Home | History | Annotate | Line # | Download | only in resize_ffs
resize_ffs.c revision 1.23
      1 /*	$NetBSD: resize_ffs.c,v 1.23 2010/12/14 20:45:22 riz Exp $	*/
      2 /* From sources sent on February 17, 2003 */
      3 /*-
      4  * As its sole author, I explicitly place this code in the public
      5  *  domain.  Anyone may use it for any purpose (though I would
      6  *  appreciate credit where it is due).
      7  *
      8  *					der Mouse
      9  *
     10  *			       mouse (at) rodents.montreal.qc.ca
     11  *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
     12  */
     13 /*
     14  * resize_ffs:
     15  *
     16  * Resize a filesystem.  Is capable of both growing and shrinking.
     17  *
     18  * Usage: resize_ffs [-s newsize] [-y] filesystem
     19  *
     20  * Example: resize_ffs -s 29574 /dev/rsd1e
     21  *
     22  * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
     23  *  each).
     24  *
     25  * Note: this currently requires gcc to build, since it is written
     26  *  depending on gcc-specific features, notably nested function
     27  *  definitions (which in at least a few cases depend on the lexical
     28  *  scoping gcc provides, so they can't be trivially moved outside).
     29  *
     30  * It will not do anything useful with filesystems in other than
     31  *  host-native byte order.  This really should be fixed (it's largely
     32  *  a historical accident; the original version of this program is
     33  *  older than bi-endian support in FFS).
     34  *
     35  * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
     36  *  one responsible for the "realloccgblk: can't find blk in cyl"
     37  *  problem and a more minor one which left fs_dsize wrong when
     38  *  shrinking.  (These actually indicate bugs in fsck too - it should
     39  *  have caught and fixed them.)
     40  *
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 #include <sys/disk.h>
     45 #include <sys/disklabel.h>
     46 #include <sys/dkio.h>
     47 #include <sys/ioctl.h>
     48 #include <sys/stat.h>
     49 #include <sys/mman.h>
     50 #include <sys/param.h>		/* MAXFRAG */
     51 #include <ufs/ffs/fs.h>
     52 #include <ufs/ufs/dir.h>
     53 #include <ufs/ufs/dinode.h>
     54 #include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */
     55 
     56 #include <err.h>
     57 #include <errno.h>
     58 #include <fcntl.h>
     59 #include <stdio.h>
     60 #include <stdlib.h>
     61 #include <strings.h>
     62 #include <unistd.h>
     63 
     64 /* new size of filesystem, in sectors */
     65 static uint32_t newsize;
     66 
     67 /* fd open onto disk device or file */
     68 static int fd;
     69 
     70 /* must we break up big I/O operations - see checksmallio() */
     71 static int smallio;
     72 
     73 /* size of a cg, in bytes, rounded up to a frag boundary */
     74 static int cgblksz;
     75 
     76 /* possible superblock localtions */
     77 static int search[] = SBLOCKSEARCH;
     78 /* location of the superblock */
     79 static off_t where;
     80 
     81 /* Superblocks. */
     82 static struct fs *oldsb;	/* before we started */
     83 static struct fs *newsb;	/* copy to work with */
     84 /* Buffer to hold the above.  Make sure it's aligned correctly. */
     85 static char sbbuf[2 * SBLOCKSIZE]
     86 	__attribute__((__aligned__(__alignof__(struct fs))));
     87 
     88 /* a cg's worth of brand new squeaky-clean inodes */
     89 static struct ufs1_dinode *zinodes;
     90 
     91 /* pointers to the in-core cgs, read off disk and possibly modified */
     92 static struct cg **cgs;
     93 
     94 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
     95 static struct csum *csums;
     96 
     97 /* per-cg flags, indexed by cg number */
     98 static unsigned char *cgflags;
     99 #define CGF_DIRTY   0x01	/* needs to be written to disk */
    100 #define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
    101 #define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */
    102 
    103 /* when shrinking, these two arrays record how we want blocks to move.	 */
    104 /*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
    105 /*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
    106 /*  started out as inode i should end up as inode j.			 */
    107 static unsigned int *blkmove;
    108 static unsigned int *inomove;
    109 
    110 /* in-core copies of all inodes in the fs, indexed by inumber */
    111 static struct ufs1_dinode *inodes;
    112 
    113 /* per-inode flags, indexed by inumber */
    114 static unsigned char *iflags;
    115 #define IF_DIRTY  0x01		/* needs to be written to disk */
    116 #define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
    117 				 * block of inodes, and applies to the whole
    118 				 * block. */
    119 
    120 /* resize_ffs works directly on dinodes, adapt blksize() */
    121 #define dblksize(fs, dip, lbn) \
    122     (((lbn) >= NDADDR || (dip)->di_size >= lblktosize(fs, (lbn) + 1)) \
    123     ? (fs)->fs_bsize \
    124     : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
    125 
    126 
    127 /*
    128  * Number of disk sectors per block/fragment; assumes DEV_BSIZE byte
    129  * sector size.
    130  */
    131 #define NSPB(fs)	((fs)->fs_old_nspf << (fs)->fs_fragshift)
    132 #define NSPF(fs)	((fs)->fs_old_nspf)
    133 
    134 /* global flags */
    135 int is_ufs2 = 0;
    136 int needswap = 0;
    137 
    138 static void usage(void) __dead;
    139 
    140 /*
    141  * See if we need to break up large I/O operations.  This should never
    142  *  be needed, but under at least one <version,platform> combination,
    143  *  large enough disk transfers to the raw device hang.  So if we're
    144  *  talking to a character special device, play it safe; in this case,
    145  *  readat() and writeat() break everything up into pieces no larger
    146  *  than 8K, doing multiple syscalls for larger operations.
    147  */
    148 static void
    149 checksmallio(void)
    150 {
    151 	struct stat stb;
    152 
    153 	fstat(fd, &stb);
    154 	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
    155 }
    156 
    157 static int
    158 isplainfile(void)
    159 {
    160 	struct stat stb;
    161 
    162 	fstat(fd, &stb);
    163 	return S_ISREG(stb.st_mode);
    164 }
    165 /*
    166  * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
    167  *  units, ie, after fsbtodb(); size is in bytes.
    168  */
    169 static void
    170 readat(off_t blkno, void *buf, int size)
    171 {
    172 	/* Seek to the correct place. */
    173 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    174 		err(EXIT_FAILURE, "lseek failed");
    175 
    176 	/* See if we have to break up the transfer... */
    177 	if (smallio) {
    178 		char *bp;	/* pointer into buf */
    179 		int left;	/* bytes left to go */
    180 		int n;		/* number to do this time around */
    181 		int rv;		/* syscall return value */
    182 		bp = buf;
    183 		left = size;
    184 		while (left > 0) {
    185 			n = (left > 8192) ? 8192 : left;
    186 			rv = read(fd, bp, n);
    187 			if (rv < 0)
    188 				err(EXIT_FAILURE, "read failed");
    189 			if (rv != n)
    190 				errx(EXIT_FAILURE,
    191 				    "read: wanted %d, got %d", n, rv);
    192 			bp += n;
    193 			left -= n;
    194 		}
    195 	} else {
    196 		int rv;
    197 		rv = read(fd, buf, size);
    198 		if (rv < 0)
    199 			err(EXIT_FAILURE, "read failed");
    200 		if (rv != size)
    201 			errx(EXIT_FAILURE, "read: wanted %d, got %d", size, rv);
    202 	}
    203 }
    204 /*
    205  * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
    206  *  units, ie, after fsbtodb(); size is in bytes.
    207  */
    208 static void
    209 writeat(off_t blkno, const void *buf, int size)
    210 {
    211 	/* Seek to the correct place. */
    212 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    213 		err(EXIT_FAILURE, "lseek failed");
    214 	/* See if we have to break up the transfer... */
    215 	if (smallio) {
    216 		const char *bp;	/* pointer into buf */
    217 		int left;	/* bytes left to go */
    218 		int n;		/* number to do this time around */
    219 		int rv;		/* syscall return value */
    220 		bp = buf;
    221 		left = size;
    222 		while (left > 0) {
    223 			n = (left > 8192) ? 8192 : left;
    224 			rv = write(fd, bp, n);
    225 			if (rv < 0)
    226 				err(EXIT_FAILURE, "write failed");
    227 			if (rv != n)
    228 				errx(EXIT_FAILURE,
    229 				    "write: wanted %d, got %d", n, rv);
    230 			bp += n;
    231 			left -= n;
    232 		}
    233 	} else {
    234 		int rv;
    235 		rv = write(fd, buf, size);
    236 		if (rv < 0)
    237 			err(EXIT_FAILURE, "write failed");
    238 		if (rv != size)
    239 			errx(EXIT_FAILURE,
    240 			    "write: wanted %d, got %d", size, rv);
    241 	}
    242 }
    243 /*
    244  * Never-fail versions of malloc() and realloc(), and an allocation
    245  *  routine (which also never fails) for allocating memory that will
    246  *  never be freed until exit.
    247  */
    248 
    249 /*
    250  * Never-fail malloc.
    251  */
    252 static void *
    253 nfmalloc(size_t nb, const char *tag)
    254 {
    255 	void *rv;
    256 
    257 	rv = malloc(nb);
    258 	if (rv)
    259 		return (rv);
    260 	err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
    261 	    (unsigned long int) nb, tag);
    262 }
    263 /*
    264  * Never-fail realloc.
    265  */
    266 static void *
    267 nfrealloc(void *blk, size_t nb, const char *tag)
    268 {
    269 	void *rv;
    270 
    271 	rv = realloc(blk, nb);
    272 	if (rv)
    273 		return (rv);
    274 	err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
    275 	    (unsigned long int) nb, tag);
    276 }
    277 /*
    278  * Allocate memory that will never be freed or reallocated.  Arguably
    279  *  this routine should handle small allocations by chopping up pages,
    280  *  but that's not worth the bother; it's not called more than a
    281  *  handful of times per run, and if the allocations are that small the
    282  *  waste in giving each one its own page is ignorable.
    283  */
    284 static void *
    285 alloconce(size_t nb, const char *tag)
    286 {
    287 	void *rv;
    288 
    289 	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
    290 	if (rv != MAP_FAILED)
    291 		return (rv);
    292 	err(EXIT_FAILURE, "Can't map %lu bytes for %s",
    293 	    (unsigned long int) nb, tag);
    294 }
    295 /*
    296  * Load the cgs and csums off disk.  Also allocates the space to load
    297  *  them into and initializes the per-cg flags.
    298  */
    299 static void
    300 loadcgs(void)
    301 {
    302 	int cg;
    303 	char *cgp;
    304 
    305 	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
    306 	cgs = nfmalloc(oldsb->fs_ncg * sizeof(struct cg *), "cg pointers");
    307 	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
    308 	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
    309 	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
    310 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
    311 		cgs[cg] = (struct cg *) cgp;
    312 		readat(fsbtodb(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
    313 		cgflags[cg] = 0;
    314 		cgp += cgblksz;
    315 	}
    316 	readat(fsbtodb(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
    317 }
    318 /*
    319  * Set n bits, starting with bit #base, in the bitmap pointed to by
    320  *  bitvec (which is assumed to be large enough to include bits base
    321  *  through base+n-1).
    322  */
    323 static void
    324 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
    325 {
    326 	if (n < 1)
    327 		return;		/* nothing to do */
    328 	if (base & 7) {		/* partial byte at beginning */
    329 		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
    330 			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
    331 			return;
    332 		}
    333 		bitvec[base >> 3] |= (~0U) << (base & 7);
    334 		n -= 8 - (base & 7);
    335 		base = (base & ~7) + 8;
    336 	}
    337 	if (n >= 8) {		/* do full bytes */
    338 		memset(bitvec + (base >> 3), 0xff, n >> 3);
    339 		base += n & ~7;
    340 		n &= 7;
    341 	}
    342 	if (n) {		/* partial byte at end */
    343 		bitvec[base >> 3] |= ~((~0U) << n);
    344 	}
    345 }
    346 /*
    347  * Clear n bits, starting with bit #base, in the bitmap pointed to by
    348  *  bitvec (which is assumed to be large enough to include bits base
    349  *  through base+n-1).  Code parallels set_bits().
    350  */
    351 static void
    352 clr_bits(unsigned char *bitvec, int base, int n)
    353 {
    354 	if (n < 1)
    355 		return;
    356 	if (base & 7) {
    357 		if (n <= 8 - (base & 7)) {
    358 			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
    359 			return;
    360 		}
    361 		bitvec[base >> 3] &= ~((~0U) << (base & 7));
    362 		n -= 8 - (base & 7);
    363 		base = (base & ~7) + 8;
    364 	}
    365 	if (n >= 8) {
    366 		bzero(bitvec + (base >> 3), n >> 3);
    367 		base += n & ~7;
    368 		n &= 7;
    369 	}
    370 	if (n) {
    371 		bitvec[base >> 3] &= (~0U) << n;
    372 	}
    373 }
    374 /*
    375  * Test whether bit #bit is set in the bitmap pointed to by bitvec.
    376  */
    377 static int
    378 bit_is_set(unsigned char *bitvec, int bit)
    379 {
    380 	return (bitvec[bit >> 3] & (1 << (bit & 7)));
    381 }
    382 /*
    383  * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
    384  */
    385 static int
    386 bit_is_clr(unsigned char *bitvec, int bit)
    387 {
    388 	return (!bit_is_set(bitvec, bit));
    389 }
    390 /*
    391  * Test whether a whole block of bits is set in a bitmap.  This is
    392  *  designed for testing (aligned) disk blocks in a bit-per-frag
    393  *  bitmap; it has assumptions wired into it based on that, essentially
    394  *  that the entire block fits into a single byte.  This returns true
    395  *  iff _all_ the bits are set; it is not just the complement of
    396  *  blk_is_clr on the same arguments (unless blkfrags==1).
    397  */
    398 static int
    399 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
    400 {
    401 	unsigned int mask;
    402 
    403 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    404 	return ((bitvec[blkbase >> 3] & mask) == mask);
    405 }
    406 /*
    407  * Test whether a whole block of bits is clear in a bitmap.  See
    408  *  blk_is_set (above) for assumptions.  This returns true iff _all_
    409  *  the bits are clear; it is not just the complement of blk_is_set on
    410  *  the same arguments (unless blkfrags==1).
    411  */
    412 static int
    413 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
    414 {
    415 	unsigned int mask;
    416 
    417 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    418 	return ((bitvec[blkbase >> 3] & mask) == 0);
    419 }
    420 /*
    421  * Initialize a new cg.  Called when growing.  Assumes memory has been
    422  *  allocated but not otherwise set up.  This code sets the fields of
    423  *  the cg, initializes the bitmaps (and cluster summaries, if
    424  *  applicable), updates both per-cylinder summary info and the global
    425  *  summary info in newsb; it also writes out new inodes for the cg.
    426  *
    427  * This code knows it can never be called for cg 0, which makes it a
    428  *  bit simpler than it would otherwise be.
    429  */
    430 static void
    431 initcg(int cgn)
    432 {
    433 	struct cg *cg;		/* The in-core cg, of course */
    434 	int base;		/* Disk address of cg base */
    435 	int dlow;		/* Size of pre-cg data area */
    436 	int dhigh;		/* Offset of post-inode data area, from base */
    437 	int dmax;		/* Offset of end of post-inode data area */
    438 	int i;			/* Generic loop index */
    439 	int n;			/* Generic count */
    440 
    441 	cg = cgs[cgn];
    442 	/* Place the data areas */
    443 	base = cgbase(newsb, cgn);
    444 	dlow = cgsblock(newsb, cgn) - base;
    445 	dhigh = cgdmin(newsb, cgn) - base;
    446 	dmax = newsb->fs_size - base;
    447 	if (dmax > newsb->fs_fpg)
    448 		dmax = newsb->fs_fpg;
    449 	/*
    450          * Clear out the cg - assumes all-0-bytes is the correct way
    451          * to initialize fields we don't otherwise touch, which is
    452          * perhaps not the right thing to do, but it's what fsck and
    453          * mkfs do.
    454          */
    455 	bzero(cg, newsb->fs_cgsize);
    456 	cg->cg_old_time = newsb->fs_time;
    457 	if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
    458 		cg->cg_time = newsb->fs_time;
    459 	cg->cg_magic = CG_MAGIC;
    460 	cg->cg_cgx = cgn;
    461 	cg->cg_old_ncyl = newsb->fs_old_cpg;
    462 	/* Update the cg_old_ncyl value for the last cylinder. */
    463 	if (cgn == newsb->fs_ncg - 1) {
    464 		if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
    465 			cg->cg_old_ncyl = newsb->fs_old_ncyl % newsb->fs_old_cpg;
    466 	}
    467 	cg->cg_old_niblk = newsb->fs_ipg;
    468 	cg->cg_ndblk = dmax;
    469 	/* Set up the bitmap pointers.  We have to be careful to lay out the
    470 	 * cg _exactly_ the way mkfs and fsck do it, since fsck compares the
    471 	 * _entire_ cg against a recomputed cg, and whines if there is any
    472 	 * mismatch, including the bitmap offsets. */
    473 	/* XXX update this comment when fsck is fixed */
    474 	cg->cg_old_btotoff = &cg->cg_space[0] - (unsigned char *) cg;
    475 	cg->cg_old_boff = cg->cg_old_btotoff
    476 	    + (newsb->fs_old_cpg * sizeof(int32_t));
    477 	cg->cg_iusedoff = cg->cg_old_boff +
    478 	    (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
    479 	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
    480 	if (newsb->fs_contigsumsize > 0) {
    481 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
    482 		cg->cg_clustersumoff = cg->cg_freeoff +
    483 		    howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb),
    484 		    NBBY) - sizeof(int32_t);
    485 		cg->cg_clustersumoff =
    486 		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
    487 		cg->cg_clusteroff = cg->cg_clustersumoff +
    488 		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
    489 		cg->cg_nextfreeoff = cg->cg_clusteroff +
    490 		    howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPB(newsb),
    491 		    NBBY);
    492 		n = dlow / newsb->fs_frag;
    493 		if (n > 0) {
    494 			set_bits(cg_clustersfree(cg, 0), 0, n);
    495 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    496 			    newsb->fs_contigsumsize : n]++;
    497 		}
    498 	} else {
    499 		cg->cg_nextfreeoff = cg->cg_freeoff +
    500 		    howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb),
    501 		    NBBY);
    502 	}
    503 	/* Mark the data areas as free; everything else is marked busy by the
    504 	 * bzero up at the top. */
    505 	set_bits(cg_blksfree(cg, 0), 0, dlow);
    506 	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
    507 	/* Initialize summary info */
    508 	cg->cg_cs.cs_ndir = 0;
    509 	cg->cg_cs.cs_nifree = newsb->fs_ipg;
    510 	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
    511 	cg->cg_cs.cs_nffree = 0;
    512 
    513 	/* This is the simplest way of doing this; we perhaps could compute
    514 	 * the correct cg_blktot()[] and cg_blks()[] values other ways, but it
    515 	 * would be complicated and hardly seems worth the effort.  (The
    516 	 * reason there isn't frag-at-beginning and frag-at-end code here,
    517 	 * like the code below for the post-inode data area, is that the
    518 	 * pre-sb data area always starts at 0, and thus is block-aligned, and
    519 	 * always ends at the sb, which is block-aligned.) */
    520 	for (i = 0; i < dlow; i += newsb->fs_frag) {
    521 		old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++;
    522 		old_cg_blks(newsb, cg,
    523 		    old_cbtocylno(newsb, i), 0)[old_cbtorpos(newsb, i)]++;
    524 	}
    525 	/* Deal with a partial block at the beginning of the post-inode area.
    526 	 * I'm not convinced this can happen - I think the inodes are always
    527 	 * block-aligned and always an integral number of blocks - but it's
    528 	 * cheap to do the right thing just in case. */
    529 	if (dhigh % newsb->fs_frag) {
    530 		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
    531 		cg->cg_frsum[n]++;
    532 		cg->cg_cs.cs_nffree += n;
    533 		dhigh += n;
    534 	}
    535 	n = (dmax - dhigh) / newsb->fs_frag;
    536 	/* We have n full-size blocks in the post-inode data area. */
    537 	if (n > 0) {
    538 		cg->cg_cs.cs_nbfree += n;
    539 		if (newsb->fs_contigsumsize > 0) {
    540 			i = dhigh / newsb->fs_frag;
    541 			set_bits(cg_clustersfree(cg, 0), i, n);
    542 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    543 			    newsb->fs_contigsumsize : n]++;
    544 		}
    545 		for (i = n; i > 0; i--) {
    546 			old_cg_blktot(cg, 0)[old_cbtocylno(newsb, dhigh)]++;
    547 			old_cg_blks(newsb, cg,
    548 			    old_cbtocylno(newsb, dhigh), 0)[old_cbtorpos(newsb,
    549 				dhigh)]++;
    550 			dhigh += newsb->fs_frag;
    551 		}
    552 	}
    553 	/* Deal with any leftover frag at the end of the cg. */
    554 	i = dmax - dhigh;
    555 	if (i) {
    556 		cg->cg_frsum[i]++;
    557 		cg->cg_cs.cs_nffree += i;
    558 	}
    559 	/* Update the csum info. */
    560 	csums[cgn] = cg->cg_cs;
    561 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
    562 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
    563 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
    564 	/* Write out the cleared inodes. */
    565 	writeat(fsbtodb(newsb, cgimin(newsb, cgn)), zinodes,
    566 	    newsb->fs_ipg * sizeof(struct ufs1_dinode));
    567 	/* Dirty the cg. */
    568 	cgflags[cgn] |= CGF_DIRTY;
    569 }
    570 /*
    571  * Find free space, at least nfrags consecutive frags of it.  Pays no
    572  *  attention to block boundaries, but refuses to straddle cg
    573  *  boundaries, even if the disk blocks involved are in fact
    574  *  consecutive.  Return value is the frag number of the first frag of
    575  *  the block, or -1 if no space was found.  Uses newsb for sb values,
    576  *  and assumes the cgs[] structures correctly describe the area to be
    577  *  searched.
    578  *
    579  * XXX is there a bug lurking in the ignoring of block boundaries by
    580  *  the routine used by fragmove() in evict_data()?  Can an end-of-file
    581  *  frag legally straddle a block boundary?  If not, this should be
    582  *  cloned and fixed to stop at block boundaries for that use.  The
    583  *  current one may still be needed for csum info motion, in case that
    584  *  takes up more than a whole block (is the csum info allowed to begin
    585  *  partway through a block and continue into the following block?).
    586  *
    587  * If we wrap off the end of the filesystem back to the beginning, we
    588  *  can end up searching the end of the filesystem twice.  I ignore
    589  *  this inefficiency, since if that happens we're going to croak with
    590  *  a no-space error anyway, so it happens at most once.
    591  */
    592 static int
    593 find_freespace(unsigned int nfrags)
    594 {
    595 	static int hand = 0;	/* hand rotates through all frags in the fs */
    596 	int cgsize;		/* size of the cg hand currently points into */
    597 	int cgn;		/* number of cg hand currently points into */
    598 	int fwc;		/* frag-within-cg number of frag hand points
    599 				 * to */
    600 	int run;		/* length of run of free frags seen so far */
    601 	int secondpass;		/* have we wrapped from end of fs to
    602 				 * beginning? */
    603 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    604 
    605 	cgn = dtog(newsb, hand);
    606 	fwc = dtogd(newsb, hand);
    607 	secondpass = (hand == 0);
    608 	run = 0;
    609 	bits = cg_blksfree(cgs[cgn], 0);
    610 	cgsize = cgs[cgn]->cg_ndblk;
    611 	while (1) {
    612 		if (bit_is_set(bits, fwc)) {
    613 			run++;
    614 			if (run >= nfrags)
    615 				return (hand + 1 - run);
    616 		} else {
    617 			run = 0;
    618 		}
    619 		hand++;
    620 		fwc++;
    621 		if (fwc >= cgsize) {
    622 			fwc = 0;
    623 			cgn++;
    624 			if (cgn >= newsb->fs_ncg) {
    625 				hand = 0;
    626 				if (secondpass)
    627 					return (-1);
    628 				secondpass = 1;
    629 				cgn = 0;
    630 			}
    631 			bits = cg_blksfree(cgs[cgn], 0);
    632 			cgsize = cgs[cgn]->cg_ndblk;
    633 			run = 0;
    634 		}
    635 	}
    636 }
    637 /*
    638  * Find a free block of disk space.  Finds an entire block of frags,
    639  *  all of which are free.  Return value is the frag number of the
    640  *  first frag of the block, or -1 if no space was found.  Uses newsb
    641  *  for sb values, and assumes the cgs[] structures correctly describe
    642  *  the area to be searched.
    643  *
    644  * See find_freespace(), above, for remarks about hand wrapping around.
    645  */
    646 static int
    647 find_freeblock(void)
    648 {
    649 	static int hand = 0;	/* hand rotates through all frags in fs */
    650 	int cgn;		/* cg number of cg hand points into */
    651 	int fwc;		/* frag-within-cg number of frag hand points
    652 				 * to */
    653 	int cgsize;		/* size of cg hand points into */
    654 	int secondpass;		/* have we wrapped from end to beginning? */
    655 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    656 
    657 	cgn = dtog(newsb, hand);
    658 	fwc = dtogd(newsb, hand);
    659 	secondpass = (hand == 0);
    660 	bits = cg_blksfree(cgs[cgn], 0);
    661 	cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
    662 	while (1) {
    663 		if (blk_is_set(bits, fwc, newsb->fs_frag))
    664 			return (hand);
    665 		fwc += newsb->fs_frag;
    666 		hand += newsb->fs_frag;
    667 		if (fwc >= cgsize) {
    668 			fwc = 0;
    669 			cgn++;
    670 			if (cgn >= newsb->fs_ncg) {
    671 				hand = 0;
    672 				if (secondpass)
    673 					return (-1);
    674 				secondpass = 1;
    675 				cgn = 0;
    676 			}
    677 			bits = cg_blksfree(cgs[cgn], 0);
    678 			cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
    679 		}
    680 	}
    681 }
    682 /*
    683  * Find a free inode, returning its inumber or -1 if none was found.
    684  *  Uses newsb for sb values, and assumes the cgs[] structures
    685  *  correctly describe the area to be searched.
    686  *
    687  * See find_freespace(), above, for remarks about hand wrapping around.
    688  */
    689 static int
    690 find_freeinode(void)
    691 {
    692 	static int hand = 0;	/* hand rotates through all inodes in fs */
    693 	int cgn;		/* cg number of cg hand points into */
    694 	int iwc;		/* inode-within-cg number of inode hand points
    695 				 * to */
    696 	int secondpass;		/* have we wrapped from end to beginning? */
    697 	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */
    698 
    699 	cgn = hand / newsb->fs_ipg;
    700 	iwc = hand % newsb->fs_ipg;
    701 	secondpass = (hand == 0);
    702 	bits = cg_inosused(cgs[cgn], 0);
    703 	while (1) {
    704 		if (bit_is_clr(bits, iwc))
    705 			return (hand);
    706 		hand++;
    707 		iwc++;
    708 		if (iwc >= newsb->fs_ipg) {
    709 			iwc = 0;
    710 			cgn++;
    711 			if (cgn >= newsb->fs_ncg) {
    712 				hand = 0;
    713 				if (secondpass)
    714 					return (-1);
    715 				secondpass = 1;
    716 				cgn = 0;
    717 			}
    718 			bits = cg_inosused(cgs[cgn], 0);
    719 		}
    720 	}
    721 }
    722 /*
    723  * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
    724  *  for the appropriate cg, and marks the cg as dirty.
    725  */
    726 static void
    727 free_frag(int fno)
    728 {
    729 	int cgn;
    730 
    731 	cgn = dtog(newsb, fno);
    732 	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    733 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    734 }
    735 /*
    736  * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
    737  *  for the appropriate cg, and marks the cg as dirty.
    738  */
    739 static void
    740 alloc_frag(int fno)
    741 {
    742 	int cgn;
    743 
    744 	cgn = dtog(newsb, fno);
    745 	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    746 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    747 }
    748 /*
    749  * Fix up the csum array.  If shrinking, this involves freeing zero or
    750  *  more frags; if growing, it involves allocating them, or if the
    751  *  frags being grown into aren't free, finding space elsewhere for the
    752  *  csum info.  (If the number of occupied frags doesn't change,
    753  *  nothing happens here.)
    754  */
    755 static void
    756 csum_fixup(void)
    757 {
    758 	int nold;		/* # frags in old csum info */
    759 	int ntot;		/* # frags in new csum info */
    760 	int nnew;		/* ntot-nold */
    761 	int newloc;		/* new location for csum info, if necessary */
    762 	int i;			/* generic loop index */
    763 	int j;			/* generic loop index */
    764 	int f;			/* "from" frag number, if moving */
    765 	int t;			/* "to" frag number, if moving */
    766 	int cgn;		/* cg number, used when shrinking */
    767 
    768 	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
    769 	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
    770 	nnew = ntot - nold;
    771 	/* First, if there's no change in frag counts, it's easy. */
    772 	if (nnew == 0)
    773 		return;
    774 	/* Next, if we're shrinking, it's almost as easy.  Just free up any
    775 	 * frags in the old area we no longer need. */
    776 	if (nnew < 0) {
    777 		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
    778 		    j < 0;
    779 		    i--, j++) {
    780 			free_frag(i);
    781 		}
    782 		return;
    783 	}
    784 	/* We must be growing.  Check to see that the new csum area fits
    785 	 * within the filesystem.  I think this can never happen, since for
    786 	 * the csum area to grow, we must be adding at least one cg, so the
    787 	 * old csum area can't be this close to the end of the new filesystem.
    788 	 * But it's a cheap check. */
    789 	/* XXX what if csum info is at end of cg and grows into next cg, what
    790 	 * if it spills over onto the next cg's backup superblock?  Can this
    791 	 * happen? */
    792 	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
    793 		/* Okay, it fits - now,  see if the space we want is free. */
    794 		for ((i = newsb->fs_csaddr + nold), (j = nnew);
    795 		    j > 0;
    796 		    i++, j--) {
    797 			cgn = dtog(newsb, i);
    798 			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
    799 				dtogd(newsb, i)))
    800 				break;
    801 		}
    802 		if (j <= 0) {
    803 			/* Win win - all the frags we want are free. Allocate
    804 			 * 'em and we're all done.  */
    805 			for ((i = newsb->fs_csaddr + ntot - nnew), (j = nnew); j > 0; i++, j--) {
    806 				alloc_frag(i);
    807 			}
    808 			return;
    809 		}
    810 	}
    811 	/* We have to move the csum info, sigh.  Look for new space, free old
    812 	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
    813 	 * on disk at this point; the csum info will be written to the
    814 	 * then-current fs_csaddr as part of the final flush. */
    815 	newloc = find_freespace(ntot);
    816 	if (newloc < 0) {
    817 		printf("Sorry, no space available for new csums\n");
    818 		exit(EXIT_FAILURE);
    819 	}
    820 	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
    821 		if (i < nold) {
    822 			free_frag(f);
    823 		}
    824 		alloc_frag(t);
    825 	}
    826 	newsb->fs_csaddr = newloc;
    827 }
    828 /*
    829  * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
    830  *  data blocks in that cg to the total.
    831  */
    832 static void
    833 recompute_fs_dsize(void)
    834 {
    835 	int i;
    836 
    837 	newsb->fs_dsize = 0;
    838 	for (i = 0; i < newsb->fs_ncg; i++) {
    839 		int dlow;	/* size of before-sb data area */
    840 		int dhigh;	/* offset of post-inode data area */
    841 		int dmax;	/* total size of cg */
    842 		int base;	/* base of cg, since cgsblock() etc add it in */
    843 		base = cgbase(newsb, i);
    844 		dlow = cgsblock(newsb, i) - base;
    845 		dhigh = cgdmin(newsb, i) - base;
    846 		dmax = newsb->fs_size - base;
    847 		if (dmax > newsb->fs_fpg)
    848 			dmax = newsb->fs_fpg;
    849 		newsb->fs_dsize += dlow + dmax - dhigh;
    850 	}
    851 	/* Space in cg 0 before cgsblock is boot area, not free space! */
    852 	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
    853 	/* And of course the csum info takes up space. */
    854 	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
    855 }
    856 /*
    857  * Return the current time.  We call this and assign, rather than
    858  *  calling time() directly, as insulation against OSes where fs_time
    859  *  is not a time_t.
    860  */
    861 static time_t
    862 timestamp(void)
    863 {
    864 	time_t t;
    865 
    866 	time(&t);
    867 	return (t);
    868 }
    869 /*
    870  * Grow the filesystem.
    871  */
    872 static void
    873 grow(void)
    874 {
    875 	int i;
    876 
    877 	/* Update the timestamp. */
    878 	newsb->fs_time = timestamp();
    879 	/* Allocate and clear the new-inode area, in case we add any cgs. */
    880 	zinodes = alloconce(newsb->fs_ipg * sizeof(struct ufs1_dinode),
    881                             "zeroed inodes");
    882 	bzero(zinodes, newsb->fs_ipg * sizeof(struct ufs1_dinode));
    883 	/* Update the size. */
    884 	newsb->fs_size = dbtofsb(newsb, newsize);
    885 	/* Did we actually not grow?  (This can happen if newsize is less than
    886 	 * a frag larger than the old size - unlikely, but no excuse to
    887 	 * misbehave if it happens.) */
    888 	if (newsb->fs_size == oldsb->fs_size) {
    889 		printf("New fs size %"PRIu64" = odl fs size %"PRIu64
    890 		    ", not growing.\n", newsb->fs_size, oldsb->fs_size);
    891 		return;
    892 	}
    893 	/* Check that the new last sector (frag, actually) is writable.  Since
    894 	 * it's at least one frag larger than it used to be, we know we aren't
    895 	 * overwriting anything important by this.  (The choice of sbbuf as
    896 	 * what to write is irrelevant; it's just something handy that's known
    897 	 * to be at least one frag in size.) */
    898 	writeat(fsbtodb(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
    899 	/* Update fs_old_ncyl and fs_ncg. */
    900 	newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
    901 	    newsb->fs_old_spc);
    902 	newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
    903 	/* Does the last cg end before the end of its inode area? There is no
    904 	 * reason why this couldn't be handled, but it would complicate a lot
    905 	 * of code (in all filesystem code - fsck, kernel, etc) because of the
    906 	 * potential partial inode area, and the gain in space would be
    907 	 * minimal, at most the pre-sb data area. */
    908 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
    909 		newsb->fs_ncg--;
    910 		newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
    911 		newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc)
    912 		    / NSPF(newsb);
    913 		printf("Warning: last cylinder group is too small;\n");
    914 		printf("    dropping it.  New size = %lu.\n",
    915 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
    916 	}
    917 	/* Find out how big the csum area is, and realloc csums if bigger. */
    918 	newsb->fs_cssize = fragroundup(newsb,
    919 	    newsb->fs_ncg * sizeof(struct csum));
    920 	if (newsb->fs_cssize > oldsb->fs_cssize)
    921 		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
    922 	/* If we're adding any cgs, realloc structures and set up the new cgs. */
    923 	if (newsb->fs_ncg > oldsb->fs_ncg) {
    924 		char *cgp;
    925 		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(struct cg *),
    926                                 "cg pointers");
    927 		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
    928 		bzero(cgflags + oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
    929 		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
    930                                 "cgs");
    931 		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
    932 			cgs[i] = (struct cg *) cgp;
    933 			initcg(i);
    934 			cgp += cgblksz;
    935 		}
    936 		cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
    937 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
    938 	}
    939 	/* If the old fs ended partway through a cg, we have to update the old
    940 	 * last cg (though possibly not to a full cg!). */
    941 	if (oldsb->fs_size % oldsb->fs_fpg) {
    942 		struct cg *cg;
    943 		int newcgsize;
    944 		int prevcgtop;
    945 		int oldcgsize;
    946 		cg = cgs[oldsb->fs_ncg - 1];
    947 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
    948 		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
    949 		newcgsize = newsb->fs_size - prevcgtop;
    950 		if (newcgsize > newsb->fs_fpg)
    951 			newcgsize = newsb->fs_fpg;
    952 		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
    953 		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
    954 		cg->cg_old_ncyl = oldsb->fs_old_cpg;
    955 		cg->cg_ndblk = newcgsize;
    956 	}
    957 	/* Fix up the csum info, if necessary. */
    958 	csum_fixup();
    959 	/* Make fs_dsize match the new reality. */
    960 	recompute_fs_dsize();
    961 }
    962 /*
    963  * Call (*fn)() for each inode, passing the inode and its inumber.  The
    964  *  number of cylinder groups is pased in, so this can be used to map
    965  *  over either the old or the new filesystem's set of inodes.
    966  */
    967 static void
    968 map_inodes(void (*fn) (struct ufs1_dinode * di, unsigned int, void *arg),
    969 	   int ncg, void *cbarg) {
    970 	int i;
    971 	int ni;
    972 
    973 	ni = oldsb->fs_ipg * ncg;
    974 	for (i = 0; i < ni; i++)
    975 		(*fn) (inodes + i, i, cbarg);
    976 }
    977 /* Values for the third argument to the map function for
    978  * map_inode_data_blocks.  MDB_DATA indicates the block is contains
    979  * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
    980  * indirect block.  The MDB_INDIR_PRE call is made before the indirect
    981  * block pointers are followed and the pointed-to blocks scanned,
    982  * MDB_INDIR_POST after.
    983  */
    984 #define MDB_DATA       1
    985 #define MDB_INDIR_PRE  2
    986 #define MDB_INDIR_POST 3
    987 
    988 typedef void (*mark_callback_t) (unsigned int blocknum, unsigned int nfrags,
    989 				 unsigned int blksize, int opcode);
    990 
    991 /* Helper function - handles a data block.  Calls the callback
    992  * function and returns number of bytes occupied in file (actually,
    993  * rounded up to a frag boundary).  The name is historical.  */
    994 static int
    995 markblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o)
    996 {
    997 	int sz;
    998 	int nb;
    999 	if (o >= di->di_size)
   1000 		return (0);
   1001 	sz = dblksize(newsb, di, lblkno(newsb, o));
   1002 	nb = (sz > di->di_size - o) ? di->di_size - o : sz;
   1003 	if (bn)
   1004 		(*fn) (bn, numfrags(newsb, sz), nb, MDB_DATA);
   1005 	return (sz);
   1006 }
   1007 /* Helper function - handles an indirect block.  Makes the
   1008  * MDB_INDIR_PRE callback for the indirect block, loops over the
   1009  * pointers and recurses, and makes the MDB_INDIR_POST callback.
   1010  * Returns the number of bytes occupied in file, as does markblk().
   1011  * For the sake of update_for_data_move(), we read the indirect block
   1012  * _after_ making the _PRE callback.  The name is historical.  */
   1013 static int
   1014 markiblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o, int lev)
   1015 {
   1016 	int i;
   1017 	int j;
   1018 	int tot;
   1019 	static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
   1020 	static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
   1021 	static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
   1022 	static int32_t *indirblks[3] = {
   1023 		&indirblk1[0], &indirblk2[0], &indirblk3[0]
   1024 	};
   1025 	if (lev < 0)
   1026 		return (markblk(fn, di, bn, o));
   1027 	if (bn == 0) {
   1028 		for (i = newsb->fs_bsize;
   1029 		    lev >= 0;
   1030 		    i *= NINDIR(newsb), lev--);
   1031 		return (i);
   1032 	}
   1033 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
   1034 	readat(fsbtodb(newsb, bn), indirblks[lev], newsb->fs_bsize);
   1035 	tot = 0;
   1036 	for (i = 0; i < NINDIR(newsb); i++) {
   1037 		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
   1038 		if (j == 0)
   1039 			break;
   1040 		o += j;
   1041 		tot += j;
   1042 	}
   1043 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
   1044 	return (tot);
   1045 }
   1046 
   1047 
   1048 /*
   1049  * Call (*fn)() for each data block for an inode.  This routine assumes
   1050  *  the inode is known to be of a type that has data blocks (file,
   1051  *  directory, or non-fast symlink).  The called function is:
   1052  *
   1053  * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
   1054  *
   1055  *  where blkno is the frag number, nf is the number of frags starting
   1056  *  at blkno (always <= fs_frag), nb is the number of bytes that belong
   1057  *  to the file (usually nf*fs_frag, often less for the last block/frag
   1058  *  of a file).
   1059  */
   1060 static void
   1061 map_inode_data_blocks(struct ufs1_dinode * di, mark_callback_t fn)
   1062 {
   1063 	off_t o;		/* offset within  inode */
   1064 	int inc;		/* increment for o - maybe should be off_t? */
   1065 	int b;			/* index within di_db[] and di_ib[] arrays */
   1066 
   1067 	/* Scan the direct blocks... */
   1068 	o = 0;
   1069 	for (b = 0; b < NDADDR; b++) {
   1070 		inc = markblk(fn, di, di->di_db[b], o);
   1071 		if (inc == 0)
   1072 			break;
   1073 		o += inc;
   1074 	}
   1075 	/* ...and the indirect blocks. */
   1076 	if (inc) {
   1077 		for (b = 0; b < NIADDR; b++) {
   1078 			inc = markiblk(fn, di, di->di_ib[b], o, b);
   1079 			if (inc == 0)
   1080 				return;
   1081 			o += inc;
   1082 		}
   1083 	}
   1084 }
   1085 
   1086 static void
   1087 dblk_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
   1088 {
   1089 	mark_callback_t fn;
   1090 	fn = (mark_callback_t) arg;
   1091 	switch (di->di_mode & IFMT) {
   1092 	case IFLNK:
   1093 		if (di->di_size > newsb->fs_maxsymlinklen) {
   1094 	case IFDIR:
   1095 	case IFREG:
   1096 			map_inode_data_blocks(di, fn);
   1097 		}
   1098 		break;
   1099 	}
   1100 }
   1101 /*
   1102  * Make a callback call, a la map_inode_data_blocks, for all data
   1103  *  blocks in the entire fs.  This is used only once, in
   1104  *  update_for_data_move, but it's out at top level because the complex
   1105  *  downward-funarg nesting that would otherwise result seems to give
   1106  *  gcc gastric distress.
   1107  */
   1108 static void
   1109 map_data_blocks(mark_callback_t fn, int ncg)
   1110 {
   1111 	map_inodes(&dblk_callback, ncg, (void *) fn);
   1112 }
   1113 /*
   1114  * Initialize the blkmove array.
   1115  */
   1116 static void
   1117 blkmove_init(void)
   1118 {
   1119 	int i;
   1120 
   1121 	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
   1122 	for (i = 0; i < oldsb->fs_size; i++)
   1123 		blkmove[i] = i;
   1124 }
   1125 /*
   1126  * Load the inodes off disk.  Allocates the structures and initializes
   1127  *  them - the inodes from disk, the flags to zero.
   1128  */
   1129 static void
   1130 loadinodes(void)
   1131 {
   1132 	int cg;
   1133 	struct ufs1_dinode *iptr;
   1134 
   1135 	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
   1136 	    sizeof(struct ufs1_dinode), "inodes");
   1137 	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
   1138 	bzero(iflags, oldsb->fs_ncg * oldsb->fs_ipg);
   1139 	iptr = inodes;
   1140 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
   1141 		readat(fsbtodb(oldsb, cgimin(oldsb, cg)), iptr,
   1142 		    oldsb->fs_ipg * sizeof(struct ufs1_dinode));
   1143 		iptr += oldsb->fs_ipg;
   1144 	}
   1145 }
   1146 /*
   1147  * Report a filesystem-too-full problem.
   1148  */
   1149 static void
   1150 toofull(void)
   1151 {
   1152 	printf("Sorry, would run out of data blocks\n");
   1153 	exit(EXIT_FAILURE);
   1154 }
   1155 /*
   1156  * Record a desire to move "n" frags from "from" to "to".
   1157  */
   1158 static void
   1159 mark_move(unsigned int from, unsigned int to, unsigned int n)
   1160 {
   1161 	for (; n > 0; n--)
   1162 		blkmove[from++] = to++;
   1163 }
   1164 /* Helper function - evict n frags, starting with start (cg-relative).
   1165  * The free bitmap is scanned, unallocated frags are ignored, and
   1166  * each block of consecutive allocated frags is moved as a unit.
   1167  */
   1168 static void
   1169 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
   1170 {
   1171 	int i;
   1172 	int run;
   1173 	run = 0;
   1174 	for (i = 0; i <= n; i++) {
   1175 		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
   1176 			run++;
   1177 		} else {
   1178 			if (run > 0) {
   1179 				int off;
   1180 				off = find_freespace(run);
   1181 				if (off < 0)
   1182 					toofull();
   1183 				mark_move(base + start + i - run, off, run);
   1184 				set_bits(cg_blksfree(cg, 0), start + i - run,
   1185 				    run);
   1186 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1187 				    dtogd(oldsb, off), run);
   1188 			}
   1189 			run = 0;
   1190 		}
   1191 	}
   1192 }
   1193 /*
   1194  * Evict all data blocks from the given cg, starting at minfrag (based
   1195  *  at the beginning of the cg), for length nfrag.  The eviction is
   1196  *  assumed to be entirely data-area; this should not be called with a
   1197  *  range overlapping the metadata structures in the cg.  It also
   1198  *  assumes minfrag points into the given cg; it will misbehave if this
   1199  *  is not true.
   1200  *
   1201  * See the comment header on find_freespace() for one possible bug
   1202  *  lurking here.
   1203  */
   1204 static void
   1205 evict_data(struct cg * cg, unsigned int minfrag, unsigned int nfrag)
   1206 {
   1207 	int base;		/* base of cg (in frags from beginning of fs) */
   1208 
   1209 
   1210 	base = cgbase(oldsb, cg->cg_cgx);
   1211 	/* Does the boundary fall in the middle of a block?  To avoid breaking
   1212 	 * between frags allocated as consecutive, we always evict the whole
   1213 	 * block in this case, though one could argue we should check to see
   1214 	 * if the frag before or after the break is unallocated. */
   1215 	if (minfrag % oldsb->fs_frag) {
   1216 		int n;
   1217 		n = minfrag % oldsb->fs_frag;
   1218 		minfrag -= n;
   1219 		nfrag += n;
   1220 	}
   1221 	/* Do whole blocks.  If a block is wholly free, skip it; if wholly
   1222 	 * allocated, move it in toto.  If neither, call fragmove() to move
   1223 	 * the frags to new locations. */
   1224 	while (nfrag >= oldsb->fs_frag) {
   1225 		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
   1226 			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
   1227 				oldsb->fs_frag)) {
   1228 				int off;
   1229 				off = find_freeblock();
   1230 				if (off < 0)
   1231 					toofull();
   1232 				mark_move(base + minfrag, off, oldsb->fs_frag);
   1233 				set_bits(cg_blksfree(cg, 0), minfrag,
   1234 				    oldsb->fs_frag);
   1235 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1236 				    dtogd(oldsb, off), oldsb->fs_frag);
   1237 			} else {
   1238 				fragmove(cg, base, minfrag, oldsb->fs_frag);
   1239 			}
   1240 		}
   1241 		minfrag += oldsb->fs_frag;
   1242 		nfrag -= oldsb->fs_frag;
   1243 	}
   1244 	/* Clean up any sub-block amount left over. */
   1245 	if (nfrag) {
   1246 		fragmove(cg, base, minfrag, nfrag);
   1247 	}
   1248 }
   1249 /*
   1250  * Move all data blocks according to blkmove.  We have to be careful,
   1251  *  because we may be updating indirect blocks that will themselves be
   1252  *  getting moved, or inode int32_t arrays that point to indirect
   1253  *  blocks that will be moved.  We call this before
   1254  *  update_for_data_move, and update_for_data_move does inodes first,
   1255  *  then indirect blocks in preorder, so as to make sure that the
   1256  *  filesystem is self-consistent at all points, for better crash
   1257  *  tolerance.  (We can get away with this only because all the writes
   1258  *  done by perform_data_move() are writing into space that's not used
   1259  *  by the old filesystem.)  If we crash, some things may point to the
   1260  *  old data and some to the new, but both copies are the same.  The
   1261  *  only wrong things should be csum info and free bitmaps, which fsck
   1262  *  is entirely capable of cleaning up.
   1263  *
   1264  * Since blkmove_init() initializes all blocks to move to their current
   1265  *  locations, we can have two blocks marked as wanting to move to the
   1266  *  same location, but only two and only when one of them is the one
   1267  *  that was already there.  So if blkmove[i]==i, we ignore that entry
   1268  *  entirely - for unallocated blocks, we don't want it (and may be
   1269  *  putting something else there), and for allocated blocks, we don't
   1270  *  want to copy it anywhere.
   1271  */
   1272 static void
   1273 perform_data_move(void)
   1274 {
   1275 	int i;
   1276 	int run;
   1277 	int maxrun;
   1278 	char buf[65536];
   1279 
   1280 	maxrun = sizeof(buf) / newsb->fs_fsize;
   1281 	run = 0;
   1282 	for (i = 0; i < oldsb->fs_size; i++) {
   1283 		if ((blkmove[i] == i) ||
   1284 		    (run >= maxrun) ||
   1285 		    ((run > 0) &&
   1286 			(blkmove[i] != blkmove[i - 1] + 1))) {
   1287 			if (run > 0) {
   1288 				readat(fsbtodb(oldsb, i - run), &buf[0],
   1289 				    run << oldsb->fs_fshift);
   1290 				writeat(fsbtodb(oldsb, blkmove[i - run]),
   1291 				    &buf[0], run << oldsb->fs_fshift);
   1292 			}
   1293 			run = 0;
   1294 		}
   1295 		if (blkmove[i] != i)
   1296 			run++;
   1297 	}
   1298 	if (run > 0) {
   1299 		readat(fsbtodb(oldsb, i - run), &buf[0],
   1300 		    run << oldsb->fs_fshift);
   1301 		writeat(fsbtodb(oldsb, blkmove[i - run]), &buf[0],
   1302 		    run << oldsb->fs_fshift);
   1303 	}
   1304 }
   1305 /*
   1306  * This modifies an array of int32_t, according to blkmove.  This is
   1307  *  used to update inode block arrays and indirect blocks to point to
   1308  *  the new locations of data blocks.
   1309  *
   1310  * Return value is the number of int32_ts that needed updating; in
   1311  *  particular, the return value is zero iff nothing was modified.
   1312  */
   1313 static int
   1314 movemap_blocks(int32_t * vec, int n)
   1315 {
   1316 	int rv;
   1317 
   1318 	rv = 0;
   1319 	for (; n > 0; n--, vec++) {
   1320 		if (blkmove[*vec] != *vec) {
   1321 			*vec = blkmove[*vec];
   1322 			rv++;
   1323 		}
   1324 	}
   1325 	return (rv);
   1326 }
   1327 static void
   1328 moveblocks_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
   1329 {
   1330 	switch (di->di_mode & IFMT) {
   1331 	case IFLNK:
   1332 		if (di->di_size > oldsb->fs_maxsymlinklen) {
   1333 	case IFDIR:
   1334 	case IFREG:
   1335 			/* don't || these two calls; we need their
   1336 			 * side-effects */
   1337 			if (movemap_blocks(&di->di_db[0], NDADDR)) {
   1338 				iflags[inum] |= IF_DIRTY;
   1339 			}
   1340 			if (movemap_blocks(&di->di_ib[0], NIADDR)) {
   1341 				iflags[inum] |= IF_DIRTY;
   1342 			}
   1343 		}
   1344 		break;
   1345 	}
   1346 }
   1347 
   1348 static void
   1349 moveindir_callback(unsigned int off, unsigned int nfrag, unsigned int nbytes,
   1350 		   int kind)
   1351 {
   1352 	if (kind == MDB_INDIR_PRE) {
   1353 		int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
   1354 		readat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
   1355 		if (movemap_blocks(&blk[0], NINDIR(oldsb))) {
   1356 			writeat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
   1357 		}
   1358 	}
   1359 }
   1360 /*
   1361  * Update all inode data arrays and indirect blocks to point to the new
   1362  *  locations of data blocks.  See the comment header on
   1363  *  perform_data_move for some ordering considerations.
   1364  */
   1365 static void
   1366 update_for_data_move(void)
   1367 {
   1368 	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
   1369 	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
   1370 }
   1371 /*
   1372  * Initialize the inomove array.
   1373  */
   1374 static void
   1375 inomove_init(void)
   1376 {
   1377 	int i;
   1378 
   1379 	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
   1380                             "inomove");
   1381 	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
   1382 		inomove[i] = i;
   1383 }
   1384 /*
   1385  * Flush all dirtied inodes to disk.  Scans the inode flags array; for
   1386  *  each dirty inode, it sets the BDIRTY bit on the first inode in the
   1387  *  block containing the dirty inode.  Then it scans by blocks, and for
   1388  *  each marked block, writes it.
   1389  */
   1390 static void
   1391 flush_inodes(void)
   1392 {
   1393 	int i;
   1394 	int ni;
   1395 	int m;
   1396 
   1397 	ni = newsb->fs_ipg * newsb->fs_ncg;
   1398 	m = INOPB(newsb) - 1;
   1399 	for (i = 0; i < ni; i++) {
   1400 		if (iflags[i] & IF_DIRTY) {
   1401 			iflags[i & ~m] |= IF_BDIRTY;
   1402 		}
   1403 	}
   1404 	m++;
   1405 	for (i = 0; i < ni; i += m) {
   1406 		if (iflags[i] & IF_BDIRTY) {
   1407 			writeat(fsbtodb(newsb, ino_to_fsba(newsb, i)),
   1408 			    inodes + i, newsb->fs_bsize);
   1409 		}
   1410 	}
   1411 }
   1412 /*
   1413  * Evict all inodes from the specified cg.  shrink() already checked
   1414  *  that there were enough free inodes, so the no-free-inodes check is
   1415  *  a can't-happen.  If it does trip, the filesystem should be in good
   1416  *  enough shape for fsck to fix; see the comment on perform_data_move
   1417  *  for the considerations in question.
   1418  */
   1419 static void
   1420 evict_inodes(struct cg * cg)
   1421 {
   1422 	int inum;
   1423 	int i;
   1424 	int fi;
   1425 
   1426 	inum = newsb->fs_ipg * cg->cg_cgx;
   1427 	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
   1428 		if (inodes[inum].di_mode != 0) {
   1429 			fi = find_freeinode();
   1430 			if (fi < 0) {
   1431 				printf("Sorry, inodes evaporated - "
   1432 				    "filesystem probably needs fsck\n");
   1433 				exit(EXIT_FAILURE);
   1434 			}
   1435 			inomove[inum] = fi;
   1436 			clr_bits(cg_inosused(cg, 0), i, 1);
   1437 			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
   1438 			    fi % newsb->fs_ipg, 1);
   1439 		}
   1440 	}
   1441 }
   1442 /*
   1443  * Move inodes from old locations to new.  Does not actually write
   1444  *  anything to disk; just copies in-core and sets dirty bits.
   1445  *
   1446  * We have to be careful here for reasons similar to those mentioned in
   1447  *  the comment header on perform_data_move, above: for the sake of
   1448  *  crash tolerance, we want to make sure everything is present at both
   1449  *  old and new locations before we update pointers.  So we call this
   1450  *  first, then flush_inodes() to get them out on disk, then update
   1451  *  directories to match.
   1452  */
   1453 static void
   1454 perform_inode_move(void)
   1455 {
   1456 	int i;
   1457 	int ni;
   1458 
   1459 	ni = oldsb->fs_ipg * oldsb->fs_ncg;
   1460 	for (i = 0; i < ni; i++) {
   1461 		if (inomove[i] != i) {
   1462 			inodes[inomove[i]] = inodes[i];
   1463 			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
   1464 		}
   1465 	}
   1466 }
   1467 /*
   1468  * Update the directory contained in the nb bytes at buf, to point to
   1469  *  inodes' new locations.
   1470  */
   1471 static int
   1472 update_dirents(char *buf, int nb)
   1473 {
   1474 	int rv;
   1475 #define d ((struct direct *)buf)
   1476 
   1477 	rv = 0;
   1478 	while (nb > 0) {
   1479 		if (inomove[d->d_ino] != d->d_ino) {
   1480 			rv++;
   1481 			d->d_ino = inomove[d->d_ino];
   1482 		}
   1483 		nb -= d->d_reclen;
   1484 		buf += d->d_reclen;
   1485 	}
   1486 	return (rv);
   1487 #undef d
   1488 }
   1489 /*
   1490  * Callback function for map_inode_data_blocks, for updating a
   1491  *  directory to point to new inode locations.
   1492  */
   1493 static void
   1494 update_dir_data(unsigned int bn, unsigned int size, unsigned int nb, int kind)
   1495 {
   1496 	if (kind == MDB_DATA) {
   1497 		union {
   1498 			struct direct d;
   1499 			char ch[MAXBSIZE];
   1500 		}     buf;
   1501 		readat(fsbtodb(oldsb, bn), &buf, size << oldsb->fs_fshift);
   1502 		if (update_dirents((char *) &buf, nb)) {
   1503 			writeat(fsbtodb(oldsb, bn), &buf,
   1504 			    size << oldsb->fs_fshift);
   1505 		}
   1506 	}
   1507 }
   1508 static void
   1509 dirmove_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
   1510 {
   1511 	switch (di->di_mode & IFMT) {
   1512 	case IFDIR:
   1513 		map_inode_data_blocks(di, &update_dir_data);
   1514 		break;
   1515 	}
   1516 }
   1517 /*
   1518  * Update directory entries to point to new inode locations.
   1519  */
   1520 static void
   1521 update_for_inode_move(void)
   1522 {
   1523 	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
   1524 }
   1525 /*
   1526  * Shrink the filesystem.
   1527  */
   1528 static void
   1529 shrink(void)
   1530 {
   1531 	int i;
   1532 
   1533 	/* Load the inodes off disk - we'll need 'em. */
   1534 	loadinodes();
   1535 	/* Update the timestamp. */
   1536 	newsb->fs_time = timestamp();
   1537 	/* Update the size figures. */
   1538 	newsb->fs_size = dbtofsb(newsb, newsize);
   1539 	newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
   1540 	    newsb->fs_old_spc);
   1541 	newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
   1542 	/* Does the (new) last cg end before the end of its inode area?  See
   1543 	 * the similar code in grow() for more on this. */
   1544 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
   1545 		newsb->fs_ncg--;
   1546 		newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
   1547 		newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc) /
   1548 		    NSPF(newsb);
   1549 		printf("Warning: last cylinder group is too small;\n");
   1550 		printf("    dropping it.  New size = %lu.\n",
   1551 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
   1552 	}
   1553 	/* Let's make sure we're not being shrunk into oblivion. */
   1554 	if (newsb->fs_ncg < 1) {
   1555 		printf("Size too small - filesystem would have no cylinders\n");
   1556 		exit(EXIT_FAILURE);
   1557 	}
   1558 	/* Initialize for block motion. */
   1559 	blkmove_init();
   1560 	/* Update csum size, then fix up for the new size */
   1561 	newsb->fs_cssize = fragroundup(newsb,
   1562 	    newsb->fs_ncg * sizeof(struct csum));
   1563 	csum_fixup();
   1564 	/* Evict data from any cgs being wholly eliminated */
   1565 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
   1566 		int base;
   1567 		int dlow;
   1568 		int dhigh;
   1569 		int dmax;
   1570 		base = cgbase(oldsb, i);
   1571 		dlow = cgsblock(oldsb, i) - base;
   1572 		dhigh = cgdmin(oldsb, i) - base;
   1573 		dmax = oldsb->fs_size - base;
   1574 		if (dmax > cgs[i]->cg_ndblk)
   1575 			dmax = cgs[i]->cg_ndblk;
   1576 		evict_data(cgs[i], 0, dlow);
   1577 		evict_data(cgs[i], dhigh, dmax - dhigh);
   1578 		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
   1579 		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
   1580 		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
   1581 		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
   1582 	}
   1583 	/* Update the new last cg. */
   1584 	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
   1585 	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
   1586 	/* Is the new last cg partial?  If so, evict any data from the part
   1587 	 * being shrunken away. */
   1588 	if (newsb->fs_size % newsb->fs_fpg) {
   1589 		struct cg *cg;
   1590 		int oldcgsize;
   1591 		int newcgsize;
   1592 		cg = cgs[newsb->fs_ncg - 1];
   1593 		newcgsize = newsb->fs_size % newsb->fs_fpg;
   1594 		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
   1595 		    oldsb->fs_fpg);
   1596 		if (oldcgsize > oldsb->fs_fpg)
   1597 			oldcgsize = oldsb->fs_fpg;
   1598 		evict_data(cg, newcgsize, oldcgsize - newcgsize);
   1599 		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
   1600 	}
   1601 	/* Find out whether we would run out of inodes.  (Note we haven't
   1602 	 * actually done anything to the filesystem yet; all those evict_data
   1603 	 * calls just update blkmove.) */
   1604 	{
   1605 		int slop;
   1606 		slop = 0;
   1607 		for (i = 0; i < newsb->fs_ncg; i++)
   1608 			slop += cgs[i]->cg_cs.cs_nifree;
   1609 		for (; i < oldsb->fs_ncg; i++)
   1610 			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
   1611 		if (slop < 0) {
   1612 			printf("Sorry, would run out of inodes\n");
   1613 			exit(EXIT_FAILURE);
   1614 		}
   1615 	}
   1616 	/* Copy data, then update pointers to data.  See the comment header on
   1617 	 * perform_data_move for ordering considerations. */
   1618 	perform_data_move();
   1619 	update_for_data_move();
   1620 	/* Now do inodes.  Initialize, evict, move, update - see the comment
   1621 	 * header on perform_inode_move. */
   1622 	inomove_init();
   1623 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
   1624 		evict_inodes(cgs[i]);
   1625 	perform_inode_move();
   1626 	flush_inodes();
   1627 	update_for_inode_move();
   1628 	/* Recompute all the bitmaps; most of them probably need it anyway,
   1629 	 * the rest are just paranoia and not wanting to have to bother
   1630 	 * keeping track of exactly which ones require it. */
   1631 	for (i = 0; i < newsb->fs_ncg; i++)
   1632 		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
   1633 	/* Update the cg_old_ncyl value for the last cylinder. */
   1634 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
   1635 		cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
   1636 		    newsb->fs_old_ncyl % newsb->fs_old_cpg;
   1637 	/* Make fs_dsize match the new reality. */
   1638 	recompute_fs_dsize();
   1639 }
   1640 /*
   1641  * Recompute the block totals, block cluster summaries, and rotational
   1642  *  position summaries, for a given cg (specified by number), based on
   1643  *  its free-frag bitmap (cg_blksfree()[]).
   1644  */
   1645 static void
   1646 rescan_blkmaps(int cgn)
   1647 {
   1648 	struct cg *cg;
   1649 	int f;
   1650 	int b;
   1651 	int blkfree;
   1652 	int blkrun;
   1653 	int fragrun;
   1654 	int fwb;
   1655 
   1656 	cg = cgs[cgn];
   1657 	/* Subtract off the current totals from the sb's summary info */
   1658 	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
   1659 	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
   1660 	/* Clear counters and bitmaps. */
   1661 	cg->cg_cs.cs_nffree = 0;
   1662 	cg->cg_cs.cs_nbfree = 0;
   1663 	bzero(&cg->cg_frsum[0], MAXFRAG * sizeof(cg->cg_frsum[0]));
   1664 	bzero(&old_cg_blktot(cg, 0)[0],
   1665 	    newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
   1666 	bzero(&old_cg_blks(newsb, cg, 0, 0)[0],
   1667 	    newsb->fs_old_cpg * newsb->fs_old_nrpos *
   1668 	    sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
   1669 	if (newsb->fs_contigsumsize > 0) {
   1670 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
   1671 		bzero(&cg_clustersum(cg, 0)[1],
   1672 		    newsb->fs_contigsumsize *
   1673 		    sizeof(cg_clustersum(cg, 0)[1]));
   1674 		bzero(&cg_clustersfree(cg, 0)[0],
   1675 		    howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
   1676 		    NSPB(newsb), NBBY));
   1677 	}
   1678 	/* Scan the free-frag bitmap.  Runs of free frags are kept track of
   1679 	 * with fragrun, and recorded into cg_frsum[] and cg_cs.cs_nffree; on
   1680 	 * each block boundary, entire free blocks are recorded as well. */
   1681 	blkfree = 1;
   1682 	blkrun = 0;
   1683 	fragrun = 0;
   1684 	f = 0;
   1685 	b = 0;
   1686 	fwb = 0;
   1687 	while (f < cg->cg_ndblk) {
   1688 		if (bit_is_set(cg_blksfree(cg, 0), f)) {
   1689 			fragrun++;
   1690 		} else {
   1691 			blkfree = 0;
   1692 			if (fragrun > 0) {
   1693 				cg->cg_frsum[fragrun]++;
   1694 				cg->cg_cs.cs_nffree += fragrun;
   1695 			}
   1696 			fragrun = 0;
   1697 		}
   1698 		f++;
   1699 		fwb++;
   1700 		if (fwb >= newsb->fs_frag) {
   1701 			if (blkfree) {
   1702 				cg->cg_cs.cs_nbfree++;
   1703 				if (newsb->fs_contigsumsize > 0)
   1704 					set_bits(cg_clustersfree(cg, 0), b, 1);
   1705 				old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
   1706 				    f - newsb->fs_frag)]++;
   1707 				old_cg_blks(newsb, cg,
   1708 				    old_cbtocylno(newsb, f - newsb->fs_frag),
   1709 				    0)[old_cbtorpos(newsb,
   1710 				    f - newsb->fs_frag)]++;
   1711 				blkrun++;
   1712 			} else {
   1713 				if (fragrun > 0) {
   1714 					cg->cg_frsum[fragrun]++;
   1715 					cg->cg_cs.cs_nffree += fragrun;
   1716 				}
   1717 				if (newsb->fs_contigsumsize > 0) {
   1718 					if (blkrun > 0) {
   1719 						cg_clustersum(cg, 0)[(blkrun
   1720 						    > newsb->fs_contigsumsize)
   1721 						    ? newsb->fs_contigsumsize
   1722 						    : blkrun]++;
   1723 					}
   1724 				}
   1725 				blkrun = 0;
   1726 			}
   1727 			fwb = 0;
   1728 			b++;
   1729 			blkfree = 1;
   1730 			fragrun = 0;
   1731 		}
   1732 	}
   1733 	if (fragrun > 0) {
   1734 		cg->cg_frsum[fragrun]++;
   1735 		cg->cg_cs.cs_nffree += fragrun;
   1736 	}
   1737 	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
   1738 		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
   1739 		    newsb->fs_contigsumsize : blkrun]++;
   1740 	}
   1741 	/*
   1742          * Put the updated summary info back into csums, and add it
   1743          * back into the sb's summary info.  Then mark the cg dirty.
   1744          */
   1745 	csums[cgn] = cg->cg_cs;
   1746 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
   1747 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
   1748 	cgflags[cgn] |= CGF_DIRTY;
   1749 }
   1750 /*
   1751  * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
   1752  *  values, for a cg, based on the in-core inodes for that cg.
   1753  */
   1754 static void
   1755 rescan_inomaps(int cgn)
   1756 {
   1757 	struct cg *cg;
   1758 	int inum;
   1759 	int iwc;
   1760 
   1761 	cg = cgs[cgn];
   1762 	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
   1763 	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
   1764 	cg->cg_cs.cs_ndir = 0;
   1765 	cg->cg_cs.cs_nifree = 0;
   1766 	bzero(&cg_inosused(cg, 0)[0], howmany(newsb->fs_ipg, NBBY));
   1767 	inum = cgn * newsb->fs_ipg;
   1768 	if (cgn == 0) {
   1769 		set_bits(cg_inosused(cg, 0), 0, 2);
   1770 		iwc = 2;
   1771 		inum += 2;
   1772 	} else {
   1773 		iwc = 0;
   1774 	}
   1775 	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
   1776 		switch (inodes[inum].di_mode & IFMT) {
   1777 		case 0:
   1778 			cg->cg_cs.cs_nifree++;
   1779 			break;
   1780 		case IFDIR:
   1781 			cg->cg_cs.cs_ndir++;
   1782 			/* fall through */
   1783 		default:
   1784 			set_bits(cg_inosused(cg, 0), iwc, 1);
   1785 			break;
   1786 		}
   1787 	}
   1788 	csums[cgn] = cg->cg_cs;
   1789 	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
   1790 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
   1791 	cgflags[cgn] |= CGF_DIRTY;
   1792 }
   1793 /*
   1794  * Flush cgs to disk, recomputing anything they're marked as needing.
   1795  */
   1796 static void
   1797 flush_cgs(void)
   1798 {
   1799 	int i;
   1800 
   1801 	for (i = 0; i < newsb->fs_ncg; i++) {
   1802 		if (cgflags[i] & CGF_BLKMAPS) {
   1803 			rescan_blkmaps(i);
   1804 		}
   1805 		if (cgflags[i] & CGF_INOMAPS) {
   1806 			rescan_inomaps(i);
   1807 		}
   1808 		if (cgflags[i] & CGF_DIRTY) {
   1809 			cgs[i]->cg_rotor = 0;
   1810 			cgs[i]->cg_frotor = 0;
   1811 			cgs[i]->cg_irotor = 0;
   1812 			writeat(fsbtodb(newsb, cgtod(newsb, i)), cgs[i],
   1813 			    cgblksz);
   1814 		}
   1815 	}
   1816 	writeat(fsbtodb(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
   1817 }
   1818 /*
   1819  * Write the superblock, both to the main superblock and to each cg's
   1820  *  alternative superblock.
   1821  */
   1822 static void
   1823 write_sbs(void)
   1824 {
   1825 	int i;
   1826 
   1827 	if (newsb->fs_magic == FS_UFS1_MAGIC &&
   1828 	    (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
   1829 		newsb->fs_old_time = newsb->fs_time;
   1830 	    	newsb->fs_old_size = newsb->fs_size;
   1831 	    	/* we don't update fs_csaddr */
   1832 	    	newsb->fs_old_dsize = newsb->fs_dsize;
   1833 		newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
   1834 		newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
   1835 		newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
   1836 		newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
   1837 		/* fill fs_old_postbl_start with 256 bytes of 0xff? */
   1838 	}
   1839 	writeat(where /  DEV_BSIZE, newsb, SBLOCKSIZE);
   1840 	for (i = 0; i < newsb->fs_ncg; i++) {
   1841 		writeat(fsbtodb(newsb, cgsblock(newsb, i)), newsb, SBLOCKSIZE);
   1842 	}
   1843 }
   1844 
   1845 static uint32_t
   1846 get_dev_size(char *dev_name)
   1847 {
   1848 	struct dkwedge_info dkw;
   1849 	struct partition *pp;
   1850 	struct disklabel lp;
   1851 	size_t ptn;
   1852 
   1853 	/* Get info about partition/wedge */
   1854 	if (ioctl(fd, DIOCGWEDGEINFO, &dkw) == -1) {
   1855 		if (ioctl(fd, DIOCGDINFO, &lp) == -1)
   1856 			return 0;
   1857 
   1858 		ptn = strchr(dev_name, '\0')[-1] - 'a';
   1859 		if (ptn >= lp.d_npartitions)
   1860 			return 0;
   1861 
   1862 		pp = &lp.d_partitions[ptn];
   1863 		return pp->p_size;
   1864 	}
   1865 
   1866 	return dkw.dkw_size;
   1867 }
   1868 
   1869 /*
   1870  * main().
   1871  */
   1872 int
   1873 main(int argc, char **argv)
   1874 {
   1875 	int ch;
   1876 	int ExpertFlag;
   1877 	int SFlag;
   1878 	size_t i;
   1879 
   1880 	char *special;
   1881 	char reply[5];
   1882 
   1883 	newsize = 0;
   1884 	ExpertFlag = 0;
   1885 	SFlag = 0;
   1886 
   1887 	while ((ch = getopt(argc, argv, "s:y")) != -1) {
   1888 		switch (ch) {
   1889 		case 's':
   1890 			SFlag = 1;
   1891 			newsize = (size_t)strtoul(optarg, NULL, 10);
   1892 			if(newsize < 1) {
   1893 				usage();
   1894 			}
   1895 			break;
   1896 		case 'y':
   1897 			ExpertFlag = 1;
   1898 			break;
   1899 		case '?':
   1900 			/* FALLTHROUGH */
   1901 		default:
   1902 			usage();
   1903 		}
   1904 	}
   1905 	argc -= optind;
   1906 	argv += optind;
   1907 
   1908 	if (argc != 1) {
   1909 		usage();
   1910 	}
   1911 
   1912 	special = *argv;
   1913 
   1914 	if (ExpertFlag == 0) {
   1915 		printf("It's required to manually run fsck on filesystem "
   1916 		    "before you can resize it\n\n"
   1917 		    " Did you run fsck on your disk (Yes/No) ? ");
   1918 		fgets(reply, (int)sizeof(reply), stdin);
   1919 		if (strcasecmp(reply, "Yes\n")) {
   1920 			printf("\n Nothing done \n");
   1921 			exit(EXIT_SUCCESS);
   1922 		}
   1923 	}
   1924 
   1925 	fd = open(special, O_RDWR, 0);
   1926 	if (fd < 0)
   1927 		err(EXIT_FAILURE, "Can't open `%s'", special);
   1928 	checksmallio();
   1929 
   1930 	if (SFlag == 0) {
   1931 		newsize = get_dev_size(special);
   1932 		if (newsize == 0)
   1933 			err(EXIT_FAILURE,
   1934 			    "Can't resize filesystem, newsize not known.");
   1935 	}
   1936 
   1937 	oldsb = (struct fs *) & sbbuf;
   1938 	newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
   1939 	for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
   1940 		readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
   1941 		switch (oldsb->fs_magic) {
   1942 		case FS_UFS2_MAGIC:
   1943 			/* FALLTHROUGH */
   1944 			is_ufs2 = 1;
   1945 		case FS_UFS1_MAGIC:
   1946 			needswap = 0;
   1947 			break;
   1948 		case FS_UFS2_MAGIC_SWAPPED:
   1949  			is_ufs2 = 1;
   1950 			/* FALLTHROUGH */
   1951 		case FS_UFS1_MAGIC_SWAPPED:
   1952 			needswap = 1;
   1953 			break;
   1954 		default:
   1955 			continue;
   1956 		}
   1957 		if (!is_ufs2 && where == SBLOCK_UFS2)
   1958 			continue;
   1959 		break;
   1960 	}
   1961 	if (where == (off_t)-1)
   1962 		errx(EXIT_FAILURE, "Bad magic number");
   1963 	if (oldsb->fs_magic == FS_UFS1_MAGIC &&
   1964 	    (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
   1965 		oldsb->fs_csaddr = oldsb->fs_old_csaddr;
   1966 		oldsb->fs_size = oldsb->fs_old_size;
   1967 		oldsb->fs_dsize = oldsb->fs_old_dsize;
   1968 		oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
   1969 		oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
   1970 		oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
   1971 		oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
   1972 		/* any others? */
   1973 		printf("Resizing with ffsv1 superblock\n");
   1974 	}
   1975 	if (is_ufs2)
   1976 		errx(EXIT_FAILURE, "ffsv2 file systems currently unsupported.");
   1977 	if (needswap)
   1978 		errx(EXIT_FAILURE, "Swapped byte order file system detected"
   1979 		    " - currently unsupported.");
   1980 	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
   1981 	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
   1982 	if (oldsb->fs_ipg % INOPB(oldsb)) {
   1983 		(void)fprintf(stderr, "ipg[%d] %% INOPB[%d] != 0\n",
   1984 		    (int) oldsb->fs_ipg, (int) INOPB(oldsb));
   1985 		exit(EXIT_FAILURE);
   1986 	}
   1987 	/* The superblock is bigger than struct fs (there are trailing tables,
   1988 	 * of non-fixed size); make sure we copy the whole thing.  SBLOCKSIZE may
   1989 	 * be an over-estimate, but we do this just once, so being generous is
   1990 	 * cheap. */
   1991 	bcopy(oldsb, newsb, SBLOCKSIZE);
   1992 	loadcgs();
   1993 	if (newsize > fsbtodb(oldsb, oldsb->fs_size)) {
   1994 		grow();
   1995 	} else if (newsize < fsbtodb(oldsb, oldsb->fs_size)) {
   1996 		shrink();
   1997 	}
   1998 	flush_cgs();
   1999 	write_sbs();
   2000 	if (isplainfile())
   2001 		ftruncate(fd,newsize * DEV_BSIZE);
   2002 	return 0;
   2003 }
   2004 
   2005 static void
   2006 usage(void)
   2007 {
   2008 
   2009 	(void)fprintf(stderr, "usage: %s [-y] [-s size] special\n", getprogname());
   2010 	exit(EXIT_FAILURE);
   2011 }
   2012