resize_ffs.c revision 1.25 1 /* $NetBSD: resize_ffs.c,v 1.25 2011/01/05 02:18:15 riz Exp $ */
2 /* From sources sent on February 17, 2003 */
3 /*-
4 * As its sole author, I explicitly place this code in the public
5 * domain. Anyone may use it for any purpose (though I would
6 * appreciate credit where it is due).
7 *
8 * der Mouse
9 *
10 * mouse (at) rodents.montreal.qc.ca
11 * 7D C8 61 52 5D E7 2D 39 4E F1 31 3E E8 B3 27 4B
12 */
13 /*
14 * resize_ffs:
15 *
16 * Resize a file system. Is capable of both growing and shrinking.
17 *
18 * Usage: resize_ffs [-s newsize] [-y] file_system
19 *
20 * Example: resize_ffs -s 29574 /dev/rsd1e
21 *
22 * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
23 * each).
24 *
25 * Note: this currently requires gcc to build, since it is written
26 * depending on gcc-specific features, notably nested function
27 * definitions (which in at least a few cases depend on the lexical
28 * scoping gcc provides, so they can't be trivially moved outside).
29 *
30 * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
31 * one responsible for the "realloccgblk: can't find blk in cyl"
32 * problem and a more minor one which left fs_dsize wrong when
33 * shrinking. (These actually indicate bugs in fsck too - it should
34 * have caught and fixed them.)
35 *
36 */
37
38 #include <sys/cdefs.h>
39 #include <sys/disk.h>
40 #include <sys/disklabel.h>
41 #include <sys/dkio.h>
42 #include <sys/ioctl.h>
43 #include <sys/stat.h>
44 #include <sys/mman.h>
45 #include <sys/param.h> /* MAXFRAG */
46 #include <ufs/ffs/fs.h>
47 #include <ufs/ffs/ffs_extern.h>
48 #include <ufs/ufs/dir.h>
49 #include <ufs/ufs/dinode.h>
50 #include <ufs/ufs/ufs_bswap.h> /* ufs_rw32 */
51
52 #include <err.h>
53 #include <errno.h>
54 #include <fcntl.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <strings.h>
58 #include <unistd.h>
59
60 /* new size of file system, in sectors */
61 static uint64_t newsize;
62
63 /* fd open onto disk device or file */
64 static int fd;
65
66 /* must we break up big I/O operations - see checksmallio() */
67 static int smallio;
68
69 /* size of a cg, in bytes, rounded up to a frag boundary */
70 static int cgblksz;
71
72 /* possible superblock localtions */
73 static int search[] = SBLOCKSEARCH;
74 /* location of the superblock */
75 static off_t where;
76
77 /* Superblocks. */
78 static struct fs *oldsb; /* before we started */
79 static struct fs *newsb; /* copy to work with */
80 /* Buffer to hold the above. Make sure it's aligned correctly. */
81 static char sbbuf[2 * SBLOCKSIZE]
82 __attribute__((__aligned__(__alignof__(struct fs))));
83
84 union dinode {
85 struct ufs1_dinode dp1;
86 struct ufs2_dinode dp2;
87 };
88 #define DIP(dp, field) \
89 ((is_ufs2) ? \
90 (dp)->dp2.field : (dp)->dp1.field)
91
92 #define DIP_ASSIGN(dp, field, value) \
93 do { \
94 if (is_ufs2) \
95 (dp)->dp2.field = (value); \
96 else \
97 (dp)->dp1.field = (value); \
98 } while (0)
99
100 /* a cg's worth of brand new squeaky-clean inodes */
101 static struct ufs1_dinode *zinodes;
102
103 /* pointers to the in-core cgs, read off disk and possibly modified */
104 static struct cg **cgs;
105
106 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
107 static struct csum *csums;
108
109 /* per-cg flags, indexed by cg number */
110 static unsigned char *cgflags;
111 #define CGF_DIRTY 0x01 /* needs to be written to disk */
112 #define CGF_BLKMAPS 0x02 /* block bitmaps need rebuilding */
113 #define CGF_INOMAPS 0x04 /* inode bitmaps need rebuilding */
114
115 /* when shrinking, these two arrays record how we want blocks to move. */
116 /* if blkmove[i] is j, the frag that started out as frag #i should end */
117 /* up as frag #j. inomove[i]=j means, similarly, that the inode that */
118 /* started out as inode i should end up as inode j. */
119 static unsigned int *blkmove;
120 static unsigned int *inomove;
121
122 /* in-core copies of all inodes in the fs, indexed by inumber */
123 union dinode *inodes;
124
125 void *ibuf; /* ptr to fs block-sized buffer for reading/writing inodes */
126
127 /* byteswapped inodes */
128 union dinode *sinodes;
129
130 /* per-inode flags, indexed by inumber */
131 static unsigned char *iflags;
132 #define IF_DIRTY 0x01 /* needs to be written to disk */
133 #define IF_BDIRTY 0x02 /* like DIRTY, but is set on first inode in a
134 * block of inodes, and applies to the whole
135 * block. */
136
137 /* resize_ffs works directly on dinodes, adapt blksize() */
138 #define dblksize(fs, dip, lbn) \
139 (((lbn) >= NDADDR || DIP((dip), di_size) >= lblktosize(fs, (lbn) + 1)) \
140 ? (fs)->fs_bsize \
141 : (fragroundup(fs, blkoff(fs, DIP((dip), di_size)))))
142
143
144 /*
145 * Number of disk sectors per block/fragment
146 */
147 #define NSPB(fs) (fsbtodb((fs),1) << (fs)->fs_fragshift)
148 #define NSPF(fs) (fsbtodb((fs),1))
149
150 /* global flags */
151 int is_ufs2 = 0;
152 int needswap = 0;
153
154 static void usage(void) __dead;
155
156 /*
157 * See if we need to break up large I/O operations. This should never
158 * be needed, but under at least one <version,platform> combination,
159 * large enough disk transfers to the raw device hang. So if we're
160 * talking to a character special device, play it safe; in this case,
161 * readat() and writeat() break everything up into pieces no larger
162 * than 8K, doing multiple syscalls for larger operations.
163 */
164 static void
165 checksmallio(void)
166 {
167 struct stat stb;
168
169 fstat(fd, &stb);
170 smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
171 }
172
173 static int
174 isplainfile(void)
175 {
176 struct stat stb;
177
178 fstat(fd, &stb);
179 return S_ISREG(stb.st_mode);
180 }
181 /*
182 * Read size bytes starting at blkno into buf. blkno is in DEV_BSIZE
183 * units, ie, after fsbtodb(); size is in bytes.
184 */
185 static void
186 readat(off_t blkno, void *buf, int size)
187 {
188 /* Seek to the correct place. */
189 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
190 err(EXIT_FAILURE, "lseek failed");
191
192 /* See if we have to break up the transfer... */
193 if (smallio) {
194 char *bp; /* pointer into buf */
195 int left; /* bytes left to go */
196 int n; /* number to do this time around */
197 int rv; /* syscall return value */
198 bp = buf;
199 left = size;
200 while (left > 0) {
201 n = (left > 8192) ? 8192 : left;
202 rv = read(fd, bp, n);
203 if (rv < 0)
204 err(EXIT_FAILURE, "read failed");
205 if (rv != n)
206 errx(EXIT_FAILURE,
207 "read: wanted %d, got %d", n, rv);
208 bp += n;
209 left -= n;
210 }
211 } else {
212 int rv;
213 rv = read(fd, buf, size);
214 if (rv < 0)
215 err(EXIT_FAILURE, "read failed");
216 if (rv != size)
217 errx(EXIT_FAILURE, "read: wanted %d, got %d",
218 size, rv);
219 }
220 }
221 /*
222 * Write size bytes from buf starting at blkno. blkno is in DEV_BSIZE
223 * units, ie, after fsbtodb(); size is in bytes.
224 */
225 static void
226 writeat(off_t blkno, const void *buf, int size)
227 {
228 /* Seek to the correct place. */
229 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
230 err(EXIT_FAILURE, "lseek failed");
231 /* See if we have to break up the transfer... */
232 if (smallio) {
233 const char *bp; /* pointer into buf */
234 int left; /* bytes left to go */
235 int n; /* number to do this time around */
236 int rv; /* syscall return value */
237 bp = buf;
238 left = size;
239 while (left > 0) {
240 n = (left > 8192) ? 8192 : left;
241 rv = write(fd, bp, n);
242 if (rv < 0)
243 err(EXIT_FAILURE, "write failed");
244 if (rv != n)
245 errx(EXIT_FAILURE,
246 "write: wanted %d, got %d", n, rv);
247 bp += n;
248 left -= n;
249 }
250 } else {
251 int rv;
252 rv = write(fd, buf, size);
253 if (rv < 0)
254 err(EXIT_FAILURE, "write failed");
255 if (rv != size)
256 errx(EXIT_FAILURE,
257 "write: wanted %d, got %d", size, rv);
258 }
259 }
260 /*
261 * Never-fail versions of malloc() and realloc(), and an allocation
262 * routine (which also never fails) for allocating memory that will
263 * never be freed until exit.
264 */
265
266 /*
267 * Never-fail malloc.
268 */
269 static void *
270 nfmalloc(size_t nb, const char *tag)
271 {
272 void *rv;
273
274 rv = malloc(nb);
275 if (rv)
276 return (rv);
277 err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
278 (unsigned long int) nb, tag);
279 }
280 /*
281 * Never-fail realloc.
282 */
283 static void *
284 nfrealloc(void *blk, size_t nb, const char *tag)
285 {
286 void *rv;
287
288 rv = realloc(blk, nb);
289 if (rv)
290 return (rv);
291 err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
292 (unsigned long int) nb, tag);
293 }
294 /*
295 * Allocate memory that will never be freed or reallocated. Arguably
296 * this routine should handle small allocations by chopping up pages,
297 * but that's not worth the bother; it's not called more than a
298 * handful of times per run, and if the allocations are that small the
299 * waste in giving each one its own page is ignorable.
300 */
301 static void *
302 alloconce(size_t nb, const char *tag)
303 {
304 void *rv;
305
306 rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
307 if (rv != MAP_FAILED)
308 return (rv);
309 err(EXIT_FAILURE, "Can't map %lu bytes for %s",
310 (unsigned long int) nb, tag);
311 }
312 /*
313 * Load the cgs and csums off disk. Also allocates the space to load
314 * them into and initializes the per-cg flags.
315 */
316 static void
317 loadcgs(void)
318 {
319 int cg;
320 char *cgp;
321
322 cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
323 cgs = nfmalloc(oldsb->fs_ncg * sizeof(struct cg *), "cg pointers");
324 cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
325 cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
326 csums = nfmalloc(oldsb->fs_cssize, "cg summary");
327 for (cg = 0; cg < oldsb->fs_ncg; cg++) {
328 cgs[cg] = (struct cg *) cgp;
329 readat(fsbtodb(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
330 if (needswap)
331 ffs_cg_swap(cgs[cg],cgs[cg],oldsb);
332 cgflags[cg] = 0;
333 cgp += cgblksz;
334 }
335 readat(fsbtodb(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
336 if (needswap)
337 ffs_csum_swap(csums,csums,oldsb->fs_cssize);
338 }
339 /*
340 * Set n bits, starting with bit #base, in the bitmap pointed to by
341 * bitvec (which is assumed to be large enough to include bits base
342 * through base+n-1).
343 */
344 static void
345 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
346 {
347 if (n < 1)
348 return; /* nothing to do */
349 if (base & 7) { /* partial byte at beginning */
350 if (n <= 8 - (base & 7)) { /* entirely within one byte */
351 bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
352 return;
353 }
354 bitvec[base >> 3] |= (~0U) << (base & 7);
355 n -= 8 - (base & 7);
356 base = (base & ~7) + 8;
357 }
358 if (n >= 8) { /* do full bytes */
359 memset(bitvec + (base >> 3), 0xff, n >> 3);
360 base += n & ~7;
361 n &= 7;
362 }
363 if (n) { /* partial byte at end */
364 bitvec[base >> 3] |= ~((~0U) << n);
365 }
366 }
367 /*
368 * Clear n bits, starting with bit #base, in the bitmap pointed to by
369 * bitvec (which is assumed to be large enough to include bits base
370 * through base+n-1). Code parallels set_bits().
371 */
372 static void
373 clr_bits(unsigned char *bitvec, int base, int n)
374 {
375 if (n < 1)
376 return;
377 if (base & 7) {
378 if (n <= 8 - (base & 7)) {
379 bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
380 return;
381 }
382 bitvec[base >> 3] &= ~((~0U) << (base & 7));
383 n -= 8 - (base & 7);
384 base = (base & ~7) + 8;
385 }
386 if (n >= 8) {
387 memset(bitvec + (base >> 3), 0, n >> 3);
388 base += n & ~7;
389 n &= 7;
390 }
391 if (n) {
392 bitvec[base >> 3] &= (~0U) << n;
393 }
394 }
395 /*
396 * Test whether bit #bit is set in the bitmap pointed to by bitvec.
397 */
398 static int
399 bit_is_set(unsigned char *bitvec, int bit)
400 {
401 return (bitvec[bit >> 3] & (1 << (bit & 7)));
402 }
403 /*
404 * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
405 */
406 static int
407 bit_is_clr(unsigned char *bitvec, int bit)
408 {
409 return (!bit_is_set(bitvec, bit));
410 }
411 /*
412 * Test whether a whole block of bits is set in a bitmap. This is
413 * designed for testing (aligned) disk blocks in a bit-per-frag
414 * bitmap; it has assumptions wired into it based on that, essentially
415 * that the entire block fits into a single byte. This returns true
416 * iff _all_ the bits are set; it is not just the complement of
417 * blk_is_clr on the same arguments (unless blkfrags==1).
418 */
419 static int
420 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
421 {
422 unsigned int mask;
423
424 mask = (~((~0U) << blkfrags)) << (blkbase & 7);
425 return ((bitvec[blkbase >> 3] & mask) == mask);
426 }
427 /*
428 * Test whether a whole block of bits is clear in a bitmap. See
429 * blk_is_set (above) for assumptions. This returns true iff _all_
430 * the bits are clear; it is not just the complement of blk_is_set on
431 * the same arguments (unless blkfrags==1).
432 */
433 static int
434 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
435 {
436 unsigned int mask;
437
438 mask = (~((~0U) << blkfrags)) << (blkbase & 7);
439 return ((bitvec[blkbase >> 3] & mask) == 0);
440 }
441 /*
442 * Initialize a new cg. Called when growing. Assumes memory has been
443 * allocated but not otherwise set up. This code sets the fields of
444 * the cg, initializes the bitmaps (and cluster summaries, if
445 * applicable), updates both per-cylinder summary info and the global
446 * summary info in newsb; it also writes out new inodes for the cg.
447 *
448 * This code knows it can never be called for cg 0, which makes it a
449 * bit simpler than it would otherwise be.
450 */
451 static void
452 initcg(int cgn)
453 {
454 struct cg *cg; /* The in-core cg, of course */
455 int base; /* Disk address of cg base */
456 int dlow; /* Size of pre-cg data area */
457 int dhigh; /* Offset of post-inode data area, from base */
458 int dmax; /* Offset of end of post-inode data area */
459 int i; /* Generic loop index */
460 int n; /* Generic count */
461 int start; /* start of cg maps */
462
463 cg = cgs[cgn];
464 /* Place the data areas */
465 base = cgbase(newsb, cgn);
466 dlow = cgsblock(newsb, cgn) - base;
467 dhigh = cgdmin(newsb, cgn) - base;
468 dmax = newsb->fs_size - base;
469 if (dmax > newsb->fs_fpg)
470 dmax = newsb->fs_fpg;
471 start = &cg->cg_space[0] - (unsigned char *) cg;
472 /*
473 * Clear out the cg - assumes all-0-bytes is the correct way
474 * to initialize fields we don't otherwise touch, which is
475 * perhaps not the right thing to do, but it's what fsck and
476 * mkfs do.
477 */
478 memset(cg, 0, newsb->fs_cgsize);
479 if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
480 cg->cg_time = newsb->fs_time;
481 cg->cg_magic = CG_MAGIC;
482 cg->cg_cgx = cgn;
483 cg->cg_niblk = newsb->fs_ipg;
484 cg->cg_ndblk = dmax;
485
486 if (is_ufs2) {
487 cg->cg_time = newsb->fs_time;
488 cg->cg_initediblk = newsb->fs_ipg < 2 * INOPB(newsb) ?
489 newsb->fs_ipg : 2 * INOPB(newsb);
490 cg->cg_iusedoff = start;
491 } else {
492 cg->cg_old_time = newsb->fs_time;
493 cg->cg_old_niblk = cg->cg_niblk;
494 cg->cg_niblk = 0;
495 cg->cg_initediblk = 0;
496
497
498 cg->cg_old_ncyl = newsb->fs_old_cpg;
499 /* Update the cg_old_ncyl value for the last cylinder. */
500 if (cgn == newsb->fs_ncg - 1) {
501 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
502 cg->cg_old_ncyl = newsb->fs_old_ncyl %
503 newsb->fs_old_cpg;
504 }
505
506 /* Set up the bitmap pointers. We have to be careful
507 * to lay out the cg _exactly_ the way mkfs and fsck
508 * do it, since fsck compares the _entire_ cg against
509 * a recomputed cg, and whines if there is any
510 * mismatch, including the bitmap offsets. */
511 /* XXX update this comment when fsck is fixed */
512 cg->cg_old_btotoff = start;
513 cg->cg_old_boff = cg->cg_old_btotoff
514 + (newsb->fs_old_cpg * sizeof(int32_t));
515 cg->cg_iusedoff = cg->cg_old_boff +
516 (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
517 }
518 cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
519 if (newsb->fs_contigsumsize > 0) {
520 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
521 cg->cg_clustersumoff = cg->cg_freeoff +
522 howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t);
523 cg->cg_clustersumoff =
524 roundup(cg->cg_clustersumoff, sizeof(int32_t));
525 cg->cg_clusteroff = cg->cg_clustersumoff +
526 ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
527 cg->cg_nextfreeoff = cg->cg_clusteroff +
528 howmany(fragstoblks(newsb,newsb->fs_fpg), NBBY);
529 n = dlow / newsb->fs_frag;
530 if (n > 0) {
531 set_bits(cg_clustersfree(cg, 0), 0, n);
532 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
533 newsb->fs_contigsumsize : n]++;
534 }
535 } else {
536 cg->cg_nextfreeoff = cg->cg_freeoff +
537 howmany(newsb->fs_fpg, NBBY);
538 }
539 /* Mark the data areas as free; everything else is marked busy by the
540 * memset() up at the top. */
541 set_bits(cg_blksfree(cg, 0), 0, dlow);
542 set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
543 /* Initialize summary info */
544 cg->cg_cs.cs_ndir = 0;
545 cg->cg_cs.cs_nifree = newsb->fs_ipg;
546 cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
547 cg->cg_cs.cs_nffree = 0;
548
549 /* This is the simplest way of doing this; we perhaps could
550 * compute the correct cg_blktot()[] and cg_blks()[] values
551 * other ways, but it would be complicated and hardly seems
552 * worth the effort. (The reason there isn't
553 * frag-at-beginning and frag-at-end code here, like the code
554 * below for the post-inode data area, is that the pre-sb data
555 * area always starts at 0, and thus is block-aligned, and
556 * always ends at the sb, which is block-aligned.) */
557 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
558 for (i = 0; i < dlow; i += newsb->fs_frag) {
559 old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++;
560 old_cg_blks(newsb, cg,
561 old_cbtocylno(newsb, i),
562 0)[old_cbtorpos(newsb, i)]++;
563 }
564
565 /* Deal with a partial block at the beginning of the post-inode area.
566 * I'm not convinced this can happen - I think the inodes are always
567 * block-aligned and always an integral number of blocks - but it's
568 * cheap to do the right thing just in case. */
569 if (dhigh % newsb->fs_frag) {
570 n = newsb->fs_frag - (dhigh % newsb->fs_frag);
571 cg->cg_frsum[n]++;
572 cg->cg_cs.cs_nffree += n;
573 dhigh += n;
574 }
575 n = (dmax - dhigh) / newsb->fs_frag;
576 /* We have n full-size blocks in the post-inode data area. */
577 if (n > 0) {
578 cg->cg_cs.cs_nbfree += n;
579 if (newsb->fs_contigsumsize > 0) {
580 i = dhigh / newsb->fs_frag;
581 set_bits(cg_clustersfree(cg, 0), i, n);
582 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
583 newsb->fs_contigsumsize : n]++;
584 }
585 if (is_ufs2 == 0)
586 for (i = n; i > 0; i--) {
587 old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
588 dhigh)]++;
589 old_cg_blks(newsb, cg,
590 old_cbtocylno(newsb, dhigh),
591 0)[old_cbtorpos(newsb,
592 dhigh)]++;
593 dhigh += newsb->fs_frag;
594 }
595 }
596 if (is_ufs2 == 0) {
597 /* Deal with any leftover frag at the end of the cg. */
598 i = dmax - dhigh;
599 if (i) {
600 cg->cg_frsum[i]++;
601 cg->cg_cs.cs_nffree += i;
602 }
603 }
604 /* Update the csum info. */
605 csums[cgn] = cg->cg_cs;
606 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
607 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
608 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
609 if (is_ufs2 == 0)
610 /* Write out the cleared inodes. */
611 writeat(fsbtodb(newsb, cgimin(newsb, cgn)), zinodes,
612 newsb->fs_ipg * sizeof(struct ufs1_dinode));
613 /* Dirty the cg. */
614 cgflags[cgn] |= CGF_DIRTY;
615 }
616 /*
617 * Find free space, at least nfrags consecutive frags of it. Pays no
618 * attention to block boundaries, but refuses to straddle cg
619 * boundaries, even if the disk blocks involved are in fact
620 * consecutive. Return value is the frag number of the first frag of
621 * the block, or -1 if no space was found. Uses newsb for sb values,
622 * and assumes the cgs[] structures correctly describe the area to be
623 * searched.
624 *
625 * XXX is there a bug lurking in the ignoring of block boundaries by
626 * the routine used by fragmove() in evict_data()? Can an end-of-file
627 * frag legally straddle a block boundary? If not, this should be
628 * cloned and fixed to stop at block boundaries for that use. The
629 * current one may still be needed for csum info motion, in case that
630 * takes up more than a whole block (is the csum info allowed to begin
631 * partway through a block and continue into the following block?).
632 *
633 * If we wrap off the end of the file system back to the beginning, we
634 * can end up searching the end of the file system twice. I ignore
635 * this inefficiency, since if that happens we're going to croak with
636 * a no-space error anyway, so it happens at most once.
637 */
638 static int
639 find_freespace(unsigned int nfrags)
640 {
641 static int hand = 0; /* hand rotates through all frags in the fs */
642 int cgsize; /* size of the cg hand currently points into */
643 int cgn; /* number of cg hand currently points into */
644 int fwc; /* frag-within-cg number of frag hand points
645 * to */
646 int run; /* length of run of free frags seen so far */
647 int secondpass; /* have we wrapped from end of fs to
648 * beginning? */
649 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
650
651 cgn = dtog(newsb, hand);
652 fwc = dtogd(newsb, hand);
653 secondpass = (hand == 0);
654 run = 0;
655 bits = cg_blksfree(cgs[cgn], 0);
656 cgsize = cgs[cgn]->cg_ndblk;
657 while (1) {
658 if (bit_is_set(bits, fwc)) {
659 run++;
660 if (run >= nfrags)
661 return (hand + 1 - run);
662 } else {
663 run = 0;
664 }
665 hand++;
666 fwc++;
667 if (fwc >= cgsize) {
668 fwc = 0;
669 cgn++;
670 if (cgn >= newsb->fs_ncg) {
671 hand = 0;
672 if (secondpass)
673 return (-1);
674 secondpass = 1;
675 cgn = 0;
676 }
677 bits = cg_blksfree(cgs[cgn], 0);
678 cgsize = cgs[cgn]->cg_ndblk;
679 run = 0;
680 }
681 }
682 }
683 /*
684 * Find a free block of disk space. Finds an entire block of frags,
685 * all of which are free. Return value is the frag number of the
686 * first frag of the block, or -1 if no space was found. Uses newsb
687 * for sb values, and assumes the cgs[] structures correctly describe
688 * the area to be searched.
689 *
690 * See find_freespace(), above, for remarks about hand wrapping around.
691 */
692 static int
693 find_freeblock(void)
694 {
695 static int hand = 0; /* hand rotates through all frags in fs */
696 int cgn; /* cg number of cg hand points into */
697 int fwc; /* frag-within-cg number of frag hand points
698 * to */
699 int cgsize; /* size of cg hand points into */
700 int secondpass; /* have we wrapped from end to beginning? */
701 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
702
703 cgn = dtog(newsb, hand);
704 fwc = dtogd(newsb, hand);
705 secondpass = (hand == 0);
706 bits = cg_blksfree(cgs[cgn], 0);
707 cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
708 while (1) {
709 if (blk_is_set(bits, fwc, newsb->fs_frag))
710 return (hand);
711 fwc += newsb->fs_frag;
712 hand += newsb->fs_frag;
713 if (fwc >= cgsize) {
714 fwc = 0;
715 cgn++;
716 if (cgn >= newsb->fs_ncg) {
717 hand = 0;
718 if (secondpass)
719 return (-1);
720 secondpass = 1;
721 cgn = 0;
722 }
723 bits = cg_blksfree(cgs[cgn], 0);
724 cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
725 }
726 }
727 }
728 /*
729 * Find a free inode, returning its inumber or -1 if none was found.
730 * Uses newsb for sb values, and assumes the cgs[] structures
731 * correctly describe the area to be searched.
732 *
733 * See find_freespace(), above, for remarks about hand wrapping around.
734 */
735 static int
736 find_freeinode(void)
737 {
738 static int hand = 0; /* hand rotates through all inodes in fs */
739 int cgn; /* cg number of cg hand points into */
740 int iwc; /* inode-within-cg number of inode hand points
741 * to */
742 int secondpass; /* have we wrapped from end to beginning? */
743 unsigned char *bits; /* cg_inosused()[] for cg hand points into */
744
745 cgn = hand / newsb->fs_ipg;
746 iwc = hand % newsb->fs_ipg;
747 secondpass = (hand == 0);
748 bits = cg_inosused(cgs[cgn], 0);
749 while (1) {
750 if (bit_is_clr(bits, iwc))
751 return (hand);
752 hand++;
753 iwc++;
754 if (iwc >= newsb->fs_ipg) {
755 iwc = 0;
756 cgn++;
757 if (cgn >= newsb->fs_ncg) {
758 hand = 0;
759 if (secondpass)
760 return (-1);
761 secondpass = 1;
762 cgn = 0;
763 }
764 bits = cg_inosused(cgs[cgn], 0);
765 }
766 }
767 }
768 /*
769 * Mark a frag as free. Sets the frag's bit in the cg_blksfree bitmap
770 * for the appropriate cg, and marks the cg as dirty.
771 */
772 static void
773 free_frag(int fno)
774 {
775 int cgn;
776
777 cgn = dtog(newsb, fno);
778 set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
779 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
780 }
781 /*
782 * Allocate a frag. Clears the frag's bit in the cg_blksfree bitmap
783 * for the appropriate cg, and marks the cg as dirty.
784 */
785 static void
786 alloc_frag(int fno)
787 {
788 int cgn;
789
790 cgn = dtog(newsb, fno);
791 clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
792 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
793 }
794 /*
795 * Fix up the csum array. If shrinking, this involves freeing zero or
796 * more frags; if growing, it involves allocating them, or if the
797 * frags being grown into aren't free, finding space elsewhere for the
798 * csum info. (If the number of occupied frags doesn't change,
799 * nothing happens here.)
800 */
801 static void
802 csum_fixup(void)
803 {
804 int nold; /* # frags in old csum info */
805 int ntot; /* # frags in new csum info */
806 int nnew; /* ntot-nold */
807 int newloc; /* new location for csum info, if necessary */
808 int i; /* generic loop index */
809 int j; /* generic loop index */
810 int f; /* "from" frag number, if moving */
811 int t; /* "to" frag number, if moving */
812 int cgn; /* cg number, used when shrinking */
813
814 ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
815 nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
816 nnew = ntot - nold;
817 /* First, if there's no change in frag counts, it's easy. */
818 if (nnew == 0)
819 return;
820 /* Next, if we're shrinking, it's almost as easy. Just free up any
821 * frags in the old area we no longer need. */
822 if (nnew < 0) {
823 for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
824 j < 0;
825 i--, j++) {
826 free_frag(i);
827 }
828 return;
829 }
830 /* We must be growing. Check to see that the new csum area fits
831 * within the file system. I think this can never happen, since for
832 * the csum area to grow, we must be adding at least one cg, so the
833 * old csum area can't be this close to the end of the new file system.
834 * But it's a cheap check. */
835 /* XXX what if csum info is at end of cg and grows into next cg, what
836 * if it spills over onto the next cg's backup superblock? Can this
837 * happen? */
838 if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
839 /* Okay, it fits - now, see if the space we want is free. */
840 for ((i = newsb->fs_csaddr + nold), (j = nnew);
841 j > 0;
842 i++, j--) {
843 cgn = dtog(newsb, i);
844 if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
845 dtogd(newsb, i)))
846 break;
847 }
848 if (j <= 0) {
849 /* Win win - all the frags we want are free. Allocate
850 * 'em and we're all done. */
851 for ((i = newsb->fs_csaddr + ntot - nnew),
852 (j = nnew); j > 0; i++, j--) {
853 alloc_frag(i);
854 }
855 return;
856 }
857 }
858 /* We have to move the csum info, sigh. Look for new space, free old
859 * space, and allocate new. Update fs_csaddr. We don't copy anything
860 * on disk at this point; the csum info will be written to the
861 * then-current fs_csaddr as part of the final flush. */
862 newloc = find_freespace(ntot);
863 if (newloc < 0) {
864 printf("Sorry, no space available for new csums\n");
865 exit(EXIT_FAILURE);
866 }
867 for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
868 if (i < nold) {
869 free_frag(f);
870 }
871 alloc_frag(t);
872 }
873 newsb->fs_csaddr = newloc;
874 }
875 /*
876 * Recompute newsb->fs_dsize. Just scans all cgs, adding the number of
877 * data blocks in that cg to the total.
878 */
879 static void
880 recompute_fs_dsize(void)
881 {
882 int i;
883
884 newsb->fs_dsize = 0;
885 for (i = 0; i < newsb->fs_ncg; i++) {
886 int dlow; /* size of before-sb data area */
887 int dhigh; /* offset of post-inode data area */
888 int dmax; /* total size of cg */
889 int base; /* base of cg, since cgsblock() etc add it in */
890 base = cgbase(newsb, i);
891 dlow = cgsblock(newsb, i) - base;
892 dhigh = cgdmin(newsb, i) - base;
893 dmax = newsb->fs_size - base;
894 if (dmax > newsb->fs_fpg)
895 dmax = newsb->fs_fpg;
896 newsb->fs_dsize += dlow + dmax - dhigh;
897 }
898 /* Space in cg 0 before cgsblock is boot area, not free space! */
899 newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
900 /* And of course the csum info takes up space. */
901 newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
902 }
903 /*
904 * Return the current time. We call this and assign, rather than
905 * calling time() directly, as insulation against OSes where fs_time
906 * is not a time_t.
907 */
908 static time_t
909 timestamp(void)
910 {
911 time_t t;
912
913 time(&t);
914 return (t);
915 }
916 /*
917 * Grow the file system.
918 */
919 static void
920 grow(void)
921 {
922 int i;
923
924 /* Update the timestamp. */
925 newsb->fs_time = timestamp();
926 /* Allocate and clear the new-inode area, in case we add any cgs. */
927 zinodes = alloconce(newsb->fs_ipg * sizeof(struct ufs1_dinode),
928 "zeroed inodes");
929 memset(zinodes, 0, newsb->fs_ipg * sizeof(struct ufs1_dinode));
930 /* Update the size. */
931 newsb->fs_size = dbtofsb(newsb, newsize);
932 /* Did we actually not grow? (This can happen if newsize is less than
933 * a frag larger than the old size - unlikely, but no excuse to
934 * misbehave if it happens.) */
935 if (newsb->fs_size == oldsb->fs_size) {
936 printf("New fs size %"PRIu64" = odl fs size %"PRIu64
937 ", not growing.\n", newsb->fs_size, oldsb->fs_size);
938 return;
939 }
940 /* Check that the new last sector (frag, actually) is writable. Since
941 * it's at least one frag larger than it used to be, we know we aren't
942 * overwriting anything important by this. (The choice of sbbuf as
943 * what to write is irrelevant; it's just something handy that's known
944 * to be at least one frag in size.) */
945 writeat(fsbtodb(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
946 if (is_ufs2)
947 newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
948 else {
949 /* Update fs_old_ncyl and fs_ncg. */
950 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
951 newsb->fs_old_spc);
952 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
953 }
954
955 /* Does the last cg end before the end of its inode area? There is no
956 * reason why this couldn't be handled, but it would complicate a lot
957 * of code (in all file system code - fsck, kernel, etc) because of the
958 * potential partial inode area, and the gain in space would be
959 * minimal, at most the pre-sb data area. */
960 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
961 newsb->fs_ncg--;
962 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
963 newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc)
964 / NSPF(newsb);
965 printf("Warning: last cylinder group is too small;\n");
966 printf(" dropping it. New size = %lu.\n",
967 (unsigned long int) fsbtodb(newsb, newsb->fs_size));
968 }
969 /* Find out how big the csum area is, and realloc csums if bigger. */
970 newsb->fs_cssize = fragroundup(newsb,
971 newsb->fs_ncg * sizeof(struct csum));
972 if (newsb->fs_cssize > oldsb->fs_cssize)
973 csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
974 /* If we're adding any cgs, realloc structures and set up the new
975 cgs. */
976 if (newsb->fs_ncg > oldsb->fs_ncg) {
977 char *cgp;
978 cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(struct cg *),
979 "cg pointers");
980 cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
981 memset(cgflags + oldsb->fs_ncg, 0,
982 newsb->fs_ncg - oldsb->fs_ncg);
983 cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
984 "cgs");
985 for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
986 cgs[i] = (struct cg *) cgp;
987 initcg(i);
988 cgp += cgblksz;
989 }
990 cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
991 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
992 }
993 /* If the old fs ended partway through a cg, we have to update the old
994 * last cg (though possibly not to a full cg!). */
995 if (oldsb->fs_size % oldsb->fs_fpg) {
996 struct cg *cg;
997 int newcgsize;
998 int prevcgtop;
999 int oldcgsize;
1000 cg = cgs[oldsb->fs_ncg - 1];
1001 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
1002 prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
1003 newcgsize = newsb->fs_size - prevcgtop;
1004 if (newcgsize > newsb->fs_fpg)
1005 newcgsize = newsb->fs_fpg;
1006 oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
1007 set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
1008 cg->cg_old_ncyl = oldsb->fs_old_cpg;
1009 cg->cg_ndblk = newcgsize;
1010 }
1011 /* Fix up the csum info, if necessary. */
1012 csum_fixup();
1013 /* Make fs_dsize match the new reality. */
1014 recompute_fs_dsize();
1015 }
1016 /*
1017 * Call (*fn)() for each inode, passing the inode and its inumber. The
1018 * number of cylinder groups is pased in, so this can be used to map
1019 * over either the old or the new file system's set of inodes.
1020 */
1021 static void
1022 map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg),
1023 int ncg, void *cbarg) {
1024 int i;
1025 int ni;
1026
1027 ni = oldsb->fs_ipg * ncg;
1028 for (i = 0; i < ni; i++)
1029 (*fn) (inodes + i, i, cbarg);
1030 }
1031 /* Values for the third argument to the map function for
1032 * map_inode_data_blocks. MDB_DATA indicates the block is contains
1033 * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
1034 * indirect block. The MDB_INDIR_PRE call is made before the indirect
1035 * block pointers are followed and the pointed-to blocks scanned,
1036 * MDB_INDIR_POST after.
1037 */
1038 #define MDB_DATA 1
1039 #define MDB_INDIR_PRE 2
1040 #define MDB_INDIR_POST 3
1041
1042 typedef void (*mark_callback_t) (unsigned int blocknum, unsigned int nfrags,
1043 unsigned int blksize, int opcode);
1044
1045 /* Helper function - handles a data block. Calls the callback
1046 * function and returns number of bytes occupied in file (actually,
1047 * rounded up to a frag boundary). The name is historical. */
1048 static int
1049 markblk(mark_callback_t fn, union dinode * di, int bn, off_t o)
1050 {
1051 int sz;
1052 int nb;
1053 if (o >= DIP(di,di_size))
1054 return (0);
1055 sz = dblksize(newsb, di, lblkno(newsb, o));
1056 nb = (sz > DIP(di,di_size) - o) ? DIP(di,di_size) - o : sz;
1057 if (bn)
1058 (*fn) (bn, numfrags(newsb, sz), nb, MDB_DATA);
1059 return (sz);
1060 }
1061 /* Helper function - handles an indirect block. Makes the
1062 * MDB_INDIR_PRE callback for the indirect block, loops over the
1063 * pointers and recurses, and makes the MDB_INDIR_POST callback.
1064 * Returns the number of bytes occupied in file, as does markblk().
1065 * For the sake of update_for_data_move(), we read the indirect block
1066 * _after_ making the _PRE callback. The name is historical. */
1067 static int
1068 markiblk(mark_callback_t fn, union dinode * di, int bn, off_t o, int lev)
1069 {
1070 int i;
1071 int j;
1072 int tot;
1073 static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
1074 static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
1075 static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
1076 static int32_t *indirblks[3] = {
1077 &indirblk1[0], &indirblk2[0], &indirblk3[0]
1078 };
1079 if (lev < 0)
1080 return (markblk(fn, di, bn, o));
1081 if (bn == 0) {
1082 for (i = newsb->fs_bsize;
1083 lev >= 0;
1084 i *= NINDIR(newsb), lev--);
1085 return (i);
1086 }
1087 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
1088 readat(fsbtodb(newsb, bn), indirblks[lev], newsb->fs_bsize);
1089 if (needswap)
1090 for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
1091 indirblks[lev][i] = bswap32(indirblks[lev][i]);
1092 tot = 0;
1093 for (i = 0; i < NINDIR(newsb); i++) {
1094 j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
1095 if (j == 0)
1096 break;
1097 o += j;
1098 tot += j;
1099 }
1100 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
1101 return (tot);
1102 }
1103
1104
1105 /*
1106 * Call (*fn)() for each data block for an inode. This routine assumes
1107 * the inode is known to be of a type that has data blocks (file,
1108 * directory, or non-fast symlink). The called function is:
1109 *
1110 * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
1111 *
1112 * where blkno is the frag number, nf is the number of frags starting
1113 * at blkno (always <= fs_frag), nb is the number of bytes that belong
1114 * to the file (usually nf*fs_frag, often less for the last block/frag
1115 * of a file).
1116 */
1117 static void
1118 map_inode_data_blocks(union dinode * di, mark_callback_t fn)
1119 {
1120 off_t o; /* offset within inode */
1121 int inc; /* increment for o - maybe should be off_t? */
1122 int b; /* index within di_db[] and di_ib[] arrays */
1123
1124 /* Scan the direct blocks... */
1125 o = 0;
1126 for (b = 0; b < NDADDR; b++) {
1127 inc = markblk(fn, di, DIP(di,di_db[b]), o);
1128 if (inc == 0)
1129 break;
1130 o += inc;
1131 }
1132 /* ...and the indirect blocks. */
1133 if (inc) {
1134 for (b = 0; b < NIADDR; b++) {
1135 inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b);
1136 if (inc == 0)
1137 return;
1138 o += inc;
1139 }
1140 }
1141 }
1142
1143 static void
1144 dblk_callback(union dinode * di, unsigned int inum, void *arg)
1145 {
1146 mark_callback_t fn;
1147 fn = (mark_callback_t) arg;
1148 switch (DIP(di,di_mode) & IFMT) {
1149 case IFLNK:
1150 if (DIP(di,di_size) > newsb->fs_maxsymlinklen) {
1151 case IFDIR:
1152 case IFREG:
1153 map_inode_data_blocks(di, fn);
1154 }
1155 break;
1156 }
1157 }
1158 /*
1159 * Make a callback call, a la map_inode_data_blocks, for all data
1160 * blocks in the entire fs. This is used only once, in
1161 * update_for_data_move, but it's out at top level because the complex
1162 * downward-funarg nesting that would otherwise result seems to give
1163 * gcc gastric distress.
1164 */
1165 static void
1166 map_data_blocks(mark_callback_t fn, int ncg)
1167 {
1168 map_inodes(&dblk_callback, ncg, (void *) fn);
1169 }
1170 /*
1171 * Initialize the blkmove array.
1172 */
1173 static void
1174 blkmove_init(void)
1175 {
1176 int i;
1177
1178 blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
1179 for (i = 0; i < oldsb->fs_size; i++)
1180 blkmove[i] = i;
1181 }
1182 /*
1183 * Load the inodes off disk. Allocates the structures and initializes
1184 * them - the inodes from disk, the flags to zero.
1185 */
1186 static void
1187 loadinodes(void)
1188 {
1189 int imax, ino, i, j;
1190 struct ufs1_dinode *dp1 = NULL;
1191 struct ufs2_dinode *dp2 = NULL;
1192
1193
1194 /* read inodes one fs block at a time and copy them */
1195
1196 inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
1197 sizeof(union dinode), "inodes");
1198 iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
1199 memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg);
1200
1201 ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf");
1202 if (is_ufs2)
1203 dp2 = (struct ufs2_dinode *)ibuf;
1204 else
1205 dp1 = (struct ufs1_dinode *)ibuf;
1206
1207 for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) {
1208 readat(fsbtodb(oldsb, ino_to_fsba(oldsb, ino)), ibuf,
1209 oldsb->fs_bsize);
1210
1211 for (i = 0; i < oldsb->fs_inopb; i++) {
1212 if (is_ufs2) {
1213 if (needswap) {
1214 ffs_dinode2_swap(&(dp2[i]), &(dp2[i]));
1215 for (j = 0; j < NDADDR + NIADDR; j++)
1216 dp2[i].di_db[j] =
1217 bswap32(dp2[i].di_db[j]);
1218 }
1219 memcpy(&inodes[ino].dp2, &dp2[i],
1220 sizeof(struct ufs2_dinode));
1221 } else {
1222 if (needswap) {
1223 ffs_dinode1_swap(&(dp1[i]), &(dp1[i]));
1224 for (j = 0; j < NDADDR + NIADDR; j++)
1225 dp1[i].di_db[j] =
1226 bswap32(dp1[i].di_db[j]);
1227 }
1228 memcpy(&inodes[ino].dp1, &dp1[i],
1229 sizeof(struct ufs1_dinode));
1230 }
1231 if (++ino > imax)
1232 errx(EXIT_FAILURE,
1233 "Exceeded number of inodes");
1234 }
1235
1236 }
1237 }
1238 /*
1239 * Report a file-system-too-full problem.
1240 */
1241 static void
1242 toofull(void)
1243 {
1244 printf("Sorry, would run out of data blocks\n");
1245 exit(EXIT_FAILURE);
1246 }
1247 /*
1248 * Record a desire to move "n" frags from "from" to "to".
1249 */
1250 static void
1251 mark_move(unsigned int from, unsigned int to, unsigned int n)
1252 {
1253 for (; n > 0; n--)
1254 blkmove[from++] = to++;
1255 }
1256 /* Helper function - evict n frags, starting with start (cg-relative).
1257 * The free bitmap is scanned, unallocated frags are ignored, and
1258 * each block of consecutive allocated frags is moved as a unit.
1259 */
1260 static void
1261 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
1262 {
1263 int i;
1264 int run;
1265 run = 0;
1266 for (i = 0; i <= n; i++) {
1267 if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
1268 run++;
1269 } else {
1270 if (run > 0) {
1271 int off;
1272 off = find_freespace(run);
1273 if (off < 0)
1274 toofull();
1275 mark_move(base + start + i - run, off, run);
1276 set_bits(cg_blksfree(cg, 0), start + i - run,
1277 run);
1278 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1279 dtogd(oldsb, off), run);
1280 }
1281 run = 0;
1282 }
1283 }
1284 }
1285 /*
1286 * Evict all data blocks from the given cg, starting at minfrag (based
1287 * at the beginning of the cg), for length nfrag. The eviction is
1288 * assumed to be entirely data-area; this should not be called with a
1289 * range overlapping the metadata structures in the cg. It also
1290 * assumes minfrag points into the given cg; it will misbehave if this
1291 * is not true.
1292 *
1293 * See the comment header on find_freespace() for one possible bug
1294 * lurking here.
1295 */
1296 static void
1297 evict_data(struct cg * cg, unsigned int minfrag, unsigned int nfrag)
1298 {
1299 int base; /* base of cg (in frags from beginning of fs) */
1300
1301
1302 base = cgbase(oldsb, cg->cg_cgx);
1303 /* Does the boundary fall in the middle of a block? To avoid
1304 * breaking between frags allocated as consecutive, we always
1305 * evict the whole block in this case, though one could argue
1306 * we should check to see if the frag before or after the
1307 * break is unallocated. */
1308 if (minfrag % oldsb->fs_frag) {
1309 int n;
1310 n = minfrag % oldsb->fs_frag;
1311 minfrag -= n;
1312 nfrag += n;
1313 }
1314 /* Do whole blocks. If a block is wholly free, skip it; if
1315 * wholly allocated, move it in toto. If neither, call
1316 * fragmove() to move the frags to new locations. */
1317 while (nfrag >= oldsb->fs_frag) {
1318 if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
1319 if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
1320 oldsb->fs_frag)) {
1321 int off;
1322 off = find_freeblock();
1323 if (off < 0)
1324 toofull();
1325 mark_move(base + minfrag, off, oldsb->fs_frag);
1326 set_bits(cg_blksfree(cg, 0), minfrag,
1327 oldsb->fs_frag);
1328 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1329 dtogd(oldsb, off), oldsb->fs_frag);
1330 } else {
1331 fragmove(cg, base, minfrag, oldsb->fs_frag);
1332 }
1333 }
1334 minfrag += oldsb->fs_frag;
1335 nfrag -= oldsb->fs_frag;
1336 }
1337 /* Clean up any sub-block amount left over. */
1338 if (nfrag) {
1339 fragmove(cg, base, minfrag, nfrag);
1340 }
1341 }
1342 /*
1343 * Move all data blocks according to blkmove. We have to be careful,
1344 * because we may be updating indirect blocks that will themselves be
1345 * getting moved, or inode int32_t arrays that point to indirect
1346 * blocks that will be moved. We call this before
1347 * update_for_data_move, and update_for_data_move does inodes first,
1348 * then indirect blocks in preorder, so as to make sure that the
1349 * file system is self-consistent at all points, for better crash
1350 * tolerance. (We can get away with this only because all the writes
1351 * done by perform_data_move() are writing into space that's not used
1352 * by the old file system.) If we crash, some things may point to the
1353 * old data and some to the new, but both copies are the same. The
1354 * only wrong things should be csum info and free bitmaps, which fsck
1355 * is entirely capable of cleaning up.
1356 *
1357 * Since blkmove_init() initializes all blocks to move to their current
1358 * locations, we can have two blocks marked as wanting to move to the
1359 * same location, but only two and only when one of them is the one
1360 * that was already there. So if blkmove[i]==i, we ignore that entry
1361 * entirely - for unallocated blocks, we don't want it (and may be
1362 * putting something else there), and for allocated blocks, we don't
1363 * want to copy it anywhere.
1364 */
1365 static void
1366 perform_data_move(void)
1367 {
1368 int i;
1369 int run;
1370 int maxrun;
1371 char buf[65536];
1372
1373 maxrun = sizeof(buf) / newsb->fs_fsize;
1374 run = 0;
1375 for (i = 0; i < oldsb->fs_size; i++) {
1376 if ((blkmove[i] == i) ||
1377 (run >= maxrun) ||
1378 ((run > 0) &&
1379 (blkmove[i] != blkmove[i - 1] + 1))) {
1380 if (run > 0) {
1381 readat(fsbtodb(oldsb, i - run), &buf[0],
1382 run << oldsb->fs_fshift);
1383 writeat(fsbtodb(oldsb, blkmove[i - run]),
1384 &buf[0], run << oldsb->fs_fshift);
1385 }
1386 run = 0;
1387 }
1388 if (blkmove[i] != i)
1389 run++;
1390 }
1391 if (run > 0) {
1392 readat(fsbtodb(oldsb, i - run), &buf[0],
1393 run << oldsb->fs_fshift);
1394 writeat(fsbtodb(oldsb, blkmove[i - run]), &buf[0],
1395 run << oldsb->fs_fshift);
1396 }
1397 }
1398 /*
1399 * This modifies an array of int32_t, according to blkmove. This is
1400 * used to update inode block arrays and indirect blocks to point to
1401 * the new locations of data blocks.
1402 *
1403 * Return value is the number of int32_ts that needed updating; in
1404 * particular, the return value is zero iff nothing was modified.
1405 */
1406 static int
1407 movemap_blocks(int32_t * vec, int n)
1408 {
1409 int rv;
1410 rv = 0;
1411 for (; n > 0; n--, vec++) {
1412 if (blkmove[*vec] != *vec) {
1413 *vec = blkmove[*vec];
1414 rv++;
1415 }
1416 }
1417 return (rv);
1418 }
1419 static void
1420 moveblocks_callback(union dinode * di, unsigned int inum, void *arg)
1421 {
1422 void *dblkptr, *iblkptr; /* XXX */
1423 switch (DIP(di,di_mode) & IFMT) {
1424 case IFLNK:
1425 if (DIP(di,di_size) > oldsb->fs_maxsymlinklen) {
1426 case IFDIR:
1427 case IFREG:
1428 if (is_ufs2) {
1429 dblkptr = &(di->dp2.di_db[0]);
1430 iblkptr = &(di->dp2.di_ib[0]);
1431 } else {
1432 dblkptr = &(di->dp1.di_db[0]);
1433 iblkptr = &(di->dp1.di_ib[0]);
1434 }
1435 /* don't || these two calls; we need their
1436 * side-effects */
1437 if (movemap_blocks(dblkptr, NDADDR)) {
1438 iflags[inum] |= IF_DIRTY;
1439 }
1440 if (movemap_blocks(iblkptr, NIADDR)) {
1441 iflags[inum] |= IF_DIRTY;
1442 }
1443 }
1444 break;
1445 }
1446 }
1447
1448 static void
1449 moveindir_callback(unsigned int off, unsigned int nfrag, unsigned int nbytes,
1450 int kind)
1451 {
1452 int i;
1453 if (kind == MDB_INDIR_PRE) {
1454 int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
1455 readat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
1456 if (needswap)
1457 for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
1458 blk[i] = bswap32(blk[i]);
1459 if (movemap_blocks(&blk[0], NINDIR(oldsb))) {
1460 if (needswap)
1461 for (i = 0; i < howmany(MAXBSIZE,
1462 sizeof(int32_t)); i++)
1463 blk[i] = bswap32(blk[i]);
1464 writeat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
1465 }
1466 }
1467 }
1468 /*
1469 * Update all inode data arrays and indirect blocks to point to the new
1470 * locations of data blocks. See the comment header on
1471 * perform_data_move for some ordering considerations.
1472 */
1473 static void
1474 update_for_data_move(void)
1475 {
1476 map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
1477 map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
1478 }
1479 /*
1480 * Initialize the inomove array.
1481 */
1482 static void
1483 inomove_init(void)
1484 {
1485 int i;
1486
1487 inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
1488 "inomove");
1489 for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
1490 inomove[i] = i;
1491 }
1492 /*
1493 * Flush all dirtied inodes to disk. Scans the inode flags array; for
1494 * each dirty inode, it sets the BDIRTY bit on the first inode in the
1495 * block containing the dirty inode. Then it scans by blocks, and for
1496 * each marked block, writes it.
1497 */
1498 static void
1499 flush_inodes(void)
1500 {
1501 int i, j, k, na, ni, m;
1502 struct ufs1_dinode *dp1 = NULL;
1503 struct ufs2_dinode *dp2 = NULL;
1504
1505 na = NDADDR + NIADDR;
1506 ni = newsb->fs_ipg * newsb->fs_ncg;
1507 m = INOPB(newsb) - 1;
1508 for (i = 0; i < ni; i++) {
1509 if (iflags[i] & IF_DIRTY) {
1510 iflags[i & ~m] |= IF_BDIRTY;
1511 }
1512 }
1513 m++;
1514
1515 if (is_ufs2)
1516 dp2 = (struct ufs2_dinode *)ibuf;
1517 else
1518 dp1 = (struct ufs1_dinode *)ibuf;
1519
1520 for (i = 0; i < ni; i += m) {
1521 if (iflags[i] & IF_BDIRTY) {
1522 if (is_ufs2)
1523 for (j = 0; j < m; j++) {
1524 dp2[j] = inodes[i + j].dp2;
1525 if (needswap) {
1526 for (k = 0; k < na; k++)
1527 dp2[j].di_db[k]=
1528 bswap32(dp2[j].di_db[k]);
1529 ffs_dinode2_swap(&dp2[j],
1530 &dp2[j]);
1531 }
1532 }
1533 else
1534 for (j = 0; j < m; j++) {
1535 dp1[j] = inodes[i + j].dp1;
1536 if (needswap) {
1537 for (k = 0; k < na; k++)
1538 dp1[j].di_db[k]=
1539 bswap32(dp1[j].di_db[k]);
1540 ffs_dinode1_swap(&dp1[j],
1541 &dp1[j]);
1542 }
1543 }
1544
1545 writeat(fsbtodb(newsb, ino_to_fsba(newsb, i)),
1546 ibuf, newsb->fs_bsize);
1547 }
1548 }
1549 }
1550 /*
1551 * Evict all inodes from the specified cg. shrink() already checked
1552 * that there were enough free inodes, so the no-free-inodes check is
1553 * a can't-happen. If it does trip, the file system should be in good
1554 * enough shape for fsck to fix; see the comment on perform_data_move
1555 * for the considerations in question.
1556 */
1557 static void
1558 evict_inodes(struct cg * cg)
1559 {
1560 int inum;
1561 int i;
1562 int fi;
1563
1564 inum = newsb->fs_ipg * cg->cg_cgx;
1565 for (i = 0; i < newsb->fs_ipg; i++, inum++) {
1566 if (DIP(inodes + inum,di_mode) != 0) {
1567 fi = find_freeinode();
1568 if (fi < 0) {
1569 printf("Sorry, inodes evaporated - "
1570 "file system probably needs fsck\n");
1571 exit(EXIT_FAILURE);
1572 }
1573 inomove[inum] = fi;
1574 clr_bits(cg_inosused(cg, 0), i, 1);
1575 set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
1576 fi % newsb->fs_ipg, 1);
1577 }
1578 }
1579 }
1580 /*
1581 * Move inodes from old locations to new. Does not actually write
1582 * anything to disk; just copies in-core and sets dirty bits.
1583 *
1584 * We have to be careful here for reasons similar to those mentioned in
1585 * the comment header on perform_data_move, above: for the sake of
1586 * crash tolerance, we want to make sure everything is present at both
1587 * old and new locations before we update pointers. So we call this
1588 * first, then flush_inodes() to get them out on disk, then update
1589 * directories to match.
1590 */
1591 static void
1592 perform_inode_move(void)
1593 {
1594 int i;
1595 int ni;
1596
1597 ni = oldsb->fs_ipg * oldsb->fs_ncg;
1598 for (i = 0; i < ni; i++) {
1599 if (inomove[i] != i) {
1600 inodes[inomove[i]] = inodes[i];
1601 iflags[inomove[i]] = iflags[i] | IF_DIRTY;
1602 }
1603 }
1604 }
1605 /*
1606 * Update the directory contained in the nb bytes at buf, to point to
1607 * inodes' new locations.
1608 */
1609 static int
1610 update_dirents(char *buf, int nb)
1611 {
1612 int rv;
1613 #define d ((struct direct *)buf)
1614 #define s32(x) (needswap?bswap32((x)):(x))
1615 #define s16(x) (needswap?bswap16((x)):(x))
1616
1617 rv = 0;
1618 while (nb > 0) {
1619 if (inomove[s32(d->d_ino)] != s32(d->d_ino)) {
1620 rv++;
1621 d->d_ino = s32(inomove[s32(d->d_ino)]);
1622 }
1623 nb -= s16(d->d_reclen);
1624 buf += s16(d->d_reclen);
1625 }
1626 return (rv);
1627 #undef d
1628 #undef s32
1629 #undef s16
1630 }
1631 /*
1632 * Callback function for map_inode_data_blocks, for updating a
1633 * directory to point to new inode locations.
1634 */
1635 static void
1636 update_dir_data(unsigned int bn, unsigned int size, unsigned int nb, int kind)
1637 {
1638 if (kind == MDB_DATA) {
1639 union {
1640 struct direct d;
1641 char ch[MAXBSIZE];
1642 } buf;
1643 readat(fsbtodb(oldsb, bn), &buf, size << oldsb->fs_fshift);
1644 if (update_dirents((char *) &buf, nb)) {
1645 writeat(fsbtodb(oldsb, bn), &buf,
1646 size << oldsb->fs_fshift);
1647 }
1648 }
1649 }
1650 static void
1651 dirmove_callback(union dinode * di, unsigned int inum, void *arg)
1652 {
1653 switch (DIP(di,di_mode) & IFMT) {
1654 case IFDIR:
1655 map_inode_data_blocks(di, &update_dir_data);
1656 break;
1657 }
1658 }
1659 /*
1660 * Update directory entries to point to new inode locations.
1661 */
1662 static void
1663 update_for_inode_move(void)
1664 {
1665 map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
1666 }
1667 /*
1668 * Shrink the file system.
1669 */
1670 static void
1671 shrink(void)
1672 {
1673 int i;
1674
1675 /* Load the inodes off disk - we'll need 'em. */
1676 loadinodes();
1677 /* Update the timestamp. */
1678 newsb->fs_time = timestamp();
1679 /* Update the size figures. */
1680 newsb->fs_size = dbtofsb(newsb, newsize);
1681 if (is_ufs2)
1682 newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
1683 else {
1684 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
1685 newsb->fs_old_spc);
1686 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
1687 }
1688 /* Does the (new) last cg end before the end of its inode area? See
1689 * the similar code in grow() for more on this. */
1690 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
1691 newsb->fs_ncg--;
1692 if (is_ufs2 == 0) {
1693 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
1694 newsb->fs_size = (newsb->fs_old_ncyl *
1695 newsb->fs_old_spc) / NSPF(newsb);
1696 } else
1697 newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg;
1698
1699 printf("Warning: last cylinder group is too small;\n");
1700 printf(" dropping it. New size = %lu.\n",
1701 (unsigned long int) fsbtodb(newsb, newsb->fs_size));
1702 }
1703 /* Let's make sure we're not being shrunk into oblivion. */
1704 if (newsb->fs_ncg < 1) {
1705 printf("Size too small - file system would "
1706 "have no cylinders\n");
1707 exit(EXIT_FAILURE);
1708 }
1709 /* Initialize for block motion. */
1710 blkmove_init();
1711 /* Update csum size, then fix up for the new size */
1712 newsb->fs_cssize = fragroundup(newsb,
1713 newsb->fs_ncg * sizeof(struct csum));
1714 csum_fixup();
1715 /* Evict data from any cgs being wholly eliminated */
1716 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
1717 int base;
1718 int dlow;
1719 int dhigh;
1720 int dmax;
1721 base = cgbase(oldsb, i);
1722 dlow = cgsblock(oldsb, i) - base;
1723 dhigh = cgdmin(oldsb, i) - base;
1724 dmax = oldsb->fs_size - base;
1725 if (dmax > cgs[i]->cg_ndblk)
1726 dmax = cgs[i]->cg_ndblk;
1727 evict_data(cgs[i], 0, dlow);
1728 evict_data(cgs[i], dhigh, dmax - dhigh);
1729 newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
1730 newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
1731 newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
1732 newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
1733 }
1734 /* Update the new last cg. */
1735 cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
1736 ((newsb->fs_ncg - 1) * newsb->fs_fpg);
1737 /* Is the new last cg partial? If so, evict any data from the part
1738 * being shrunken away. */
1739 if (newsb->fs_size % newsb->fs_fpg) {
1740 struct cg *cg;
1741 int oldcgsize;
1742 int newcgsize;
1743 cg = cgs[newsb->fs_ncg - 1];
1744 newcgsize = newsb->fs_size % newsb->fs_fpg;
1745 oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
1746 oldsb->fs_fpg);
1747 if (oldcgsize > oldsb->fs_fpg)
1748 oldcgsize = oldsb->fs_fpg;
1749 evict_data(cg, newcgsize, oldcgsize - newcgsize);
1750 clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
1751 }
1752 /* Find out whether we would run out of inodes. (Note we
1753 * haven't actually done anything to the file system yet; all
1754 * those evict_data calls just update blkmove.) */
1755 {
1756 int slop;
1757 slop = 0;
1758 for (i = 0; i < newsb->fs_ncg; i++)
1759 slop += cgs[i]->cg_cs.cs_nifree;
1760 for (; i < oldsb->fs_ncg; i++)
1761 slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
1762 if (slop < 0) {
1763 printf("Sorry, would run out of inodes\n");
1764 exit(EXIT_FAILURE);
1765 }
1766 }
1767 /* Copy data, then update pointers to data. See the comment
1768 * header on perform_data_move for ordering considerations. */
1769 perform_data_move();
1770 update_for_data_move();
1771 /* Now do inodes. Initialize, evict, move, update - see the
1772 * comment header on perform_inode_move. */
1773 inomove_init();
1774 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
1775 evict_inodes(cgs[i]);
1776 perform_inode_move();
1777 flush_inodes();
1778 update_for_inode_move();
1779 /* Recompute all the bitmaps; most of them probably need it anyway,
1780 * the rest are just paranoia and not wanting to have to bother
1781 * keeping track of exactly which ones require it. */
1782 for (i = 0; i < newsb->fs_ncg; i++)
1783 cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
1784 /* Update the cg_old_ncyl value for the last cylinder. */
1785 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
1786 cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
1787 newsb->fs_old_ncyl % newsb->fs_old_cpg;
1788 /* Make fs_dsize match the new reality. */
1789 recompute_fs_dsize();
1790 }
1791 /*
1792 * Recompute the block totals, block cluster summaries, and rotational
1793 * position summaries, for a given cg (specified by number), based on
1794 * its free-frag bitmap (cg_blksfree()[]).
1795 */
1796 static void
1797 rescan_blkmaps(int cgn)
1798 {
1799 struct cg *cg;
1800 int f;
1801 int b;
1802 int blkfree;
1803 int blkrun;
1804 int fragrun;
1805 int fwb;
1806
1807 cg = cgs[cgn];
1808 /* Subtract off the current totals from the sb's summary info */
1809 newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
1810 newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
1811 /* Clear counters and bitmaps. */
1812 cg->cg_cs.cs_nffree = 0;
1813 cg->cg_cs.cs_nbfree = 0;
1814 memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0]));
1815 memset(&old_cg_blktot(cg, 0)[0], 0,
1816 newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
1817 memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0,
1818 newsb->fs_old_cpg * newsb->fs_old_nrpos *
1819 sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
1820 if (newsb->fs_contigsumsize > 0) {
1821 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
1822 memset(&cg_clustersum(cg, 0)[1], 0,
1823 newsb->fs_contigsumsize *
1824 sizeof(cg_clustersum(cg, 0)[1]));
1825 if (is_ufs2)
1826 memset(&cg_clustersfree(cg, 0)[0], 0,
1827 howmany(newsb->fs_fpg / NSPB(newsb), NBBY));
1828 else
1829 memset(&cg_clustersfree(cg, 0)[0], 0,
1830 howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
1831 NSPB(newsb), NBBY));
1832 }
1833 /* Scan the free-frag bitmap. Runs of free frags are kept
1834 * track of with fragrun, and recorded into cg_frsum[] and
1835 * cg_cs.cs_nffree; on each block boundary, entire free blocks
1836 * are recorded as well. */
1837 blkfree = 1;
1838 blkrun = 0;
1839 fragrun = 0;
1840 f = 0;
1841 b = 0;
1842 fwb = 0;
1843 while (f < cg->cg_ndblk) {
1844 if (bit_is_set(cg_blksfree(cg, 0), f)) {
1845 fragrun++;
1846 } else {
1847 blkfree = 0;
1848 if (fragrun > 0) {
1849 cg->cg_frsum[fragrun]++;
1850 cg->cg_cs.cs_nffree += fragrun;
1851 }
1852 fragrun = 0;
1853 }
1854 f++;
1855 fwb++;
1856 if (fwb >= newsb->fs_frag) {
1857 if (blkfree) {
1858 cg->cg_cs.cs_nbfree++;
1859 if (newsb->fs_contigsumsize > 0)
1860 set_bits(cg_clustersfree(cg, 0), b, 1);
1861 if (is_ufs2 == 0) {
1862 old_cg_blktot(cg, 0)[
1863 old_cbtocylno(newsb,
1864 f - newsb->fs_frag)]++;
1865 old_cg_blks(newsb, cg,
1866 old_cbtocylno(newsb,
1867 f - newsb->fs_frag),
1868 0)[old_cbtorpos(newsb,
1869 f - newsb->fs_frag)]++;
1870 }
1871 blkrun++;
1872 } else {
1873 if (fragrun > 0) {
1874 cg->cg_frsum[fragrun]++;
1875 cg->cg_cs.cs_nffree += fragrun;
1876 }
1877 if (newsb->fs_contigsumsize > 0) {
1878 if (blkrun > 0) {
1879 cg_clustersum(cg, 0)[(blkrun
1880 > newsb->fs_contigsumsize)
1881 ? newsb->fs_contigsumsize
1882 : blkrun]++;
1883 }
1884 }
1885 blkrun = 0;
1886 }
1887 fwb = 0;
1888 b++;
1889 blkfree = 1;
1890 fragrun = 0;
1891 }
1892 }
1893 if (fragrun > 0) {
1894 cg->cg_frsum[fragrun]++;
1895 cg->cg_cs.cs_nffree += fragrun;
1896 }
1897 if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
1898 cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
1899 newsb->fs_contigsumsize : blkrun]++;
1900 }
1901 /*
1902 * Put the updated summary info back into csums, and add it
1903 * back into the sb's summary info. Then mark the cg dirty.
1904 */
1905 csums[cgn] = cg->cg_cs;
1906 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
1907 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
1908 cgflags[cgn] |= CGF_DIRTY;
1909 }
1910 /*
1911 * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
1912 * values, for a cg, based on the in-core inodes for that cg.
1913 */
1914 static void
1915 rescan_inomaps(int cgn)
1916 {
1917 struct cg *cg;
1918 int inum;
1919 int iwc;
1920
1921 cg = cgs[cgn];
1922 newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
1923 newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
1924 cg->cg_cs.cs_ndir = 0;
1925 cg->cg_cs.cs_nifree = 0;
1926 memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY));
1927 inum = cgn * newsb->fs_ipg;
1928 if (cgn == 0) {
1929 set_bits(cg_inosused(cg, 0), 0, 2);
1930 iwc = 2;
1931 inum += 2;
1932 } else {
1933 iwc = 0;
1934 }
1935 for (; iwc < newsb->fs_ipg; iwc++, inum++) {
1936 switch (DIP(inodes + inum, di_mode) & IFMT) {
1937 case 0:
1938 cg->cg_cs.cs_nifree++;
1939 break;
1940 case IFDIR:
1941 cg->cg_cs.cs_ndir++;
1942 /* fall through */
1943 default:
1944 set_bits(cg_inosused(cg, 0), iwc, 1);
1945 break;
1946 }
1947 }
1948 csums[cgn] = cg->cg_cs;
1949 newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
1950 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
1951 cgflags[cgn] |= CGF_DIRTY;
1952 }
1953 /*
1954 * Flush cgs to disk, recomputing anything they're marked as needing.
1955 */
1956 static void
1957 flush_cgs(void)
1958 {
1959 int i;
1960
1961 for (i = 0; i < newsb->fs_ncg; i++) {
1962 if (cgflags[i] & CGF_BLKMAPS) {
1963 rescan_blkmaps(i);
1964 }
1965 if (cgflags[i] & CGF_INOMAPS) {
1966 rescan_inomaps(i);
1967 }
1968 if (cgflags[i] & CGF_DIRTY) {
1969 cgs[i]->cg_rotor = 0;
1970 cgs[i]->cg_frotor = 0;
1971 cgs[i]->cg_irotor = 0;
1972 if (needswap)
1973 ffs_cg_swap(cgs[i],cgs[i],newsb);
1974 writeat(fsbtodb(newsb, cgtod(newsb, i)), cgs[i],
1975 cgblksz);
1976 }
1977 }
1978 if (needswap)
1979 ffs_csum_swap(csums,csums,newsb->fs_cssize);
1980 writeat(fsbtodb(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
1981 }
1982 /*
1983 * Write the superblock, both to the main superblock and to each cg's
1984 * alternative superblock.
1985 */
1986 static void
1987 write_sbs(void)
1988 {
1989 int i;
1990
1991 if (newsb->fs_magic == FS_UFS1_MAGIC &&
1992 (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
1993 newsb->fs_old_time = newsb->fs_time;
1994 newsb->fs_old_size = newsb->fs_size;
1995 /* we don't update fs_csaddr */
1996 newsb->fs_old_dsize = newsb->fs_dsize;
1997 newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
1998 newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
1999 newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
2000 newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
2001 /* fill fs_old_postbl_start with 256 bytes of 0xff? */
2002 }
2003 /* copy newsb back to oldsb, so we can use it for offsets if
2004 newsb has been swapped for writing to disk */
2005 memcpy(oldsb, newsb, SBLOCKSIZE);
2006 if (needswap)
2007 ffs_sb_swap(newsb,newsb);
2008 writeat(where / DEV_BSIZE, newsb, SBLOCKSIZE);
2009 for (i = 0; i < oldsb->fs_ncg; i++) {
2010 writeat(fsbtodb(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE);
2011 }
2012 }
2013
2014 static uint32_t
2015 get_dev_size(char *dev_name)
2016 {
2017 struct dkwedge_info dkw;
2018 struct partition *pp;
2019 struct disklabel lp;
2020 size_t ptn;
2021
2022 /* Get info about partition/wedge */
2023 if (ioctl(fd, DIOCGWEDGEINFO, &dkw) == -1) {
2024 if (ioctl(fd, DIOCGDINFO, &lp) == -1)
2025 return 0;
2026
2027 ptn = strchr(dev_name, '\0')[-1] - 'a';
2028 if (ptn >= lp.d_npartitions)
2029 return 0;
2030
2031 pp = &lp.d_partitions[ptn];
2032 return pp->p_size;
2033 }
2034
2035 return dkw.dkw_size;
2036 }
2037
2038 /*
2039 * main().
2040 */
2041 int
2042 main(int argc, char **argv)
2043 {
2044 int ch;
2045 int ExpertFlag;
2046 int SFlag;
2047 size_t i;
2048
2049 char *special;
2050 char reply[5];
2051
2052 newsize = 0;
2053 ExpertFlag = 0;
2054 SFlag = 0;
2055
2056 while ((ch = getopt(argc, argv, "s:y")) != -1) {
2057 switch (ch) {
2058 case 's':
2059 SFlag = 1;
2060 newsize = (size_t)strtoul(optarg, NULL, 10);
2061 if(newsize < 1) {
2062 usage();
2063 }
2064 break;
2065 case 'y':
2066 ExpertFlag = 1;
2067 break;
2068 case '?':
2069 /* FALLTHROUGH */
2070 default:
2071 usage();
2072 }
2073 }
2074 argc -= optind;
2075 argv += optind;
2076
2077 if (argc != 1) {
2078 usage();
2079 }
2080
2081 special = *argv;
2082
2083 if (ExpertFlag == 0) {
2084 printf("It's required to manually run fsck on file system "
2085 "before you can resize it\n\n"
2086 " Did you run fsck on your disk (Yes/No) ? ");
2087 fgets(reply, (int)sizeof(reply), stdin);
2088 if (strcasecmp(reply, "Yes\n")) {
2089 printf("\n Nothing done \n");
2090 exit(EXIT_SUCCESS);
2091 }
2092 }
2093
2094 fd = open(special, O_RDWR, 0);
2095 if (fd < 0)
2096 err(EXIT_FAILURE, "Can't open `%s'", special);
2097 checksmallio();
2098
2099 if (SFlag == 0) {
2100 newsize = get_dev_size(special);
2101 if (newsize == 0)
2102 err(EXIT_FAILURE,
2103 "Can't resize file system, newsize not known.");
2104 }
2105
2106 oldsb = (struct fs *) & sbbuf;
2107 newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
2108 for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
2109 readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
2110 switch (oldsb->fs_magic) {
2111 case FS_UFS2_MAGIC:
2112 /* FALLTHROUGH */
2113 is_ufs2 = 1;
2114 case FS_UFS1_MAGIC:
2115 needswap = 0;
2116 break;
2117 case FS_UFS2_MAGIC_SWAPPED:
2118 is_ufs2 = 1;
2119 /* FALLTHROUGH */
2120 case FS_UFS1_MAGIC_SWAPPED:
2121 needswap = 1;
2122 break;
2123 default:
2124 continue;
2125 }
2126 if (!is_ufs2 && where == SBLOCK_UFS2)
2127 continue;
2128 break;
2129 }
2130 if (where == (off_t)-1)
2131 errx(EXIT_FAILURE, "Bad magic number");
2132 if (needswap)
2133 ffs_sb_swap(oldsb,oldsb);
2134 if (oldsb->fs_magic == FS_UFS1_MAGIC &&
2135 (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2136 oldsb->fs_csaddr = oldsb->fs_old_csaddr;
2137 oldsb->fs_size = oldsb->fs_old_size;
2138 oldsb->fs_dsize = oldsb->fs_old_dsize;
2139 oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
2140 oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
2141 oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
2142 oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
2143 /* any others? */
2144 printf("Resizing with ffsv1 superblock\n");
2145 }
2146
2147 oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
2148 oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
2149 if (oldsb->fs_ipg % INOPB(oldsb)) {
2150 (void)fprintf(stderr, "ipg[%d] %% INOPB[%d] != 0\n",
2151 (int) oldsb->fs_ipg, (int) INOPB(oldsb));
2152 exit(EXIT_FAILURE);
2153 }
2154 /* The superblock is bigger than struct fs (there are trailing
2155 * tables, of non-fixed size); make sure we copy the whole
2156 * thing. SBLOCKSIZE may be an over-estimate, but we do this
2157 * just once, so being generous is cheap. */
2158 memcpy(newsb, oldsb, SBLOCKSIZE);
2159 loadcgs();
2160 if (newsize > fsbtodb(oldsb, oldsb->fs_size)) {
2161 grow();
2162 } else if (newsize < fsbtodb(oldsb, oldsb->fs_size)) {
2163 if (is_ufs2)
2164 errx(EXIT_FAILURE,"shrinking not supported for ufs2");
2165 shrink();
2166 }
2167 flush_cgs();
2168 write_sbs();
2169 if (isplainfile())
2170 ftruncate(fd,newsize * DEV_BSIZE);
2171 return 0;
2172 }
2173
2174 static void
2175 usage(void)
2176 {
2177
2178 (void)fprintf(stderr, "usage: %s [-y] [-s size] special\n",
2179 getprogname());
2180 exit(EXIT_FAILURE);
2181 }
2182