resize_ffs.c revision 1.23 1 /* $NetBSD: resize_ffs.c,v 1.23 2010/12/14 20:45:22 riz Exp $ */
2 /* From sources sent on February 17, 2003 */
3 /*-
4 * As its sole author, I explicitly place this code in the public
5 * domain. Anyone may use it for any purpose (though I would
6 * appreciate credit where it is due).
7 *
8 * der Mouse
9 *
10 * mouse (at) rodents.montreal.qc.ca
11 * 7D C8 61 52 5D E7 2D 39 4E F1 31 3E E8 B3 27 4B
12 */
13 /*
14 * resize_ffs:
15 *
16 * Resize a filesystem. Is capable of both growing and shrinking.
17 *
18 * Usage: resize_ffs [-s newsize] [-y] filesystem
19 *
20 * Example: resize_ffs -s 29574 /dev/rsd1e
21 *
22 * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
23 * each).
24 *
25 * Note: this currently requires gcc to build, since it is written
26 * depending on gcc-specific features, notably nested function
27 * definitions (which in at least a few cases depend on the lexical
28 * scoping gcc provides, so they can't be trivially moved outside).
29 *
30 * It will not do anything useful with filesystems in other than
31 * host-native byte order. This really should be fixed (it's largely
32 * a historical accident; the original version of this program is
33 * older than bi-endian support in FFS).
34 *
35 * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
36 * one responsible for the "realloccgblk: can't find blk in cyl"
37 * problem and a more minor one which left fs_dsize wrong when
38 * shrinking. (These actually indicate bugs in fsck too - it should
39 * have caught and fixed them.)
40 *
41 */
42
43 #include <sys/cdefs.h>
44 #include <sys/disk.h>
45 #include <sys/disklabel.h>
46 #include <sys/dkio.h>
47 #include <sys/ioctl.h>
48 #include <sys/stat.h>
49 #include <sys/mman.h>
50 #include <sys/param.h> /* MAXFRAG */
51 #include <ufs/ffs/fs.h>
52 #include <ufs/ufs/dir.h>
53 #include <ufs/ufs/dinode.h>
54 #include <ufs/ufs/ufs_bswap.h> /* ufs_rw32 */
55
56 #include <err.h>
57 #include <errno.h>
58 #include <fcntl.h>
59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <strings.h>
62 #include <unistd.h>
63
64 /* new size of filesystem, in sectors */
65 static uint32_t newsize;
66
67 /* fd open onto disk device or file */
68 static int fd;
69
70 /* must we break up big I/O operations - see checksmallio() */
71 static int smallio;
72
73 /* size of a cg, in bytes, rounded up to a frag boundary */
74 static int cgblksz;
75
76 /* possible superblock localtions */
77 static int search[] = SBLOCKSEARCH;
78 /* location of the superblock */
79 static off_t where;
80
81 /* Superblocks. */
82 static struct fs *oldsb; /* before we started */
83 static struct fs *newsb; /* copy to work with */
84 /* Buffer to hold the above. Make sure it's aligned correctly. */
85 static char sbbuf[2 * SBLOCKSIZE]
86 __attribute__((__aligned__(__alignof__(struct fs))));
87
88 /* a cg's worth of brand new squeaky-clean inodes */
89 static struct ufs1_dinode *zinodes;
90
91 /* pointers to the in-core cgs, read off disk and possibly modified */
92 static struct cg **cgs;
93
94 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
95 static struct csum *csums;
96
97 /* per-cg flags, indexed by cg number */
98 static unsigned char *cgflags;
99 #define CGF_DIRTY 0x01 /* needs to be written to disk */
100 #define CGF_BLKMAPS 0x02 /* block bitmaps need rebuilding */
101 #define CGF_INOMAPS 0x04 /* inode bitmaps need rebuilding */
102
103 /* when shrinking, these two arrays record how we want blocks to move. */
104 /* if blkmove[i] is j, the frag that started out as frag #i should end */
105 /* up as frag #j. inomove[i]=j means, similarly, that the inode that */
106 /* started out as inode i should end up as inode j. */
107 static unsigned int *blkmove;
108 static unsigned int *inomove;
109
110 /* in-core copies of all inodes in the fs, indexed by inumber */
111 static struct ufs1_dinode *inodes;
112
113 /* per-inode flags, indexed by inumber */
114 static unsigned char *iflags;
115 #define IF_DIRTY 0x01 /* needs to be written to disk */
116 #define IF_BDIRTY 0x02 /* like DIRTY, but is set on first inode in a
117 * block of inodes, and applies to the whole
118 * block. */
119
120 /* resize_ffs works directly on dinodes, adapt blksize() */
121 #define dblksize(fs, dip, lbn) \
122 (((lbn) >= NDADDR || (dip)->di_size >= lblktosize(fs, (lbn) + 1)) \
123 ? (fs)->fs_bsize \
124 : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
125
126
127 /*
128 * Number of disk sectors per block/fragment; assumes DEV_BSIZE byte
129 * sector size.
130 */
131 #define NSPB(fs) ((fs)->fs_old_nspf << (fs)->fs_fragshift)
132 #define NSPF(fs) ((fs)->fs_old_nspf)
133
134 /* global flags */
135 int is_ufs2 = 0;
136 int needswap = 0;
137
138 static void usage(void) __dead;
139
140 /*
141 * See if we need to break up large I/O operations. This should never
142 * be needed, but under at least one <version,platform> combination,
143 * large enough disk transfers to the raw device hang. So if we're
144 * talking to a character special device, play it safe; in this case,
145 * readat() and writeat() break everything up into pieces no larger
146 * than 8K, doing multiple syscalls for larger operations.
147 */
148 static void
149 checksmallio(void)
150 {
151 struct stat stb;
152
153 fstat(fd, &stb);
154 smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
155 }
156
157 static int
158 isplainfile(void)
159 {
160 struct stat stb;
161
162 fstat(fd, &stb);
163 return S_ISREG(stb.st_mode);
164 }
165 /*
166 * Read size bytes starting at blkno into buf. blkno is in DEV_BSIZE
167 * units, ie, after fsbtodb(); size is in bytes.
168 */
169 static void
170 readat(off_t blkno, void *buf, int size)
171 {
172 /* Seek to the correct place. */
173 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
174 err(EXIT_FAILURE, "lseek failed");
175
176 /* See if we have to break up the transfer... */
177 if (smallio) {
178 char *bp; /* pointer into buf */
179 int left; /* bytes left to go */
180 int n; /* number to do this time around */
181 int rv; /* syscall return value */
182 bp = buf;
183 left = size;
184 while (left > 0) {
185 n = (left > 8192) ? 8192 : left;
186 rv = read(fd, bp, n);
187 if (rv < 0)
188 err(EXIT_FAILURE, "read failed");
189 if (rv != n)
190 errx(EXIT_FAILURE,
191 "read: wanted %d, got %d", n, rv);
192 bp += n;
193 left -= n;
194 }
195 } else {
196 int rv;
197 rv = read(fd, buf, size);
198 if (rv < 0)
199 err(EXIT_FAILURE, "read failed");
200 if (rv != size)
201 errx(EXIT_FAILURE, "read: wanted %d, got %d", size, rv);
202 }
203 }
204 /*
205 * Write size bytes from buf starting at blkno. blkno is in DEV_BSIZE
206 * units, ie, after fsbtodb(); size is in bytes.
207 */
208 static void
209 writeat(off_t blkno, const void *buf, int size)
210 {
211 /* Seek to the correct place. */
212 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
213 err(EXIT_FAILURE, "lseek failed");
214 /* See if we have to break up the transfer... */
215 if (smallio) {
216 const char *bp; /* pointer into buf */
217 int left; /* bytes left to go */
218 int n; /* number to do this time around */
219 int rv; /* syscall return value */
220 bp = buf;
221 left = size;
222 while (left > 0) {
223 n = (left > 8192) ? 8192 : left;
224 rv = write(fd, bp, n);
225 if (rv < 0)
226 err(EXIT_FAILURE, "write failed");
227 if (rv != n)
228 errx(EXIT_FAILURE,
229 "write: wanted %d, got %d", n, rv);
230 bp += n;
231 left -= n;
232 }
233 } else {
234 int rv;
235 rv = write(fd, buf, size);
236 if (rv < 0)
237 err(EXIT_FAILURE, "write failed");
238 if (rv != size)
239 errx(EXIT_FAILURE,
240 "write: wanted %d, got %d", size, rv);
241 }
242 }
243 /*
244 * Never-fail versions of malloc() and realloc(), and an allocation
245 * routine (which also never fails) for allocating memory that will
246 * never be freed until exit.
247 */
248
249 /*
250 * Never-fail malloc.
251 */
252 static void *
253 nfmalloc(size_t nb, const char *tag)
254 {
255 void *rv;
256
257 rv = malloc(nb);
258 if (rv)
259 return (rv);
260 err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
261 (unsigned long int) nb, tag);
262 }
263 /*
264 * Never-fail realloc.
265 */
266 static void *
267 nfrealloc(void *blk, size_t nb, const char *tag)
268 {
269 void *rv;
270
271 rv = realloc(blk, nb);
272 if (rv)
273 return (rv);
274 err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
275 (unsigned long int) nb, tag);
276 }
277 /*
278 * Allocate memory that will never be freed or reallocated. Arguably
279 * this routine should handle small allocations by chopping up pages,
280 * but that's not worth the bother; it's not called more than a
281 * handful of times per run, and if the allocations are that small the
282 * waste in giving each one its own page is ignorable.
283 */
284 static void *
285 alloconce(size_t nb, const char *tag)
286 {
287 void *rv;
288
289 rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
290 if (rv != MAP_FAILED)
291 return (rv);
292 err(EXIT_FAILURE, "Can't map %lu bytes for %s",
293 (unsigned long int) nb, tag);
294 }
295 /*
296 * Load the cgs and csums off disk. Also allocates the space to load
297 * them into and initializes the per-cg flags.
298 */
299 static void
300 loadcgs(void)
301 {
302 int cg;
303 char *cgp;
304
305 cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
306 cgs = nfmalloc(oldsb->fs_ncg * sizeof(struct cg *), "cg pointers");
307 cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
308 cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
309 csums = nfmalloc(oldsb->fs_cssize, "cg summary");
310 for (cg = 0; cg < oldsb->fs_ncg; cg++) {
311 cgs[cg] = (struct cg *) cgp;
312 readat(fsbtodb(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
313 cgflags[cg] = 0;
314 cgp += cgblksz;
315 }
316 readat(fsbtodb(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
317 }
318 /*
319 * Set n bits, starting with bit #base, in the bitmap pointed to by
320 * bitvec (which is assumed to be large enough to include bits base
321 * through base+n-1).
322 */
323 static void
324 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
325 {
326 if (n < 1)
327 return; /* nothing to do */
328 if (base & 7) { /* partial byte at beginning */
329 if (n <= 8 - (base & 7)) { /* entirely within one byte */
330 bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
331 return;
332 }
333 bitvec[base >> 3] |= (~0U) << (base & 7);
334 n -= 8 - (base & 7);
335 base = (base & ~7) + 8;
336 }
337 if (n >= 8) { /* do full bytes */
338 memset(bitvec + (base >> 3), 0xff, n >> 3);
339 base += n & ~7;
340 n &= 7;
341 }
342 if (n) { /* partial byte at end */
343 bitvec[base >> 3] |= ~((~0U) << n);
344 }
345 }
346 /*
347 * Clear n bits, starting with bit #base, in the bitmap pointed to by
348 * bitvec (which is assumed to be large enough to include bits base
349 * through base+n-1). Code parallels set_bits().
350 */
351 static void
352 clr_bits(unsigned char *bitvec, int base, int n)
353 {
354 if (n < 1)
355 return;
356 if (base & 7) {
357 if (n <= 8 - (base & 7)) {
358 bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
359 return;
360 }
361 bitvec[base >> 3] &= ~((~0U) << (base & 7));
362 n -= 8 - (base & 7);
363 base = (base & ~7) + 8;
364 }
365 if (n >= 8) {
366 bzero(bitvec + (base >> 3), n >> 3);
367 base += n & ~7;
368 n &= 7;
369 }
370 if (n) {
371 bitvec[base >> 3] &= (~0U) << n;
372 }
373 }
374 /*
375 * Test whether bit #bit is set in the bitmap pointed to by bitvec.
376 */
377 static int
378 bit_is_set(unsigned char *bitvec, int bit)
379 {
380 return (bitvec[bit >> 3] & (1 << (bit & 7)));
381 }
382 /*
383 * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
384 */
385 static int
386 bit_is_clr(unsigned char *bitvec, int bit)
387 {
388 return (!bit_is_set(bitvec, bit));
389 }
390 /*
391 * Test whether a whole block of bits is set in a bitmap. This is
392 * designed for testing (aligned) disk blocks in a bit-per-frag
393 * bitmap; it has assumptions wired into it based on that, essentially
394 * that the entire block fits into a single byte. This returns true
395 * iff _all_ the bits are set; it is not just the complement of
396 * blk_is_clr on the same arguments (unless blkfrags==1).
397 */
398 static int
399 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
400 {
401 unsigned int mask;
402
403 mask = (~((~0U) << blkfrags)) << (blkbase & 7);
404 return ((bitvec[blkbase >> 3] & mask) == mask);
405 }
406 /*
407 * Test whether a whole block of bits is clear in a bitmap. See
408 * blk_is_set (above) for assumptions. This returns true iff _all_
409 * the bits are clear; it is not just the complement of blk_is_set on
410 * the same arguments (unless blkfrags==1).
411 */
412 static int
413 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
414 {
415 unsigned int mask;
416
417 mask = (~((~0U) << blkfrags)) << (blkbase & 7);
418 return ((bitvec[blkbase >> 3] & mask) == 0);
419 }
420 /*
421 * Initialize a new cg. Called when growing. Assumes memory has been
422 * allocated but not otherwise set up. This code sets the fields of
423 * the cg, initializes the bitmaps (and cluster summaries, if
424 * applicable), updates both per-cylinder summary info and the global
425 * summary info in newsb; it also writes out new inodes for the cg.
426 *
427 * This code knows it can never be called for cg 0, which makes it a
428 * bit simpler than it would otherwise be.
429 */
430 static void
431 initcg(int cgn)
432 {
433 struct cg *cg; /* The in-core cg, of course */
434 int base; /* Disk address of cg base */
435 int dlow; /* Size of pre-cg data area */
436 int dhigh; /* Offset of post-inode data area, from base */
437 int dmax; /* Offset of end of post-inode data area */
438 int i; /* Generic loop index */
439 int n; /* Generic count */
440
441 cg = cgs[cgn];
442 /* Place the data areas */
443 base = cgbase(newsb, cgn);
444 dlow = cgsblock(newsb, cgn) - base;
445 dhigh = cgdmin(newsb, cgn) - base;
446 dmax = newsb->fs_size - base;
447 if (dmax > newsb->fs_fpg)
448 dmax = newsb->fs_fpg;
449 /*
450 * Clear out the cg - assumes all-0-bytes is the correct way
451 * to initialize fields we don't otherwise touch, which is
452 * perhaps not the right thing to do, but it's what fsck and
453 * mkfs do.
454 */
455 bzero(cg, newsb->fs_cgsize);
456 cg->cg_old_time = newsb->fs_time;
457 if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
458 cg->cg_time = newsb->fs_time;
459 cg->cg_magic = CG_MAGIC;
460 cg->cg_cgx = cgn;
461 cg->cg_old_ncyl = newsb->fs_old_cpg;
462 /* Update the cg_old_ncyl value for the last cylinder. */
463 if (cgn == newsb->fs_ncg - 1) {
464 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
465 cg->cg_old_ncyl = newsb->fs_old_ncyl % newsb->fs_old_cpg;
466 }
467 cg->cg_old_niblk = newsb->fs_ipg;
468 cg->cg_ndblk = dmax;
469 /* Set up the bitmap pointers. We have to be careful to lay out the
470 * cg _exactly_ the way mkfs and fsck do it, since fsck compares the
471 * _entire_ cg against a recomputed cg, and whines if there is any
472 * mismatch, including the bitmap offsets. */
473 /* XXX update this comment when fsck is fixed */
474 cg->cg_old_btotoff = &cg->cg_space[0] - (unsigned char *) cg;
475 cg->cg_old_boff = cg->cg_old_btotoff
476 + (newsb->fs_old_cpg * sizeof(int32_t));
477 cg->cg_iusedoff = cg->cg_old_boff +
478 (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
479 cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
480 if (newsb->fs_contigsumsize > 0) {
481 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
482 cg->cg_clustersumoff = cg->cg_freeoff +
483 howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb),
484 NBBY) - sizeof(int32_t);
485 cg->cg_clustersumoff =
486 roundup(cg->cg_clustersumoff, sizeof(int32_t));
487 cg->cg_clusteroff = cg->cg_clustersumoff +
488 ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
489 cg->cg_nextfreeoff = cg->cg_clusteroff +
490 howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPB(newsb),
491 NBBY);
492 n = dlow / newsb->fs_frag;
493 if (n > 0) {
494 set_bits(cg_clustersfree(cg, 0), 0, n);
495 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
496 newsb->fs_contigsumsize : n]++;
497 }
498 } else {
499 cg->cg_nextfreeoff = cg->cg_freeoff +
500 howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb),
501 NBBY);
502 }
503 /* Mark the data areas as free; everything else is marked busy by the
504 * bzero up at the top. */
505 set_bits(cg_blksfree(cg, 0), 0, dlow);
506 set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
507 /* Initialize summary info */
508 cg->cg_cs.cs_ndir = 0;
509 cg->cg_cs.cs_nifree = newsb->fs_ipg;
510 cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
511 cg->cg_cs.cs_nffree = 0;
512
513 /* This is the simplest way of doing this; we perhaps could compute
514 * the correct cg_blktot()[] and cg_blks()[] values other ways, but it
515 * would be complicated and hardly seems worth the effort. (The
516 * reason there isn't frag-at-beginning and frag-at-end code here,
517 * like the code below for the post-inode data area, is that the
518 * pre-sb data area always starts at 0, and thus is block-aligned, and
519 * always ends at the sb, which is block-aligned.) */
520 for (i = 0; i < dlow; i += newsb->fs_frag) {
521 old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++;
522 old_cg_blks(newsb, cg,
523 old_cbtocylno(newsb, i), 0)[old_cbtorpos(newsb, i)]++;
524 }
525 /* Deal with a partial block at the beginning of the post-inode area.
526 * I'm not convinced this can happen - I think the inodes are always
527 * block-aligned and always an integral number of blocks - but it's
528 * cheap to do the right thing just in case. */
529 if (dhigh % newsb->fs_frag) {
530 n = newsb->fs_frag - (dhigh % newsb->fs_frag);
531 cg->cg_frsum[n]++;
532 cg->cg_cs.cs_nffree += n;
533 dhigh += n;
534 }
535 n = (dmax - dhigh) / newsb->fs_frag;
536 /* We have n full-size blocks in the post-inode data area. */
537 if (n > 0) {
538 cg->cg_cs.cs_nbfree += n;
539 if (newsb->fs_contigsumsize > 0) {
540 i = dhigh / newsb->fs_frag;
541 set_bits(cg_clustersfree(cg, 0), i, n);
542 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
543 newsb->fs_contigsumsize : n]++;
544 }
545 for (i = n; i > 0; i--) {
546 old_cg_blktot(cg, 0)[old_cbtocylno(newsb, dhigh)]++;
547 old_cg_blks(newsb, cg,
548 old_cbtocylno(newsb, dhigh), 0)[old_cbtorpos(newsb,
549 dhigh)]++;
550 dhigh += newsb->fs_frag;
551 }
552 }
553 /* Deal with any leftover frag at the end of the cg. */
554 i = dmax - dhigh;
555 if (i) {
556 cg->cg_frsum[i]++;
557 cg->cg_cs.cs_nffree += i;
558 }
559 /* Update the csum info. */
560 csums[cgn] = cg->cg_cs;
561 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
562 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
563 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
564 /* Write out the cleared inodes. */
565 writeat(fsbtodb(newsb, cgimin(newsb, cgn)), zinodes,
566 newsb->fs_ipg * sizeof(struct ufs1_dinode));
567 /* Dirty the cg. */
568 cgflags[cgn] |= CGF_DIRTY;
569 }
570 /*
571 * Find free space, at least nfrags consecutive frags of it. Pays no
572 * attention to block boundaries, but refuses to straddle cg
573 * boundaries, even if the disk blocks involved are in fact
574 * consecutive. Return value is the frag number of the first frag of
575 * the block, or -1 if no space was found. Uses newsb for sb values,
576 * and assumes the cgs[] structures correctly describe the area to be
577 * searched.
578 *
579 * XXX is there a bug lurking in the ignoring of block boundaries by
580 * the routine used by fragmove() in evict_data()? Can an end-of-file
581 * frag legally straddle a block boundary? If not, this should be
582 * cloned and fixed to stop at block boundaries for that use. The
583 * current one may still be needed for csum info motion, in case that
584 * takes up more than a whole block (is the csum info allowed to begin
585 * partway through a block and continue into the following block?).
586 *
587 * If we wrap off the end of the filesystem back to the beginning, we
588 * can end up searching the end of the filesystem twice. I ignore
589 * this inefficiency, since if that happens we're going to croak with
590 * a no-space error anyway, so it happens at most once.
591 */
592 static int
593 find_freespace(unsigned int nfrags)
594 {
595 static int hand = 0; /* hand rotates through all frags in the fs */
596 int cgsize; /* size of the cg hand currently points into */
597 int cgn; /* number of cg hand currently points into */
598 int fwc; /* frag-within-cg number of frag hand points
599 * to */
600 int run; /* length of run of free frags seen so far */
601 int secondpass; /* have we wrapped from end of fs to
602 * beginning? */
603 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
604
605 cgn = dtog(newsb, hand);
606 fwc = dtogd(newsb, hand);
607 secondpass = (hand == 0);
608 run = 0;
609 bits = cg_blksfree(cgs[cgn], 0);
610 cgsize = cgs[cgn]->cg_ndblk;
611 while (1) {
612 if (bit_is_set(bits, fwc)) {
613 run++;
614 if (run >= nfrags)
615 return (hand + 1 - run);
616 } else {
617 run = 0;
618 }
619 hand++;
620 fwc++;
621 if (fwc >= cgsize) {
622 fwc = 0;
623 cgn++;
624 if (cgn >= newsb->fs_ncg) {
625 hand = 0;
626 if (secondpass)
627 return (-1);
628 secondpass = 1;
629 cgn = 0;
630 }
631 bits = cg_blksfree(cgs[cgn], 0);
632 cgsize = cgs[cgn]->cg_ndblk;
633 run = 0;
634 }
635 }
636 }
637 /*
638 * Find a free block of disk space. Finds an entire block of frags,
639 * all of which are free. Return value is the frag number of the
640 * first frag of the block, or -1 if no space was found. Uses newsb
641 * for sb values, and assumes the cgs[] structures correctly describe
642 * the area to be searched.
643 *
644 * See find_freespace(), above, for remarks about hand wrapping around.
645 */
646 static int
647 find_freeblock(void)
648 {
649 static int hand = 0; /* hand rotates through all frags in fs */
650 int cgn; /* cg number of cg hand points into */
651 int fwc; /* frag-within-cg number of frag hand points
652 * to */
653 int cgsize; /* size of cg hand points into */
654 int secondpass; /* have we wrapped from end to beginning? */
655 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
656
657 cgn = dtog(newsb, hand);
658 fwc = dtogd(newsb, hand);
659 secondpass = (hand == 0);
660 bits = cg_blksfree(cgs[cgn], 0);
661 cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
662 while (1) {
663 if (blk_is_set(bits, fwc, newsb->fs_frag))
664 return (hand);
665 fwc += newsb->fs_frag;
666 hand += newsb->fs_frag;
667 if (fwc >= cgsize) {
668 fwc = 0;
669 cgn++;
670 if (cgn >= newsb->fs_ncg) {
671 hand = 0;
672 if (secondpass)
673 return (-1);
674 secondpass = 1;
675 cgn = 0;
676 }
677 bits = cg_blksfree(cgs[cgn], 0);
678 cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
679 }
680 }
681 }
682 /*
683 * Find a free inode, returning its inumber or -1 if none was found.
684 * Uses newsb for sb values, and assumes the cgs[] structures
685 * correctly describe the area to be searched.
686 *
687 * See find_freespace(), above, for remarks about hand wrapping around.
688 */
689 static int
690 find_freeinode(void)
691 {
692 static int hand = 0; /* hand rotates through all inodes in fs */
693 int cgn; /* cg number of cg hand points into */
694 int iwc; /* inode-within-cg number of inode hand points
695 * to */
696 int secondpass; /* have we wrapped from end to beginning? */
697 unsigned char *bits; /* cg_inosused()[] for cg hand points into */
698
699 cgn = hand / newsb->fs_ipg;
700 iwc = hand % newsb->fs_ipg;
701 secondpass = (hand == 0);
702 bits = cg_inosused(cgs[cgn], 0);
703 while (1) {
704 if (bit_is_clr(bits, iwc))
705 return (hand);
706 hand++;
707 iwc++;
708 if (iwc >= newsb->fs_ipg) {
709 iwc = 0;
710 cgn++;
711 if (cgn >= newsb->fs_ncg) {
712 hand = 0;
713 if (secondpass)
714 return (-1);
715 secondpass = 1;
716 cgn = 0;
717 }
718 bits = cg_inosused(cgs[cgn], 0);
719 }
720 }
721 }
722 /*
723 * Mark a frag as free. Sets the frag's bit in the cg_blksfree bitmap
724 * for the appropriate cg, and marks the cg as dirty.
725 */
726 static void
727 free_frag(int fno)
728 {
729 int cgn;
730
731 cgn = dtog(newsb, fno);
732 set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
733 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
734 }
735 /*
736 * Allocate a frag. Clears the frag's bit in the cg_blksfree bitmap
737 * for the appropriate cg, and marks the cg as dirty.
738 */
739 static void
740 alloc_frag(int fno)
741 {
742 int cgn;
743
744 cgn = dtog(newsb, fno);
745 clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
746 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
747 }
748 /*
749 * Fix up the csum array. If shrinking, this involves freeing zero or
750 * more frags; if growing, it involves allocating them, or if the
751 * frags being grown into aren't free, finding space elsewhere for the
752 * csum info. (If the number of occupied frags doesn't change,
753 * nothing happens here.)
754 */
755 static void
756 csum_fixup(void)
757 {
758 int nold; /* # frags in old csum info */
759 int ntot; /* # frags in new csum info */
760 int nnew; /* ntot-nold */
761 int newloc; /* new location for csum info, if necessary */
762 int i; /* generic loop index */
763 int j; /* generic loop index */
764 int f; /* "from" frag number, if moving */
765 int t; /* "to" frag number, if moving */
766 int cgn; /* cg number, used when shrinking */
767
768 ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
769 nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
770 nnew = ntot - nold;
771 /* First, if there's no change in frag counts, it's easy. */
772 if (nnew == 0)
773 return;
774 /* Next, if we're shrinking, it's almost as easy. Just free up any
775 * frags in the old area we no longer need. */
776 if (nnew < 0) {
777 for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
778 j < 0;
779 i--, j++) {
780 free_frag(i);
781 }
782 return;
783 }
784 /* We must be growing. Check to see that the new csum area fits
785 * within the filesystem. I think this can never happen, since for
786 * the csum area to grow, we must be adding at least one cg, so the
787 * old csum area can't be this close to the end of the new filesystem.
788 * But it's a cheap check. */
789 /* XXX what if csum info is at end of cg and grows into next cg, what
790 * if it spills over onto the next cg's backup superblock? Can this
791 * happen? */
792 if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
793 /* Okay, it fits - now, see if the space we want is free. */
794 for ((i = newsb->fs_csaddr + nold), (j = nnew);
795 j > 0;
796 i++, j--) {
797 cgn = dtog(newsb, i);
798 if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
799 dtogd(newsb, i)))
800 break;
801 }
802 if (j <= 0) {
803 /* Win win - all the frags we want are free. Allocate
804 * 'em and we're all done. */
805 for ((i = newsb->fs_csaddr + ntot - nnew), (j = nnew); j > 0; i++, j--) {
806 alloc_frag(i);
807 }
808 return;
809 }
810 }
811 /* We have to move the csum info, sigh. Look for new space, free old
812 * space, and allocate new. Update fs_csaddr. We don't copy anything
813 * on disk at this point; the csum info will be written to the
814 * then-current fs_csaddr as part of the final flush. */
815 newloc = find_freespace(ntot);
816 if (newloc < 0) {
817 printf("Sorry, no space available for new csums\n");
818 exit(EXIT_FAILURE);
819 }
820 for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
821 if (i < nold) {
822 free_frag(f);
823 }
824 alloc_frag(t);
825 }
826 newsb->fs_csaddr = newloc;
827 }
828 /*
829 * Recompute newsb->fs_dsize. Just scans all cgs, adding the number of
830 * data blocks in that cg to the total.
831 */
832 static void
833 recompute_fs_dsize(void)
834 {
835 int i;
836
837 newsb->fs_dsize = 0;
838 for (i = 0; i < newsb->fs_ncg; i++) {
839 int dlow; /* size of before-sb data area */
840 int dhigh; /* offset of post-inode data area */
841 int dmax; /* total size of cg */
842 int base; /* base of cg, since cgsblock() etc add it in */
843 base = cgbase(newsb, i);
844 dlow = cgsblock(newsb, i) - base;
845 dhigh = cgdmin(newsb, i) - base;
846 dmax = newsb->fs_size - base;
847 if (dmax > newsb->fs_fpg)
848 dmax = newsb->fs_fpg;
849 newsb->fs_dsize += dlow + dmax - dhigh;
850 }
851 /* Space in cg 0 before cgsblock is boot area, not free space! */
852 newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
853 /* And of course the csum info takes up space. */
854 newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
855 }
856 /*
857 * Return the current time. We call this and assign, rather than
858 * calling time() directly, as insulation against OSes where fs_time
859 * is not a time_t.
860 */
861 static time_t
862 timestamp(void)
863 {
864 time_t t;
865
866 time(&t);
867 return (t);
868 }
869 /*
870 * Grow the filesystem.
871 */
872 static void
873 grow(void)
874 {
875 int i;
876
877 /* Update the timestamp. */
878 newsb->fs_time = timestamp();
879 /* Allocate and clear the new-inode area, in case we add any cgs. */
880 zinodes = alloconce(newsb->fs_ipg * sizeof(struct ufs1_dinode),
881 "zeroed inodes");
882 bzero(zinodes, newsb->fs_ipg * sizeof(struct ufs1_dinode));
883 /* Update the size. */
884 newsb->fs_size = dbtofsb(newsb, newsize);
885 /* Did we actually not grow? (This can happen if newsize is less than
886 * a frag larger than the old size - unlikely, but no excuse to
887 * misbehave if it happens.) */
888 if (newsb->fs_size == oldsb->fs_size) {
889 printf("New fs size %"PRIu64" = odl fs size %"PRIu64
890 ", not growing.\n", newsb->fs_size, oldsb->fs_size);
891 return;
892 }
893 /* Check that the new last sector (frag, actually) is writable. Since
894 * it's at least one frag larger than it used to be, we know we aren't
895 * overwriting anything important by this. (The choice of sbbuf as
896 * what to write is irrelevant; it's just something handy that's known
897 * to be at least one frag in size.) */
898 writeat(fsbtodb(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
899 /* Update fs_old_ncyl and fs_ncg. */
900 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
901 newsb->fs_old_spc);
902 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
903 /* Does the last cg end before the end of its inode area? There is no
904 * reason why this couldn't be handled, but it would complicate a lot
905 * of code (in all filesystem code - fsck, kernel, etc) because of the
906 * potential partial inode area, and the gain in space would be
907 * minimal, at most the pre-sb data area. */
908 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
909 newsb->fs_ncg--;
910 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
911 newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc)
912 / NSPF(newsb);
913 printf("Warning: last cylinder group is too small;\n");
914 printf(" dropping it. New size = %lu.\n",
915 (unsigned long int) fsbtodb(newsb, newsb->fs_size));
916 }
917 /* Find out how big the csum area is, and realloc csums if bigger. */
918 newsb->fs_cssize = fragroundup(newsb,
919 newsb->fs_ncg * sizeof(struct csum));
920 if (newsb->fs_cssize > oldsb->fs_cssize)
921 csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
922 /* If we're adding any cgs, realloc structures and set up the new cgs. */
923 if (newsb->fs_ncg > oldsb->fs_ncg) {
924 char *cgp;
925 cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(struct cg *),
926 "cg pointers");
927 cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
928 bzero(cgflags + oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
929 cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
930 "cgs");
931 for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
932 cgs[i] = (struct cg *) cgp;
933 initcg(i);
934 cgp += cgblksz;
935 }
936 cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
937 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
938 }
939 /* If the old fs ended partway through a cg, we have to update the old
940 * last cg (though possibly not to a full cg!). */
941 if (oldsb->fs_size % oldsb->fs_fpg) {
942 struct cg *cg;
943 int newcgsize;
944 int prevcgtop;
945 int oldcgsize;
946 cg = cgs[oldsb->fs_ncg - 1];
947 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
948 prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
949 newcgsize = newsb->fs_size - prevcgtop;
950 if (newcgsize > newsb->fs_fpg)
951 newcgsize = newsb->fs_fpg;
952 oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
953 set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
954 cg->cg_old_ncyl = oldsb->fs_old_cpg;
955 cg->cg_ndblk = newcgsize;
956 }
957 /* Fix up the csum info, if necessary. */
958 csum_fixup();
959 /* Make fs_dsize match the new reality. */
960 recompute_fs_dsize();
961 }
962 /*
963 * Call (*fn)() for each inode, passing the inode and its inumber. The
964 * number of cylinder groups is pased in, so this can be used to map
965 * over either the old or the new filesystem's set of inodes.
966 */
967 static void
968 map_inodes(void (*fn) (struct ufs1_dinode * di, unsigned int, void *arg),
969 int ncg, void *cbarg) {
970 int i;
971 int ni;
972
973 ni = oldsb->fs_ipg * ncg;
974 for (i = 0; i < ni; i++)
975 (*fn) (inodes + i, i, cbarg);
976 }
977 /* Values for the third argument to the map function for
978 * map_inode_data_blocks. MDB_DATA indicates the block is contains
979 * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
980 * indirect block. The MDB_INDIR_PRE call is made before the indirect
981 * block pointers are followed and the pointed-to blocks scanned,
982 * MDB_INDIR_POST after.
983 */
984 #define MDB_DATA 1
985 #define MDB_INDIR_PRE 2
986 #define MDB_INDIR_POST 3
987
988 typedef void (*mark_callback_t) (unsigned int blocknum, unsigned int nfrags,
989 unsigned int blksize, int opcode);
990
991 /* Helper function - handles a data block. Calls the callback
992 * function and returns number of bytes occupied in file (actually,
993 * rounded up to a frag boundary). The name is historical. */
994 static int
995 markblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o)
996 {
997 int sz;
998 int nb;
999 if (o >= di->di_size)
1000 return (0);
1001 sz = dblksize(newsb, di, lblkno(newsb, o));
1002 nb = (sz > di->di_size - o) ? di->di_size - o : sz;
1003 if (bn)
1004 (*fn) (bn, numfrags(newsb, sz), nb, MDB_DATA);
1005 return (sz);
1006 }
1007 /* Helper function - handles an indirect block. Makes the
1008 * MDB_INDIR_PRE callback for the indirect block, loops over the
1009 * pointers and recurses, and makes the MDB_INDIR_POST callback.
1010 * Returns the number of bytes occupied in file, as does markblk().
1011 * For the sake of update_for_data_move(), we read the indirect block
1012 * _after_ making the _PRE callback. The name is historical. */
1013 static int
1014 markiblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o, int lev)
1015 {
1016 int i;
1017 int j;
1018 int tot;
1019 static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
1020 static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
1021 static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
1022 static int32_t *indirblks[3] = {
1023 &indirblk1[0], &indirblk2[0], &indirblk3[0]
1024 };
1025 if (lev < 0)
1026 return (markblk(fn, di, bn, o));
1027 if (bn == 0) {
1028 for (i = newsb->fs_bsize;
1029 lev >= 0;
1030 i *= NINDIR(newsb), lev--);
1031 return (i);
1032 }
1033 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
1034 readat(fsbtodb(newsb, bn), indirblks[lev], newsb->fs_bsize);
1035 tot = 0;
1036 for (i = 0; i < NINDIR(newsb); i++) {
1037 j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
1038 if (j == 0)
1039 break;
1040 o += j;
1041 tot += j;
1042 }
1043 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
1044 return (tot);
1045 }
1046
1047
1048 /*
1049 * Call (*fn)() for each data block for an inode. This routine assumes
1050 * the inode is known to be of a type that has data blocks (file,
1051 * directory, or non-fast symlink). The called function is:
1052 *
1053 * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
1054 *
1055 * where blkno is the frag number, nf is the number of frags starting
1056 * at blkno (always <= fs_frag), nb is the number of bytes that belong
1057 * to the file (usually nf*fs_frag, often less for the last block/frag
1058 * of a file).
1059 */
1060 static void
1061 map_inode_data_blocks(struct ufs1_dinode * di, mark_callback_t fn)
1062 {
1063 off_t o; /* offset within inode */
1064 int inc; /* increment for o - maybe should be off_t? */
1065 int b; /* index within di_db[] and di_ib[] arrays */
1066
1067 /* Scan the direct blocks... */
1068 o = 0;
1069 for (b = 0; b < NDADDR; b++) {
1070 inc = markblk(fn, di, di->di_db[b], o);
1071 if (inc == 0)
1072 break;
1073 o += inc;
1074 }
1075 /* ...and the indirect blocks. */
1076 if (inc) {
1077 for (b = 0; b < NIADDR; b++) {
1078 inc = markiblk(fn, di, di->di_ib[b], o, b);
1079 if (inc == 0)
1080 return;
1081 o += inc;
1082 }
1083 }
1084 }
1085
1086 static void
1087 dblk_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
1088 {
1089 mark_callback_t fn;
1090 fn = (mark_callback_t) arg;
1091 switch (di->di_mode & IFMT) {
1092 case IFLNK:
1093 if (di->di_size > newsb->fs_maxsymlinklen) {
1094 case IFDIR:
1095 case IFREG:
1096 map_inode_data_blocks(di, fn);
1097 }
1098 break;
1099 }
1100 }
1101 /*
1102 * Make a callback call, a la map_inode_data_blocks, for all data
1103 * blocks in the entire fs. This is used only once, in
1104 * update_for_data_move, but it's out at top level because the complex
1105 * downward-funarg nesting that would otherwise result seems to give
1106 * gcc gastric distress.
1107 */
1108 static void
1109 map_data_blocks(mark_callback_t fn, int ncg)
1110 {
1111 map_inodes(&dblk_callback, ncg, (void *) fn);
1112 }
1113 /*
1114 * Initialize the blkmove array.
1115 */
1116 static void
1117 blkmove_init(void)
1118 {
1119 int i;
1120
1121 blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
1122 for (i = 0; i < oldsb->fs_size; i++)
1123 blkmove[i] = i;
1124 }
1125 /*
1126 * Load the inodes off disk. Allocates the structures and initializes
1127 * them - the inodes from disk, the flags to zero.
1128 */
1129 static void
1130 loadinodes(void)
1131 {
1132 int cg;
1133 struct ufs1_dinode *iptr;
1134
1135 inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
1136 sizeof(struct ufs1_dinode), "inodes");
1137 iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
1138 bzero(iflags, oldsb->fs_ncg * oldsb->fs_ipg);
1139 iptr = inodes;
1140 for (cg = 0; cg < oldsb->fs_ncg; cg++) {
1141 readat(fsbtodb(oldsb, cgimin(oldsb, cg)), iptr,
1142 oldsb->fs_ipg * sizeof(struct ufs1_dinode));
1143 iptr += oldsb->fs_ipg;
1144 }
1145 }
1146 /*
1147 * Report a filesystem-too-full problem.
1148 */
1149 static void
1150 toofull(void)
1151 {
1152 printf("Sorry, would run out of data blocks\n");
1153 exit(EXIT_FAILURE);
1154 }
1155 /*
1156 * Record a desire to move "n" frags from "from" to "to".
1157 */
1158 static void
1159 mark_move(unsigned int from, unsigned int to, unsigned int n)
1160 {
1161 for (; n > 0; n--)
1162 blkmove[from++] = to++;
1163 }
1164 /* Helper function - evict n frags, starting with start (cg-relative).
1165 * The free bitmap is scanned, unallocated frags are ignored, and
1166 * each block of consecutive allocated frags is moved as a unit.
1167 */
1168 static void
1169 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
1170 {
1171 int i;
1172 int run;
1173 run = 0;
1174 for (i = 0; i <= n; i++) {
1175 if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
1176 run++;
1177 } else {
1178 if (run > 0) {
1179 int off;
1180 off = find_freespace(run);
1181 if (off < 0)
1182 toofull();
1183 mark_move(base + start + i - run, off, run);
1184 set_bits(cg_blksfree(cg, 0), start + i - run,
1185 run);
1186 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1187 dtogd(oldsb, off), run);
1188 }
1189 run = 0;
1190 }
1191 }
1192 }
1193 /*
1194 * Evict all data blocks from the given cg, starting at minfrag (based
1195 * at the beginning of the cg), for length nfrag. The eviction is
1196 * assumed to be entirely data-area; this should not be called with a
1197 * range overlapping the metadata structures in the cg. It also
1198 * assumes minfrag points into the given cg; it will misbehave if this
1199 * is not true.
1200 *
1201 * See the comment header on find_freespace() for one possible bug
1202 * lurking here.
1203 */
1204 static void
1205 evict_data(struct cg * cg, unsigned int minfrag, unsigned int nfrag)
1206 {
1207 int base; /* base of cg (in frags from beginning of fs) */
1208
1209
1210 base = cgbase(oldsb, cg->cg_cgx);
1211 /* Does the boundary fall in the middle of a block? To avoid breaking
1212 * between frags allocated as consecutive, we always evict the whole
1213 * block in this case, though one could argue we should check to see
1214 * if the frag before or after the break is unallocated. */
1215 if (minfrag % oldsb->fs_frag) {
1216 int n;
1217 n = minfrag % oldsb->fs_frag;
1218 minfrag -= n;
1219 nfrag += n;
1220 }
1221 /* Do whole blocks. If a block is wholly free, skip it; if wholly
1222 * allocated, move it in toto. If neither, call fragmove() to move
1223 * the frags to new locations. */
1224 while (nfrag >= oldsb->fs_frag) {
1225 if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
1226 if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
1227 oldsb->fs_frag)) {
1228 int off;
1229 off = find_freeblock();
1230 if (off < 0)
1231 toofull();
1232 mark_move(base + minfrag, off, oldsb->fs_frag);
1233 set_bits(cg_blksfree(cg, 0), minfrag,
1234 oldsb->fs_frag);
1235 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1236 dtogd(oldsb, off), oldsb->fs_frag);
1237 } else {
1238 fragmove(cg, base, minfrag, oldsb->fs_frag);
1239 }
1240 }
1241 minfrag += oldsb->fs_frag;
1242 nfrag -= oldsb->fs_frag;
1243 }
1244 /* Clean up any sub-block amount left over. */
1245 if (nfrag) {
1246 fragmove(cg, base, minfrag, nfrag);
1247 }
1248 }
1249 /*
1250 * Move all data blocks according to blkmove. We have to be careful,
1251 * because we may be updating indirect blocks that will themselves be
1252 * getting moved, or inode int32_t arrays that point to indirect
1253 * blocks that will be moved. We call this before
1254 * update_for_data_move, and update_for_data_move does inodes first,
1255 * then indirect blocks in preorder, so as to make sure that the
1256 * filesystem is self-consistent at all points, for better crash
1257 * tolerance. (We can get away with this only because all the writes
1258 * done by perform_data_move() are writing into space that's not used
1259 * by the old filesystem.) If we crash, some things may point to the
1260 * old data and some to the new, but both copies are the same. The
1261 * only wrong things should be csum info and free bitmaps, which fsck
1262 * is entirely capable of cleaning up.
1263 *
1264 * Since blkmove_init() initializes all blocks to move to their current
1265 * locations, we can have two blocks marked as wanting to move to the
1266 * same location, but only two and only when one of them is the one
1267 * that was already there. So if blkmove[i]==i, we ignore that entry
1268 * entirely - for unallocated blocks, we don't want it (and may be
1269 * putting something else there), and for allocated blocks, we don't
1270 * want to copy it anywhere.
1271 */
1272 static void
1273 perform_data_move(void)
1274 {
1275 int i;
1276 int run;
1277 int maxrun;
1278 char buf[65536];
1279
1280 maxrun = sizeof(buf) / newsb->fs_fsize;
1281 run = 0;
1282 for (i = 0; i < oldsb->fs_size; i++) {
1283 if ((blkmove[i] == i) ||
1284 (run >= maxrun) ||
1285 ((run > 0) &&
1286 (blkmove[i] != blkmove[i - 1] + 1))) {
1287 if (run > 0) {
1288 readat(fsbtodb(oldsb, i - run), &buf[0],
1289 run << oldsb->fs_fshift);
1290 writeat(fsbtodb(oldsb, blkmove[i - run]),
1291 &buf[0], run << oldsb->fs_fshift);
1292 }
1293 run = 0;
1294 }
1295 if (blkmove[i] != i)
1296 run++;
1297 }
1298 if (run > 0) {
1299 readat(fsbtodb(oldsb, i - run), &buf[0],
1300 run << oldsb->fs_fshift);
1301 writeat(fsbtodb(oldsb, blkmove[i - run]), &buf[0],
1302 run << oldsb->fs_fshift);
1303 }
1304 }
1305 /*
1306 * This modifies an array of int32_t, according to blkmove. This is
1307 * used to update inode block arrays and indirect blocks to point to
1308 * the new locations of data blocks.
1309 *
1310 * Return value is the number of int32_ts that needed updating; in
1311 * particular, the return value is zero iff nothing was modified.
1312 */
1313 static int
1314 movemap_blocks(int32_t * vec, int n)
1315 {
1316 int rv;
1317
1318 rv = 0;
1319 for (; n > 0; n--, vec++) {
1320 if (blkmove[*vec] != *vec) {
1321 *vec = blkmove[*vec];
1322 rv++;
1323 }
1324 }
1325 return (rv);
1326 }
1327 static void
1328 moveblocks_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
1329 {
1330 switch (di->di_mode & IFMT) {
1331 case IFLNK:
1332 if (di->di_size > oldsb->fs_maxsymlinklen) {
1333 case IFDIR:
1334 case IFREG:
1335 /* don't || these two calls; we need their
1336 * side-effects */
1337 if (movemap_blocks(&di->di_db[0], NDADDR)) {
1338 iflags[inum] |= IF_DIRTY;
1339 }
1340 if (movemap_blocks(&di->di_ib[0], NIADDR)) {
1341 iflags[inum] |= IF_DIRTY;
1342 }
1343 }
1344 break;
1345 }
1346 }
1347
1348 static void
1349 moveindir_callback(unsigned int off, unsigned int nfrag, unsigned int nbytes,
1350 int kind)
1351 {
1352 if (kind == MDB_INDIR_PRE) {
1353 int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
1354 readat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
1355 if (movemap_blocks(&blk[0], NINDIR(oldsb))) {
1356 writeat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
1357 }
1358 }
1359 }
1360 /*
1361 * Update all inode data arrays and indirect blocks to point to the new
1362 * locations of data blocks. See the comment header on
1363 * perform_data_move for some ordering considerations.
1364 */
1365 static void
1366 update_for_data_move(void)
1367 {
1368 map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
1369 map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
1370 }
1371 /*
1372 * Initialize the inomove array.
1373 */
1374 static void
1375 inomove_init(void)
1376 {
1377 int i;
1378
1379 inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
1380 "inomove");
1381 for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
1382 inomove[i] = i;
1383 }
1384 /*
1385 * Flush all dirtied inodes to disk. Scans the inode flags array; for
1386 * each dirty inode, it sets the BDIRTY bit on the first inode in the
1387 * block containing the dirty inode. Then it scans by blocks, and for
1388 * each marked block, writes it.
1389 */
1390 static void
1391 flush_inodes(void)
1392 {
1393 int i;
1394 int ni;
1395 int m;
1396
1397 ni = newsb->fs_ipg * newsb->fs_ncg;
1398 m = INOPB(newsb) - 1;
1399 for (i = 0; i < ni; i++) {
1400 if (iflags[i] & IF_DIRTY) {
1401 iflags[i & ~m] |= IF_BDIRTY;
1402 }
1403 }
1404 m++;
1405 for (i = 0; i < ni; i += m) {
1406 if (iflags[i] & IF_BDIRTY) {
1407 writeat(fsbtodb(newsb, ino_to_fsba(newsb, i)),
1408 inodes + i, newsb->fs_bsize);
1409 }
1410 }
1411 }
1412 /*
1413 * Evict all inodes from the specified cg. shrink() already checked
1414 * that there were enough free inodes, so the no-free-inodes check is
1415 * a can't-happen. If it does trip, the filesystem should be in good
1416 * enough shape for fsck to fix; see the comment on perform_data_move
1417 * for the considerations in question.
1418 */
1419 static void
1420 evict_inodes(struct cg * cg)
1421 {
1422 int inum;
1423 int i;
1424 int fi;
1425
1426 inum = newsb->fs_ipg * cg->cg_cgx;
1427 for (i = 0; i < newsb->fs_ipg; i++, inum++) {
1428 if (inodes[inum].di_mode != 0) {
1429 fi = find_freeinode();
1430 if (fi < 0) {
1431 printf("Sorry, inodes evaporated - "
1432 "filesystem probably needs fsck\n");
1433 exit(EXIT_FAILURE);
1434 }
1435 inomove[inum] = fi;
1436 clr_bits(cg_inosused(cg, 0), i, 1);
1437 set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
1438 fi % newsb->fs_ipg, 1);
1439 }
1440 }
1441 }
1442 /*
1443 * Move inodes from old locations to new. Does not actually write
1444 * anything to disk; just copies in-core and sets dirty bits.
1445 *
1446 * We have to be careful here for reasons similar to those mentioned in
1447 * the comment header on perform_data_move, above: for the sake of
1448 * crash tolerance, we want to make sure everything is present at both
1449 * old and new locations before we update pointers. So we call this
1450 * first, then flush_inodes() to get them out on disk, then update
1451 * directories to match.
1452 */
1453 static void
1454 perform_inode_move(void)
1455 {
1456 int i;
1457 int ni;
1458
1459 ni = oldsb->fs_ipg * oldsb->fs_ncg;
1460 for (i = 0; i < ni; i++) {
1461 if (inomove[i] != i) {
1462 inodes[inomove[i]] = inodes[i];
1463 iflags[inomove[i]] = iflags[i] | IF_DIRTY;
1464 }
1465 }
1466 }
1467 /*
1468 * Update the directory contained in the nb bytes at buf, to point to
1469 * inodes' new locations.
1470 */
1471 static int
1472 update_dirents(char *buf, int nb)
1473 {
1474 int rv;
1475 #define d ((struct direct *)buf)
1476
1477 rv = 0;
1478 while (nb > 0) {
1479 if (inomove[d->d_ino] != d->d_ino) {
1480 rv++;
1481 d->d_ino = inomove[d->d_ino];
1482 }
1483 nb -= d->d_reclen;
1484 buf += d->d_reclen;
1485 }
1486 return (rv);
1487 #undef d
1488 }
1489 /*
1490 * Callback function for map_inode_data_blocks, for updating a
1491 * directory to point to new inode locations.
1492 */
1493 static void
1494 update_dir_data(unsigned int bn, unsigned int size, unsigned int nb, int kind)
1495 {
1496 if (kind == MDB_DATA) {
1497 union {
1498 struct direct d;
1499 char ch[MAXBSIZE];
1500 } buf;
1501 readat(fsbtodb(oldsb, bn), &buf, size << oldsb->fs_fshift);
1502 if (update_dirents((char *) &buf, nb)) {
1503 writeat(fsbtodb(oldsb, bn), &buf,
1504 size << oldsb->fs_fshift);
1505 }
1506 }
1507 }
1508 static void
1509 dirmove_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
1510 {
1511 switch (di->di_mode & IFMT) {
1512 case IFDIR:
1513 map_inode_data_blocks(di, &update_dir_data);
1514 break;
1515 }
1516 }
1517 /*
1518 * Update directory entries to point to new inode locations.
1519 */
1520 static void
1521 update_for_inode_move(void)
1522 {
1523 map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
1524 }
1525 /*
1526 * Shrink the filesystem.
1527 */
1528 static void
1529 shrink(void)
1530 {
1531 int i;
1532
1533 /* Load the inodes off disk - we'll need 'em. */
1534 loadinodes();
1535 /* Update the timestamp. */
1536 newsb->fs_time = timestamp();
1537 /* Update the size figures. */
1538 newsb->fs_size = dbtofsb(newsb, newsize);
1539 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
1540 newsb->fs_old_spc);
1541 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
1542 /* Does the (new) last cg end before the end of its inode area? See
1543 * the similar code in grow() for more on this. */
1544 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
1545 newsb->fs_ncg--;
1546 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
1547 newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc) /
1548 NSPF(newsb);
1549 printf("Warning: last cylinder group is too small;\n");
1550 printf(" dropping it. New size = %lu.\n",
1551 (unsigned long int) fsbtodb(newsb, newsb->fs_size));
1552 }
1553 /* Let's make sure we're not being shrunk into oblivion. */
1554 if (newsb->fs_ncg < 1) {
1555 printf("Size too small - filesystem would have no cylinders\n");
1556 exit(EXIT_FAILURE);
1557 }
1558 /* Initialize for block motion. */
1559 blkmove_init();
1560 /* Update csum size, then fix up for the new size */
1561 newsb->fs_cssize = fragroundup(newsb,
1562 newsb->fs_ncg * sizeof(struct csum));
1563 csum_fixup();
1564 /* Evict data from any cgs being wholly eliminated */
1565 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
1566 int base;
1567 int dlow;
1568 int dhigh;
1569 int dmax;
1570 base = cgbase(oldsb, i);
1571 dlow = cgsblock(oldsb, i) - base;
1572 dhigh = cgdmin(oldsb, i) - base;
1573 dmax = oldsb->fs_size - base;
1574 if (dmax > cgs[i]->cg_ndblk)
1575 dmax = cgs[i]->cg_ndblk;
1576 evict_data(cgs[i], 0, dlow);
1577 evict_data(cgs[i], dhigh, dmax - dhigh);
1578 newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
1579 newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
1580 newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
1581 newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
1582 }
1583 /* Update the new last cg. */
1584 cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
1585 ((newsb->fs_ncg - 1) * newsb->fs_fpg);
1586 /* Is the new last cg partial? If so, evict any data from the part
1587 * being shrunken away. */
1588 if (newsb->fs_size % newsb->fs_fpg) {
1589 struct cg *cg;
1590 int oldcgsize;
1591 int newcgsize;
1592 cg = cgs[newsb->fs_ncg - 1];
1593 newcgsize = newsb->fs_size % newsb->fs_fpg;
1594 oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
1595 oldsb->fs_fpg);
1596 if (oldcgsize > oldsb->fs_fpg)
1597 oldcgsize = oldsb->fs_fpg;
1598 evict_data(cg, newcgsize, oldcgsize - newcgsize);
1599 clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
1600 }
1601 /* Find out whether we would run out of inodes. (Note we haven't
1602 * actually done anything to the filesystem yet; all those evict_data
1603 * calls just update blkmove.) */
1604 {
1605 int slop;
1606 slop = 0;
1607 for (i = 0; i < newsb->fs_ncg; i++)
1608 slop += cgs[i]->cg_cs.cs_nifree;
1609 for (; i < oldsb->fs_ncg; i++)
1610 slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
1611 if (slop < 0) {
1612 printf("Sorry, would run out of inodes\n");
1613 exit(EXIT_FAILURE);
1614 }
1615 }
1616 /* Copy data, then update pointers to data. See the comment header on
1617 * perform_data_move for ordering considerations. */
1618 perform_data_move();
1619 update_for_data_move();
1620 /* Now do inodes. Initialize, evict, move, update - see the comment
1621 * header on perform_inode_move. */
1622 inomove_init();
1623 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
1624 evict_inodes(cgs[i]);
1625 perform_inode_move();
1626 flush_inodes();
1627 update_for_inode_move();
1628 /* Recompute all the bitmaps; most of them probably need it anyway,
1629 * the rest are just paranoia and not wanting to have to bother
1630 * keeping track of exactly which ones require it. */
1631 for (i = 0; i < newsb->fs_ncg; i++)
1632 cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
1633 /* Update the cg_old_ncyl value for the last cylinder. */
1634 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
1635 cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
1636 newsb->fs_old_ncyl % newsb->fs_old_cpg;
1637 /* Make fs_dsize match the new reality. */
1638 recompute_fs_dsize();
1639 }
1640 /*
1641 * Recompute the block totals, block cluster summaries, and rotational
1642 * position summaries, for a given cg (specified by number), based on
1643 * its free-frag bitmap (cg_blksfree()[]).
1644 */
1645 static void
1646 rescan_blkmaps(int cgn)
1647 {
1648 struct cg *cg;
1649 int f;
1650 int b;
1651 int blkfree;
1652 int blkrun;
1653 int fragrun;
1654 int fwb;
1655
1656 cg = cgs[cgn];
1657 /* Subtract off the current totals from the sb's summary info */
1658 newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
1659 newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
1660 /* Clear counters and bitmaps. */
1661 cg->cg_cs.cs_nffree = 0;
1662 cg->cg_cs.cs_nbfree = 0;
1663 bzero(&cg->cg_frsum[0], MAXFRAG * sizeof(cg->cg_frsum[0]));
1664 bzero(&old_cg_blktot(cg, 0)[0],
1665 newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
1666 bzero(&old_cg_blks(newsb, cg, 0, 0)[0],
1667 newsb->fs_old_cpg * newsb->fs_old_nrpos *
1668 sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
1669 if (newsb->fs_contigsumsize > 0) {
1670 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
1671 bzero(&cg_clustersum(cg, 0)[1],
1672 newsb->fs_contigsumsize *
1673 sizeof(cg_clustersum(cg, 0)[1]));
1674 bzero(&cg_clustersfree(cg, 0)[0],
1675 howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
1676 NSPB(newsb), NBBY));
1677 }
1678 /* Scan the free-frag bitmap. Runs of free frags are kept track of
1679 * with fragrun, and recorded into cg_frsum[] and cg_cs.cs_nffree; on
1680 * each block boundary, entire free blocks are recorded as well. */
1681 blkfree = 1;
1682 blkrun = 0;
1683 fragrun = 0;
1684 f = 0;
1685 b = 0;
1686 fwb = 0;
1687 while (f < cg->cg_ndblk) {
1688 if (bit_is_set(cg_blksfree(cg, 0), f)) {
1689 fragrun++;
1690 } else {
1691 blkfree = 0;
1692 if (fragrun > 0) {
1693 cg->cg_frsum[fragrun]++;
1694 cg->cg_cs.cs_nffree += fragrun;
1695 }
1696 fragrun = 0;
1697 }
1698 f++;
1699 fwb++;
1700 if (fwb >= newsb->fs_frag) {
1701 if (blkfree) {
1702 cg->cg_cs.cs_nbfree++;
1703 if (newsb->fs_contigsumsize > 0)
1704 set_bits(cg_clustersfree(cg, 0), b, 1);
1705 old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
1706 f - newsb->fs_frag)]++;
1707 old_cg_blks(newsb, cg,
1708 old_cbtocylno(newsb, f - newsb->fs_frag),
1709 0)[old_cbtorpos(newsb,
1710 f - newsb->fs_frag)]++;
1711 blkrun++;
1712 } else {
1713 if (fragrun > 0) {
1714 cg->cg_frsum[fragrun]++;
1715 cg->cg_cs.cs_nffree += fragrun;
1716 }
1717 if (newsb->fs_contigsumsize > 0) {
1718 if (blkrun > 0) {
1719 cg_clustersum(cg, 0)[(blkrun
1720 > newsb->fs_contigsumsize)
1721 ? newsb->fs_contigsumsize
1722 : blkrun]++;
1723 }
1724 }
1725 blkrun = 0;
1726 }
1727 fwb = 0;
1728 b++;
1729 blkfree = 1;
1730 fragrun = 0;
1731 }
1732 }
1733 if (fragrun > 0) {
1734 cg->cg_frsum[fragrun]++;
1735 cg->cg_cs.cs_nffree += fragrun;
1736 }
1737 if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
1738 cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
1739 newsb->fs_contigsumsize : blkrun]++;
1740 }
1741 /*
1742 * Put the updated summary info back into csums, and add it
1743 * back into the sb's summary info. Then mark the cg dirty.
1744 */
1745 csums[cgn] = cg->cg_cs;
1746 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
1747 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
1748 cgflags[cgn] |= CGF_DIRTY;
1749 }
1750 /*
1751 * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
1752 * values, for a cg, based on the in-core inodes for that cg.
1753 */
1754 static void
1755 rescan_inomaps(int cgn)
1756 {
1757 struct cg *cg;
1758 int inum;
1759 int iwc;
1760
1761 cg = cgs[cgn];
1762 newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
1763 newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
1764 cg->cg_cs.cs_ndir = 0;
1765 cg->cg_cs.cs_nifree = 0;
1766 bzero(&cg_inosused(cg, 0)[0], howmany(newsb->fs_ipg, NBBY));
1767 inum = cgn * newsb->fs_ipg;
1768 if (cgn == 0) {
1769 set_bits(cg_inosused(cg, 0), 0, 2);
1770 iwc = 2;
1771 inum += 2;
1772 } else {
1773 iwc = 0;
1774 }
1775 for (; iwc < newsb->fs_ipg; iwc++, inum++) {
1776 switch (inodes[inum].di_mode & IFMT) {
1777 case 0:
1778 cg->cg_cs.cs_nifree++;
1779 break;
1780 case IFDIR:
1781 cg->cg_cs.cs_ndir++;
1782 /* fall through */
1783 default:
1784 set_bits(cg_inosused(cg, 0), iwc, 1);
1785 break;
1786 }
1787 }
1788 csums[cgn] = cg->cg_cs;
1789 newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
1790 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
1791 cgflags[cgn] |= CGF_DIRTY;
1792 }
1793 /*
1794 * Flush cgs to disk, recomputing anything they're marked as needing.
1795 */
1796 static void
1797 flush_cgs(void)
1798 {
1799 int i;
1800
1801 for (i = 0; i < newsb->fs_ncg; i++) {
1802 if (cgflags[i] & CGF_BLKMAPS) {
1803 rescan_blkmaps(i);
1804 }
1805 if (cgflags[i] & CGF_INOMAPS) {
1806 rescan_inomaps(i);
1807 }
1808 if (cgflags[i] & CGF_DIRTY) {
1809 cgs[i]->cg_rotor = 0;
1810 cgs[i]->cg_frotor = 0;
1811 cgs[i]->cg_irotor = 0;
1812 writeat(fsbtodb(newsb, cgtod(newsb, i)), cgs[i],
1813 cgblksz);
1814 }
1815 }
1816 writeat(fsbtodb(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
1817 }
1818 /*
1819 * Write the superblock, both to the main superblock and to each cg's
1820 * alternative superblock.
1821 */
1822 static void
1823 write_sbs(void)
1824 {
1825 int i;
1826
1827 if (newsb->fs_magic == FS_UFS1_MAGIC &&
1828 (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
1829 newsb->fs_old_time = newsb->fs_time;
1830 newsb->fs_old_size = newsb->fs_size;
1831 /* we don't update fs_csaddr */
1832 newsb->fs_old_dsize = newsb->fs_dsize;
1833 newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
1834 newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
1835 newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
1836 newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
1837 /* fill fs_old_postbl_start with 256 bytes of 0xff? */
1838 }
1839 writeat(where / DEV_BSIZE, newsb, SBLOCKSIZE);
1840 for (i = 0; i < newsb->fs_ncg; i++) {
1841 writeat(fsbtodb(newsb, cgsblock(newsb, i)), newsb, SBLOCKSIZE);
1842 }
1843 }
1844
1845 static uint32_t
1846 get_dev_size(char *dev_name)
1847 {
1848 struct dkwedge_info dkw;
1849 struct partition *pp;
1850 struct disklabel lp;
1851 size_t ptn;
1852
1853 /* Get info about partition/wedge */
1854 if (ioctl(fd, DIOCGWEDGEINFO, &dkw) == -1) {
1855 if (ioctl(fd, DIOCGDINFO, &lp) == -1)
1856 return 0;
1857
1858 ptn = strchr(dev_name, '\0')[-1] - 'a';
1859 if (ptn >= lp.d_npartitions)
1860 return 0;
1861
1862 pp = &lp.d_partitions[ptn];
1863 return pp->p_size;
1864 }
1865
1866 return dkw.dkw_size;
1867 }
1868
1869 /*
1870 * main().
1871 */
1872 int
1873 main(int argc, char **argv)
1874 {
1875 int ch;
1876 int ExpertFlag;
1877 int SFlag;
1878 size_t i;
1879
1880 char *special;
1881 char reply[5];
1882
1883 newsize = 0;
1884 ExpertFlag = 0;
1885 SFlag = 0;
1886
1887 while ((ch = getopt(argc, argv, "s:y")) != -1) {
1888 switch (ch) {
1889 case 's':
1890 SFlag = 1;
1891 newsize = (size_t)strtoul(optarg, NULL, 10);
1892 if(newsize < 1) {
1893 usage();
1894 }
1895 break;
1896 case 'y':
1897 ExpertFlag = 1;
1898 break;
1899 case '?':
1900 /* FALLTHROUGH */
1901 default:
1902 usage();
1903 }
1904 }
1905 argc -= optind;
1906 argv += optind;
1907
1908 if (argc != 1) {
1909 usage();
1910 }
1911
1912 special = *argv;
1913
1914 if (ExpertFlag == 0) {
1915 printf("It's required to manually run fsck on filesystem "
1916 "before you can resize it\n\n"
1917 " Did you run fsck on your disk (Yes/No) ? ");
1918 fgets(reply, (int)sizeof(reply), stdin);
1919 if (strcasecmp(reply, "Yes\n")) {
1920 printf("\n Nothing done \n");
1921 exit(EXIT_SUCCESS);
1922 }
1923 }
1924
1925 fd = open(special, O_RDWR, 0);
1926 if (fd < 0)
1927 err(EXIT_FAILURE, "Can't open `%s'", special);
1928 checksmallio();
1929
1930 if (SFlag == 0) {
1931 newsize = get_dev_size(special);
1932 if (newsize == 0)
1933 err(EXIT_FAILURE,
1934 "Can't resize filesystem, newsize not known.");
1935 }
1936
1937 oldsb = (struct fs *) & sbbuf;
1938 newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
1939 for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
1940 readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
1941 switch (oldsb->fs_magic) {
1942 case FS_UFS2_MAGIC:
1943 /* FALLTHROUGH */
1944 is_ufs2 = 1;
1945 case FS_UFS1_MAGIC:
1946 needswap = 0;
1947 break;
1948 case FS_UFS2_MAGIC_SWAPPED:
1949 is_ufs2 = 1;
1950 /* FALLTHROUGH */
1951 case FS_UFS1_MAGIC_SWAPPED:
1952 needswap = 1;
1953 break;
1954 default:
1955 continue;
1956 }
1957 if (!is_ufs2 && where == SBLOCK_UFS2)
1958 continue;
1959 break;
1960 }
1961 if (where == (off_t)-1)
1962 errx(EXIT_FAILURE, "Bad magic number");
1963 if (oldsb->fs_magic == FS_UFS1_MAGIC &&
1964 (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
1965 oldsb->fs_csaddr = oldsb->fs_old_csaddr;
1966 oldsb->fs_size = oldsb->fs_old_size;
1967 oldsb->fs_dsize = oldsb->fs_old_dsize;
1968 oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
1969 oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
1970 oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
1971 oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
1972 /* any others? */
1973 printf("Resizing with ffsv1 superblock\n");
1974 }
1975 if (is_ufs2)
1976 errx(EXIT_FAILURE, "ffsv2 file systems currently unsupported.");
1977 if (needswap)
1978 errx(EXIT_FAILURE, "Swapped byte order file system detected"
1979 " - currently unsupported.");
1980 oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
1981 oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
1982 if (oldsb->fs_ipg % INOPB(oldsb)) {
1983 (void)fprintf(stderr, "ipg[%d] %% INOPB[%d] != 0\n",
1984 (int) oldsb->fs_ipg, (int) INOPB(oldsb));
1985 exit(EXIT_FAILURE);
1986 }
1987 /* The superblock is bigger than struct fs (there are trailing tables,
1988 * of non-fixed size); make sure we copy the whole thing. SBLOCKSIZE may
1989 * be an over-estimate, but we do this just once, so being generous is
1990 * cheap. */
1991 bcopy(oldsb, newsb, SBLOCKSIZE);
1992 loadcgs();
1993 if (newsize > fsbtodb(oldsb, oldsb->fs_size)) {
1994 grow();
1995 } else if (newsize < fsbtodb(oldsb, oldsb->fs_size)) {
1996 shrink();
1997 }
1998 flush_cgs();
1999 write_sbs();
2000 if (isplainfile())
2001 ftruncate(fd,newsize * DEV_BSIZE);
2002 return 0;
2003 }
2004
2005 static void
2006 usage(void)
2007 {
2008
2009 (void)fprintf(stderr, "usage: %s [-y] [-s size] special\n", getprogname());
2010 exit(EXIT_FAILURE);
2011 }
2012