Sorry, would run out of inodes\n");
   1608 			exit(EXIT_FAILURE);
   1609 		}
   1610 	}
   1611 	/* Copy data, then update pointers to data.  See the comment header on
   1612 	 * perform_data_move for ordering considerations. */
   1613 	perform_data_move();
   1614 	update_for_data_move();
   1615 	/* Now do inodes.  Initialize, evict, move, update - see the comment
   1616 	 * header on perform_inode_move. */
   1617 	inomove_init();
   1618 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
   1619 		evict_inodes(cgs[i]);
   1620 	perform_inode_move();
   1621 	flush_inodes();
   1622 	update_for_inode_move();
   1623 	/* Recompute all the bitmaps; most of them probably need it anyway,
   1624 	 * the rest are just paranoia and not wanting to have to bother
   1625 	 * keeping track of exactly which ones require it. */
   1626 	for (i = 0; i < newsb->fs_ncg; i++)
   1627 		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
   1628 	/* Update the cg_old_ncyl value for the last cylinder. */
   1629 	if (newsb->fs_old_ncyl % newsb->fs_old_cpg)
   1630 		cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
   1631 	    	    newsb->fs_old_ncyl % newsb->fs_old_cpg;
   1632 	/* Make fs_dsize match the new reality. */
   1633 	recompute_fs_dsize();
   1634 }
   1635 /*
   1636  * Recompute the block totals, block cluster summaries, and rotational
   1637  *  position summaries, for a given cg (specified by number), based on
   1638  *  its free-frag bitmap (cg_blksfree()[]).
   1639  */
   1640 static void
   1641 rescan_blkmaps(int cgn)
   1642 {
   1643 	struct cg *cg;
   1644 	int f;
   1645 	int b;
   1646 	int blkfree;
   1647 	int blkrun;
   1648 	int fragrun;
   1649 	int fwb;
   1650 
   1651 	cg = cgs[cgn];
   1652 	/* Subtract off the current totals from the sb's summary info */
   1653 	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
   1654 	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
   1655 	/* Clear counters and bitmaps. */
   1656 	cg->cg_cs.cs_nffree = 0;
   1657 	cg->cg_cs.cs_nbfree = 0;
   1658 	bzero(&cg->cg_frsum[0], MAXFRAG * sizeof(cg->cg_frsum[0]));
   1659 	bzero(&old_cg_blktot(cg, 0)[0],
   1660 	    newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
   1661 	bzero(&old_cg_blks(newsb, cg, 0, 0)[0],
   1662 	    newsb->fs_old_cpg * newsb->fs_old_nrpos *
   1663 	    sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
   1664 	if (newsb->fs_contigsumsize > 0) {
   1665 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
   1666 		bzero(&cg_clustersum(cg, 0)[1],
   1667 		    newsb->fs_contigsumsize *
   1668 		    sizeof(cg_clustersum(cg, 0)[1]));
   1669 		bzero(&cg_clustersfree(cg, 0)[0],
   1670 		    howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
   1671 		    NSPB(newsb), NBBY));
   1672 	}
   1673 	/* Scan the free-frag bitmap.  Runs of free frags are kept track of
   1674 	 * with fragrun, and recorded into cg_frsum[] and cg_cs.cs_nffree; on
   1675 	 * each block boundary, entire free blocks are recorded as well. */
   1676 	blkfree = 1;
   1677 	blkrun = 0;
   1678 	fragrun = 0;
   1679 	f = 0;
   1680 	b = 0;
   1681 	fwb = 0;
   1682 	while (f < cg->cg_ndblk) {
   1683 		if (bit_is_set(cg_blksfree(cg, 0), f)) {
   1684 			fragrun++;
   1685 		} else {
   1686 			blkfree = 0;
   1687 			if (fragrun > 0) {
   1688 				cg->cg_frsum[fragrun]++;
   1689 				cg->cg_cs.cs_nffree += fragrun;
   1690 			}
   1691 			fragrun = 0;
   1692 		}
   1693 		f++;
   1694 		fwb++;
   1695 		if (fwb >= newsb->fs_frag) {
   1696 			if (blkfree) {
   1697 				cg->cg_cs.cs_nbfree++;
   1698 				if (newsb->fs_contigsumsize > 0)
   1699 					set_bits(cg_clustersfree(cg, 0), b, 1);
   1700 				old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
   1701 				    f - newsb->fs_frag)]++;
   1702 				old_cg_blks(newsb, cg,
   1703 				    old_cbtocylno(newsb, f - newsb->fs_frag),
   1704 				    0)[old_cbtorpos(newsb,
   1705 				    f - newsb->fs_frag)]++;
   1706 				blkrun++;
   1707 			} else {
   1708 				if (fragrun > 0) {
   1709 					cg->cg_frsum[fragrun]++;
   1710 					cg->cg_cs.cs_nffree += fragrun;
   1711 				}
   1712 				if (newsb->fs_contigsumsize > 0) {
   1713 					if (blkrun > 0) {
   1714 						cg_clustersum(cg, 0)[(blkrun
   1715 						    > newsb->fs_contigsumsize)
   1716 						    ? newsb->fs_contigsumsize
   1717 						    : blkrun]++;
   1718 					}
   1719 				}
   1720 				blkrun = 0;
   1721 			}
   1722 			fwb = 0;
   1723 			b++;
   1724 			blkfree = 1;
   1725 			fragrun = 0;
   1726 		}
   1727 	}
   1728 	if (fragrun > 0) {
   1729 		cg->cg_frsum[fragrun]++;
   1730 		cg->cg_cs.cs_nffree += fragrun;
   1731 	}
   1732 	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
   1733 		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
   1734 		    newsb->fs_contigsumsize : blkrun]++;
   1735 	}
   1736 	/*
   1737          * Put the updated summary info back into csums, and add it
   1738          * back into the sb's summary info.  Then mark the cg dirty.
   1739          */
   1740 	csums[cgn] = cg->cg_cs;
   1741 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
   1742 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
   1743 	cgflags[cgn] |= CGF_DIRTY;
   1744 }
   1745 /*
   1746  * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
   1747  *  values, for a cg, based on the in-core inodes for that cg.
   1748  */
   1749 static void
   1750 rescan_inomaps(int cgn)
   1751 {
   1752 	struct cg *cg;
   1753 	int inum;
   1754 	int iwc;
   1755 
   1756 	cg = cgs[cgn];
   1757 	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
   1758 	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
   1759 	cg->cg_cs.cs_ndir = 0;
   1760 	cg->cg_cs.cs_nifree = 0;
   1761 	bzero(&cg_inosused(cg, 0)[0], howmany(newsb->fs_ipg, NBBY));
   1762 	inum = cgn * newsb->fs_ipg;
   1763 	if (cgn == 0) {
   1764 		set_bits(cg_inosused(cg, 0), 0, 2);
   1765 		iwc = 2;
   1766 		inum += 2;
   1767 	} else {
   1768 		iwc = 0;
   1769 	}
   1770 	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
   1771 		switch (inodes[inum].di_mode & IFMT) {
   1772 		case 0:
   1773 			cg->cg_cs.cs_nifree++;
   1774 			break;
   1775 		case IFDIR:
   1776 			cg->cg_cs.cs_ndir++;
   1777 			/* fall through */
   1778 		default:
   1779 			set_bits(cg_inosused(cg, 0), iwc, 1);
   1780 			break;
   1781 		}
   1782 	}
   1783 	csums[cgn] = cg->cg_cs;
   1784 	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
   1785 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
   1786 	cgflags[cgn] |= CGF_DIRTY;
   1787 }
   1788 /*
   1789  * Flush cgs to disk, recomputing anything they're marked as needing.
   1790  */
   1791 static void
   1792 flush_cgs(void)
   1793 {
   1794 	int i;
   1795 
   1796 	for (i = 0; i < newsb->fs_ncg; i++) {
   1797 		if (cgflags[i] & CGF_BLKMAPS) {
   1798 			rescan_blkmaps(i);
   1799 		}
   1800 		if (cgflags[i] & CGF_INOMAPS) {
   1801 			rescan_inomaps(i);
   1802 		}
   1803 		if (cgflags[i] & CGF_DIRTY) {
   1804 			cgs[i]->cg_rotor = 0;
   1805 			cgs[i]->cg_frotor = 0;
   1806 			cgs[i]->cg_irotor = 0;
   1807 			writeat(fsbtodb(newsb, cgtod(newsb, i)), cgs[i],
   1808 			    cgblksz);
   1809 		}
   1810 	}
   1811 	writeat(fsbtodb(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
   1812 }
   1813 /*
   1814  * Write the superblock, both to the main superblock and to each cg's
   1815  *  alternative superblock.
   1816  */
   1817 static void
   1818 write_sbs(void)
   1819 {
   1820 	int i;
   1821 
   1822 	writeat(where /  DEV_BSIZE, newsb, SBLOCKSIZE);
   1823 	for (i = 0; i < newsb->fs_ncg; i++) {
   1824 		writeat(fsbtodb(newsb, cgsblock(newsb, i)), newsb, SBLOCKSIZE);
   1825 	}
   1826 }
   1827 
   1828 static uint32_t
   1829 get_dev_size(char *dev_name)
   1830 {
   1831 	struct dkwedge_info dkw;
   1832 	struct partition *pp;
   1833 	struct disklabel lp;
   1834 	size_t ptn;
   1835 
   1836 	/* Get info about partition/wedge */
   1837 	if (ioctl(fd, DIOCGWEDGEINFO, &dkw) == -1) {
   1838 		if (ioctl(fd, DIOCGDINFO, &lp) == -1)
   1839 			return 0;
   1840 
   1841 		ptn = strchr(dev_name, '\0')[-1] - 'a';
   1842 		if (ptn >= lp.d_npartitions)
   1843 			return 0;
   1844 
   1845 		pp = &lp.d_partitions[ptn];
   1846 		return pp->p_size;
   1847 	}
   1848 
   1849 	return dkw.dkw_size;
   1850 }
   1851 
   1852 /*
   1853  * main().
   1854  */
   1855 int
   1856 main(int argc, char **argv)
   1857 {
   1858 	int ch;
   1859 	int ExpertFlag;
   1860 	int SFlag;
   1861 	size_t i;
   1862 
   1863 	char *device;
   1864 	char reply[5];
   1865 
   1866 	newsize = 0;
   1867 	ExpertFlag = 0;
   1868 	SFlag = 0;
   1869 
   1870 	while ((ch = getopt(argc, argv, "s:y")) != -1) {
   1871 		switch (ch) {
   1872 		case 's':
   1873 			SFlag = 1;
   1874 			newsize = (size_t)strtoul(optarg, NULL, 10);
   1875 			if(newsize < 1) {
   1876 				usage();
   1877 			}
   1878 			break;
   1879 		case 'y':
   1880 			ExpertFlag = 1;
   1881 			break;
   1882 		case '?':
   1883 			/* FALLTHROUGH */
   1884 		default:
   1885 			usage();
   1886 		}
   1887 	}
   1888 	argc -= optind;
   1889 	argv += optind;
   1890 
   1891 	if (argc != 1) {
   1892 		usage();
   1893 	}
   1894 
   1895 	device = *argv;
   1896 
   1897 	if (ExpertFlag == 0) {
   1898 		printf("It's required to manually run fsck on filesystem device "
   1899 		    "before you can resize it\n\n"
   1900 		    " Did you run fsck on your disk (Yes/No) ? ");
   1901 		fgets(reply, (int)sizeof(reply), stdin);
   1902 		if (strcasecmp(reply, "Yes\n")) {
   1903 			printf("\n Nothing done \n");
   1904 			exit(EXIT_SUCCESS);
   1905 		}
   1906 	}
   1907 
   1908 	fd = open(device, O_RDWR, 0);
   1909 	if (fd < 0)
   1910 		err(EXIT_FAILURE, "Can't open `%s'", device);
   1911 	checksmallio();
   1912 
   1913 	if (SFlag == 0) {
   1914 		newsize = get_dev_size(device);
   1915 		if (newsize == 0)
   1916 			err(EXIT_FAILURE,
   1917 			    "Can't resize filesystem, newsize not known.");
   1918 	}
   1919 
   1920 	oldsb = (struct fs *) & sbbuf;
   1921 	newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
   1922 	for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
   1923 		readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
   1924 		if (where == SBLOCK_UFS2 && (oldsb->fs_magic == FS_UFS1_MAGIC))
   1925 			continue;
   1926 		if (oldsb->fs_magic == FS_UFS1_MAGIC)
   1927 			break;
   1928 		if (oldsb->fs_old_flags & FS_FLAGS_UPDATED)
   1929 			err(EXIT_FAILURE,
   1930 			    "Can't resize ffsv2 format superblock!");
   1931 	}
   1932 	if (where == (off_t)-1)
   1933 		errx(EXIT_FAILURE, "Bad magic number");
   1934 	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
   1935 	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
   1936 	if (oldsb->fs_ipg % INOPB(oldsb)) {
   1937 		(void)fprintf(stderr, "ipg[%d] %% INOPB[%d] != 0\n",
   1938 		    (int) oldsb->fs_ipg, (int) INOPB(oldsb));
   1939 		exit(EXIT_FAILURE);
   1940 	}
   1941 	/* The superblock is bigger than struct fs (there are trailing tables,
   1942 	 * of non-fixed size); make sure we copy the whole thing.  SBLOCKSIZE may
   1943 	 * be an over-estimate, but we do this just once, so being generous is
   1944 	 * cheap. */
   1945 	bcopy(oldsb, newsb, SBLOCKSIZE);
   1946 	loadcgs();
   1947 	if (newsize > fsbtodb(oldsb, oldsb->fs_size)) {
   1948 		grow();
   1949 	} else if (newsize < fsbtodb(oldsb, oldsb->fs_size)) {
   1950 		shrink();
   1951 	}
   1952 	flush_cgs();
   1953 	write_sbs();
   1954 	if (isplainfile())
   1955 		ftruncate(fd,newsize * DEV_BSIZE);
   1956 	return 0;
   1957 }
   1958 
   1959 static void
   1960 usage(void)
   1961 {
   1962 
   1963 	(void)fprintf(stderr, "usage: %s [-y] [-s size] device\n", getprogname());
   1964 	exit(EXIT_FAILURE);
   1965 }
   1966