Home | History | Annotate | Line # | Download | only in resize_ffs
resize_ffs.c revision 1.2
      1 /*	$NetBSD: resize_ffs.c,v 1.2 2003/02/21 23:55:38 martin Exp $	*/
      2 /* From sources sent on February 17, 2003 */
      3 /*-
      4  * As its sole author, I explicitly place this code in the public
      5  *  domain.  Anyone may use it for any purpose (though I would
      6  *  appreciate credit where it is due).
      7  *
      8  *					der Mouse
      9  *
     10  *			       mouse (at) rodents.montreal.qc.ca
     11  *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
     12  */
     13 /*
     14  * ffs_resize:
     15  *
     16  * Resize a filesystem.  Is capable of both growing and shrinking.
     17  *
     18  * Usage: fsresize filesystem newsize
     19  *
     20  * Example: fsresize /dev/rsd1e 29574
     21  *
     22  * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
     23  *  each).
     24  *
     25  * Note: this currently requires gcc to build, since it is written
     26  *  depending on gcc-specific features, notably nested function
     27  *  definitions (which in at least a few cases depend on the lexical
     28  *  scoping gcc provides, so they can't be trivially moved outside).
     29  *
     30  * It will not do anything useful with filesystems in other than
     31  *  host-native byte order.  This really should be fixed (it's largely
     32  *  a historical accident; the original version of this program is
     33  *  older than bi-endian support in FFS).
     34  *
     35  * Many thanks go to John Kohl <jtk (at) netbsd.org> for finding bugs: the
     36  *  one responsible for the "realloccgblk: can't find blk in cyl"
     37  *  problem and a more minor one which left fs_dsize wrong when
     38  *  shrinking.  (These actually indicate bugs in fsck too - it should
     39  *  have caught and fixed them.)
     40  *
     41  */
     42 
     43 #include <stdio.h>
     44 #include <errno.h>
     45 #include <fcntl.h>
     46 #include <stdlib.h>
     47 #include <unistd.h>
     48 #include <strings.h>
     49 #include <sys/stat.h>
     50 #include <sys/mman.h>
     51 #include <sys/param.h>		/* MAXFRAG */
     52 #include <ufs/ffs/fs.h>
     53 #include <ufs/ufs/dir.h>
     54 #include <ufs/ufs/dinode.h>
     55 #include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */
     56 
     57 extern const char *__progname;
     58 
     59 /* Patchup for systems that don't yet have __progname */
     60 #ifdef NO_PROGNAME
     61 const char *__progname;
     62 int main(int, char **);
     63 int main_(int, char **);
     64 int
     65 main(int ac, char **av)
     66 #define main main_
     67 {
     68 	__progname = av[0];
     69 	return (main(ac, av));
     70 }
     71 #endif
     72 
     73 /* Suppress warnings about unused arguments */
     74 #if	defined(__GNUC__) &&				\
     75 	( (__GNUC__ > 2) ||				\
     76 	  ( (__GNUC__ == 2) &&				\
     77 	    defined(__GNUC_MINOR__) &&			\
     78 	    (__GNUC_MINOR__ >= 7) ) )
     79 #define UNUSED_ARG(x) x __attribute__((__unused__))
     80 #define INLINE inline
     81 #else
     82 #define UNUSED_ARG(x) x
     83 #define INLINE			/**/
     84 #endif
     85 
     86 /* new size of filesystem, in sectors */
     87 static int newsize;
     88 
     89 /* fd open onto disk device */
     90 static int fd;
     91 
     92 /* must we break up big I/O operations - see checksmallio() */
     93 static int smallio;
     94 
     95 /* size of a cg, in bytes, rounded up to a frag boundary */
     96 static int cgblksz;
     97 
     98 /* Superblocks. */
     99 static struct fs *oldsb;	/* before we started */
    100 static struct fs *newsb;	/* copy to work with */
    101 /* Buffer to hold the above.  Make sure it's aligned correctly. */
    102 static char sbbuf[2 * SBSIZE] __attribute__((__aligned__(__alignof__(struct fs))));
    103 
    104 /* a cg's worth of brand new squeaky-clean inodes */
    105 static struct dinode *zinodes;
    106 
    107 /* pointers to the in-core cgs, read off disk and possibly modified */
    108 static struct cg **cgs;
    109 
    110 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
    111 static struct csum *csums;
    112 
    113 /* per-cg flags, indexed by cg number */
    114 static unsigned char *cgflags;
    115 #define CGF_DIRTY   0x01	/* needs to be written to disk */
    116 #define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
    117 #define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */
    118 
    119 /* when shrinking, these two arrays record how we want blocks to move.	 */
    120 /*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
    121 /*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
    122 /*  started out as inode i should end up as inode j.			 */
    123 static unsigned int *blkmove;
    124 static unsigned int *inomove;
    125 
    126 /* in-core copies of all inodes in the fs, indexed by inumber */
    127 static struct dinode *inodes;
    128 
    129 /* per-inode flags, indexed by inumber */
    130 static unsigned char *iflags;
    131 #define IF_DIRTY  0x01		/* needs to be written to disk */
    132 #define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
    133 				 * block of inodes, and applies to the whole
    134 				 * block. */
    135 
    136 /*
    137  * See if we need to break up large I/O operations.  This should never
    138  *  be needed, but under at least one <version,platform> combination,
    139  *  large enough disk transfers to the raw device hang.  So if we're
    140  *  talking to a character special device, play it safe; in this case,
    141  *  readat() and writeat() break everything up into pieces no larger
    142  *  than 8K, doing multiple syscalls for larger operations.
    143  */
    144 static void
    145 checksmallio(void)
    146 {
    147 	struct stat stb;
    148 
    149 	fstat(fd, &stb);
    150 	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
    151 }
    152 /*
    153  * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
    154  *  units, ie, after fsbtodb(); size is in bytes.
    155  */
    156 static void
    157 readat(off_t blkno, void *buf, int size)
    158 {
    159 	/* Seek to the correct place. */
    160 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0) {
    161 		fprintf(stderr, "%s: lseek: %s\n", __progname,
    162 		    strerror(errno));
    163 		exit(1);
    164 	}
    165 	/* See if we have to break up the transfer... */
    166 	if (smallio) {
    167 		char *bp;	/* pointer into buf */
    168 		int left;	/* bytes left to go */
    169 		int n;		/* number to do this time around */
    170 		int rv;		/* syscall return value */
    171 		bp = buf;
    172 		left = size;
    173 		while (left > 0) {
    174 			n = (left > 8192) ? 8192 : left;
    175 			rv = read(fd, bp, n);
    176 			if (rv < 0) {
    177 				fprintf(stderr, "%s: read: %s\n", __progname,
    178 				    strerror(errno));
    179 				exit(1);
    180 			}
    181 			if (rv != n) {
    182 				fprintf(stderr,
    183 				    "%s: read: wanted %d, got %d\n",
    184 				    __progname, n, rv);
    185 				exit(1);
    186 			}
    187 			bp += n;
    188 			left -= n;
    189 		}
    190 	} else {
    191 		int rv;
    192 		rv = read(fd, buf, size);
    193 		if (rv < 0) {
    194 			fprintf(stderr, "%s: read: %s\n", __progname,
    195 			    strerror(errno));
    196 			exit(1);
    197 		}
    198 		if (rv != size) {
    199 			fprintf(stderr, "%s: read: wanted %d, got %d\n",
    200 			    __progname, size, rv);
    201 			exit(1);
    202 		}
    203 	}
    204 }
    205 /*
    206  * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
    207  *  units, ie, after fsbtodb(); size is in bytes.
    208  */
    209 static void
    210 writeat(off_t blkno, const void *buf, int size)
    211 {
    212 	/* Seek to the correct place. */
    213 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0) {
    214 		fprintf(stderr, "%s: lseek: %s\n", __progname,
    215 		    strerror(errno));
    216 		exit(1);
    217 	}
    218 	/* See if we have to break up the transfer... */
    219 	if (smallio) {
    220 		const char *bp;	/* pointer into buf */
    221 		int left;	/* bytes left to go */
    222 		int n;		/* number to do this time around */
    223 		int rv;		/* syscall return value */
    224 		bp = buf;
    225 		left = size;
    226 		while (left > 0) {
    227 			n = (left > 8192) ? 8192 : left;
    228 			rv = write(fd, bp, n);
    229 			if (rv < 0) {
    230 				fprintf(stderr, "%s: write: %s\n", __progname,
    231 				    strerror(errno));
    232 				exit(1);
    233 			}
    234 			if (rv != n) {
    235 				fprintf(stderr,
    236 				    "%s: write: wanted %d, got %d\n",
    237 				    __progname, n, rv);
    238 				exit(1);
    239 			}
    240 			bp += n;
    241 			left -= n;
    242 		}
    243 	} else {
    244 		int rv;
    245 		rv = write(fd, buf, size);
    246 		if (rv < 0) {
    247 			fprintf(stderr, "%s: write: %s\n", __progname,
    248 			    strerror(errno));
    249 			exit(1);
    250 		}
    251 		if (rv != size) {
    252 			fprintf(stderr, "%s: write: wanted %d, got %d\n",
    253 			    __progname, size, rv);
    254 			exit(1);
    255 		}
    256 	}
    257 }
    258 /*
    259  * Never-fail versions of malloc() and realloc(), and an allocation
    260  *  routine (which also never fails) for allocating memory that will
    261  *  never be freed until exit.
    262  */
    263 
    264 /*
    265  * Never-fail malloc.
    266  */
    267 static void *
    268 nfmalloc(size_t nb, const char *tag)
    269 {
    270 	void *rv;
    271 
    272 	rv = malloc(nb);
    273 	if (rv)
    274 		return (rv);
    275 	fprintf(stderr, "%s: can't allocate %lu bytes for %s\n",
    276                 __progname, (unsigned long int) nb, tag);
    277 	exit(1);
    278 }
    279 /*
    280  * Never-fail realloc.
    281  */
    282 static void *
    283 nfrealloc(void *blk, size_t nb, const char *tag)
    284 {
    285 	void *rv;
    286 
    287 	rv = realloc(blk, nb);
    288 	if (rv)
    289 		return (rv);
    290 	fprintf(stderr, "%s: can't reallocate to %lu bytes for %s\n",
    291                 __progname, (unsigned long int) nb, tag);
    292 	exit(1);
    293 }
    294 /*
    295  * Allocate memory that will never be freed or reallocated.  Arguably
    296  *  this routine should handle small allocations by chopping up pages,
    297  *  but that's not worth the bother; it's not called more than a
    298  *  handful of times per run, and if the allocations are that small the
    299  *  waste in giving each one its own page is ignorable.
    300  */
    301 static void *
    302 alloconce(size_t nb, const char *tag)
    303 {
    304 	void *rv;
    305 
    306 	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
    307 	if (rv != MAP_FAILED)
    308 		return (rv);
    309 	fprintf(stderr, "%s: can't allocate %lu bytes for %s\n", __progname,
    310                 (unsigned long int) nb, tag);
    311 	exit(1);
    312 }
    313 /*
    314  * Load the cgs and csums off disk.  Also allocates the space to load
    315  *  them into and initializes the per-cg flags.
    316  */
    317 static void
    318 loadcgs(void)
    319 {
    320 	int cg;
    321 	char *cgp;
    322 
    323 	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
    324 	cgs = nfmalloc(oldsb->fs_ncg * sizeof(struct cg *), "cg pointers");
    325 	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
    326 	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
    327 	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
    328 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
    329 		cgs[cg] = (struct cg *) cgp;
    330 		readat(fsbtodb(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
    331 		cgflags[cg] = 0;
    332 		cgp += cgblksz;
    333 	}
    334 	readat(fsbtodb(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
    335 }
    336 /*
    337  * Set n bits, starting with bit #base, in the bitmap pointed to by
    338  *  bitvec (which is assumed to be large enough to include bits base
    339  *  through base+n-1).
    340  */
    341 static void
    342 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
    343 {
    344 	if (n < 1)
    345 		return;		/* nothing to do */
    346 	if (base & 7) {		/* partial byte at beginning */
    347 		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
    348 			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
    349 			return;
    350 		}
    351 		bitvec[base >> 3] |= (~0U) << (base & 7);
    352 		n -= 8 - (base & 7);
    353 		base = (base & ~7) + 8;
    354 	}
    355 	if (n >= 8) {		/* do full bytes */
    356 		memset(bitvec + (base >> 3), 0xff, n >> 3);
    357 		base += n & ~7;
    358 		n &= 7;
    359 	}
    360 	if (n) {		/* partial byte at end */
    361 		bitvec[base >> 3] |= ~((~0U) << n);
    362 	}
    363 }
    364 /*
    365  * Clear n bits, starting with bit #base, in the bitmap pointed to by
    366  *  bitvec (which is assumed to be large enough to include bits base
    367  *  through base+n-1).  Code parallels set_bits().
    368  */
    369 static void
    370 clr_bits(unsigned char *bitvec, int base, int n)
    371 {
    372 	if (n < 1)
    373 		return;
    374 	if (base & 7) {
    375 		if (n <= 8 - (base & 7)) {
    376 			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
    377 			return;
    378 		}
    379 		bitvec[base >> 3] &= ~((~0U) << (base & 7));
    380 		n -= 8 - (base & 7);
    381 		base = (base & ~7) + 8;
    382 	}
    383 	if (n >= 8) {
    384 		bzero(bitvec + (base >> 3), n >> 3);
    385 		base += n & ~7;
    386 		n &= 7;
    387 	}
    388 	if (n) {
    389 		bitvec[base >> 3] &= (~0U) << n;
    390 	}
    391 }
    392 /*
    393  * Test whether bit #bit is set in the bitmap pointed to by bitvec.
    394  */
    395 INLINE static int
    396 bit_is_set(unsigned char *bitvec, int bit)
    397 {
    398 	return (bitvec[bit >> 3] & (1 << (bit & 7)));
    399 }
    400 /*
    401  * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
    402  */
    403 INLINE static int
    404 bit_is_clr(unsigned char *bitvec, int bit)
    405 {
    406 	return (!bit_is_set(bitvec, bit));
    407 }
    408 /*
    409  * Test whether a whole block of bits is set in a bitmap.  This is
    410  *  designed for testing (aligned) disk blocks in a bit-per-frag
    411  *  bitmap; it has assumptions wired into it based on that, essentially
    412  *  that the entire block fits into a single byte.  This returns true
    413  *  iff _all_ the bits are set; it is not just the complement of
    414  *  blk_is_clr on the same arguments (unless blkfrags==1).
    415  */
    416 INLINE static int
    417 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
    418 {
    419 	unsigned int mask;
    420 
    421 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    422 	return ((bitvec[blkbase >> 3] & mask) == mask);
    423 }
    424 /*
    425  * Test whether a whole block of bits is clear in a bitmap.  See
    426  *  blk_is_set (above) for assumptions.  This returns true iff _all_
    427  *  the bits are clear; it is not just the complement of blk_is_set on
    428  *  the same arguments (unless blkfrags==1).
    429  */
    430 INLINE static int
    431 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
    432 {
    433 	unsigned int mask;
    434 
    435 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    436 	return ((bitvec[blkbase >> 3] & mask) == 0);
    437 }
    438 /*
    439  * Initialize a new cg.  Called when growing.  Assumes memory has been
    440  *  allocated but not otherwise set up.  This code sets the fields of
    441  *  the cg, initializes the bitmaps (and cluster summaries, if
    442  *  applicable), updates both per-cylinder summary info and the global
    443  *  summary info in newsb; it also writes out new inodes for the cg.
    444  *
    445  * This code knows it can never be called for cg 0, which makes it a
    446  *  bit simpler than it would otherwise be.
    447  */
    448 static void
    449 initcg(int cgn)
    450 {
    451 	struct cg *cg;		/* The in-core cg, of course */
    452 	int base;		/* Disk address of cg base */
    453 	int dlow;		/* Size of pre-cg data area */
    454 	int dhigh;		/* Offset of post-inode data area, from base */
    455 	int dmax;		/* Offset of end of post-inode data area */
    456 	int i;			/* Generic loop index */
    457 	int n;			/* Generic count */
    458 
    459 	cg = cgs[cgn];
    460 	/* Place the data areas */
    461 	base = cgbase(newsb, cgn);
    462 	dlow = cgsblock(newsb, cgn) - base;
    463 	dhigh = cgdmin(newsb, cgn) - base;
    464 	dmax = newsb->fs_size - base;
    465 	if (dmax > newsb->fs_fpg)
    466 		dmax = newsb->fs_fpg;
    467 	/*
    468          * Clear out the cg - assumes all-0-bytes is the correct way
    469          * to initialize fields we don't otherwise touch, which is
    470          * perhaps not the right thing to do, but it's what fsck and
    471          * mkfs do.
    472          */
    473 	bzero(cg, newsb->fs_cgsize);
    474 	cg->cg_time = newsb->fs_time;
    475 	cg->cg_magic = CG_MAGIC;
    476 	cg->cg_cgx = cgn;
    477 	cg->cg_ncyl = newsb->fs_cpg;
    478 	/* fsck whines if the cg->cg_ncyl value in the last cg is fs_cpg
    479 	 * instead of zero, when fs_cpg is the correct value. */
    480 	/* XXX fix once fsck is fixed */
    481 	if ((cgn == newsb->fs_ncg - 1) /* && (newsb->fs_ncyl % newsb->fs_cpg) */ ) {
    482 		cg->cg_ncyl = newsb->fs_ncyl % newsb->fs_cpg;
    483 	}
    484 	cg->cg_niblk = newsb->fs_ipg;
    485 	cg->cg_ndblk = dmax;
    486 	/* Set up the bitmap pointers.  We have to be careful to lay out the
    487 	 * cg _exactly_ the way mkfs and fsck do it, since fsck compares the
    488 	 * _entire_ cg against a recomputed cg, and whines if there is any
    489 	 * mismatch, including the bitmap offsets. */
    490 	/* XXX update this comment when fsck is fixed */
    491 	cg->cg_btotoff = &cg->cg_space[0] - (unsigned char *) cg;
    492 	cg->cg_boff = cg->cg_btotoff + (newsb->fs_cpg * sizeof(int32_t));
    493 	cg->cg_iusedoff = cg->cg_boff +
    494 	    (newsb->fs_cpg * newsb->fs_nrpos * sizeof(int16_t));
    495 	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
    496 	if (newsb->fs_contigsumsize > 0) {
    497 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
    498 		cg->cg_clustersumoff = cg->cg_freeoff +
    499 		    howmany(newsb->fs_cpg * newsb->fs_spc / NSPF(newsb),
    500 		    NBBY) - sizeof(int32_t);
    501 		cg->cg_clustersumoff =
    502 		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
    503 		cg->cg_clusteroff = cg->cg_clustersumoff +
    504 		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
    505 		cg->cg_nextfreeoff = cg->cg_clusteroff +
    506 		    howmany(newsb->fs_cpg * newsb->fs_spc / NSPB(newsb),
    507 		    NBBY);
    508 		n = dlow / newsb->fs_frag;
    509 		if (n > 0) {
    510 			set_bits(cg_clustersfree(cg, 0), 0, n);
    511 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    512 			    newsb->fs_contigsumsize : n]++;
    513 		}
    514 	} else {
    515 		cg->cg_nextfreeoff = cg->cg_freeoff +
    516 		    howmany(newsb->fs_cpg * newsb->fs_spc / NSPF(newsb),
    517 		    NBBY);
    518 	}
    519 	/* Mark the data areas as free; everything else is marked busy by the
    520 	 * bzero up at the top. */
    521 	set_bits(cg_blksfree(cg, 0), 0, dlow);
    522 	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
    523 	/* Initialize summary info */
    524 	cg->cg_cs.cs_ndir = 0;
    525 	cg->cg_cs.cs_nifree = newsb->fs_ipg;
    526 	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
    527 	cg->cg_cs.cs_nffree = 0;
    528 
    529 	/* This is the simplest way of doing this; we perhaps could compute
    530 	 * the correct cg_blktot()[] and cg_blks()[] values other ways, but it
    531 	 * would be complicated and hardly seems worth the effort.  (The
    532 	 * reason there isn't frag-at-beginning and frag-at-end code here,
    533 	 * like the code below for the post-inode data area, is that the
    534 	 * pre-sb data area always starts at 0, and thus is block-aligned, and
    535 	 * always ends at the sb, which is block-aligned.) */
    536 	for (i = 0; i < dlow; i += newsb->fs_frag) {
    537 		cg_blktot(cg, 0)[cbtocylno(newsb, i)]++;
    538 		cg_blks(newsb, cg, cbtocylno(newsb, i), 0)[cbtorpos(newsb, i)]++;
    539 	}
    540 	/* Deal with a partial block at the beginning of the post-inode area.
    541 	 * I'm not convinced this can happen - I think the inodes are always
    542 	 * block-aligned and always an integral number of blocks - but it's
    543 	 * cheap to do the right thing just in case. */
    544 	if (dhigh % newsb->fs_frag) {
    545 		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
    546 		cg->cg_frsum[n]++;
    547 		cg->cg_cs.cs_nffree += n;
    548 		dhigh += n;
    549 	}
    550 	n = (dmax - dhigh) / newsb->fs_frag;
    551 	/* We have n full-size blocks in the post-inode data area. */
    552 	if (n > 0) {
    553 		cg->cg_cs.cs_nbfree += n;
    554 		if (newsb->fs_contigsumsize > 0) {
    555 			i = dhigh / newsb->fs_frag;
    556 			set_bits(cg_clustersfree(cg, 0), i, n);
    557 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    558 			    newsb->fs_contigsumsize : n]++;
    559 		}
    560 		for (i = n; i > 0; i--) {
    561 			cg_blktot(cg, 0)[cbtocylno(newsb, dhigh)]++;
    562 			cg_blks(newsb, cg,
    563 			    cbtocylno(newsb, dhigh), 0)[cbtorpos(newsb,
    564 				dhigh)]++;
    565 			dhigh += newsb->fs_frag;
    566 		}
    567 	}
    568 	/* Deal with any leftover frag at the end of the cg. */
    569 	i = dmax - dhigh;
    570 	if (i) {
    571 		cg->cg_frsum[i]++;
    572 		cg->cg_cs.cs_nffree += i;
    573 	}
    574 	/* Update the csum info. */
    575 	csums[cgn] = cg->cg_cs;
    576 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
    577 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
    578 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
    579 	/* Write out the cleared inodes. */
    580 	writeat(fsbtodb(newsb, cgimin(newsb, cgn)), zinodes,
    581 	    newsb->fs_ipg * sizeof(struct dinode));
    582 	/* Dirty the cg. */
    583 	cgflags[cgn] |= CGF_DIRTY;
    584 }
    585 /*
    586  * Find free space, at least nfrags consecutive frags of it.  Pays no
    587  *  attention to block boundaries, but refuses to straddle cg
    588  *  boundaries, even if the disk blocks involved are in fact
    589  *  consecutive.  Return value is the frag number of the first frag of
    590  *  the block, or -1 if no space was found.  Uses newsb for sb values,
    591  *  and assumes the cgs[] structures correctly describe the area to be
    592  *  searched.
    593  *
    594  * XXX is there a bug lurking in the ignoring of block boundaries by
    595  *  the routine used by fragmove() in evict_data()?  Can an end-of-file
    596  *  frag legally straddle a block boundary?  If not, this should be
    597  *  cloned and fixed to stop at block boundaries for that use.  The
    598  *  current one may still be needed for csum info motion, in case that
    599  *  takes up more than a whole block (is the csum info allowed to begin
    600  *  partway through a block and continue into the following block?).
    601  *
    602  * If we wrap off the end of the filesystem back to the beginning, we
    603  *  can end up searching the end of the filesystem twice.  I ignore
    604  *  this inefficiency, since if that happens we're going to croak with
    605  *  a no-space error anyway, so it happens at most once.
    606  */
    607 static int
    608 find_freespace(unsigned int nfrags)
    609 {
    610 	static int hand = 0;	/* hand rotates through all frags in the fs */
    611 	int cgsize;		/* size of the cg hand currently points into */
    612 	int cgn;		/* number of cg hand currently points into */
    613 	int fwc;		/* frag-within-cg number of frag hand points
    614 				 * to */
    615 	int run;		/* length of run of free frags seen so far */
    616 	int secondpass;		/* have we wrapped from end of fs to
    617 				 * beginning? */
    618 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    619 
    620 	cgn = dtog(newsb, hand);
    621 	fwc = dtogd(newsb, hand);
    622 	secondpass = (hand == 0);
    623 	run = 0;
    624 	bits = cg_blksfree(cgs[cgn], 0);
    625 	cgsize = cgs[cgn]->cg_ndblk;
    626 	while (1) {
    627 		if (bit_is_set(bits, fwc)) {
    628 			run++;
    629 			if (run >= nfrags)
    630 				return (hand + 1 - run);
    631 		} else {
    632 			run = 0;
    633 		}
    634 		hand++;
    635 		fwc++;
    636 		if (fwc >= cgsize) {
    637 			fwc = 0;
    638 			cgn++;
    639 			if (cgn >= newsb->fs_ncg) {
    640 				hand = 0;
    641 				if (secondpass)
    642 					return (-1);
    643 				secondpass = 1;
    644 				cgn = 0;
    645 			}
    646 			bits = cg_blksfree(cgs[cgn], 0);
    647 			cgsize = cgs[cgn]->cg_ndblk;
    648 			run = 0;
    649 		}
    650 	}
    651 }
    652 /*
    653  * Find a free block of disk space.  Finds an entire block of frags,
    654  *  all of which are free.  Return value is the frag number of the
    655  *  first frag of the block, or -1 if no space was found.  Uses newsb
    656  *  for sb values, and assumes the cgs[] structures correctly describe
    657  *  the area to be searched.
    658  *
    659  * See find_freespace(), above, for remarks about hand wrapping around.
    660  */
    661 static int
    662 find_freeblock(void)
    663 {
    664 	static int hand = 0;	/* hand rotates through all frags in fs */
    665 	int cgn;		/* cg number of cg hand points into */
    666 	int fwc;		/* frag-within-cg number of frag hand points
    667 				 * to */
    668 	int cgsize;		/* size of cg hand points into */
    669 	int secondpass;		/* have we wrapped from end to beginning? */
    670 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    671 
    672 	cgn = dtog(newsb, hand);
    673 	fwc = dtogd(newsb, hand);
    674 	secondpass = (hand == 0);
    675 	bits = cg_blksfree(cgs[cgn], 0);
    676 	cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
    677 	while (1) {
    678 		if (blk_is_set(bits, fwc, newsb->fs_frag))
    679 			return (hand);
    680 		fwc += newsb->fs_frag;
    681 		hand += newsb->fs_frag;
    682 		if (fwc >= cgsize) {
    683 			fwc = 0;
    684 			cgn++;
    685 			if (cgn >= newsb->fs_ncg) {
    686 				hand = 0;
    687 				if (secondpass)
    688 					return (-1);
    689 				secondpass = 1;
    690 				cgn = 0;
    691 			}
    692 			bits = cg_blksfree(cgs[cgn], 0);
    693 			cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
    694 		}
    695 	}
    696 }
    697 /*
    698  * Find a free inode, returning its inumber or -1 if none was found.
    699  *  Uses newsb for sb values, and assumes the cgs[] structures
    700  *  correctly describe the area to be searched.
    701  *
    702  * See find_freespace(), above, for remarks about hand wrapping around.
    703  */
    704 static int
    705 find_freeinode(void)
    706 {
    707 	static int hand = 0;	/* hand rotates through all inodes in fs */
    708 	int cgn;		/* cg number of cg hand points into */
    709 	int iwc;		/* inode-within-cg number of inode hand points
    710 				 * to */
    711 	int secondpass;		/* have we wrapped from end to beginning? */
    712 	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */
    713 
    714 	cgn = hand / newsb->fs_ipg;
    715 	iwc = hand % newsb->fs_ipg;
    716 	secondpass = (hand == 0);
    717 	bits = cg_inosused(cgs[cgn], 0);
    718 	while (1) {
    719 		if (bit_is_clr(bits, iwc))
    720 			return (hand);
    721 		hand++;
    722 		iwc++;
    723 		if (iwc >= newsb->fs_ipg) {
    724 			iwc = 0;
    725 			cgn++;
    726 			if (cgn >= newsb->fs_ncg) {
    727 				hand = 0;
    728 				if (secondpass)
    729 					return (-1);
    730 				secondpass = 1;
    731 				cgn = 0;
    732 			}
    733 			bits = cg_inosused(cgs[cgn], 0);
    734 		}
    735 	}
    736 }
    737 /*
    738  * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
    739  *  for the appropriate cg, and marks the cg as dirty.
    740  */
    741 static void
    742 free_frag(int fno)
    743 {
    744 	int cgn;
    745 
    746 	cgn = dtog(newsb, fno);
    747 	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    748 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    749 }
    750 /*
    751  * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
    752  *  for the appropriate cg, and marks the cg as dirty.
    753  */
    754 static void
    755 alloc_frag(int fno)
    756 {
    757 	int cgn;
    758 
    759 	cgn = dtog(newsb, fno);
    760 	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    761 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    762 }
    763 /*
    764  * Fix up the csum array.  If shrinking, this involves freeing zero or
    765  *  more frags; if growing, it involves allocating them, or if the
    766  *  frags being grown into aren't free, finding space elsewhere for the
    767  *  csum info.  (If the number of occupied frags doesn't change,
    768  *  nothing happens here.)
    769  */
    770 static void
    771 csum_fixup(void)
    772 {
    773 	int nold;		/* # frags in old csum info */
    774 	int ntot;		/* # frags in new csum info */
    775 	int nnew;		/* ntot-nold */
    776 	int newloc;		/* new location for csum info, if necessary */
    777 	int i;			/* generic loop index */
    778 	int j;			/* generic loop index */
    779 	int f;			/* "from" frag number, if moving */
    780 	int t;			/* "to" frag number, if moving */
    781 	int cgn;		/* cg number, used when shrinking */
    782 
    783 	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
    784 	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
    785 	nnew = ntot - nold;
    786 	/* First, if there's no change in frag counts, it's easy. */
    787 	if (nnew == 0)
    788 		return;
    789 	/* Next, if we're shrinking, it's almost as easy.  Just free up any
    790 	 * frags in the old area we no longer need. */
    791 	if (nnew < 0) {
    792 		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
    793 		    j < 0;
    794 		    i--, j++) {
    795 			free_frag(i);
    796 		}
    797 		return;
    798 	}
    799 	/* We must be growing.  Check to see that the new csum area fits
    800 	 * within the filesystem.  I think this can never happen, since for
    801 	 * the csum area to grow, we must be adding at least one cg, so the
    802 	 * old csum area can't be this close to the end of the new filesystem.
    803 	 * But it's a cheap check. */
    804 	/* XXX what if csum info is at end of cg and grows into next cg, what
    805 	 * if it spills over onto the next cg's backup superblock?  Can this
    806 	 * happen? */
    807 	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
    808 		/* Okay, it fits - now,  see if the space we want is free. */
    809 		for ((i = newsb->fs_csaddr + nold), (j = nnew);
    810 		    j > 0;
    811 		    i++, j--) {
    812 			cgn = dtog(newsb, i);
    813 			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
    814 				dtogd(newsb, i)))
    815 				break;
    816 		}
    817 		if (j <= 0) {
    818 			/* Win win - all the frags we want are free. Allocate
    819 			 * 'em and we're all done.  */
    820 			for ((i = newsb->fs_csaddr + ntot - nnew), (j = nnew); j > 0; i++, j--) {
    821 				alloc_frag(i);
    822 			}
    823 			return;
    824 		}
    825 	}
    826 	/* We have to move the csum info, sigh.  Look for new space, free old
    827 	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
    828 	 * on disk at this point; the csum info will be written to the
    829 	 * then-current fs_csaddr as part of the final flush. */
    830 	newloc = find_freespace(ntot);
    831 	if (newloc < 0) {
    832 		printf("Sorry, no space available for new csums\n");
    833 		exit(1);
    834 	}
    835 	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
    836 		if (i < nold) {
    837 			free_frag(f);
    838 		}
    839 		alloc_frag(t);
    840 	}
    841 	newsb->fs_csaddr = newloc;
    842 }
    843 /*
    844  * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
    845  *  data blocks in that cg to the total.
    846  */
    847 static void
    848 recompute_fs_dsize(void)
    849 {
    850 	int i;
    851 
    852 	newsb->fs_dsize = 0;
    853 	for (i = 0; i < newsb->fs_ncg; i++) {
    854 		int dlow;	/* size of before-sb data area */
    855 		int dhigh;	/* offset of post-inode data area */
    856 		int dmax;	/* total size of cg */
    857 		int base;	/* base of cg, since cgsblock() etc add it in */
    858 		base = cgbase(newsb, i);
    859 		dlow = cgsblock(newsb, i) - base;
    860 		dhigh = cgdmin(newsb, i) - base;
    861 		dmax = newsb->fs_size - base;
    862 		if (dmax > newsb->fs_fpg)
    863 			dmax = newsb->fs_fpg;
    864 		newsb->fs_dsize += dlow + dmax - dhigh;
    865 	}
    866 	/* Space in cg 0 before cgsblock is boot area, not free space! */
    867 	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
    868 	/* And of course the csum info takes up space. */
    869 	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
    870 }
    871 /*
    872  * Return the current time.  We call this and assign, rather than
    873  *  calling time() directly, as insulation against OSes where fs_time
    874  *  is not a time_t.
    875  */
    876 static time_t
    877 timestamp(void)
    878 {
    879 	time_t t;
    880 
    881 	time(&t);
    882 	return (t);
    883 }
    884 /*
    885  * Grow the filesystem.
    886  */
    887 static void
    888 grow(void)
    889 {
    890 	int i;
    891 
    892 	/* Update the timestamp. */
    893 	newsb->fs_time = timestamp();
    894 	/* Allocate and clear the new-inode area, in case we add any cgs. */
    895 	zinodes = alloconce(newsb->fs_ipg * sizeof(struct dinode),
    896                             "zeroed inodes");
    897 	bzero(zinodes, newsb->fs_ipg * sizeof(struct dinode));
    898 	/* Update the size. */
    899 	newsb->fs_size = dbtofsb(newsb, newsize);
    900 	/* Did we actually not grow?  (This can happen if newsize is less than
    901 	 * a frag larger than the old size - unlikely, but no excuse to
    902 	 * misbehave if it happens.) */
    903 	if (newsb->fs_size == oldsb->fs_size)
    904 		return;
    905 	/* Check that the new last sector (frag, actually) is writable.  Since
    906 	 * it's at least one frag larger than it used to be, we know we aren't
    907 	 * overwriting anything important by this.  (The choice of sbbuf as
    908 	 * what to write is irrelevant; it's just something handy that's known
    909 	 * to be at least one frag in size.) */
    910 	writeat(newsb->fs_size - 1, &sbbuf, newsb->fs_fsize);
    911 	/* Update fs_ncyl and fs_ncg. */
    912 	newsb->fs_ncyl = (newsb->fs_size * NSPF(newsb)) / newsb->fs_spc;
    913 	newsb->fs_ncg = howmany(newsb->fs_ncyl, newsb->fs_cpg);
    914 	/* Does the last cg end before the end of its inode area? There is no
    915 	 * reason why this couldn't be handled, but it would complicate a lot
    916 	 * of code (in all filesystem code - fsck, kernel, etc) because of the
    917 	 * potential partial inode area, and the gain in space would be
    918 	 * minimal, at most the pre-sb data area. */
    919 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
    920 		newsb->fs_ncg--;
    921 		newsb->fs_ncyl = newsb->fs_ncg * newsb->fs_cpg;
    922 		newsb->fs_size = (newsb->fs_ncyl * newsb->fs_spc) / NSPF(newsb);
    923 		printf("Warning: last cylinder group is too small;\n");
    924 		printf("    dropping it.  New size = %lu.\n",
    925 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
    926 	}
    927 	/* Find out how big the csum area is, and realloc csums if bigger. */
    928 	newsb->fs_cssize = fragroundup(newsb,
    929 	    newsb->fs_ncg * sizeof(struct csum));
    930 	if (newsb->fs_cssize > oldsb->fs_cssize)
    931 		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
    932 	/* If we're adding any cgs, realloc structures and set up the new cgs. */
    933 	if (newsb->fs_ncg > oldsb->fs_ncg) {
    934 		char *cgp;
    935 		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(struct cg *),
    936                                 "cg pointers");
    937 		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
    938 		bzero(cgflags + oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
    939 		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
    940                                 "cgs");
    941 		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
    942 			cgs[i] = (struct cg *) cgp;
    943 			initcg(i);
    944 			cgp += cgblksz;
    945 		}
    946 		cgs[oldsb->fs_ncg - 1]->cg_ncyl = oldsb->fs_cpg;
    947 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
    948 	}
    949 	/* If the old fs ended partway through a cg, we have to update the old
    950 	 * last cg (though possibly not to a full cg!). */
    951 	if (oldsb->fs_size % oldsb->fs_fpg) {
    952 		struct cg *cg;
    953 		int newcgsize;
    954 		int prevcgtop;
    955 		int oldcgsize;
    956 		cg = cgs[oldsb->fs_ncg - 1];
    957 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
    958 		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
    959 		newcgsize = newsb->fs_size - prevcgtop;
    960 		if (newcgsize > newsb->fs_fpg)
    961 			newcgsize = newsb->fs_fpg;
    962 		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
    963 		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
    964 		cg->cg_ncyl = howmany(newcgsize * NSPF(newsb), newsb->fs_spc);
    965 		cg->cg_ndblk = newcgsize;
    966 	}
    967 	/* Fix up the csum info, if necessary. */
    968 	csum_fixup();
    969 	/* Make fs_dsize match the new reality. */
    970 	recompute_fs_dsize();
    971 }
    972 /*
    973  * Call (*fn)() for each inode, passing the inode and its inumber.  The
    974  *  number of cylinder groups is pased in, so this can be used to map
    975  *  over either the old or the new filesystem's set of inodes.
    976  */
    977 static void
    978      map_inodes(void (*fn) (struct dinode * di, unsigned int, void *arg), int ncg, void *cbarg) {
    979 	int i;
    980 	int ni;
    981 
    982 	ni = oldsb->fs_ipg * ncg;
    983 	for (i = 0; i < ni; i++)
    984 		(*fn) (inodes + i, i, cbarg);
    985 }
    986 /* Values for the third argument to the map function for
    987  * map_inode_data_blocks.  MDB_DATA indicates the block is contains
    988  * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
    989  * indirect block.  The MDB_INDIR_PRE call is made before the indirect
    990  * block pointers are followed and the pointed-to blocks scanned,
    991  * MDB_INDIR_POST after.
    992  */
    993 #define MDB_DATA       1
    994 #define MDB_INDIR_PRE  2
    995 #define MDB_INDIR_POST 3
    996 
    997 typedef void (*mark_callback_t) (unsigned int blocknum, unsigned int nfrags, unsigned int blksize, int opcode);
    998 
    999 /* Helper function - handles a data block.  Calls the callback
   1000  * function and returns number of bytes occupied in file (actually,
   1001  * rounded up to a frag boundary).  The name is historical.  */
   1002 static int
   1003 markblk(mark_callback_t fn, struct dinode * di, int bn, off_t o)
   1004 {
   1005 	int sz;
   1006 	int nb;
   1007 	if (o >= di->di_size)
   1008 		return (0);
   1009 	sz = dblksize(newsb, di, lblkno(newsb, o));
   1010 	nb = (sz > di->di_size - o) ? di->di_size - o : sz;
   1011 	if (bn)
   1012 		(*fn) (bn, numfrags(newsb, sz), nb, MDB_DATA);
   1013 	return (sz);
   1014 }
   1015 /* Helper function - handles an indirect block.  Makes the
   1016  * MDB_INDIR_PRE callback for the indirect block, loops over the
   1017  * pointers and recurses, and makes the MDB_INDIR_POST callback.
   1018  * Returns the number of bytes occupied in file, as does markblk().
   1019  * For the sake of update_for_data_move(), we read the indirect block
   1020  * _after_ making the _PRE callback.  The name is historical.  */
   1021 static int
   1022 markiblk(mark_callback_t fn, struct dinode * di, int bn, off_t o, int lev)
   1023 {
   1024 	int i;
   1025 	int j;
   1026 	int tot;
   1027 	static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
   1028 	static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
   1029 	static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
   1030 	static int32_t *indirblks[3] = {
   1031 		&indirblk1[0], &indirblk2[0], &indirblk3[0]
   1032 	};
   1033 	if (lev < 0)
   1034 		return (markblk(fn, di, bn, o));
   1035 	if (bn == 0) {
   1036 		for (i = newsb->fs_bsize;
   1037 		    lev >= 0;
   1038 		    i *= NINDIR(newsb), lev--);
   1039 		return (i);
   1040 	}
   1041 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
   1042 	readat(fsbtodb(newsb, bn), indirblks[lev], newsb->fs_bsize);
   1043 	tot = 0;
   1044 	for (i = 0; i < NINDIR(newsb); i++) {
   1045 		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
   1046 		if (j == 0)
   1047 			break;
   1048 		o += j;
   1049 		tot += j;
   1050 	}
   1051 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
   1052 	return (tot);
   1053 }
   1054 
   1055 
   1056 /*
   1057  * Call (*fn)() for each data block for an inode.  This routine assumes
   1058  *  the inode is known to be of a type that has data blocks (file,
   1059  *  directory, or non-fast symlink).  The called function is:
   1060  *
   1061  * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
   1062  *
   1063  *  where blkno is the frag number, nf is the number of frags starting
   1064  *  at blkno (always <= fs_frag), nb is the number of bytes that belong
   1065  *  to the file (usually nf*fs_frag, often less for the last block/frag
   1066  *  of a file).
   1067  */
   1068 static void
   1069 map_inode_data_blocks(struct dinode * di, mark_callback_t fn)
   1070 {
   1071 	off_t o;		/* offset within  inode */
   1072 	int inc;		/* increment for o - maybe should be off_t? */
   1073 	int b;			/* index within di_db[] and di_ib[] arrays */
   1074 
   1075 	/* Scan the direct blocks... */
   1076 	o = 0;
   1077 	for (b = 0; b < NDADDR; b++) {
   1078 		inc = markblk(fn, di, di->di_db[b], o);
   1079 		if (inc == 0)
   1080 			break;
   1081 		o += inc;
   1082 	}
   1083 	/* ...and the indirect blocks. */
   1084 	if (inc) {
   1085 		for (b = 0; b < NIADDR; b++) {
   1086 			inc = markiblk(fn, di, di->di_ib[b], o, b);
   1087 			if (inc == 0)
   1088 				return;
   1089 			o += inc;
   1090 		}
   1091 	}
   1092 }
   1093 
   1094 static void
   1095 dblk_callback(struct dinode * di, unsigned int inum, void *arg)
   1096 {
   1097 	mark_callback_t fn;
   1098 	fn = (mark_callback_t) arg;
   1099 	switch (di->di_mode & IFMT) {
   1100 	case IFLNK:
   1101 		if (di->di_size > newsb->fs_maxsymlinklen) {
   1102 	case IFDIR:
   1103 	case IFREG:
   1104 			map_inode_data_blocks(di, fn);
   1105 		}
   1106 		break;
   1107 	}
   1108 }
   1109 /*
   1110  * Make a callback call, a la map_inode_data_blocks, for all data
   1111  *  blocks in the entire fs.  This is used only once, in
   1112  *  update_for_data_move, but it's out at top level because the complex
   1113  *  downward-funarg nesting that would otherwise result seems to give
   1114  *  gcc gastric distress.
   1115  */
   1116 static void
   1117 map_data_blocks(mark_callback_t fn, int ncg)
   1118 {
   1119 	map_inodes(&dblk_callback, ncg, (void *) fn);
   1120 }
   1121 /*
   1122  * Initialize the blkmove array.
   1123  */
   1124 static void
   1125 blkmove_init(void)
   1126 {
   1127 	int i;
   1128 
   1129 	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
   1130 	for (i = 0; i < oldsb->fs_size; i++)
   1131 		blkmove[i] = i;
   1132 }
   1133 /*
   1134  * Load the inodes off disk.  Allocates the structures and initializes
   1135  *  them - the inodes from disk, the flags to zero.
   1136  */
   1137 static void
   1138 loadinodes(void)
   1139 {
   1140 	int cg;
   1141 	struct dinode *iptr;
   1142 
   1143 	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg * sizeof(struct dinode), "inodes");
   1144 	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
   1145 	bzero(iflags, oldsb->fs_ncg * oldsb->fs_ipg);
   1146 	iptr = inodes;
   1147 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
   1148 		readat(fsbtodb(oldsb, cgimin(oldsb, cg)), iptr,
   1149 		    oldsb->fs_ipg * sizeof(struct dinode));
   1150 		iptr += oldsb->fs_ipg;
   1151 	}
   1152 }
   1153 /*
   1154  * Report a filesystem-too-full problem.
   1155  */
   1156 static void
   1157 toofull(void)
   1158 {
   1159 	printf("Sorry, would run out of data blocks\n");
   1160 	exit(1);
   1161 }
   1162 /*
   1163  * Record a desire to move "n" frags from "from" to "to".
   1164  */
   1165 static void
   1166 mark_move(unsigned int from, unsigned int to, unsigned int n)
   1167 {
   1168 	for (; n > 0; n--)
   1169 		blkmove[from++] = to++;
   1170 }
   1171 /* Helper function - evict n frags, starting with start (cg-relative).
   1172  * The free bitmap is scanned, unallocated frags are ignored, and
   1173  * each block of consecutive allocated frags is moved as a unit.
   1174  */
   1175 static void
   1176 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
   1177 {
   1178 	int i;
   1179 	int run;
   1180 	run = 0;
   1181 	for (i = 0; i <= n; i++) {
   1182 		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
   1183 			run++;
   1184 		} else {
   1185 			if (run > 0) {
   1186 				int off;
   1187 				off = find_freespace(run);
   1188 				if (off < 0)
   1189 					toofull();
   1190 				mark_move(base + start + i - run, off, run);
   1191 				set_bits(cg_blksfree(cg, 0), start + i - run,
   1192 				    run);
   1193 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1194 				    dtogd(oldsb, off), run);
   1195 			}
   1196 			run = 0;
   1197 		}
   1198 	}
   1199 }
   1200 /*
   1201  * Evict all data blocks from the given cg, starting at minfrag (based
   1202  *  at the beginning of the cg), for length nfrag.  The eviction is
   1203  *  assumed to be entirely data-area; this should not be called with a
   1204  *  range overlapping the metadata structures in the cg.  It also
   1205  *  assumes minfrag points into the given cg; it will misbehave if this
   1206  *  is not true.
   1207  *
   1208  * See the comment header on find_freespace() for one possible bug
   1209  *  lurking here.
   1210  */
   1211 static void
   1212 evict_data(struct cg * cg, unsigned int minfrag, unsigned int nfrag)
   1213 {
   1214 	int base;		/* base of cg (in frags from beginning of fs) */
   1215 
   1216 
   1217 	base = cgbase(oldsb, cg->cg_cgx);
   1218 	/* Does the boundary fall in the middle of a block?  To avoid breaking
   1219 	 * between frags allocated as consecutive, we always evict the whole
   1220 	 * block in this case, though one could argue we should check to see
   1221 	 * if the frag before or after the break is unallocated. */
   1222 	if (minfrag % oldsb->fs_frag) {
   1223 		int n;
   1224 		n = minfrag % oldsb->fs_frag;
   1225 		minfrag -= n;
   1226 		nfrag += n;
   1227 	}
   1228 	/* Do whole blocks.  If a block is wholly free, skip it; if wholly
   1229 	 * allocated, move it in toto.  If neither, call fragmove() to move
   1230 	 * the frags to new locations. */
   1231 	while (nfrag >= oldsb->fs_frag) {
   1232 		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
   1233 			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
   1234 				oldsb->fs_frag)) {
   1235 				int off;
   1236 				off = find_freeblock();
   1237 				if (off < 0)
   1238 					toofull();
   1239 				mark_move(base + minfrag, off, oldsb->fs_frag);
   1240 				set_bits(cg_blksfree(cg, 0), minfrag,
   1241 				    oldsb->fs_frag);
   1242 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1243 				    dtogd(oldsb, off), oldsb->fs_frag);
   1244 			} else {
   1245 				fragmove(cg, base, minfrag, oldsb->fs_frag);
   1246 			}
   1247 		}
   1248 		minfrag += oldsb->fs_frag;
   1249 		nfrag -= oldsb->fs_frag;
   1250 	}
   1251 	/* Clean up any sub-block amount left over. */
   1252 	if (nfrag) {
   1253 		fragmove(cg, base, minfrag, nfrag);
   1254 	}
   1255 }
   1256 /*
   1257  * Move all data blocks according to blkmove.  We have to be careful,
   1258  *  because we may be updating indirect blocks that will themselves be
   1259  *  getting moved, or inode int32_t arrays that point to indirect
   1260  *  blocks that will be moved.  We call this before
   1261  *  update_for_data_move, and update_for_data_move does inodes first,
   1262  *  then indirect blocks in preorder, so as to make sure that the
   1263  *  filesystem is self-consistent at all points, for better crash
   1264  *  tolerance.  (We can get away with this only because all the writes
   1265  *  done by perform_data_move() are writing into space that's not used
   1266  *  by the old filesystem.)  If we crash, some things may point to the
   1267  *  old data and some to the new, but both copies are the same.  The
   1268  *  only wrong things should be csum info and free bitmaps, which fsck
   1269  *  is entirely capable of cleaning up.
   1270  *
   1271  * Since blkmove_init() initializes all blocks to move to their current
   1272  *  locations, we can have two blocks marked as wanting to move to the
   1273  *  same location, but only two and only when one of them is the one
   1274  *  that was already there.  So if blkmove[i]==i, we ignore that entry
   1275  *  entirely - for unallocated blocks, we don't want it (and may be
   1276  *  putting something else there), and for allocated blocks, we don't
   1277  *  want to copy it anywhere.
   1278  */
   1279 static void
   1280 perform_data_move(void)
   1281 {
   1282 	int i;
   1283 	int run;
   1284 	int maxrun;
   1285 	char buf[65536];
   1286 
   1287 	maxrun = sizeof(buf) / newsb->fs_fsize;
   1288 	run = 0;
   1289 	for (i = 0; i < oldsb->fs_size; i++) {
   1290 		if ((blkmove[i] == i) ||
   1291 		    (run >= maxrun) ||
   1292 		    ((run > 0) &&
   1293 			(blkmove[i] != blkmove[i - 1] + 1))) {
   1294 			if (run > 0) {
   1295 				readat(fsbtodb(oldsb, i - run), &buf[0],
   1296 				    run << oldsb->fs_fshift);
   1297 				writeat(fsbtodb(oldsb, blkmove[i - run]),
   1298 				    &buf[0], run << oldsb->fs_fshift);
   1299 			}
   1300 			run = 0;
   1301 		}
   1302 		if (blkmove[i] != i)
   1303 			run++;
   1304 	}
   1305 	if (run > 0) {
   1306 		readat(fsbtodb(oldsb, i - run), &buf[0],
   1307 		    run << oldsb->fs_fshift);
   1308 		writeat(fsbtodb(oldsb, blkmove[i - run]), &buf[0],
   1309 		    run << oldsb->fs_fshift);
   1310 	}
   1311 }
   1312 /*
   1313  * This modifies an array of int32_t, according to blkmove.  This is
   1314  *  used to update inode block arrays and indirect blocks to point to
   1315  *  the new locations of data blocks.
   1316  *
   1317  * Return value is the number of int32_ts that needed updating; in
   1318  *  particular, the return value is zero iff nothing was modified.
   1319  */
   1320 static int
   1321 movemap_blocks(int32_t * vec, int n)
   1322 {
   1323 	int rv;
   1324 
   1325 	rv = 0;
   1326 	for (; n > 0; n--, vec++) {
   1327 		if (blkmove[*vec] != *vec) {
   1328 			*vec = blkmove[*vec];
   1329 			rv++;
   1330 		}
   1331 	}
   1332 	return (rv);
   1333 }
   1334 static void
   1335 moveblocks_callback(struct dinode * di, unsigned int inum, void *arg)
   1336 {
   1337 	switch (di->di_mode & IFMT) {
   1338 	case IFLNK:
   1339 		if (di->di_size > oldsb->fs_maxsymlinklen) {
   1340 	case IFDIR:
   1341 	case IFREG:
   1342 			/* don't || these two calls; we need their
   1343 			 * side-effects */
   1344 			if (movemap_blocks(&di->di_db[0], NDADDR)) {
   1345 				iflags[inum] |= IF_DIRTY;
   1346 			}
   1347 			if (movemap_blocks(&di->di_ib[0], NIADDR)) {
   1348 				iflags[inum] |= IF_DIRTY;
   1349 			}
   1350 		}
   1351 		break;
   1352 	}
   1353 }
   1354 
   1355 static void
   1356 moveindir_callback(unsigned int off, unsigned int nfrag, unsigned int nbytes, int kind)
   1357 {
   1358 	if (kind == MDB_INDIR_PRE) {
   1359 		int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
   1360 		readat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
   1361 		if (movemap_blocks(&blk[0], NINDIR(oldsb))) {
   1362 			writeat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
   1363 		}
   1364 	}
   1365 }
   1366 /*
   1367  * Update all inode data arrays and indirect blocks to point to the new
   1368  *  locations of data blocks.  See the comment header on
   1369  *  perform_data_move for some ordering considerations.
   1370  */
   1371 static void
   1372 update_for_data_move(void)
   1373 {
   1374 	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
   1375 	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
   1376 }
   1377 /*
   1378  * Initialize the inomove array.
   1379  */
   1380 static void
   1381 inomove_init(void)
   1382 {
   1383 	int i;
   1384 
   1385 	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
   1386                             "inomove");
   1387 	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
   1388 		inomove[i] = i;
   1389 }
   1390 /*
   1391  * Flush all dirtied inodes to disk.  Scans the inode flags array; for
   1392  *  each dirty inode, it sets the BDIRTY bit on the first inode in the
   1393  *  block containing the dirty inode.  Then it scans by blocks, and for
   1394  *  each marked block, writes it.
   1395  */
   1396 static void
   1397 flush_inodes(void)
   1398 {
   1399 	int i;
   1400 	int ni;
   1401 	int m;
   1402 
   1403 	ni = newsb->fs_ipg * newsb->fs_ncg;
   1404 	m = INOPB(newsb) - 1;
   1405 	for (i = 0; i < ni; i++) {
   1406 		if (iflags[i] & IF_DIRTY) {
   1407 			iflags[i & ~m] |= IF_BDIRTY;
   1408 		}
   1409 	}
   1410 	m++;
   1411 	for (i = 0; i < ni; i += m) {
   1412 		if (iflags[i] & IF_BDIRTY) {
   1413 			writeat(fsbtodb(newsb, ino_to_fsba(newsb, i)),
   1414 			    inodes + i, newsb->fs_bsize);
   1415 		}
   1416 	}
   1417 }
   1418 /*
   1419  * Evict all inodes from the specified cg.  shrink() already checked
   1420  *  that there were enough free inodes, so the no-free-inodes check is
   1421  *  a can't-happen.  If it does trip, the filesystem should be in good
   1422  *  enough shape for fsck to fix; see the comment on perform_data_move
   1423  *  for the considerations in question.
   1424  */
   1425 static void
   1426 evict_inodes(struct cg * cg)
   1427 {
   1428 	int inum;
   1429 	int i;
   1430 	int fi;
   1431 
   1432 	inum = newsb->fs_ipg * cg->cg_cgx;
   1433 	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
   1434 		if (inodes[inum].di_mode != 0) {
   1435 			fi = find_freeinode();
   1436 			if (fi < 0) {
   1437 				printf("Sorry, inodes evaporated - "
   1438 				    "filesystem probably needs fsck\n");
   1439 				exit(1);
   1440 			}
   1441 			inomove[inum] = fi;
   1442 			clr_bits(cg_inosused(cg, 0), i, 1);
   1443 			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
   1444 			    fi % newsb->fs_ipg, 1);
   1445 		}
   1446 	}
   1447 }
   1448 /*
   1449  * Move inodes from old locations to new.  Does not actually write
   1450  *  anything to disk; just copies in-core and sets dirty bits.
   1451  *
   1452  * We have to be careful here for reasons similar to those mentioned in
   1453  *  the comment header on perform_data_move, above: for the sake of
   1454  *  crash tolerance, we want to make sure everything is present at both
   1455  *  old and new locations before we update pointers.  So we call this
   1456  *  first, then flush_inodes() to get them out on disk, then update
   1457  *  directories to match.
   1458  */
   1459 static void
   1460 perform_inode_move(void)
   1461 {
   1462 	int i;
   1463 	int ni;
   1464 
   1465 	ni = oldsb->fs_ipg * oldsb->fs_ncg;
   1466 	for (i = 0; i < ni; i++) {
   1467 		if (inomove[i] != i) {
   1468 			inodes[inomove[i]] = inodes[i];
   1469 			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
   1470 		}
   1471 	}
   1472 }
   1473 /*
   1474  * Update the directory contained in the nb bytes at buf, to point to
   1475  *  inodes' new locations.
   1476  */
   1477 static int
   1478 update_dirents(char *buf, int nb)
   1479 {
   1480 	int rv;
   1481 #define d ((struct direct *)buf)
   1482 
   1483 	rv = 0;
   1484 	while (nb > 0) {
   1485 		if (inomove[d->d_ino] != d->d_ino) {
   1486 			rv++;
   1487 			d->d_ino = inomove[d->d_ino];
   1488 		}
   1489 		nb -= d->d_reclen;
   1490 		buf += d->d_reclen;
   1491 	}
   1492 	return (rv);
   1493 #undef d
   1494 }
   1495 /*
   1496  * Callback function for map_inode_data_blocks, for updating a
   1497  *  directory to point to new inode locations.
   1498  */
   1499 static void
   1500 update_dir_data(unsigned int bn, unsigned int size, unsigned int nb, int kind)
   1501 {
   1502 	if (kind == MDB_DATA) {
   1503 		union {
   1504 			struct direct d;
   1505 			char ch[MAXBSIZE];
   1506 		}     buf;
   1507 		readat(fsbtodb(oldsb, bn), &buf, size << oldsb->fs_fshift);
   1508 		if (update_dirents((char *) &buf, nb)) {
   1509 			writeat(fsbtodb(oldsb, bn), &buf,
   1510 			    size << oldsb->fs_fshift);
   1511 		}
   1512 	}
   1513 }
   1514 static void
   1515 dirmove_callback(struct dinode * di, unsigned int inum, void *arg)
   1516 {
   1517 	switch (di->di_mode & IFMT) {
   1518 	case IFDIR:
   1519 		map_inode_data_blocks(di, &update_dir_data);
   1520 		break;
   1521 	}
   1522 }
   1523 /*
   1524  * Update directory entries to point to new inode locations.
   1525  */
   1526 static void
   1527 update_for_inode_move(void)
   1528 {
   1529 	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
   1530 }
   1531 /*
   1532  * Shrink the filesystem.
   1533  */
   1534 static void
   1535 shrink(void)
   1536 {
   1537 	int i;
   1538 
   1539 	/* Load the inodes off disk - we'll need 'em. */
   1540 	loadinodes();
   1541 	/* Update the timestamp. */
   1542 	newsb->fs_time = timestamp();
   1543 	/* Update the size figures. */
   1544 	newsb->fs_size = dbtofsb(newsb, newsize);
   1545 	newsb->fs_ncyl = (newsb->fs_size * NSPF(newsb)) / newsb->fs_spc;
   1546 	newsb->fs_ncg = howmany(newsb->fs_ncyl, newsb->fs_cpg);
   1547 	/* Does the (new) last cg end before the end of its inode area?  See
   1548 	 * the similar code in grow() for more on this. */
   1549 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
   1550 		newsb->fs_ncg--;
   1551 		newsb->fs_ncyl = newsb->fs_ncg * newsb->fs_cpg;
   1552 		newsb->fs_size = (newsb->fs_ncyl * newsb->fs_spc) / NSPF(newsb);
   1553 		printf("Warning: last cylinder group is too small;\n");
   1554 		printf("    dropping it.  New size = %lu.\n",
   1555 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
   1556 	}
   1557 	/* Let's make sure we're not being shrunk into oblivion. */
   1558 	if (newsb->fs_ncg < 1) {
   1559 		printf("Size too small - filesystem would have no cylinders\n");
   1560 		exit(1);
   1561 	}
   1562 	/* Initialize for block motion. */
   1563 	blkmove_init();
   1564 	/* Update csum size, then fix up for the new size */
   1565 	newsb->fs_cssize = fragroundup(newsb,
   1566 	    newsb->fs_ncg * sizeof(struct csum));
   1567 	csum_fixup();
   1568 	/* Evict data from any cgs being wholly eliminiated */
   1569 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
   1570 		int base;
   1571 		int dlow;
   1572 		int dhigh;
   1573 		int dmax;
   1574 		base = cgbase(oldsb, i);
   1575 		dlow = cgsblock(oldsb, i) - base;
   1576 		dhigh = cgdmin(oldsb, i) - base;
   1577 		dmax = oldsb->fs_size - base;
   1578 		if (dmax > cgs[i]->cg_ndblk)
   1579 			dmax = cgs[i]->cg_ndblk;
   1580 		evict_data(cgs[i], 0, dlow);
   1581 		evict_data(cgs[i], dhigh, dmax - dhigh);
   1582 		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
   1583 		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
   1584 		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
   1585 		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
   1586 	}
   1587 	/* Update the new last cg. */
   1588 	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
   1589 	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
   1590 	/* Is the new last cg partial?  If so, evict any data from the part
   1591 	 * being shrunken away. */
   1592 	if (newsb->fs_size % newsb->fs_fpg) {
   1593 		struct cg *cg;
   1594 		int oldcgsize;
   1595 		int newcgsize;
   1596 		cg = cgs[newsb->fs_ncg - 1];
   1597 		newcgsize = newsb->fs_size % newsb->fs_fpg;
   1598 		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) & oldsb->fs_fpg);
   1599 		if (oldcgsize > oldsb->fs_fpg)
   1600 			oldcgsize = oldsb->fs_fpg;
   1601 		evict_data(cg, newcgsize, oldcgsize - newcgsize);
   1602 		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
   1603 	}
   1604 	/* Find out whether we would run out of inodes.  (Note we haven't
   1605 	 * actually done anything to the filesystem yet; all those evict_data
   1606 	 * calls just update blkmove.) */
   1607 	{
   1608 		int slop;
   1609 		slop = 0;
   1610 		for (i = 0; i < newsb->fs_ncg; i++)
   1611 			slop += cgs[i]->cg_cs.cs_nifree;
   1612 		for (; i < oldsb->fs_ncg; i++)
   1613 			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
   1614 		if (slop < 0) {
   1615 			printf("Sorry, would run out of inodes\n");
   1616 			exit(1);
   1617 		}
   1618 	}
   1619 	/* Copy data, then update pointers to data.  See the comment header on
   1620 	 * perform_data_move for ordering considerations. */
   1621 	perform_data_move();
   1622 	update_for_data_move();
   1623 	/* Now do inodes.  Initialize, evict, move, update - see the comment
   1624 	 * header on perform_inode_move. */
   1625 	inomove_init();
   1626 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
   1627 		evict_inodes(cgs[i]);
   1628 	perform_inode_move();
   1629 	flush_inodes();
   1630 	update_for_inode_move();
   1631 	/* Recompute all the bitmaps; most of them probably need it anyway,
   1632 	 * the rest are just paranoia and not wanting to have to bother
   1633 	 * keeping track of exactly which ones require it. */
   1634 	for (i = 0; i < newsb->fs_ncg; i++)
   1635 		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
   1636 	/* Update the cg_ncyl value for the last cylinder.  The condition is
   1637 	 * commented out because fsck whines if not - see the similar
   1638 	 * condition in grow() for more. */
   1639 	/* XXX fix once fsck is fixed */
   1640 	/* if (newsb->fs_ncyl % newsb->fs_cpg) XXX */
   1641 /*XXXJTK*/
   1642 	cgs[newsb->fs_ncg - 1]->cg_ncyl =
   1643 	    newsb->fs_ncyl % newsb->fs_cpg;
   1644 	/* Make fs_dsize match the new reality. */
   1645 	recompute_fs_dsize();
   1646 }
   1647 /*
   1648  * Recompute the block totals, block cluster summaries, and rotational
   1649  *  position summaries, for a given cg (specified by number), based on
   1650  *  its free-frag bitmap (cg_blksfree()[]).
   1651  */
   1652 static void
   1653 rescan_blkmaps(int cgn)
   1654 {
   1655 	struct cg *cg;
   1656 	int f;
   1657 	int b;
   1658 	int blkfree;
   1659 	int blkrun;
   1660 	int fragrun;
   1661 	int fwb;
   1662 
   1663 	cg = cgs[cgn];
   1664 	/* Subtract off the current totals from the sb's summary info */
   1665 	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
   1666 	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
   1667 	/* Clear counters and bitmaps. */
   1668 	cg->cg_cs.cs_nffree = 0;
   1669 	cg->cg_cs.cs_nbfree = 0;
   1670 	bzero(&cg->cg_frsum[0], MAXFRAG * sizeof(cg->cg_frsum[0]));
   1671 	bzero(&cg_blktot(cg, 0)[0],
   1672 	    newsb->fs_cpg * sizeof(cg_blktot(cg, 0)[0]));
   1673 	bzero(&cg_blks(newsb, cg, 0, 0)[0],
   1674 	    newsb->fs_cpg * newsb->fs_nrpos *
   1675 	    sizeof(cg_blks(newsb, cg, 0, 0)[0]));
   1676 	if (newsb->fs_contigsumsize > 0) {
   1677 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
   1678 		bzero(&cg_clustersum(cg, 0)[1],
   1679 		    newsb->fs_contigsumsize *
   1680 		    sizeof(cg_clustersum(cg, 0)[1]));
   1681 		bzero(&cg_clustersfree(cg, 0)[0],
   1682 		    howmany((newsb->fs_cpg * newsb->fs_spc) / NSPB(newsb),
   1683 			NBBY));
   1684 	}
   1685 	/* Scan the free-frag bitmap.  Runs of free frags are kept track of
   1686 	 * with fragrun, and recorded into cg_frsum[] and cg_cs.cs_nffree; on
   1687 	 * each block boundary, entire free blocks are recorded as well. */
   1688 	blkfree = 1;
   1689 	blkrun = 0;
   1690 	fragrun = 0;
   1691 	f = 0;
   1692 	b = 0;
   1693 	fwb = 0;
   1694 	while (f < cg->cg_ndblk) {
   1695 		if (bit_is_set(cg_blksfree(cg, 0), f)) {
   1696 			fragrun++;
   1697 		} else {
   1698 			blkfree = 0;
   1699 			if (fragrun > 0) {
   1700 				cg->cg_frsum[fragrun]++;
   1701 				cg->cg_cs.cs_nffree += fragrun;
   1702 			}
   1703 			fragrun = 0;
   1704 		}
   1705 		f++;
   1706 		fwb++;
   1707 		if (fwb >= newsb->fs_frag) {
   1708 			if (blkfree) {
   1709 				cg->cg_cs.cs_nbfree++;
   1710 				if (newsb->fs_contigsumsize > 0)
   1711 					set_bits(cg_clustersfree(cg, 0), b, 1);
   1712 				cg_blktot(cg, 0)[cbtocylno(newsb, f - newsb->fs_frag)]++;
   1713 				cg_blks(newsb, cg,
   1714 				    cbtocylno(newsb, f - newsb->fs_frag),
   1715 				    0)[cbtorpos(newsb, f - newsb->fs_frag)]++;
   1716 				blkrun++;
   1717 			} else {
   1718 				if (fragrun > 0) {
   1719 					cg->cg_frsum[fragrun]++;
   1720 					cg->cg_cs.cs_nffree += fragrun;
   1721 				}
   1722 				if (newsb->fs_contigsumsize > 0) {
   1723 					if (blkrun > 0) {
   1724 						cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ? newsb->fs_contigsumsize : blkrun]++;
   1725 					}
   1726 				}
   1727 				blkrun = 0;
   1728 			}
   1729 			fwb = 0;
   1730 			b++;
   1731 			blkfree = 1;
   1732 			fragrun = 0;
   1733 		}
   1734 	}
   1735 	if (fragrun > 0) {
   1736 		cg->cg_frsum[fragrun]++;
   1737 		cg->cg_cs.cs_nffree += fragrun;
   1738 	}
   1739 	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
   1740 		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
   1741 		    newsb->fs_contigsumsize : blkrun]++;
   1742 	}
   1743 	/*
   1744          * Put the updated summary info back into csums, and add it
   1745          * back into the sb's summary info.  Then mark the cg dirty.
   1746          */
   1747 	csums[cgn] = cg->cg_cs;
   1748 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
   1749 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
   1750 	cgflags[cgn] |= CGF_DIRTY;
   1751 }
   1752 /*
   1753  * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
   1754  *  values, for a cg, based on the in-core inodes for that cg.
   1755  */
   1756 static void
   1757 rescan_inomaps(int cgn)
   1758 {
   1759 	struct cg *cg;
   1760 	int inum;
   1761 	int iwc;
   1762 
   1763 	cg = cgs[cgn];
   1764 	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
   1765 	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
   1766 	cg->cg_cs.cs_ndir = 0;
   1767 	cg->cg_cs.cs_nifree = 0;
   1768 	bzero(&cg_inosused(cg, 0)[0], howmany(newsb->fs_ipg, NBBY));
   1769 	inum = cgn * newsb->fs_ipg;
   1770 	if (cgn == 0) {
   1771 		set_bits(cg_inosused(cg, 0), 0, 2);
   1772 		iwc = 2;
   1773 		inum += 2;
   1774 	} else {
   1775 		iwc = 0;
   1776 	}
   1777 	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
   1778 		switch (inodes[inum].di_mode & IFMT) {
   1779 		case 0:
   1780 			cg->cg_cs.cs_nifree++;
   1781 			break;
   1782 		case IFDIR:
   1783 			cg->cg_cs.cs_ndir++;
   1784 			/* fall through */
   1785 		default:
   1786 			set_bits(cg_inosused(cg, 0), iwc, 1);
   1787 			break;
   1788 		}
   1789 	}
   1790 	csums[cgn] = cg->cg_cs;
   1791 	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
   1792 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
   1793 	cgflags[cgn] |= CGF_DIRTY;
   1794 }
   1795 /*
   1796  * Flush cgs to disk, recomputing anything they're marked as needing.
   1797  */
   1798 static void
   1799 flush_cgs(void)
   1800 {
   1801 	int i;
   1802 
   1803 	for (i = 0; i < newsb->fs_ncg; i++) {
   1804 		if (cgflags[i] & CGF_BLKMAPS) {
   1805 			rescan_blkmaps(i);
   1806 		}
   1807 		if (cgflags[i] & CGF_INOMAPS) {
   1808 			rescan_inomaps(i);
   1809 		}
   1810 		if (cgflags[i] & CGF_DIRTY) {
   1811 			cgs[i]->cg_rotor = 0;
   1812 			cgs[i]->cg_frotor = 0;
   1813 			cgs[i]->cg_irotor = 0;
   1814 			writeat(fsbtodb(newsb, cgtod(newsb, i)), cgs[i],
   1815 			    cgblksz);
   1816 		}
   1817 	}
   1818 	writeat(fsbtodb(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
   1819 }
   1820 /*
   1821  * Write the superblock, both to the main superblock and to each cg's
   1822  *  alternative superblock.
   1823  */
   1824 static void
   1825 write_sbs(void)
   1826 {
   1827 	int i;
   1828 
   1829 	writeat(SBLOCK, newsb, SBSIZE);
   1830 	for (i = 0; i < newsb->fs_ncg; i++) {
   1831 		writeat(fsbtodb(newsb, cgsblock(newsb, i)), newsb, SBSIZE);
   1832 	}
   1833 }
   1834 /*
   1835  * main().
   1836  */
   1837 int main(int, char **);
   1838 int
   1839 main(int ac, char **av)
   1840 {
   1841 	if (ac != 3) {
   1842 		fprintf(stderr, "Usage: %s filesystem new-size\n", __progname);
   1843 		exit(1);
   1844 	}
   1845 	fd = open(av[1], O_RDWR, 0);
   1846 	if (fd < 0) {
   1847 		fprintf(stderr, "%s: %s: %s\n", __progname, av[1],
   1848 		    strerror(errno));
   1849 		exit(1);
   1850 	}
   1851 	checksmallio();
   1852 	newsize = atoi(av[2]);
   1853 	oldsb = (struct fs *) & sbbuf;
   1854 	newsb = (struct fs *) (SBSIZE + (char *) &sbbuf);
   1855 	readat(SBLOCK, oldsb, SBSIZE);
   1856 	if (oldsb->fs_magic != FS_MAGIC) {
   1857 		fprintf(stderr, "%s: %s: bad magic number\n", __progname,
   1858 		    av[1]);
   1859 		exit(1);
   1860 	}
   1861 	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
   1862 	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
   1863 	if (oldsb->fs_ipg % INOPB(oldsb)) {
   1864 		printf("ipg[%d] %% INOPB[%d] != 0\n", (int) oldsb->fs_ipg,
   1865 		    (int) INOPB(oldsb));
   1866 		exit(1);
   1867 	}
   1868 	/* The superblock is bigger than struct fs (there are trailing tables,
   1869 	 * of non-fixed size); make sure we copy the whole thing.  SBSIZE may
   1870 	 * be an over-estimate, but we do this just once, so being generous is
   1871 	 * cheap. */
   1872 	bcopy(oldsb, newsb, SBSIZE);
   1873 	loadcgs();
   1874 	if (newsize > fsbtodb(oldsb, oldsb->fs_size)) {
   1875 		grow();
   1876 	} else if (newsize < fsbtodb(oldsb, oldsb->fs_size)) {
   1877 		shrink();
   1878 	}
   1879 	flush_cgs();
   1880 	write_sbs();
   1881 	exit(0);
   1882 }
   1883