resize_ffs.c revision 1.21 1 /* $NetBSD: resize_ffs.c,v 1.21 2010/12/12 22:48:59 riz Exp $ */
2 /* From sources sent on February 17, 2003 */
3 /*-
4 * As its sole author, I explicitly place this code in the public
5 * domain. Anyone may use it for any purpose (though I would
6 * appreciate credit where it is due).
7 *
8 * der Mouse
9 *
10 * mouse (at) rodents.montreal.qc.ca
11 * 7D C8 61 52 5D E7 2D 39 4E F1 31 3E E8 B3 27 4B
12 */
13 /*
14 * resize_ffs:
15 *
16 * Resize a filesystem. Is capable of both growing and shrinking.
17 *
18 * Usage: resize_ffs [-s newsize] [-y] filesystem
19 *
20 * Example: resize_ffs -s 29574 /dev/rsd1e
21 *
22 * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
23 * each).
24 *
25 * Note: this currently requires gcc to build, since it is written
26 * depending on gcc-specific features, notably nested function
27 * definitions (which in at least a few cases depend on the lexical
28 * scoping gcc provides, so they can't be trivially moved outside).
29 *
30 * It will not do anything useful with filesystems in other than
31 * host-native byte order. This really should be fixed (it's largely
32 * a historical accident; the original version of this program is
33 * older than bi-endian support in FFS).
34 *
35 * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
36 * one responsible for the "realloccgblk: can't find blk in cyl"
37 * problem and a more minor one which left fs_dsize wrong when
38 * shrinking. (These actually indicate bugs in fsck too - it should
39 * have caught and fixed them.)
40 *
41 */
42
43 #include <sys/cdefs.h>
44 #include <sys/disk.h>
45 #include <sys/disklabel.h>
46 #include <sys/dkio.h>
47 #include <sys/ioctl.h>
48 #include <sys/stat.h>
49 #include <sys/mman.h>
50 #include <sys/param.h> /* MAXFRAG */
51 #include <ufs/ffs/fs.h>
52 #include <ufs/ufs/dir.h>
53 #include <ufs/ufs/dinode.h>
54 #include <ufs/ufs/ufs_bswap.h> /* ufs_rw32 */
55
56 #include <err.h>
57 #include <errno.h>
58 #include <fcntl.h>
59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <strings.h>
62 #include <unistd.h>
63
64 /* new size of filesystem, in sectors */
65 static uint32_t newsize;
66
67 /* fd open onto disk device */
68 static int fd;
69
70 /* must we break up big I/O operations - see checksmallio() */
71 static int smallio;
72
73 /* size of a cg, in bytes, rounded up to a frag boundary */
74 static int cgblksz;
75
76 /* possible superblock localtions */
77 static int search[] = SBLOCKSEARCH;
78 /* location of the superblock */
79 static off_t where;
80
81 /* Superblocks. */
82 static struct fs *oldsb; /* before we started */
83 static struct fs *newsb; /* copy to work with */
84 /* Buffer to hold the above. Make sure it's aligned correctly. */
85 static char sbbuf[2 * SBLOCKSIZE]
86 __attribute__((__aligned__(__alignof__(struct fs))));
87
88 /* a cg's worth of brand new squeaky-clean inodes */
89 static struct ufs1_dinode *zinodes;
90
91 /* pointers to the in-core cgs, read off disk and possibly modified */
92 static struct cg **cgs;
93
94 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
95 static struct csum *csums;
96
97 /* per-cg flags, indexed by cg number */
98 static unsigned char *cgflags;
99 #define CGF_DIRTY 0x01 /* needs to be written to disk */
100 #define CGF_BLKMAPS 0x02 /* block bitmaps need rebuilding */
101 #define CGF_INOMAPS 0x04 /* inode bitmaps need rebuilding */
102
103 /* when shrinking, these two arrays record how we want blocks to move. */
104 /* if blkmove[i] is j, the frag that started out as frag #i should end */
105 /* up as frag #j. inomove[i]=j means, similarly, that the inode that */
106 /* started out as inode i should end up as inode j. */
107 static unsigned int *blkmove;
108 static unsigned int *inomove;
109
110 /* in-core copies of all inodes in the fs, indexed by inumber */
111 static struct ufs1_dinode *inodes;
112
113 /* per-inode flags, indexed by inumber */
114 static unsigned char *iflags;
115 #define IF_DIRTY 0x01 /* needs to be written to disk */
116 #define IF_BDIRTY 0x02 /* like DIRTY, but is set on first inode in a
117 * block of inodes, and applies to the whole
118 * block. */
119
120 /* resize_ffs works directly on dinodes, adapt blksize() */
121 #define dblksize(fs, dip, lbn) \
122 (((lbn) >= NDADDR || (dip)->di_size >= lblktosize(fs, (lbn) + 1)) \
123 ? (fs)->fs_bsize \
124 : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
125
126
127 /*
128 * Number of disk sectors per block/fragment; assumes DEV_BSIZE byte
129 * sector size.
130 */
131 #define NSPB(fs) ((fs)->fs_old_nspf << (fs)->fs_fragshift)
132 #define NSPF(fs) ((fs)->fs_old_nspf)
133
134 static void usage(void) __dead;
135
136 /*
137 * See if we need to break up large I/O operations. This should never
138 * be needed, but under at least one <version,platform> combination,
139 * large enough disk transfers to the raw device hang. So if we're
140 * talking to a character special device, play it safe; in this case,
141 * readat() and writeat() break everything up into pieces no larger
142 * than 8K, doing multiple syscalls for larger operations.
143 */
144 static void
145 checksmallio(void)
146 {
147 struct stat stb;
148
149 fstat(fd, &stb);
150 smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
151 }
152
153 static int
154 isplainfile(void)
155 {
156 struct stat stb;
157
158 fstat(fd, &stb);
159 return S_ISREG(stb.st_mode);
160 }
161 /*
162 * Read size bytes starting at blkno into buf. blkno is in DEV_BSIZE
163 * units, ie, after fsbtodb(); size is in bytes.
164 */
165 static void
166 readat(off_t blkno, void *buf, int size)
167 {
168 /* Seek to the correct place. */
169 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
170 err(EXIT_FAILURE, "lseek failed");
171
172 /* See if we have to break up the transfer... */
173 if (smallio) {
174 char *bp; /* pointer into buf */
175 int left; /* bytes left to go */
176 int n; /* number to do this time around */
177 int rv; /* syscall return value */
178 bp = buf;
179 left = size;
180 while (left > 0) {
181 n = (left > 8192) ? 8192 : left;
182 rv = read(fd, bp, n);
183 if (rv < 0)
184 err(EXIT_FAILURE, "read failed");
185 if (rv != n)
186 errx(EXIT_FAILURE,
187 "read: wanted %d, got %d", n, rv);
188 bp += n;
189 left -= n;
190 }
191 } else {
192 int rv;
193 rv = read(fd, buf, size);
194 if (rv < 0)
195 err(EXIT_FAILURE, "read failed");
196 if (rv != size)
197 errx(EXIT_FAILURE, "read: wanted %d, got %d", size, rv);
198 }
199 }
200 /*
201 * Write size bytes from buf starting at blkno. blkno is in DEV_BSIZE
202 * units, ie, after fsbtodb(); size is in bytes.
203 */
204 static void
205 writeat(off_t blkno, const void *buf, int size)
206 {
207 /* Seek to the correct place. */
208 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
209 err(EXIT_FAILURE, "lseek failed");
210 /* See if we have to break up the transfer... */
211 if (smallio) {
212 const char *bp; /* pointer into buf */
213 int left; /* bytes left to go */
214 int n; /* number to do this time around */
215 int rv; /* syscall return value */
216 bp = buf;
217 left = size;
218 while (left > 0) {
219 n = (left > 8192) ? 8192 : left;
220 rv = write(fd, bp, n);
221 if (rv < 0)
222 err(EXIT_FAILURE, "write failed");
223 if (rv != n)
224 errx(EXIT_FAILURE,
225 "write: wanted %d, got %d", n, rv);
226 bp += n;
227 left -= n;
228 }
229 } else {
230 int rv;
231 rv = write(fd, buf, size);
232 if (rv < 0)
233 err(EXIT_FAILURE, "write failed");
234 if (rv != size)
235 errx(EXIT_FAILURE,
236 "write: wanted %d, got %d", size, rv);
237 }
238 }
239 /*
240 * Never-fail versions of malloc() and realloc(), and an allocation
241 * routine (which also never fails) for allocating memory that will
242 * never be freed until exit.
243 */
244
245 /*
246 * Never-fail malloc.
247 */
248 static void *
249 nfmalloc(size_t nb, const char *tag)
250 {
251 void *rv;
252
253 rv = malloc(nb);
254 if (rv)
255 return (rv);
256 err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
257 (unsigned long int) nb, tag);
258 }
259 /*
260 * Never-fail realloc.
261 */
262 static void *
263 nfrealloc(void *blk, size_t nb, const char *tag)
264 {
265 void *rv;
266
267 rv = realloc(blk, nb);
268 if (rv)
269 return (rv);
270 err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
271 (unsigned long int) nb, tag);
272 }
273 /*
274 * Allocate memory that will never be freed or reallocated. Arguably
275 * this routine should handle small allocations by chopping up pages,
276 * but that's not worth the bother; it's not called more than a
277 * handful of times per run, and if the allocations are that small the
278 * waste in giving each one its own page is ignorable.
279 */
280 static void *
281 alloconce(size_t nb, const char *tag)
282 {
283 void *rv;
284
285 rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
286 if (rv != MAP_FAILED)
287 return (rv);
288 err(EXIT_FAILURE, "Can't map %lu bytes for %s",
289 (unsigned long int) nb, tag);
290 }
291 /*
292 * Load the cgs and csums off disk. Also allocates the space to load
293 * them into and initializes the per-cg flags.
294 */
295 static void
296 loadcgs(void)
297 {
298 int cg;
299 char *cgp;
300
301 cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
302 cgs = nfmalloc(oldsb->fs_ncg * sizeof(struct cg *), "cg pointers");
303 cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
304 cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
305 csums = nfmalloc(oldsb->fs_cssize, "cg summary");
306 for (cg = 0; cg < oldsb->fs_ncg; cg++) {
307 cgs[cg] = (struct cg *) cgp;
308 readat(fsbtodb(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
309 cgflags[cg] = 0;
310 cgp += cgblksz;
311 }
312 readat(fsbtodb(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
313 }
314 /*
315 * Set n bits, starting with bit #base, in the bitmap pointed to by
316 * bitvec (which is assumed to be large enough to include bits base
317 * through base+n-1).
318 */
319 static void
320 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
321 {
322 if (n < 1)
323 return; /* nothing to do */
324 if (base & 7) { /* partial byte at beginning */
325 if (n <= 8 - (base & 7)) { /* entirely within one byte */
326 bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
327 return;
328 }
329 bitvec[base >> 3] |= (~0U) << (base & 7);
330 n -= 8 - (base & 7);
331 base = (base & ~7) + 8;
332 }
333 if (n >= 8) { /* do full bytes */
334 memset(bitvec + (base >> 3), 0xff, n >> 3);
335 base += n & ~7;
336 n &= 7;
337 }
338 if (n) { /* partial byte at end */
339 bitvec[base >> 3] |= ~((~0U) << n);
340 }
341 }
342 /*
343 * Clear n bits, starting with bit #base, in the bitmap pointed to by
344 * bitvec (which is assumed to be large enough to include bits base
345 * through base+n-1). Code parallels set_bits().
346 */
347 static void
348 clr_bits(unsigned char *bitvec, int base, int n)
349 {
350 if (n < 1)
351 return;
352 if (base & 7) {
353 if (n <= 8 - (base & 7)) {
354 bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
355 return;
356 }
357 bitvec[base >> 3] &= ~((~0U) << (base & 7));
358 n -= 8 - (base & 7);
359 base = (base & ~7) + 8;
360 }
361 if (n >= 8) {
362 bzero(bitvec + (base >> 3), n >> 3);
363 base += n & ~7;
364 n &= 7;
365 }
366 if (n) {
367 bitvec[base >> 3] &= (~0U) << n;
368 }
369 }
370 /*
371 * Test whether bit #bit is set in the bitmap pointed to by bitvec.
372 */
373 static int
374 bit_is_set(unsigned char *bitvec, int bit)
375 {
376 return (bitvec[bit >> 3] & (1 << (bit & 7)));
377 }
378 /*
379 * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
380 */
381 static int
382 bit_is_clr(unsigned char *bitvec, int bit)
383 {
384 return (!bit_is_set(bitvec, bit));
385 }
386 /*
387 * Test whether a whole block of bits is set in a bitmap. This is
388 * designed for testing (aligned) disk blocks in a bit-per-frag
389 * bitmap; it has assumptions wired into it based on that, essentially
390 * that the entire block fits into a single byte. This returns true
391 * iff _all_ the bits are set; it is not just the complement of
392 * blk_is_clr on the same arguments (unless blkfrags==1).
393 */
394 static int
395 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
396 {
397 unsigned int mask;
398
399 mask = (~((~0U) << blkfrags)) << (blkbase & 7);
400 return ((bitvec[blkbase >> 3] & mask) == mask);
401 }
402 /*
403 * Test whether a whole block of bits is clear in a bitmap. See
404 * blk_is_set (above) for assumptions. This returns true iff _all_
405 * the bits are clear; it is not just the complement of blk_is_set on
406 * the same arguments (unless blkfrags==1).
407 */
408 static int
409 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
410 {
411 unsigned int mask;
412
413 mask = (~((~0U) << blkfrags)) << (blkbase & 7);
414 return ((bitvec[blkbase >> 3] & mask) == 0);
415 }
416 /*
417 * Initialize a new cg. Called when growing. Assumes memory has been
418 * allocated but not otherwise set up. This code sets the fields of
419 * the cg, initializes the bitmaps (and cluster summaries, if
420 * applicable), updates both per-cylinder summary info and the global
421 * summary info in newsb; it also writes out new inodes for the cg.
422 *
423 * This code knows it can never be called for cg 0, which makes it a
424 * bit simpler than it would otherwise be.
425 */
426 static void
427 initcg(int cgn)
428 {
429 struct cg *cg; /* The in-core cg, of course */
430 int base; /* Disk address of cg base */
431 int dlow; /* Size of pre-cg data area */
432 int dhigh; /* Offset of post-inode data area, from base */
433 int dmax; /* Offset of end of post-inode data area */
434 int i; /* Generic loop index */
435 int n; /* Generic count */
436
437 cg = cgs[cgn];
438 /* Place the data areas */
439 base = cgbase(newsb, cgn);
440 dlow = cgsblock(newsb, cgn) - base;
441 dhigh = cgdmin(newsb, cgn) - base;
442 dmax = newsb->fs_size - base;
443 if (dmax > newsb->fs_fpg)
444 dmax = newsb->fs_fpg;
445 /*
446 * Clear out the cg - assumes all-0-bytes is the correct way
447 * to initialize fields we don't otherwise touch, which is
448 * perhaps not the right thing to do, but it's what fsck and
449 * mkfs do.
450 */
451 bzero(cg, newsb->fs_cgsize);
452 cg->cg_old_time = newsb->fs_time;
453 if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
454 cg->cg_time = newsb->fs_time;
455 cg->cg_magic = CG_MAGIC;
456 cg->cg_cgx = cgn;
457 cg->cg_old_ncyl = newsb->fs_old_cpg;
458 /* Update the cg_old_ncyl value for the last cylinder. */
459 if (cgn == newsb->fs_ncg - 1) {
460 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
461 cg->cg_old_ncyl = newsb->fs_old_ncyl % newsb->fs_old_cpg;
462 }
463 cg->cg_old_niblk = newsb->fs_ipg;
464 cg->cg_ndblk = dmax;
465 /* Set up the bitmap pointers. We have to be careful to lay out the
466 * cg _exactly_ the way mkfs and fsck do it, since fsck compares the
467 * _entire_ cg against a recomputed cg, and whines if there is any
468 * mismatch, including the bitmap offsets. */
469 /* XXX update this comment when fsck is fixed */
470 cg->cg_old_btotoff = &cg->cg_space[0] - (unsigned char *) cg;
471 cg->cg_old_boff = cg->cg_old_btotoff
472 + (newsb->fs_old_cpg * sizeof(int32_t));
473 cg->cg_iusedoff = cg->cg_old_boff +
474 (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
475 cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
476 if (newsb->fs_contigsumsize > 0) {
477 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
478 cg->cg_clustersumoff = cg->cg_freeoff +
479 howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb),
480 NBBY) - sizeof(int32_t);
481 cg->cg_clustersumoff =
482 roundup(cg->cg_clustersumoff, sizeof(int32_t));
483 cg->cg_clusteroff = cg->cg_clustersumoff +
484 ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
485 cg->cg_nextfreeoff = cg->cg_clusteroff +
486 howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPB(newsb),
487 NBBY);
488 n = dlow / newsb->fs_frag;
489 if (n > 0) {
490 set_bits(cg_clustersfree(cg, 0), 0, n);
491 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
492 newsb->fs_contigsumsize : n]++;
493 }
494 } else {
495 cg->cg_nextfreeoff = cg->cg_freeoff +
496 howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb),
497 NBBY);
498 }
499 /* Mark the data areas as free; everything else is marked busy by the
500 * bzero up at the top. */
501 set_bits(cg_blksfree(cg, 0), 0, dlow);
502 set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
503 /* Initialize summary info */
504 cg->cg_cs.cs_ndir = 0;
505 cg->cg_cs.cs_nifree = newsb->fs_ipg;
506 cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
507 cg->cg_cs.cs_nffree = 0;
508
509 /* This is the simplest way of doing this; we perhaps could compute
510 * the correct cg_blktot()[] and cg_blks()[] values other ways, but it
511 * would be complicated and hardly seems worth the effort. (The
512 * reason there isn't frag-at-beginning and frag-at-end code here,
513 * like the code below for the post-inode data area, is that the
514 * pre-sb data area always starts at 0, and thus is block-aligned, and
515 * always ends at the sb, which is block-aligned.) */
516 for (i = 0; i < dlow; i += newsb->fs_frag) {
517 old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++;
518 old_cg_blks(newsb, cg,
519 old_cbtocylno(newsb, i), 0)[old_cbtorpos(newsb, i)]++;
520 }
521 /* Deal with a partial block at the beginning of the post-inode area.
522 * I'm not convinced this can happen - I think the inodes are always
523 * block-aligned and always an integral number of blocks - but it's
524 * cheap to do the right thing just in case. */
525 if (dhigh % newsb->fs_frag) {
526 n = newsb->fs_frag - (dhigh % newsb->fs_frag);
527 cg->cg_frsum[n]++;
528 cg->cg_cs.cs_nffree += n;
529 dhigh += n;
530 }
531 n = (dmax - dhigh) / newsb->fs_frag;
532 /* We have n full-size blocks in the post-inode data area. */
533 if (n > 0) {
534 cg->cg_cs.cs_nbfree += n;
535 if (newsb->fs_contigsumsize > 0) {
536 i = dhigh / newsb->fs_frag;
537 set_bits(cg_clustersfree(cg, 0), i, n);
538 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
539 newsb->fs_contigsumsize : n]++;
540 }
541 for (i = n; i > 0; i--) {
542 old_cg_blktot(cg, 0)[old_cbtocylno(newsb, dhigh)]++;
543 old_cg_blks(newsb, cg,
544 old_cbtocylno(newsb, dhigh), 0)[old_cbtorpos(newsb,
545 dhigh)]++;
546 dhigh += newsb->fs_frag;
547 }
548 }
549 /* Deal with any leftover frag at the end of the cg. */
550 i = dmax - dhigh;
551 if (i) {
552 cg->cg_frsum[i]++;
553 cg->cg_cs.cs_nffree += i;
554 }
555 /* Update the csum info. */
556 csums[cgn] = cg->cg_cs;
557 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
558 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
559 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
560 /* Write out the cleared inodes. */
561 writeat(fsbtodb(newsb, cgimin(newsb, cgn)), zinodes,
562 newsb->fs_ipg * sizeof(struct ufs1_dinode));
563 /* Dirty the cg. */
564 cgflags[cgn] |= CGF_DIRTY;
565 }
566 /*
567 * Find free space, at least nfrags consecutive frags of it. Pays no
568 * attention to block boundaries, but refuses to straddle cg
569 * boundaries, even if the disk blocks involved are in fact
570 * consecutive. Return value is the frag number of the first frag of
571 * the block, or -1 if no space was found. Uses newsb for sb values,
572 * and assumes the cgs[] structures correctly describe the area to be
573 * searched.
574 *
575 * XXX is there a bug lurking in the ignoring of block boundaries by
576 * the routine used by fragmove() in evict_data()? Can an end-of-file
577 * frag legally straddle a block boundary? If not, this should be
578 * cloned and fixed to stop at block boundaries for that use. The
579 * current one may still be needed for csum info motion, in case that
580 * takes up more than a whole block (is the csum info allowed to begin
581 * partway through a block and continue into the following block?).
582 *
583 * If we wrap off the end of the filesystem back to the beginning, we
584 * can end up searching the end of the filesystem twice. I ignore
585 * this inefficiency, since if that happens we're going to croak with
586 * a no-space error anyway, so it happens at most once.
587 */
588 static int
589 find_freespace(unsigned int nfrags)
590 {
591 static int hand = 0; /* hand rotates through all frags in the fs */
592 int cgsize; /* size of the cg hand currently points into */
593 int cgn; /* number of cg hand currently points into */
594 int fwc; /* frag-within-cg number of frag hand points
595 * to */
596 int run; /* length of run of free frags seen so far */
597 int secondpass; /* have we wrapped from end of fs to
598 * beginning? */
599 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
600
601 cgn = dtog(newsb, hand);
602 fwc = dtogd(newsb, hand);
603 secondpass = (hand == 0);
604 run = 0;
605 bits = cg_blksfree(cgs[cgn], 0);
606 cgsize = cgs[cgn]->cg_ndblk;
607 while (1) {
608 if (bit_is_set(bits, fwc)) {
609 run++;
610 if (run >= nfrags)
611 return (hand + 1 - run);
612 } else {
613 run = 0;
614 }
615 hand++;
616 fwc++;
617 if (fwc >= cgsize) {
618 fwc = 0;
619 cgn++;
620 if (cgn >= newsb->fs_ncg) {
621 hand = 0;
622 if (secondpass)
623 return (-1);
624 secondpass = 1;
625 cgn = 0;
626 }
627 bits = cg_blksfree(cgs[cgn], 0);
628 cgsize = cgs[cgn]->cg_ndblk;
629 run = 0;
630 }
631 }
632 }
633 /*
634 * Find a free block of disk space. Finds an entire block of frags,
635 * all of which are free. Return value is the frag number of the
636 * first frag of the block, or -1 if no space was found. Uses newsb
637 * for sb values, and assumes the cgs[] structures correctly describe
638 * the area to be searched.
639 *
640 * See find_freespace(), above, for remarks about hand wrapping around.
641 */
642 static int
643 find_freeblock(void)
644 {
645 static int hand = 0; /* hand rotates through all frags in fs */
646 int cgn; /* cg number of cg hand points into */
647 int fwc; /* frag-within-cg number of frag hand points
648 * to */
649 int cgsize; /* size of cg hand points into */
650 int secondpass; /* have we wrapped from end to beginning? */
651 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
652
653 cgn = dtog(newsb, hand);
654 fwc = dtogd(newsb, hand);
655 secondpass = (hand == 0);
656 bits = cg_blksfree(cgs[cgn], 0);
657 cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
658 while (1) {
659 if (blk_is_set(bits, fwc, newsb->fs_frag))
660 return (hand);
661 fwc += newsb->fs_frag;
662 hand += newsb->fs_frag;
663 if (fwc >= cgsize) {
664 fwc = 0;
665 cgn++;
666 if (cgn >= newsb->fs_ncg) {
667 hand = 0;
668 if (secondpass)
669 return (-1);
670 secondpass = 1;
671 cgn = 0;
672 }
673 bits = cg_blksfree(cgs[cgn], 0);
674 cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
675 }
676 }
677 }
678 /*
679 * Find a free inode, returning its inumber or -1 if none was found.
680 * Uses newsb for sb values, and assumes the cgs[] structures
681 * correctly describe the area to be searched.
682 *
683 * See find_freespace(), above, for remarks about hand wrapping around.
684 */
685 static int
686 find_freeinode(void)
687 {
688 static int hand = 0; /* hand rotates through all inodes in fs */
689 int cgn; /* cg number of cg hand points into */
690 int iwc; /* inode-within-cg number of inode hand points
691 * to */
692 int secondpass; /* have we wrapped from end to beginning? */
693 unsigned char *bits; /* cg_inosused()[] for cg hand points into */
694
695 cgn = hand / newsb->fs_ipg;
696 iwc = hand % newsb->fs_ipg;
697 secondpass = (hand == 0);
698 bits = cg_inosused(cgs[cgn], 0);
699 while (1) {
700 if (bit_is_clr(bits, iwc))
701 return (hand);
702 hand++;
703 iwc++;
704 if (iwc >= newsb->fs_ipg) {
705 iwc = 0;
706 cgn++;
707 if (cgn >= newsb->fs_ncg) {
708 hand = 0;
709 if (secondpass)
710 return (-1);
711 secondpass = 1;
712 cgn = 0;
713 }
714 bits = cg_inosused(cgs[cgn], 0);
715 }
716 }
717 }
718 /*
719 * Mark a frag as free. Sets the frag's bit in the cg_blksfree bitmap
720 * for the appropriate cg, and marks the cg as dirty.
721 */
722 static void
723 free_frag(int fno)
724 {
725 int cgn;
726
727 cgn = dtog(newsb, fno);
728 set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
729 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
730 }
731 /*
732 * Allocate a frag. Clears the frag's bit in the cg_blksfree bitmap
733 * for the appropriate cg, and marks the cg as dirty.
734 */
735 static void
736 alloc_frag(int fno)
737 {
738 int cgn;
739
740 cgn = dtog(newsb, fno);
741 clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
742 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
743 }
744 /*
745 * Fix up the csum array. If shrinking, this involves freeing zero or
746 * more frags; if growing, it involves allocating them, or if the
747 * frags being grown into aren't free, finding space elsewhere for the
748 * csum info. (If the number of occupied frags doesn't change,
749 * nothing happens here.)
750 */
751 static void
752 csum_fixup(void)
753 {
754 int nold; /* # frags in old csum info */
755 int ntot; /* # frags in new csum info */
756 int nnew; /* ntot-nold */
757 int newloc; /* new location for csum info, if necessary */
758 int i; /* generic loop index */
759 int j; /* generic loop index */
760 int f; /* "from" frag number, if moving */
761 int t; /* "to" frag number, if moving */
762 int cgn; /* cg number, used when shrinking */
763
764 ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
765 nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
766 nnew = ntot - nold;
767 /* First, if there's no change in frag counts, it's easy. */
768 if (nnew == 0)
769 return;
770 /* Next, if we're shrinking, it's almost as easy. Just free up any
771 * frags in the old area we no longer need. */
772 if (nnew < 0) {
773 for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
774 j < 0;
775 i--, j++) {
776 free_frag(i);
777 }
778 return;
779 }
780 /* We must be growing. Check to see that the new csum area fits
781 * within the filesystem. I think this can never happen, since for
782 * the csum area to grow, we must be adding at least one cg, so the
783 * old csum area can't be this close to the end of the new filesystem.
784 * But it's a cheap check. */
785 /* XXX what if csum info is at end of cg and grows into next cg, what
786 * if it spills over onto the next cg's backup superblock? Can this
787 * happen? */
788 if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
789 /* Okay, it fits - now, see if the space we want is free. */
790 for ((i = newsb->fs_csaddr + nold), (j = nnew);
791 j > 0;
792 i++, j--) {
793 cgn = dtog(newsb, i);
794 if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
795 dtogd(newsb, i)))
796 break;
797 }
798 if (j <= 0) {
799 /* Win win - all the frags we want are free. Allocate
800 * 'em and we're all done. */
801 for ((i = newsb->fs_csaddr + ntot - nnew), (j = nnew); j > 0; i++, j--) {
802 alloc_frag(i);
803 }
804 return;
805 }
806 }
807 /* We have to move the csum info, sigh. Look for new space, free old
808 * space, and allocate new. Update fs_csaddr. We don't copy anything
809 * on disk at this point; the csum info will be written to the
810 * then-current fs_csaddr as part of the final flush. */
811 newloc = find_freespace(ntot);
812 if (newloc < 0) {
813 printf("Sorry, no space available for new csums\n");
814 exit(EXIT_FAILURE);
815 }
816 for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
817 if (i < nold) {
818 free_frag(f);
819 }
820 alloc_frag(t);
821 }
822 newsb->fs_csaddr = newloc;
823 }
824 /*
825 * Recompute newsb->fs_dsize. Just scans all cgs, adding the number of
826 * data blocks in that cg to the total.
827 */
828 static void
829 recompute_fs_dsize(void)
830 {
831 int i;
832
833 newsb->fs_dsize = 0;
834 for (i = 0; i < newsb->fs_ncg; i++) {
835 int dlow; /* size of before-sb data area */
836 int dhigh; /* offset of post-inode data area */
837 int dmax; /* total size of cg */
838 int base; /* base of cg, since cgsblock() etc add it in */
839 base = cgbase(newsb, i);
840 dlow = cgsblock(newsb, i) - base;
841 dhigh = cgdmin(newsb, i) - base;
842 dmax = newsb->fs_size - base;
843 if (dmax > newsb->fs_fpg)
844 dmax = newsb->fs_fpg;
845 newsb->fs_dsize += dlow + dmax - dhigh;
846 }
847 /* Space in cg 0 before cgsblock is boot area, not free space! */
848 newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
849 /* And of course the csum info takes up space. */
850 newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
851 }
852 /*
853 * Return the current time. We call this and assign, rather than
854 * calling time() directly, as insulation against OSes where fs_time
855 * is not a time_t.
856 */
857 static time_t
858 timestamp(void)
859 {
860 time_t t;
861
862 time(&t);
863 return (t);
864 }
865 /*
866 * Grow the filesystem.
867 */
868 static void
869 grow(void)
870 {
871 int i;
872
873 /* Update the timestamp. */
874 newsb->fs_time = timestamp();
875 /* Allocate and clear the new-inode area, in case we add any cgs. */
876 zinodes = alloconce(newsb->fs_ipg * sizeof(struct ufs1_dinode),
877 "zeroed inodes");
878 bzero(zinodes, newsb->fs_ipg * sizeof(struct ufs1_dinode));
879 /* Update the size. */
880 newsb->fs_size = dbtofsb(newsb, newsize);
881 /* Did we actually not grow? (This can happen if newsize is less than
882 * a frag larger than the old size - unlikely, but no excuse to
883 * misbehave if it happens.) */
884 if (newsb->fs_size == oldsb->fs_size) {
885 printf("New fs size %"PRIu64" = odl fs size %"PRIu64
886 ", not growing.\n", newsb->fs_size, oldsb->fs_size);
887 return;
888 }
889 /* Check that the new last sector (frag, actually) is writable. Since
890 * it's at least one frag larger than it used to be, we know we aren't
891 * overwriting anything important by this. (The choice of sbbuf as
892 * what to write is irrelevant; it's just something handy that's known
893 * to be at least one frag in size.) */
894 writeat(fsbtodb(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
895 /* Update fs_old_ncyl and fs_ncg. */
896 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
897 newsb->fs_old_spc);
898 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
899 /* Does the last cg end before the end of its inode area? There is no
900 * reason why this couldn't be handled, but it would complicate a lot
901 * of code (in all filesystem code - fsck, kernel, etc) because of the
902 * potential partial inode area, and the gain in space would be
903 * minimal, at most the pre-sb data area. */
904 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
905 newsb->fs_ncg--;
906 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
907 newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc)
908 / NSPF(newsb);
909 printf("Warning: last cylinder group is too small;\n");
910 printf(" dropping it. New size = %lu.\n",
911 (unsigned long int) fsbtodb(newsb, newsb->fs_size));
912 }
913 /* Find out how big the csum area is, and realloc csums if bigger. */
914 newsb->fs_cssize = fragroundup(newsb,
915 newsb->fs_ncg * sizeof(struct csum));
916 if (newsb->fs_cssize > oldsb->fs_cssize)
917 csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
918 /* If we're adding any cgs, realloc structures and set up the new cgs. */
919 if (newsb->fs_ncg > oldsb->fs_ncg) {
920 char *cgp;
921 cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(struct cg *),
922 "cg pointers");
923 cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
924 bzero(cgflags + oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
925 cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
926 "cgs");
927 for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
928 cgs[i] = (struct cg *) cgp;
929 initcg(i);
930 cgp += cgblksz;
931 }
932 cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
933 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
934 }
935 /* If the old fs ended partway through a cg, we have to update the old
936 * last cg (though possibly not to a full cg!). */
937 if (oldsb->fs_size % oldsb->fs_fpg) {
938 struct cg *cg;
939 int newcgsize;
940 int prevcgtop;
941 int oldcgsize;
942 cg = cgs[oldsb->fs_ncg - 1];
943 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
944 prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
945 newcgsize = newsb->fs_size - prevcgtop;
946 if (newcgsize > newsb->fs_fpg)
947 newcgsize = newsb->fs_fpg;
948 oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
949 set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
950 cg->cg_old_ncyl = oldsb->fs_old_cpg;
951 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
952 cg->cg_old_ncyl = newsb->fs_old_ncyl % newsb->fs_old_cpg;
953 cg->cg_ndblk = newcgsize;
954 }
955 /* Fix up the csum info, if necessary. */
956 csum_fixup();
957 /* Make fs_dsize match the new reality. */
958 recompute_fs_dsize();
959 }
960 /*
961 * Call (*fn)() for each inode, passing the inode and its inumber. The
962 * number of cylinder groups is pased in, so this can be used to map
963 * over either the old or the new filesystem's set of inodes.
964 */
965 static void
966 map_inodes(void (*fn) (struct ufs1_dinode * di, unsigned int, void *arg),
967 int ncg, void *cbarg) {
968 int i;
969 int ni;
970
971 ni = oldsb->fs_ipg * ncg;
972 for (i = 0; i < ni; i++)
973 (*fn) (inodes + i, i, cbarg);
974 }
975 /* Values for the third argument to the map function for
976 * map_inode_data_blocks. MDB_DATA indicates the block is contains
977 * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
978 * indirect block. The MDB_INDIR_PRE call is made before the indirect
979 * block pointers are followed and the pointed-to blocks scanned,
980 * MDB_INDIR_POST after.
981 */
982 #define MDB_DATA 1
983 #define MDB_INDIR_PRE 2
984 #define MDB_INDIR_POST 3
985
986 typedef void (*mark_callback_t) (unsigned int blocknum, unsigned int nfrags,
987 unsigned int blksize, int opcode);
988
989 /* Helper function - handles a data block. Calls the callback
990 * function and returns number of bytes occupied in file (actually,
991 * rounded up to a frag boundary). The name is historical. */
992 static int
993 markblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o)
994 {
995 int sz;
996 int nb;
997 if (o >= di->di_size)
998 return (0);
999 sz = dblksize(newsb, di, lblkno(newsb, o));
1000 nb = (sz > di->di_size - o) ? di->di_size - o : sz;
1001 if (bn)
1002 (*fn) (bn, numfrags(newsb, sz), nb, MDB_DATA);
1003 return (sz);
1004 }
1005 /* Helper function - handles an indirect block. Makes the
1006 * MDB_INDIR_PRE callback for the indirect block, loops over the
1007 * pointers and recurses, and makes the MDB_INDIR_POST callback.
1008 * Returns the number of bytes occupied in file, as does markblk().
1009 * For the sake of update_for_data_move(), we read the indirect block
1010 * _after_ making the _PRE callback. The name is historical. */
1011 static int
1012 markiblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o, int lev)
1013 {
1014 int i;
1015 int j;
1016 int tot;
1017 static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
1018 static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
1019 static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
1020 static int32_t *indirblks[3] = {
1021 &indirblk1[0], &indirblk2[0], &indirblk3[0]
1022 };
1023 if (lev < 0)
1024 return (markblk(fn, di, bn, o));
1025 if (bn == 0) {
1026 for (i = newsb->fs_bsize;
1027 lev >= 0;
1028 i *= NINDIR(newsb), lev--);
1029 return (i);
1030 }
1031 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
1032 readat(fsbtodb(newsb, bn), indirblks[lev], newsb->fs_bsize);
1033 tot = 0;
1034 for (i = 0; i < NINDIR(newsb); i++) {
1035 j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
1036 if (j == 0)
1037 break;
1038 o += j;
1039 tot += j;
1040 }
1041 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
1042 return (tot);
1043 }
1044
1045
1046 /*
1047 * Call (*fn)() for each data block for an inode. This routine assumes
1048 * the inode is known to be of a type that has data blocks (file,
1049 * directory, or non-fast symlink). The called function is:
1050 *
1051 * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
1052 *
1053 * where blkno is the frag number, nf is the number of frags starting
1054 * at blkno (always <= fs_frag), nb is the number of bytes that belong
1055 * to the file (usually nf*fs_frag, often less for the last block/frag
1056 * of a file).
1057 */
1058 static void
1059 map_inode_data_blocks(struct ufs1_dinode * di, mark_callback_t fn)
1060 {
1061 off_t o; /* offset within inode */
1062 int inc; /* increment for o - maybe should be off_t? */
1063 int b; /* index within di_db[] and di_ib[] arrays */
1064
1065 /* Scan the direct blocks... */
1066 o = 0;
1067 for (b = 0; b < NDADDR; b++) {
1068 inc = markblk(fn, di, di->di_db[b], o);
1069 if (inc == 0)
1070 break;
1071 o += inc;
1072 }
1073 /* ...and the indirect blocks. */
1074 if (inc) {
1075 for (b = 0; b < NIADDR; b++) {
1076 inc = markiblk(fn, di, di->di_ib[b], o, b);
1077 if (inc == 0)
1078 return;
1079 o += inc;
1080 }
1081 }
1082 }
1083
1084 static void
1085 dblk_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
1086 {
1087 mark_callback_t fn;
1088 fn = (mark_callback_t) arg;
1089 switch (di->di_mode & IFMT) {
1090 case IFLNK:
1091 if (di->di_size > newsb->fs_maxsymlinklen) {
1092 case IFDIR:
1093 case IFREG:
1094 map_inode_data_blocks(di, fn);
1095 }
1096 break;
1097 }
1098 }
1099 /*
1100 * Make a callback call, a la map_inode_data_blocks, for all data
1101 * blocks in the entire fs. This is used only once, in
1102 * update_for_data_move, but it's out at top level because the complex
1103 * downward-funarg nesting that would otherwise result seems to give
1104 * gcc gastric distress.
1105 */
1106 static void
1107 map_data_blocks(mark_callback_t fn, int ncg)
1108 {
1109 map_inodes(&dblk_callback, ncg, (void *) fn);
1110 }
1111 /*
1112 * Initialize the blkmove array.
1113 */
1114 static void
1115 blkmove_init(void)
1116 {
1117 int i;
1118
1119 blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
1120 for (i = 0; i < oldsb->fs_size; i++)
1121 blkmove[i] = i;
1122 }
1123 /*
1124 * Load the inodes off disk. Allocates the structures and initializes
1125 * them - the inodes from disk, the flags to zero.
1126 */
1127 static void
1128 loadinodes(void)
1129 {
1130 int cg;
1131 struct ufs1_dinode *iptr;
1132
1133 inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
1134 sizeof(struct ufs1_dinode), "inodes");
1135 iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
1136 bzero(iflags, oldsb->fs_ncg * oldsb->fs_ipg);
1137 iptr = inodes;
1138 for (cg = 0; cg < oldsb->fs_ncg; cg++) {
1139 readat(fsbtodb(oldsb, cgimin(oldsb, cg)), iptr,
1140 oldsb->fs_ipg * sizeof(struct ufs1_dinode));
1141 iptr += oldsb->fs_ipg;
1142 }
1143 }
1144 /*
1145 * Report a filesystem-too-full problem.
1146 */
1147 static void
1148 toofull(void)
1149 {
1150 printf("Sorry, would run out of data blocks\n");
1151 exit(EXIT_FAILURE);
1152 }
1153 /*
1154 * Record a desire to move "n" frags from "from" to "to".
1155 */
1156 static void
1157 mark_move(unsigned int from, unsigned int to, unsigned int n)
1158 {
1159 for (; n > 0; n--)
1160 blkmove[from++] = to++;
1161 }
1162 /* Helper function - evict n frags, starting with start (cg-relative).
1163 * The free bitmap is scanned, unallocated frags are ignored, and
1164 * each block of consecutive allocated frags is moved as a unit.
1165 */
1166 static void
1167 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
1168 {
1169 int i;
1170 int run;
1171 run = 0;
1172 for (i = 0; i <= n; i++) {
1173 if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
1174 run++;
1175 } else {
1176 if (run > 0) {
1177 int off;
1178 off = find_freespace(run);
1179 if (off < 0)
1180 toofull();
1181 mark_move(base + start + i - run, off, run);
1182 set_bits(cg_blksfree(cg, 0), start + i - run,
1183 run);
1184 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1185 dtogd(oldsb, off), run);
1186 }
1187 run = 0;
1188 }
1189 }
1190 }
1191 /*
1192 * Evict all data blocks from the given cg, starting at minfrag (based
1193 * at the beginning of the cg), for length nfrag. The eviction is
1194 * assumed to be entirely data-area; this should not be called with a
1195 * range overlapping the metadata structures in the cg. It also
1196 * assumes minfrag points into the given cg; it will misbehave if this
1197 * is not true.
1198 *
1199 * See the comment header on find_freespace() for one possible bug
1200 * lurking here.
1201 */
1202 static void
1203 evict_data(struct cg * cg, unsigned int minfrag, unsigned int nfrag)
1204 {
1205 int base; /* base of cg (in frags from beginning of fs) */
1206
1207
1208 base = cgbase(oldsb, cg->cg_cgx);
1209 /* Does the boundary fall in the middle of a block? To avoid breaking
1210 * between frags allocated as consecutive, we always evict the whole
1211 * block in this case, though one could argue we should check to see
1212 * if the frag before or after the break is unallocated. */
1213 if (minfrag % oldsb->fs_frag) {
1214 int n;
1215 n = minfrag % oldsb->fs_frag;
1216 minfrag -= n;
1217 nfrag += n;
1218 }
1219 /* Do whole blocks. If a block is wholly free, skip it; if wholly
1220 * allocated, move it in toto. If neither, call fragmove() to move
1221 * the frags to new locations. */
1222 while (nfrag >= oldsb->fs_frag) {
1223 if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
1224 if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
1225 oldsb->fs_frag)) {
1226 int off;
1227 off = find_freeblock();
1228 if (off < 0)
1229 toofull();
1230 mark_move(base + minfrag, off, oldsb->fs_frag);
1231 set_bits(cg_blksfree(cg, 0), minfrag,
1232 oldsb->fs_frag);
1233 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1234 dtogd(oldsb, off), oldsb->fs_frag);
1235 } else {
1236 fragmove(cg, base, minfrag, oldsb->fs_frag);
1237 }
1238 }
1239 minfrag += oldsb->fs_frag;
1240 nfrag -= oldsb->fs_frag;
1241 }
1242 /* Clean up any sub-block amount left over. */
1243 if (nfrag) {
1244 fragmove(cg, base, minfrag, nfrag);
1245 }
1246 }
1247 /*
1248 * Move all data blocks according to blkmove. We have to be careful,
1249 * because we may be updating indirect blocks that will themselves be
1250 * getting moved, or inode int32_t arrays that point to indirect
1251 * blocks that will be moved. We call this before
1252 * update_for_data_move, and update_for_data_move does inodes first,
1253 * then indirect blocks in preorder, so as to make sure that the
1254 * filesystem is self-consistent at all points, for better crash
1255 * tolerance. (We can get away with this only because all the writes
1256 * done by perform_data_move() are writing into space that's not used
1257 * by the old filesystem.) If we crash, some things may point to the
1258 * old data and some to the new, but both copies are the same. The
1259 * only wrong things should be csum info and free bitmaps, which fsck
1260 * is entirely capable of cleaning up.
1261 *
1262 * Since blkmove_init() initializes all blocks to move to their current
1263 * locations, we can have two blocks marked as wanting to move to the
1264 * same location, but only two and only when one of them is the one
1265 * that was already there. So if blkmove[i]==i, we ignore that entry
1266 * entirely - for unallocated blocks, we don't want it (and may be
1267 * putting something else there), and for allocated blocks, we don't
1268 * want to copy it anywhere.
1269 */
1270 static void
1271 perform_data_move(void)
1272 {
1273 int i;
1274 int run;
1275 int maxrun;
1276 char buf[65536];
1277
1278 maxrun = sizeof(buf) / newsb->fs_fsize;
1279 run = 0;
1280 for (i = 0; i < oldsb->fs_size; i++) {
1281 if ((blkmove[i] == i) ||
1282 (run >= maxrun) ||
1283 ((run > 0) &&
1284 (blkmove[i] != blkmove[i - 1] + 1))) {
1285 if (run > 0) {
1286 readat(fsbtodb(oldsb, i - run), &buf[0],
1287 run << oldsb->fs_fshift);
1288 writeat(fsbtodb(oldsb, blkmove[i - run]),
1289 &buf[0], run << oldsb->fs_fshift);
1290 }
1291 run = 0;
1292 }
1293 if (blkmove[i] != i)
1294 run++;
1295 }
1296 if (run > 0) {
1297 readat(fsbtodb(oldsb, i - run), &buf[0],
1298 run << oldsb->fs_fshift);
1299 writeat(fsbtodb(oldsb, blkmove[i - run]), &buf[0],
1300 run << oldsb->fs_fshift);
1301 }
1302 }
1303 /*
1304 * This modifies an array of int32_t, according to blkmove. This is
1305 * used to update inode block arrays and indirect blocks to point to
1306 * the new locations of data blocks.
1307 *
1308 * Return value is the number of int32_ts that needed updating; in
1309 * particular, the return value is zero iff nothing was modified.
1310 */
1311 static int
1312 movemap_blocks(int32_t * vec, int n)
1313 {
1314 int rv;
1315
1316 rv = 0;
1317 for (; n > 0; n--, vec++) {
1318 if (blkmove[*vec] != *vec) {
1319 *vec = blkmove[*vec];
1320 rv++;
1321 }
1322 }
1323 return (rv);
1324 }
1325 static void
1326 moveblocks_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
1327 {
1328 switch (di->di_mode & IFMT) {
1329 case IFLNK:
1330 if (di->di_size > oldsb->fs_maxsymlinklen) {
1331 case IFDIR:
1332 case IFREG:
1333 /* don't || these two calls; we need their
1334 * side-effects */
1335 if (movemap_blocks(&di->di_db[0], NDADDR)) {
1336 iflags[inum] |= IF_DIRTY;
1337 }
1338 if (movemap_blocks(&di->di_ib[0], NIADDR)) {
1339 iflags[inum] |= IF_DIRTY;
1340 }
1341 }
1342 break;
1343 }
1344 }
1345
1346 static void
1347 moveindir_callback(unsigned int off, unsigned int nfrag, unsigned int nbytes,
1348 int kind)
1349 {
1350 if (kind == MDB_INDIR_PRE) {
1351 int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
1352 readat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
1353 if (movemap_blocks(&blk[0], NINDIR(oldsb))) {
1354 writeat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
1355 }
1356 }
1357 }
1358 /*
1359 * Update all inode data arrays and indirect blocks to point to the new
1360 * locations of data blocks. See the comment header on
1361 * perform_data_move for some ordering considerations.
1362 */
1363 static void
1364 update_for_data_move(void)
1365 {
1366 map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
1367 map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
1368 }
1369 /*
1370 * Initialize the inomove array.
1371 */
1372 static void
1373 inomove_init(void)
1374 {
1375 int i;
1376
1377 inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
1378 "inomove");
1379 for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
1380 inomove[i] = i;
1381 }
1382 /*
1383 * Flush all dirtied inodes to disk. Scans the inode flags array; for
1384 * each dirty inode, it sets the BDIRTY bit on the first inode in the
1385 * block containing the dirty inode. Then it scans by blocks, and for
1386 * each marked block, writes it.
1387 */
1388 static void
1389 flush_inodes(void)
1390 {
1391 int i;
1392 int ni;
1393 int m;
1394
1395 ni = newsb->fs_ipg * newsb->fs_ncg;
1396 m = INOPB(newsb) - 1;
1397 for (i = 0; i < ni; i++) {
1398 if (iflags[i] & IF_DIRTY) {
1399 iflags[i & ~m] |= IF_BDIRTY;
1400 }
1401 }
1402 m++;
1403 for (i = 0; i < ni; i += m) {
1404 if (iflags[i] & IF_BDIRTY) {
1405 writeat(fsbtodb(newsb, ino_to_fsba(newsb, i)),
1406 inodes + i, newsb->fs_bsize);
1407 }
1408 }
1409 }
1410 /*
1411 * Evict all inodes from the specified cg. shrink() already checked
1412 * that there were enough free inodes, so the no-free-inodes check is
1413 * a can't-happen. If it does trip, the filesystem should be in good
1414 * enough shape for fsck to fix; see the comment on perform_data_move
1415 * for the considerations in question.
1416 */
1417 static void
1418 evict_inodes(struct cg * cg)
1419 {
1420 int inum;
1421 int i;
1422 int fi;
1423
1424 inum = newsb->fs_ipg * cg->cg_cgx;
1425 for (i = 0; i < newsb->fs_ipg; i++, inum++) {
1426 if (inodes[inum].di_mode != 0) {
1427 fi = find_freeinode();
1428 if (fi < 0) {
1429 printf("Sorry, inodes evaporated - "
1430 "filesystem probably needs fsck\n");
1431 exit(EXIT_FAILURE);
1432 }
1433 inomove[inum] = fi;
1434 clr_bits(cg_inosused(cg, 0), i, 1);
1435 set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
1436 fi % newsb->fs_ipg, 1);
1437 }
1438 }
1439 }
1440 /*
1441 * Move inodes from old locations to new. Does not actually write
1442 * anything to disk; just copies in-core and sets dirty bits.
1443 *
1444 * We have to be careful here for reasons similar to those mentioned in
1445 * the comment header on perform_data_move, above: for the sake of
1446 * crash tolerance, we want to make sure everything is present at both
1447 * old and new locations before we update pointers. So we call this
1448 * first, then flush_inodes() to get them out on disk, then update
1449 * directories to match.
1450 */
1451 static void
1452 perform_inode_move(void)
1453 {
1454 int i;
1455 int ni;
1456
1457 ni = oldsb->fs_ipg * oldsb->fs_ncg;
1458 for (i = 0; i < ni; i++) {
1459 if (inomove[i] != i) {
1460 inodes[inomove[i]] = inodes[i];
1461 iflags[inomove[i]] = iflags[i] | IF_DIRTY;
1462 }
1463 }
1464 }
1465 /*
1466 * Update the directory contained in the nb bytes at buf, to point to
1467 * inodes' new locations.
1468 */
1469 static int
1470 update_dirents(char *buf, int nb)
1471 {
1472 int rv;
1473 #define d ((struct direct *)buf)
1474
1475 rv = 0;
1476 while (nb > 0) {
1477 if (inomove[d->d_ino] != d->d_ino) {
1478 rv++;
1479 d->d_ino = inomove[d->d_ino];
1480 }
1481 nb -= d->d_reclen;
1482 buf += d->d_reclen;
1483 }
1484 return (rv);
1485 #undef d
1486 }
1487 /*
1488 * Callback function for map_inode_data_blocks, for updating a
1489 * directory to point to new inode locations.
1490 */
1491 static void
1492 update_dir_data(unsigned int bn, unsigned int size, unsigned int nb, int kind)
1493 {
1494 if (kind == MDB_DATA) {
1495 union {
1496 struct direct d;
1497 char ch[MAXBSIZE];
1498 } buf;
1499 readat(fsbtodb(oldsb, bn), &buf, size << oldsb->fs_fshift);
1500 if (update_dirents((char *) &buf, nb)) {
1501 writeat(fsbtodb(oldsb, bn), &buf,
1502 size << oldsb->fs_fshift);
1503 }
1504 }
1505 }
1506 static void
1507 dirmove_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
1508 {
1509 switch (di->di_mode & IFMT) {
1510 case IFDIR:
1511 map_inode_data_blocks(di, &update_dir_data);
1512 break;
1513 }
1514 }
1515 /*
1516 * Update directory entries to point to new inode locations.
1517 */
1518 static void
1519 update_for_inode_move(void)
1520 {
1521 map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
1522 }
1523 /*
1524 * Shrink the filesystem.
1525 */
1526 static void
1527 shrink(void)
1528 {
1529 int i;
1530
1531 /* Load the inodes off disk - we'll need 'em. */
1532 loadinodes();
1533 /* Update the timestamp. */
1534 newsb->fs_time = timestamp();
1535 /* Update the size figures. */
1536 newsb->fs_size = dbtofsb(newsb, newsize);
1537 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
1538 newsb->fs_old_spc);
1539 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
1540 /* Does the (new) last cg end before the end of its inode area? See
1541 * the similar code in grow() for more on this. */
1542 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
1543 newsb->fs_ncg--;
1544 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
1545 newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc) /
1546 NSPF(newsb);
1547 printf("Warning: last cylinder group is too small;\n");
1548 printf(" dropping it. New size = %lu.\n",
1549 (unsigned long int) fsbtodb(newsb, newsb->fs_size));
1550 }
1551 /* Let's make sure we're not being shrunk into oblivion. */
1552 if (newsb->fs_ncg < 1) {
1553 printf("Size too small - filesystem would have no cylinders\n");
1554 exit(EXIT_FAILURE);
1555 }
1556 /* Initialize for block motion. */
1557 blkmove_init();
1558 /* Update csum size, then fix up for the new size */
1559 newsb->fs_cssize = fragroundup(newsb,
1560 newsb->fs_ncg * sizeof(struct csum));
1561 csum_fixup();
1562 /* Evict data from any cgs being wholly eliminated */
1563 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
1564 int base;
1565 int dlow;
1566 int dhigh;
1567 int dmax;
1568 base = cgbase(oldsb, i);
1569 dlow = cgsblock(oldsb, i) - base;
1570 dhigh = cgdmin(oldsb, i) - base;
1571 dmax = oldsb->fs_size - base;
1572 if (dmax > cgs[i]->cg_ndblk)
1573 dmax = cgs[i]->cg_ndblk;
1574 evict_data(cgs[i], 0, dlow);
1575 evict_data(cgs[i], dhigh, dmax - dhigh);
1576 newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
1577 newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
1578 newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
1579 newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
1580 }
1581 /* Update the new last cg. */
1582 cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
1583 ((newsb->fs_ncg - 1) * newsb->fs_fpg);
1584 /* Is the new last cg partial? If so, evict any data from the part
1585 * being shrunken away. */
1586 if (newsb->fs_size % newsb->fs_fpg) {
1587 struct cg *cg;
1588 int oldcgsize;
1589 int newcgsize;
1590 cg = cgs[newsb->fs_ncg - 1];
1591 newcgsize = newsb->fs_size % newsb->fs_fpg;
1592 oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
1593 oldsb->fs_fpg);
1594 if (oldcgsize > oldsb->fs_fpg)
1595 oldcgsize = oldsb->fs_fpg;
1596 evict_data(cg, newcgsize, oldcgsize - newcgsize);
1597 clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
1598 }
1599 /* Find out whether we would run out of inodes. (Note we haven't
1600 * actually done anything to the filesystem yet; all those evict_data
1601 * calls just update blkmove.) */
1602 {
1603 int slop;
1604 slop = 0;
1605 for (i = 0; i < newsb->fs_ncg; i++)
1606 slop += cgs[i]->cg_cs.cs_nifree;
1607 for (; i < oldsb->fs_ncg; i++)
1608 slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
1609 if (slop < 0) {
1610 printf("Sorry, would run out of inodes\n");
1611 exit(EXIT_FAILURE);
1612 }
1613 }
1614 /* Copy data, then update pointers to data. See the comment header on
1615 * perform_data_move for ordering considerations. */
1616 perform_data_move();
1617 update_for_data_move();
1618 /* Now do inodes. Initialize, evict, move, update - see the comment
1619 * header on perform_inode_move. */
1620 inomove_init();
1621 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
1622 evict_inodes(cgs[i]);
1623 perform_inode_move();
1624 flush_inodes();
1625 update_for_inode_move();
1626 /* Recompute all the bitmaps; most of them probably need it anyway,
1627 * the rest are just paranoia and not wanting to have to bother
1628 * keeping track of exactly which ones require it. */
1629 for (i = 0; i < newsb->fs_ncg; i++)
1630 cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
1631 /* Update the cg_old_ncyl value for the last cylinder. */
1632 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
1633 cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
1634 newsb->fs_old_ncyl % newsb->fs_old_cpg;
1635 /* Make fs_dsize match the new reality. */
1636 recompute_fs_dsize();
1637 }
1638 /*
1639 * Recompute the block totals, block cluster summaries, and rotational
1640 * position summaries, for a given cg (specified by number), based on
1641 * its free-frag bitmap (cg_blksfree()[]).
1642 */
1643 static void
1644 rescan_blkmaps(int cgn)
1645 {
1646 struct cg *cg;
1647 int f;
1648 int b;
1649 int blkfree;
1650 int blkrun;
1651 int fragrun;
1652 int fwb;
1653
1654 cg = cgs[cgn];
1655 /* Subtract off the current totals from the sb's summary info */
1656 newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
1657 newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
1658 /* Clear counters and bitmaps. */
1659 cg->cg_cs.cs_nffree = 0;
1660 cg->cg_cs.cs_nbfree = 0;
1661 bzero(&cg->cg_frsum[0], MAXFRAG * sizeof(cg->cg_frsum[0]));
1662 bzero(&old_cg_blktot(cg, 0)[0],
1663 newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
1664 bzero(&old_cg_blks(newsb, cg, 0, 0)[0],
1665 newsb->fs_old_cpg * newsb->fs_old_nrpos *
1666 sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
1667 if (newsb->fs_contigsumsize > 0) {
1668 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
1669 bzero(&cg_clustersum(cg, 0)[1],
1670 newsb->fs_contigsumsize *
1671 sizeof(cg_clustersum(cg, 0)[1]));
1672 bzero(&cg_clustersfree(cg, 0)[0],
1673 howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
1674 NSPB(newsb), NBBY));
1675 }
1676 /* Scan the free-frag bitmap. Runs of free frags are kept track of
1677 * with fragrun, and recorded into cg_frsum[] and cg_cs.cs_nffree; on
1678 * each block boundary, entire free blocks are recorded as well. */
1679 blkfree = 1;
1680 blkrun = 0;
1681 fragrun = 0;
1682 f = 0;
1683 b = 0;
1684 fwb = 0;
1685 while (f < cg->cg_ndblk) {
1686 if (bit_is_set(cg_blksfree(cg, 0), f)) {
1687 fragrun++;
1688 } else {
1689 blkfree = 0;
1690 if (fragrun > 0) {
1691 cg->cg_frsum[fragrun]++;
1692 cg->cg_cs.cs_nffree += fragrun;
1693 }
1694 fragrun = 0;
1695 }
1696 f++;
1697 fwb++;
1698 if (fwb >= newsb->fs_frag) {
1699 if (blkfree) {
1700 cg->cg_cs.cs_nbfree++;
1701 if (newsb->fs_contigsumsize > 0)
1702 set_bits(cg_clustersfree(cg, 0), b, 1);
1703 old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
1704 f - newsb->fs_frag)]++;
1705 old_cg_blks(newsb, cg,
1706 old_cbtocylno(newsb, f - newsb->fs_frag),
1707 0)[old_cbtorpos(newsb,
1708 f - newsb->fs_frag)]++;
1709 blkrun++;
1710 } else {
1711 if (fragrun > 0) {
1712 cg->cg_frsum[fragrun]++;
1713 cg->cg_cs.cs_nffree += fragrun;
1714 }
1715 if (newsb->fs_contigsumsize > 0) {
1716 if (blkrun > 0) {
1717 cg_clustersum(cg, 0)[(blkrun
1718 > newsb->fs_contigsumsize)
1719 ? newsb->fs_contigsumsize
1720 : blkrun]++;
1721 }
1722 }
1723 blkrun = 0;
1724 }
1725 fwb = 0;
1726 b++;
1727 blkfree = 1;
1728 fragrun = 0;
1729 }
1730 }
1731 if (fragrun > 0) {
1732 cg->cg_frsum[fragrun]++;
1733 cg->cg_cs.cs_nffree += fragrun;
1734 }
1735 if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
1736 cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
1737 newsb->fs_contigsumsize : blkrun]++;
1738 }
1739 /*
1740 * Put the updated summary info back into csums, and add it
1741 * back into the sb's summary info. Then mark the cg dirty.
1742 */
1743 csums[cgn] = cg->cg_cs;
1744 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
1745 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
1746 cgflags[cgn] |= CGF_DIRTY;
1747 }
1748 /*
1749 * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
1750 * values, for a cg, based on the in-core inodes for that cg.
1751 */
1752 static void
1753 rescan_inomaps(int cgn)
1754 {
1755 struct cg *cg;
1756 int inum;
1757 int iwc;
1758
1759 cg = cgs[cgn];
1760 newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
1761 newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
1762 cg->cg_cs.cs_ndir = 0;
1763 cg->cg_cs.cs_nifree = 0;
1764 bzero(&cg_inosused(cg, 0)[0], howmany(newsb->fs_ipg, NBBY));
1765 inum = cgn * newsb->fs_ipg;
1766 if (cgn == 0) {
1767 set_bits(cg_inosused(cg, 0), 0, 2);
1768 iwc = 2;
1769 inum += 2;
1770 } else {
1771 iwc = 0;
1772 }
1773 for (; iwc < newsb->fs_ipg; iwc++, inum++) {
1774 switch (inodes[inum].di_mode & IFMT) {
1775 case 0:
1776 cg->cg_cs.cs_nifree++;
1777 break;
1778 case IFDIR:
1779 cg->cg_cs.cs_ndir++;
1780 /* fall through */
1781 default:
1782 set_bits(cg_inosused(cg, 0), iwc, 1);
1783 break;
1784 }
1785 }
1786 csums[cgn] = cg->cg_cs;
1787 newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
1788 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
1789 cgflags[cgn] |= CGF_DIRTY;
1790 }
1791 /*
1792 * Flush cgs to disk, recomputing anything they're marked as needing.
1793 */
1794 static void
1795 flush_cgs(void)
1796 {
1797 int i;
1798
1799 for (i = 0; i < newsb->fs_ncg; i++) {
1800 if (cgflags[i] & CGF_BLKMAPS) {
1801 rescan_blkmaps(i);
1802 }
1803 if (cgflags[i] & CGF_INOMAPS) {
1804 rescan_inomaps(i);
1805 }
1806 if (cgflags[i] & CGF_DIRTY) {
1807 cgs[i]->cg_rotor = 0;
1808 cgs[i]->cg_frotor = 0;
1809 cgs[i]->cg_irotor = 0;
1810 writeat(fsbtodb(newsb, cgtod(newsb, i)), cgs[i],
1811 cgblksz);
1812 }
1813 }
1814 writeat(fsbtodb(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
1815 }
1816 /*
1817 * Write the superblock, both to the main superblock and to each cg's
1818 * alternative superblock.
1819 */
1820 static void
1821 write_sbs(void)
1822 {
1823 int i;
1824
1825 if (newsb->fs_magic == FS_UFS1_MAGIC &&
1826 (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
1827 newsb->fs_old_time = newsb->fs_time;
1828 newsb->fs_old_size = newsb->fs_size;
1829 /* we don't update fs_csaddr */
1830 newsb->fs_old_dsize = newsb->fs_dsize;
1831 newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
1832 newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
1833 newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
1834 newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
1835 /* fill fs_old_postbl_start with 256 bytes of 0xff? */
1836 }
1837 writeat(where / DEV_BSIZE, newsb, SBLOCKSIZE);
1838 for (i = 0; i < newsb->fs_ncg; i++) {
1839 writeat(fsbtodb(newsb, cgsblock(newsb, i)), newsb, SBLOCKSIZE);
1840 }
1841 }
1842
1843 static uint32_t
1844 get_dev_size(char *dev_name)
1845 {
1846 struct dkwedge_info dkw;
1847 struct partition *pp;
1848 struct disklabel lp;
1849 size_t ptn;
1850
1851 /* Get info about partition/wedge */
1852 if (ioctl(fd, DIOCGWEDGEINFO, &dkw) == -1) {
1853 if (ioctl(fd, DIOCGDINFO, &lp) == -1)
1854 return 0;
1855
1856 ptn = strchr(dev_name, '\0')[-1] - 'a';
1857 if (ptn >= lp.d_npartitions)
1858 return 0;
1859
1860 pp = &lp.d_partitions[ptn];
1861 return pp->p_size;
1862 }
1863
1864 return dkw.dkw_size;
1865 }
1866
1867 /*
1868 * main().
1869 */
1870 int
1871 main(int argc, char **argv)
1872 {
1873 int ch;
1874 int ExpertFlag;
1875 int SFlag;
1876 size_t i;
1877
1878 char *device;
1879 char reply[5];
1880
1881 newsize = 0;
1882 ExpertFlag = 0;
1883 SFlag = 0;
1884
1885 while ((ch = getopt(argc, argv, "s:y")) != -1) {
1886 switch (ch) {
1887 case 's':
1888 SFlag = 1;
1889 newsize = (size_t)strtoul(optarg, NULL, 10);
1890 if(newsize < 1) {
1891 usage();
1892 }
1893 break;
1894 case 'y':
1895 ExpertFlag = 1;
1896 break;
1897 case '?':
1898 /* FALLTHROUGH */
1899 default:
1900 usage();
1901 }
1902 }
1903 argc -= optind;
1904 argv += optind;
1905
1906 if (argc != 1) {
1907 usage();
1908 }
1909
1910 device = *argv;
1911
1912 if (ExpertFlag == 0) {
1913 printf("It's required to manually run fsck on filesystem device "
1914 "before you can resize it\n\n"
1915 " Did you run fsck on your disk (Yes/No) ? ");
1916 fgets(reply, (int)sizeof(reply), stdin);
1917 if (strcasecmp(reply, "Yes\n")) {
1918 printf("\n Nothing done \n");
1919 exit(EXIT_SUCCESS);
1920 }
1921 }
1922
1923 fd = open(device, O_RDWR, 0);
1924 if (fd < 0)
1925 err(EXIT_FAILURE, "Can't open `%s'", device);
1926 checksmallio();
1927
1928 if (SFlag == 0) {
1929 newsize = get_dev_size(device);
1930 if (newsize == 0)
1931 err(EXIT_FAILURE,
1932 "Can't resize filesystem, newsize not known.");
1933 }
1934
1935 oldsb = (struct fs *) & sbbuf;
1936 newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
1937 for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
1938 readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
1939 if (where == SBLOCK_UFS2 && (oldsb->fs_magic == FS_UFS1_MAGIC))
1940 continue;
1941 if (oldsb->fs_magic == FS_UFS1_MAGIC)
1942 break;
1943 }
1944 if (where == (off_t)-1)
1945 errx(EXIT_FAILURE, "Bad magic number");
1946 if (oldsb->fs_magic == FS_UFS1_MAGIC &&
1947 (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
1948 oldsb->fs_csaddr = oldsb->fs_old_csaddr;
1949 oldsb->fs_size = oldsb->fs_old_size;
1950 oldsb->fs_dsize = oldsb->fs_old_dsize;
1951 oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
1952 oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
1953 oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
1954 oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
1955 /* any others? */
1956 printf("Resizing with ffsv1 superblock\n");
1957 }
1958 oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
1959 oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
1960 if (oldsb->fs_ipg % INOPB(oldsb)) {
1961 (void)fprintf(stderr, "ipg[%d] %% INOPB[%d] != 0\n",
1962 (int) oldsb->fs_ipg, (int) INOPB(oldsb));
1963 exit(EXIT_FAILURE);
1964 }
1965 /* The superblock is bigger than struct fs (there are trailing tables,
1966 * of non-fixed size); make sure we copy the whole thing. SBLOCKSIZE may
1967 * be an over-estimate, but we do this just once, so being generous is
1968 * cheap. */
1969 bcopy(oldsb, newsb, SBLOCKSIZE);
1970 loadcgs();
1971 if (newsize > fsbtodb(oldsb, oldsb->fs_size)) {
1972 grow();
1973 } else if (newsize < fsbtodb(oldsb, oldsb->fs_size)) {
1974 shrink();
1975 }
1976 flush_cgs();
1977 write_sbs();
1978 if (isplainfile())
1979 ftruncate(fd,newsize * DEV_BSIZE);
1980 return 0;
1981 }
1982
1983 static void
1984 usage(void)
1985 {
1986
1987 (void)fprintf(stderr, "usage: %s [-y] [-s size] device\n", getprogname());
1988 exit(EXIT_FAILURE);
1989 }
1990