resize_ffs.c revision 1.26 1 /* $NetBSD: resize_ffs.c,v 1.26 2011/08/15 00:24:19 dholland Exp $ */
2 /* From sources sent on February 17, 2003 */
3 /*-
4 * As its sole author, I explicitly place this code in the public
5 * domain. Anyone may use it for any purpose (though I would
6 * appreciate credit where it is due).
7 *
8 * der Mouse
9 *
10 * mouse (at) rodents.montreal.qc.ca
11 * 7D C8 61 52 5D E7 2D 39 4E F1 31 3E E8 B3 27 4B
12 */
13 /*
14 * resize_ffs:
15 *
16 * Resize a file system. Is capable of both growing and shrinking.
17 *
18 * Usage: resize_ffs [-s newsize] [-y] file_system
19 *
20 * Example: resize_ffs -s 29574 /dev/rsd1e
21 *
22 * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
23 * each).
24 *
25 * Note: this currently requires gcc to build, since it is written
26 * depending on gcc-specific features, notably nested function
27 * definitions (which in at least a few cases depend on the lexical
28 * scoping gcc provides, so they can't be trivially moved outside).
29 *
30 * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
31 * one responsible for the "realloccgblk: can't find blk in cyl"
32 * problem and a more minor one which left fs_dsize wrong when
33 * shrinking. (These actually indicate bugs in fsck too - it should
34 * have caught and fixed them.)
35 *
36 */
37
38 #include <sys/cdefs.h>
39 #include <sys/disk.h>
40 #include <sys/disklabel.h>
41 #include <sys/dkio.h>
42 #include <sys/ioctl.h>
43 #include <sys/stat.h>
44 #include <sys/mman.h>
45 #include <sys/param.h> /* MAXFRAG */
46 #include <ufs/ffs/fs.h>
47 #include <ufs/ffs/ffs_extern.h>
48 #include <ufs/ufs/dir.h>
49 #include <ufs/ufs/dinode.h>
50 #include <ufs/ufs/ufs_bswap.h> /* ufs_rw32 */
51
52 #include <err.h>
53 #include <errno.h>
54 #include <fcntl.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <strings.h>
58 #include <unistd.h>
59
60 /* new size of file system, in sectors */
61 static uint64_t newsize;
62
63 /* fd open onto disk device or file */
64 static int fd;
65
66 /* must we break up big I/O operations - see checksmallio() */
67 static int smallio;
68
69 /* size of a cg, in bytes, rounded up to a frag boundary */
70 static int cgblksz;
71
72 /* possible superblock localtions */
73 static int search[] = SBLOCKSEARCH;
74 /* location of the superblock */
75 static off_t where;
76
77 /* Superblocks. */
78 static struct fs *oldsb; /* before we started */
79 static struct fs *newsb; /* copy to work with */
80 /* Buffer to hold the above. Make sure it's aligned correctly. */
81 static char sbbuf[2 * SBLOCKSIZE]
82 __attribute__((__aligned__(__alignof__(struct fs))));
83
84 union dinode {
85 struct ufs1_dinode dp1;
86 struct ufs2_dinode dp2;
87 };
88 #define DIP(dp, field) \
89 ((is_ufs2) ? \
90 (dp)->dp2.field : (dp)->dp1.field)
91
92 #define DIP_ASSIGN(dp, field, value) \
93 do { \
94 if (is_ufs2) \
95 (dp)->dp2.field = (value); \
96 else \
97 (dp)->dp1.field = (value); \
98 } while (0)
99
100 /* a cg's worth of brand new squeaky-clean inodes */
101 static struct ufs1_dinode *zinodes;
102
103 /* pointers to the in-core cgs, read off disk and possibly modified */
104 static struct cg **cgs;
105
106 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
107 static struct csum *csums;
108
109 /* per-cg flags, indexed by cg number */
110 static unsigned char *cgflags;
111 #define CGF_DIRTY 0x01 /* needs to be written to disk */
112 #define CGF_BLKMAPS 0x02 /* block bitmaps need rebuilding */
113 #define CGF_INOMAPS 0x04 /* inode bitmaps need rebuilding */
114
115 /* when shrinking, these two arrays record how we want blocks to move. */
116 /* if blkmove[i] is j, the frag that started out as frag #i should end */
117 /* up as frag #j. inomove[i]=j means, similarly, that the inode that */
118 /* started out as inode i should end up as inode j. */
119 static unsigned int *blkmove;
120 static unsigned int *inomove;
121
122 /* in-core copies of all inodes in the fs, indexed by inumber */
123 union dinode *inodes;
124
125 void *ibuf; /* ptr to fs block-sized buffer for reading/writing inodes */
126
127 /* byteswapped inodes */
128 union dinode *sinodes;
129
130 /* per-inode flags, indexed by inumber */
131 static unsigned char *iflags;
132 #define IF_DIRTY 0x01 /* needs to be written to disk */
133 #define IF_BDIRTY 0x02 /* like DIRTY, but is set on first inode in a
134 * block of inodes, and applies to the whole
135 * block. */
136
137 /* resize_ffs works directly on dinodes, adapt blksize() */
138 #define dblksize(fs, dip, lbn) \
139 (((lbn) >= NDADDR || DIP((dip), di_size) >= lblktosize(fs, (lbn) + 1)) \
140 ? (fs)->fs_bsize \
141 : (fragroundup(fs, blkoff(fs, DIP((dip), di_size)))))
142
143
144 /*
145 * Number of disk sectors per block/fragment
146 */
147 #define NSPB(fs) (fsbtodb((fs),1) << (fs)->fs_fragshift)
148 #define NSPF(fs) (fsbtodb((fs),1))
149
150 /* global flags */
151 int is_ufs2 = 0;
152 int needswap = 0;
153
154 static void usage(void) __dead;
155
156 /*
157 * See if we need to break up large I/O operations. This should never
158 * be needed, but under at least one <version,platform> combination,
159 * large enough disk transfers to the raw device hang. So if we're
160 * talking to a character special device, play it safe; in this case,
161 * readat() and writeat() break everything up into pieces no larger
162 * than 8K, doing multiple syscalls for larger operations.
163 */
164 static void
165 checksmallio(void)
166 {
167 struct stat stb;
168
169 fstat(fd, &stb);
170 smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
171 }
172
173 static int
174 isplainfile(void)
175 {
176 struct stat stb;
177
178 fstat(fd, &stb);
179 return S_ISREG(stb.st_mode);
180 }
181 /*
182 * Read size bytes starting at blkno into buf. blkno is in DEV_BSIZE
183 * units, ie, after fsbtodb(); size is in bytes.
184 */
185 static void
186 readat(off_t blkno, void *buf, int size)
187 {
188 /* Seek to the correct place. */
189 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
190 err(EXIT_FAILURE, "lseek failed");
191
192 /* See if we have to break up the transfer... */
193 if (smallio) {
194 char *bp; /* pointer into buf */
195 int left; /* bytes left to go */
196 int n; /* number to do this time around */
197 int rv; /* syscall return value */
198 bp = buf;
199 left = size;
200 while (left > 0) {
201 n = (left > 8192) ? 8192 : left;
202 rv = read(fd, bp, n);
203 if (rv < 0)
204 err(EXIT_FAILURE, "read failed");
205 if (rv != n)
206 errx(EXIT_FAILURE,
207 "read: wanted %d, got %d", n, rv);
208 bp += n;
209 left -= n;
210 }
211 } else {
212 int rv;
213 rv = read(fd, buf, size);
214 if (rv < 0)
215 err(EXIT_FAILURE, "read failed");
216 if (rv != size)
217 errx(EXIT_FAILURE, "read: wanted %d, got %d",
218 size, rv);
219 }
220 }
221 /*
222 * Write size bytes from buf starting at blkno. blkno is in DEV_BSIZE
223 * units, ie, after fsbtodb(); size is in bytes.
224 */
225 static void
226 writeat(off_t blkno, const void *buf, int size)
227 {
228 /* Seek to the correct place. */
229 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
230 err(EXIT_FAILURE, "lseek failed");
231 /* See if we have to break up the transfer... */
232 if (smallio) {
233 const char *bp; /* pointer into buf */
234 int left; /* bytes left to go */
235 int n; /* number to do this time around */
236 int rv; /* syscall return value */
237 bp = buf;
238 left = size;
239 while (left > 0) {
240 n = (left > 8192) ? 8192 : left;
241 rv = write(fd, bp, n);
242 if (rv < 0)
243 err(EXIT_FAILURE, "write failed");
244 if (rv != n)
245 errx(EXIT_FAILURE,
246 "write: wanted %d, got %d", n, rv);
247 bp += n;
248 left -= n;
249 }
250 } else {
251 int rv;
252 rv = write(fd, buf, size);
253 if (rv < 0)
254 err(EXIT_FAILURE, "write failed");
255 if (rv != size)
256 errx(EXIT_FAILURE,
257 "write: wanted %d, got %d", size, rv);
258 }
259 }
260 /*
261 * Never-fail versions of malloc() and realloc(), and an allocation
262 * routine (which also never fails) for allocating memory that will
263 * never be freed until exit.
264 */
265
266 /*
267 * Never-fail malloc.
268 */
269 static void *
270 nfmalloc(size_t nb, const char *tag)
271 {
272 void *rv;
273
274 rv = malloc(nb);
275 if (rv)
276 return (rv);
277 err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
278 (unsigned long int) nb, tag);
279 }
280 /*
281 * Never-fail realloc.
282 */
283 static void *
284 nfrealloc(void *blk, size_t nb, const char *tag)
285 {
286 void *rv;
287
288 rv = realloc(blk, nb);
289 if (rv)
290 return (rv);
291 err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
292 (unsigned long int) nb, tag);
293 }
294 /*
295 * Allocate memory that will never be freed or reallocated. Arguably
296 * this routine should handle small allocations by chopping up pages,
297 * but that's not worth the bother; it's not called more than a
298 * handful of times per run, and if the allocations are that small the
299 * waste in giving each one its own page is ignorable.
300 */
301 static void *
302 alloconce(size_t nb, const char *tag)
303 {
304 void *rv;
305
306 rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
307 if (rv != MAP_FAILED)
308 return (rv);
309 err(EXIT_FAILURE, "Can't map %lu bytes for %s",
310 (unsigned long int) nb, tag);
311 }
312 /*
313 * Load the cgs and csums off disk. Also allocates the space to load
314 * them into and initializes the per-cg flags.
315 */
316 static void
317 loadcgs(void)
318 {
319 int cg;
320 char *cgp;
321
322 cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
323 cgs = nfmalloc(oldsb->fs_ncg * sizeof(struct cg *), "cg pointers");
324 cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
325 cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
326 csums = nfmalloc(oldsb->fs_cssize, "cg summary");
327 for (cg = 0; cg < oldsb->fs_ncg; cg++) {
328 cgs[cg] = (struct cg *) cgp;
329 readat(fsbtodb(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
330 if (needswap)
331 ffs_cg_swap(cgs[cg],cgs[cg],oldsb);
332 cgflags[cg] = 0;
333 cgp += cgblksz;
334 }
335 readat(fsbtodb(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
336 if (needswap)
337 ffs_csum_swap(csums,csums,oldsb->fs_cssize);
338 }
339 /*
340 * Set n bits, starting with bit #base, in the bitmap pointed to by
341 * bitvec (which is assumed to be large enough to include bits base
342 * through base+n-1).
343 */
344 static void
345 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
346 {
347 if (n < 1)
348 return; /* nothing to do */
349 if (base & 7) { /* partial byte at beginning */
350 if (n <= 8 - (base & 7)) { /* entirely within one byte */
351 bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
352 return;
353 }
354 bitvec[base >> 3] |= (~0U) << (base & 7);
355 n -= 8 - (base & 7);
356 base = (base & ~7) + 8;
357 }
358 if (n >= 8) { /* do full bytes */
359 memset(bitvec + (base >> 3), 0xff, n >> 3);
360 base += n & ~7;
361 n &= 7;
362 }
363 if (n) { /* partial byte at end */
364 bitvec[base >> 3] |= ~((~0U) << n);
365 }
366 }
367 /*
368 * Clear n bits, starting with bit #base, in the bitmap pointed to by
369 * bitvec (which is assumed to be large enough to include bits base
370 * through base+n-1). Code parallels set_bits().
371 */
372 static void
373 clr_bits(unsigned char *bitvec, int base, int n)
374 {
375 if (n < 1)
376 return;
377 if (base & 7) {
378 if (n <= 8 - (base & 7)) {
379 bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
380 return;
381 }
382 bitvec[base >> 3] &= ~((~0U) << (base & 7));
383 n -= 8 - (base & 7);
384 base = (base & ~7) + 8;
385 }
386 if (n >= 8) {
387 memset(bitvec + (base >> 3), 0, n >> 3);
388 base += n & ~7;
389 n &= 7;
390 }
391 if (n) {
392 bitvec[base >> 3] &= (~0U) << n;
393 }
394 }
395 /*
396 * Test whether bit #bit is set in the bitmap pointed to by bitvec.
397 */
398 static int
399 bit_is_set(unsigned char *bitvec, int bit)
400 {
401 return (bitvec[bit >> 3] & (1 << (bit & 7)));
402 }
403 /*
404 * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
405 */
406 static int
407 bit_is_clr(unsigned char *bitvec, int bit)
408 {
409 return (!bit_is_set(bitvec, bit));
410 }
411 /*
412 * Test whether a whole block of bits is set in a bitmap. This is
413 * designed for testing (aligned) disk blocks in a bit-per-frag
414 * bitmap; it has assumptions wired into it based on that, essentially
415 * that the entire block fits into a single byte. This returns true
416 * iff _all_ the bits are set; it is not just the complement of
417 * blk_is_clr on the same arguments (unless blkfrags==1).
418 */
419 static int
420 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
421 {
422 unsigned int mask;
423
424 mask = (~((~0U) << blkfrags)) << (blkbase & 7);
425 return ((bitvec[blkbase >> 3] & mask) == mask);
426 }
427 /*
428 * Test whether a whole block of bits is clear in a bitmap. See
429 * blk_is_set (above) for assumptions. This returns true iff _all_
430 * the bits are clear; it is not just the complement of blk_is_set on
431 * the same arguments (unless blkfrags==1).
432 */
433 static int
434 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
435 {
436 unsigned int mask;
437
438 mask = (~((~0U) << blkfrags)) << (blkbase & 7);
439 return ((bitvec[blkbase >> 3] & mask) == 0);
440 }
441 /*
442 * Initialize a new cg. Called when growing. Assumes memory has been
443 * allocated but not otherwise set up. This code sets the fields of
444 * the cg, initializes the bitmaps (and cluster summaries, if
445 * applicable), updates both per-cylinder summary info and the global
446 * summary info in newsb; it also writes out new inodes for the cg.
447 *
448 * This code knows it can never be called for cg 0, which makes it a
449 * bit simpler than it would otherwise be.
450 */
451 static void
452 initcg(int cgn)
453 {
454 struct cg *cg; /* The in-core cg, of course */
455 int base; /* Disk address of cg base */
456 int dlow; /* Size of pre-cg data area */
457 int dhigh; /* Offset of post-inode data area, from base */
458 int dmax; /* Offset of end of post-inode data area */
459 int i; /* Generic loop index */
460 int n; /* Generic count */
461 int start; /* start of cg maps */
462
463 cg = cgs[cgn];
464 /* Place the data areas */
465 base = cgbase(newsb, cgn);
466 dlow = cgsblock(newsb, cgn) - base;
467 dhigh = cgdmin(newsb, cgn) - base;
468 dmax = newsb->fs_size - base;
469 if (dmax > newsb->fs_fpg)
470 dmax = newsb->fs_fpg;
471 start = &cg->cg_space[0] - (unsigned char *) cg;
472 /*
473 * Clear out the cg - assumes all-0-bytes is the correct way
474 * to initialize fields we don't otherwise touch, which is
475 * perhaps not the right thing to do, but it's what fsck and
476 * mkfs do.
477 */
478 memset(cg, 0, newsb->fs_cgsize);
479 if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
480 cg->cg_time = newsb->fs_time;
481 cg->cg_magic = CG_MAGIC;
482 cg->cg_cgx = cgn;
483 cg->cg_niblk = newsb->fs_ipg;
484 cg->cg_ndblk = dmax;
485
486 if (is_ufs2) {
487 cg->cg_time = newsb->fs_time;
488 cg->cg_initediblk = newsb->fs_ipg < 2 * INOPB(newsb) ?
489 newsb->fs_ipg : 2 * INOPB(newsb);
490 cg->cg_iusedoff = start;
491 } else {
492 cg->cg_old_time = newsb->fs_time;
493 cg->cg_old_niblk = cg->cg_niblk;
494 cg->cg_niblk = 0;
495 cg->cg_initediblk = 0;
496
497
498 cg->cg_old_ncyl = newsb->fs_old_cpg;
499 /* Update the cg_old_ncyl value for the last cylinder. */
500 if (cgn == newsb->fs_ncg - 1) {
501 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
502 cg->cg_old_ncyl = newsb->fs_old_ncyl %
503 newsb->fs_old_cpg;
504 }
505
506 /* Set up the bitmap pointers. We have to be careful
507 * to lay out the cg _exactly_ the way mkfs and fsck
508 * do it, since fsck compares the _entire_ cg against
509 * a recomputed cg, and whines if there is any
510 * mismatch, including the bitmap offsets. */
511 /* XXX update this comment when fsck is fixed */
512 cg->cg_old_btotoff = start;
513 cg->cg_old_boff = cg->cg_old_btotoff
514 + (newsb->fs_old_cpg * sizeof(int32_t));
515 cg->cg_iusedoff = cg->cg_old_boff +
516 (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
517 }
518 cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
519 if (newsb->fs_contigsumsize > 0) {
520 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
521 cg->cg_clustersumoff = cg->cg_freeoff +
522 howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t);
523 cg->cg_clustersumoff =
524 roundup(cg->cg_clustersumoff, sizeof(int32_t));
525 cg->cg_clusteroff = cg->cg_clustersumoff +
526 ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
527 cg->cg_nextfreeoff = cg->cg_clusteroff +
528 howmany(fragstoblks(newsb,newsb->fs_fpg), NBBY);
529 n = dlow / newsb->fs_frag;
530 if (n > 0) {
531 set_bits(cg_clustersfree(cg, 0), 0, n);
532 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
533 newsb->fs_contigsumsize : n]++;
534 }
535 } else {
536 cg->cg_nextfreeoff = cg->cg_freeoff +
537 howmany(newsb->fs_fpg, NBBY);
538 }
539 /* Mark the data areas as free; everything else is marked busy by the
540 * memset() up at the top. */
541 set_bits(cg_blksfree(cg, 0), 0, dlow);
542 set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
543 /* Initialize summary info */
544 cg->cg_cs.cs_ndir = 0;
545 cg->cg_cs.cs_nifree = newsb->fs_ipg;
546 cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
547 cg->cg_cs.cs_nffree = 0;
548
549 /* This is the simplest way of doing this; we perhaps could
550 * compute the correct cg_blktot()[] and cg_blks()[] values
551 * other ways, but it would be complicated and hardly seems
552 * worth the effort. (The reason there isn't
553 * frag-at-beginning and frag-at-end code here, like the code
554 * below for the post-inode data area, is that the pre-sb data
555 * area always starts at 0, and thus is block-aligned, and
556 * always ends at the sb, which is block-aligned.) */
557 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
558 for (i = 0; i < dlow; i += newsb->fs_frag) {
559 old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++;
560 old_cg_blks(newsb, cg,
561 old_cbtocylno(newsb, i),
562 0)[old_cbtorpos(newsb, i)]++;
563 }
564
565 /* Deal with a partial block at the beginning of the post-inode area.
566 * I'm not convinced this can happen - I think the inodes are always
567 * block-aligned and always an integral number of blocks - but it's
568 * cheap to do the right thing just in case. */
569 if (dhigh % newsb->fs_frag) {
570 n = newsb->fs_frag - (dhigh % newsb->fs_frag);
571 cg->cg_frsum[n]++;
572 cg->cg_cs.cs_nffree += n;
573 dhigh += n;
574 }
575 n = (dmax - dhigh) / newsb->fs_frag;
576 /* We have n full-size blocks in the post-inode data area. */
577 if (n > 0) {
578 cg->cg_cs.cs_nbfree += n;
579 if (newsb->fs_contigsumsize > 0) {
580 i = dhigh / newsb->fs_frag;
581 set_bits(cg_clustersfree(cg, 0), i, n);
582 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
583 newsb->fs_contigsumsize : n]++;
584 }
585 if (is_ufs2 == 0)
586 for (i = n; i > 0; i--) {
587 old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
588 dhigh)]++;
589 old_cg_blks(newsb, cg,
590 old_cbtocylno(newsb, dhigh),
591 0)[old_cbtorpos(newsb,
592 dhigh)]++;
593 dhigh += newsb->fs_frag;
594 }
595 }
596 if (is_ufs2 == 0) {
597 /* Deal with any leftover frag at the end of the cg. */
598 i = dmax - dhigh;
599 if (i) {
600 cg->cg_frsum[i]++;
601 cg->cg_cs.cs_nffree += i;
602 }
603 }
604 /* Update the csum info. */
605 csums[cgn] = cg->cg_cs;
606 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
607 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
608 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
609 if (is_ufs2 == 0)
610 /* Write out the cleared inodes. */
611 writeat(fsbtodb(newsb, cgimin(newsb, cgn)), zinodes,
612 newsb->fs_ipg * sizeof(struct ufs1_dinode));
613 /* Dirty the cg. */
614 cgflags[cgn] |= CGF_DIRTY;
615 }
616 /*
617 * Find free space, at least nfrags consecutive frags of it. Pays no
618 * attention to block boundaries, but refuses to straddle cg
619 * boundaries, even if the disk blocks involved are in fact
620 * consecutive. Return value is the frag number of the first frag of
621 * the block, or -1 if no space was found. Uses newsb for sb values,
622 * and assumes the cgs[] structures correctly describe the area to be
623 * searched.
624 *
625 * XXX is there a bug lurking in the ignoring of block boundaries by
626 * the routine used by fragmove() in evict_data()? Can an end-of-file
627 * frag legally straddle a block boundary? If not, this should be
628 * cloned and fixed to stop at block boundaries for that use. The
629 * current one may still be needed for csum info motion, in case that
630 * takes up more than a whole block (is the csum info allowed to begin
631 * partway through a block and continue into the following block?).
632 *
633 * If we wrap off the end of the file system back to the beginning, we
634 * can end up searching the end of the file system twice. I ignore
635 * this inefficiency, since if that happens we're going to croak with
636 * a no-space error anyway, so it happens at most once.
637 */
638 static int
639 find_freespace(unsigned int nfrags)
640 {
641 static int hand = 0; /* hand rotates through all frags in the fs */
642 int cgsize; /* size of the cg hand currently points into */
643 int cgn; /* number of cg hand currently points into */
644 int fwc; /* frag-within-cg number of frag hand points
645 * to */
646 int run; /* length of run of free frags seen so far */
647 int secondpass; /* have we wrapped from end of fs to
648 * beginning? */
649 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
650
651 cgn = dtog(newsb, hand);
652 fwc = dtogd(newsb, hand);
653 secondpass = (hand == 0);
654 run = 0;
655 bits = cg_blksfree(cgs[cgn], 0);
656 cgsize = cgs[cgn]->cg_ndblk;
657 while (1) {
658 if (bit_is_set(bits, fwc)) {
659 run++;
660 if (run >= nfrags)
661 return (hand + 1 - run);
662 } else {
663 run = 0;
664 }
665 hand++;
666 fwc++;
667 if (fwc >= cgsize) {
668 fwc = 0;
669 cgn++;
670 if (cgn >= newsb->fs_ncg) {
671 hand = 0;
672 if (secondpass)
673 return (-1);
674 secondpass = 1;
675 cgn = 0;
676 }
677 bits = cg_blksfree(cgs[cgn], 0);
678 cgsize = cgs[cgn]->cg_ndblk;
679 run = 0;
680 }
681 }
682 }
683 /*
684 * Find a free block of disk space. Finds an entire block of frags,
685 * all of which are free. Return value is the frag number of the
686 * first frag of the block, or -1 if no space was found. Uses newsb
687 * for sb values, and assumes the cgs[] structures correctly describe
688 * the area to be searched.
689 *
690 * See find_freespace(), above, for remarks about hand wrapping around.
691 */
692 static int
693 find_freeblock(void)
694 {
695 static int hand = 0; /* hand rotates through all frags in fs */
696 int cgn; /* cg number of cg hand points into */
697 int fwc; /* frag-within-cg number of frag hand points
698 * to */
699 int cgsize; /* size of cg hand points into */
700 int secondpass; /* have we wrapped from end to beginning? */
701 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
702
703 cgn = dtog(newsb, hand);
704 fwc = dtogd(newsb, hand);
705 secondpass = (hand == 0);
706 bits = cg_blksfree(cgs[cgn], 0);
707 cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
708 while (1) {
709 if (blk_is_set(bits, fwc, newsb->fs_frag))
710 return (hand);
711 fwc += newsb->fs_frag;
712 hand += newsb->fs_frag;
713 if (fwc >= cgsize) {
714 fwc = 0;
715 cgn++;
716 if (cgn >= newsb->fs_ncg) {
717 hand = 0;
718 if (secondpass)
719 return (-1);
720 secondpass = 1;
721 cgn = 0;
722 }
723 bits = cg_blksfree(cgs[cgn], 0);
724 cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
725 }
726 }
727 }
728 /*
729 * Find a free inode, returning its inumber or -1 if none was found.
730 * Uses newsb for sb values, and assumes the cgs[] structures
731 * correctly describe the area to be searched.
732 *
733 * See find_freespace(), above, for remarks about hand wrapping around.
734 */
735 static int
736 find_freeinode(void)
737 {
738 static int hand = 0; /* hand rotates through all inodes in fs */
739 int cgn; /* cg number of cg hand points into */
740 int iwc; /* inode-within-cg number of inode hand points
741 * to */
742 int secondpass; /* have we wrapped from end to beginning? */
743 unsigned char *bits; /* cg_inosused()[] for cg hand points into */
744
745 cgn = hand / newsb->fs_ipg;
746 iwc = hand % newsb->fs_ipg;
747 secondpass = (hand == 0);
748 bits = cg_inosused(cgs[cgn], 0);
749 while (1) {
750 if (bit_is_clr(bits, iwc))
751 return (hand);
752 hand++;
753 iwc++;
754 if (iwc >= newsb->fs_ipg) {
755 iwc = 0;
756 cgn++;
757 if (cgn >= newsb->fs_ncg) {
758 hand = 0;
759 if (secondpass)
760 return (-1);
761 secondpass = 1;
762 cgn = 0;
763 }
764 bits = cg_inosused(cgs[cgn], 0);
765 }
766 }
767 }
768 /*
769 * Mark a frag as free. Sets the frag's bit in the cg_blksfree bitmap
770 * for the appropriate cg, and marks the cg as dirty.
771 */
772 static void
773 free_frag(int fno)
774 {
775 int cgn;
776
777 cgn = dtog(newsb, fno);
778 set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
779 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
780 }
781 /*
782 * Allocate a frag. Clears the frag's bit in the cg_blksfree bitmap
783 * for the appropriate cg, and marks the cg as dirty.
784 */
785 static void
786 alloc_frag(int fno)
787 {
788 int cgn;
789
790 cgn = dtog(newsb, fno);
791 clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
792 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
793 }
794 /*
795 * Fix up the csum array. If shrinking, this involves freeing zero or
796 * more frags; if growing, it involves allocating them, or if the
797 * frags being grown into aren't free, finding space elsewhere for the
798 * csum info. (If the number of occupied frags doesn't change,
799 * nothing happens here.)
800 */
801 static void
802 csum_fixup(void)
803 {
804 int nold; /* # frags in old csum info */
805 int ntot; /* # frags in new csum info */
806 int nnew; /* ntot-nold */
807 int newloc; /* new location for csum info, if necessary */
808 int i; /* generic loop index */
809 int j; /* generic loop index */
810 int f; /* "from" frag number, if moving */
811 int t; /* "to" frag number, if moving */
812 int cgn; /* cg number, used when shrinking */
813
814 ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
815 nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
816 nnew = ntot - nold;
817 /* First, if there's no change in frag counts, it's easy. */
818 if (nnew == 0)
819 return;
820 /* Next, if we're shrinking, it's almost as easy. Just free up any
821 * frags in the old area we no longer need. */
822 if (nnew < 0) {
823 for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
824 j < 0;
825 i--, j++) {
826 free_frag(i);
827 }
828 return;
829 }
830 /* We must be growing. Check to see that the new csum area fits
831 * within the file system. I think this can never happen, since for
832 * the csum area to grow, we must be adding at least one cg, so the
833 * old csum area can't be this close to the end of the new file system.
834 * But it's a cheap check. */
835 /* XXX what if csum info is at end of cg and grows into next cg, what
836 * if it spills over onto the next cg's backup superblock? Can this
837 * happen? */
838 if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
839 /* Okay, it fits - now, see if the space we want is free. */
840 for ((i = newsb->fs_csaddr + nold), (j = nnew);
841 j > 0;
842 i++, j--) {
843 cgn = dtog(newsb, i);
844 if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
845 dtogd(newsb, i)))
846 break;
847 }
848 if (j <= 0) {
849 /* Win win - all the frags we want are free. Allocate
850 * 'em and we're all done. */
851 for ((i = newsb->fs_csaddr + ntot - nnew),
852 (j = nnew); j > 0; i++, j--) {
853 alloc_frag(i);
854 }
855 return;
856 }
857 }
858 /* We have to move the csum info, sigh. Look for new space, free old
859 * space, and allocate new. Update fs_csaddr. We don't copy anything
860 * on disk at this point; the csum info will be written to the
861 * then-current fs_csaddr as part of the final flush. */
862 newloc = find_freespace(ntot);
863 if (newloc < 0) {
864 printf("Sorry, no space available for new csums\n");
865 exit(EXIT_FAILURE);
866 }
867 for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
868 if (i < nold) {
869 free_frag(f);
870 }
871 alloc_frag(t);
872 }
873 newsb->fs_csaddr = newloc;
874 }
875 /*
876 * Recompute newsb->fs_dsize. Just scans all cgs, adding the number of
877 * data blocks in that cg to the total.
878 */
879 static void
880 recompute_fs_dsize(void)
881 {
882 int i;
883
884 newsb->fs_dsize = 0;
885 for (i = 0; i < newsb->fs_ncg; i++) {
886 int dlow; /* size of before-sb data area */
887 int dhigh; /* offset of post-inode data area */
888 int dmax; /* total size of cg */
889 int base; /* base of cg, since cgsblock() etc add it in */
890 base = cgbase(newsb, i);
891 dlow = cgsblock(newsb, i) - base;
892 dhigh = cgdmin(newsb, i) - base;
893 dmax = newsb->fs_size - base;
894 if (dmax > newsb->fs_fpg)
895 dmax = newsb->fs_fpg;
896 newsb->fs_dsize += dlow + dmax - dhigh;
897 }
898 /* Space in cg 0 before cgsblock is boot area, not free space! */
899 newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
900 /* And of course the csum info takes up space. */
901 newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
902 }
903 /*
904 * Return the current time. We call this and assign, rather than
905 * calling time() directly, as insulation against OSes where fs_time
906 * is not a time_t.
907 */
908 static time_t
909 timestamp(void)
910 {
911 time_t t;
912
913 time(&t);
914 return (t);
915 }
916 /*
917 * Grow the file system.
918 */
919 static void
920 grow(void)
921 {
922 int i;
923
924 /* Update the timestamp. */
925 newsb->fs_time = timestamp();
926 /* Allocate and clear the new-inode area, in case we add any cgs. */
927 zinodes = alloconce(newsb->fs_ipg * sizeof(struct ufs1_dinode),
928 "zeroed inodes");
929 memset(zinodes, 0, newsb->fs_ipg * sizeof(struct ufs1_dinode));
930 /* Update the size. */
931 newsb->fs_size = dbtofsb(newsb, newsize);
932 /* Did we actually not grow? (This can happen if newsize is less than
933 * a frag larger than the old size - unlikely, but no excuse to
934 * misbehave if it happens.) */
935 if (newsb->fs_size == oldsb->fs_size) {
936 printf("New fs size %"PRIu64" = odl fs size %"PRIu64
937 ", not growing.\n", newsb->fs_size, oldsb->fs_size);
938 return;
939 }
940 /* Check that the new last sector (frag, actually) is writable. Since
941 * it's at least one frag larger than it used to be, we know we aren't
942 * overwriting anything important by this. (The choice of sbbuf as
943 * what to write is irrelevant; it's just something handy that's known
944 * to be at least one frag in size.) */
945 writeat(fsbtodb(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
946 if (is_ufs2)
947 newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
948 else {
949 /* Update fs_old_ncyl and fs_ncg. */
950 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
951 newsb->fs_old_spc);
952 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
953 }
954
955 /* Does the last cg end before the end of its inode area? There is no
956 * reason why this couldn't be handled, but it would complicate a lot
957 * of code (in all file system code - fsck, kernel, etc) because of the
958 * potential partial inode area, and the gain in space would be
959 * minimal, at most the pre-sb data area. */
960 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
961 newsb->fs_ncg--;
962 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
963 newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc)
964 / NSPF(newsb);
965 printf("Warning: last cylinder group is too small;\n");
966 printf(" dropping it. New size = %lu.\n",
967 (unsigned long int) fsbtodb(newsb, newsb->fs_size));
968 }
969 /* Find out how big the csum area is, and realloc csums if bigger. */
970 newsb->fs_cssize = fragroundup(newsb,
971 newsb->fs_ncg * sizeof(struct csum));
972 if (newsb->fs_cssize > oldsb->fs_cssize)
973 csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
974 /* If we're adding any cgs, realloc structures and set up the new
975 cgs. */
976 if (newsb->fs_ncg > oldsb->fs_ncg) {
977 char *cgp;
978 cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(struct cg *),
979 "cg pointers");
980 cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
981 memset(cgflags + oldsb->fs_ncg, 0,
982 newsb->fs_ncg - oldsb->fs_ncg);
983 cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
984 "cgs");
985 for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
986 cgs[i] = (struct cg *) cgp;
987 initcg(i);
988 cgp += cgblksz;
989 }
990 cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
991 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
992 }
993 /* If the old fs ended partway through a cg, we have to update the old
994 * last cg (though possibly not to a full cg!). */
995 if (oldsb->fs_size % oldsb->fs_fpg) {
996 struct cg *cg;
997 int newcgsize;
998 int prevcgtop;
999 int oldcgsize;
1000 cg = cgs[oldsb->fs_ncg - 1];
1001 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
1002 prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
1003 newcgsize = newsb->fs_size - prevcgtop;
1004 if (newcgsize > newsb->fs_fpg)
1005 newcgsize = newsb->fs_fpg;
1006 oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
1007 set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
1008 cg->cg_old_ncyl = oldsb->fs_old_cpg;
1009 cg->cg_ndblk = newcgsize;
1010 }
1011 /* Fix up the csum info, if necessary. */
1012 csum_fixup();
1013 /* Make fs_dsize match the new reality. */
1014 recompute_fs_dsize();
1015 }
1016 /*
1017 * Call (*fn)() for each inode, passing the inode and its inumber. The
1018 * number of cylinder groups is pased in, so this can be used to map
1019 * over either the old or the new file system's set of inodes.
1020 */
1021 static void
1022 map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg),
1023 int ncg, void *cbarg) {
1024 int i;
1025 int ni;
1026
1027 ni = oldsb->fs_ipg * ncg;
1028 for (i = 0; i < ni; i++)
1029 (*fn) (inodes + i, i, cbarg);
1030 }
1031 /* Values for the third argument to the map function for
1032 * map_inode_data_blocks. MDB_DATA indicates the block is contains
1033 * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
1034 * indirect block. The MDB_INDIR_PRE call is made before the indirect
1035 * block pointers are followed and the pointed-to blocks scanned,
1036 * MDB_INDIR_POST after.
1037 */
1038 #define MDB_DATA 1
1039 #define MDB_INDIR_PRE 2
1040 #define MDB_INDIR_POST 3
1041
1042 typedef void (*mark_callback_t) (unsigned int blocknum, unsigned int nfrags,
1043 unsigned int blksize, int opcode);
1044
1045 /* Helper function - handles a data block. Calls the callback
1046 * function and returns number of bytes occupied in file (actually,
1047 * rounded up to a frag boundary). The name is historical. */
1048 static int
1049 markblk(mark_callback_t fn, union dinode * di, int bn, off_t o)
1050 {
1051 int sz;
1052 int nb;
1053
1054 if (o >= DIP(di,di_size))
1055 return (0);
1056 sz = dblksize(newsb, di, lblkno(newsb, o));
1057 nb = (sz > DIP(di,di_size) - o) ? DIP(di,di_size) - o : sz;
1058 if (bn)
1059 (*fn) (bn, numfrags(newsb, sz), nb, MDB_DATA);
1060 return (sz);
1061 }
1062 /* Helper function - handles an indirect block. Makes the
1063 * MDB_INDIR_PRE callback for the indirect block, loops over the
1064 * pointers and recurses, and makes the MDB_INDIR_POST callback.
1065 * Returns the number of bytes occupied in file, as does markblk().
1066 * For the sake of update_for_data_move(), we read the indirect block
1067 * _after_ making the _PRE callback. The name is historical. */
1068 static int
1069 markiblk(mark_callback_t fn, union dinode * di, int bn, off_t o, int lev)
1070 {
1071 int i;
1072 int j;
1073 int tot;
1074 static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
1075 static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
1076 static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
1077 static int32_t *indirblks[3] = {
1078 &indirblk1[0], &indirblk2[0], &indirblk3[0]
1079 };
1080
1081 if (lev < 0)
1082 return (markblk(fn, di, bn, o));
1083 if (bn == 0) {
1084 for (i = newsb->fs_bsize;
1085 lev >= 0;
1086 i *= NINDIR(newsb), lev--);
1087 return (i);
1088 }
1089 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
1090 readat(fsbtodb(newsb, bn), indirblks[lev], newsb->fs_bsize);
1091 if (needswap)
1092 for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
1093 indirblks[lev][i] = bswap32(indirblks[lev][i]);
1094 tot = 0;
1095 for (i = 0; i < NINDIR(newsb); i++) {
1096 j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
1097 if (j == 0)
1098 break;
1099 o += j;
1100 tot += j;
1101 }
1102 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
1103 return (tot);
1104 }
1105
1106
1107 /*
1108 * Call (*fn)() for each data block for an inode. This routine assumes
1109 * the inode is known to be of a type that has data blocks (file,
1110 * directory, or non-fast symlink). The called function is:
1111 *
1112 * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
1113 *
1114 * where blkno is the frag number, nf is the number of frags starting
1115 * at blkno (always <= fs_frag), nb is the number of bytes that belong
1116 * to the file (usually nf*fs_frag, often less for the last block/frag
1117 * of a file).
1118 */
1119 static void
1120 map_inode_data_blocks(union dinode * di, mark_callback_t fn)
1121 {
1122 off_t o; /* offset within inode */
1123 int inc; /* increment for o - maybe should be off_t? */
1124 int b; /* index within di_db[] and di_ib[] arrays */
1125
1126 /* Scan the direct blocks... */
1127 o = 0;
1128 for (b = 0; b < NDADDR; b++) {
1129 inc = markblk(fn, di, DIP(di,di_db[b]), o);
1130 if (inc == 0)
1131 break;
1132 o += inc;
1133 }
1134 /* ...and the indirect blocks. */
1135 if (inc) {
1136 for (b = 0; b < NIADDR; b++) {
1137 inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b);
1138 if (inc == 0)
1139 return;
1140 o += inc;
1141 }
1142 }
1143 }
1144
1145 static void
1146 dblk_callback(union dinode * di, unsigned int inum, void *arg)
1147 {
1148 mark_callback_t fn;
1149
1150 fn = (mark_callback_t) arg;
1151 switch (DIP(di,di_mode) & IFMT) {
1152 case IFLNK:
1153 if (DIP(di,di_size) > newsb->fs_maxsymlinklen) {
1154 case IFDIR:
1155 case IFREG:
1156 map_inode_data_blocks(di, fn);
1157 }
1158 break;
1159 }
1160 }
1161 /*
1162 * Make a callback call, a la map_inode_data_blocks, for all data
1163 * blocks in the entire fs. This is used only once, in
1164 * update_for_data_move, but it's out at top level because the complex
1165 * downward-funarg nesting that would otherwise result seems to give
1166 * gcc gastric distress.
1167 */
1168 static void
1169 map_data_blocks(mark_callback_t fn, int ncg)
1170 {
1171 map_inodes(&dblk_callback, ncg, (void *) fn);
1172 }
1173 /*
1174 * Initialize the blkmove array.
1175 */
1176 static void
1177 blkmove_init(void)
1178 {
1179 int i;
1180
1181 blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
1182 for (i = 0; i < oldsb->fs_size; i++)
1183 blkmove[i] = i;
1184 }
1185 /*
1186 * Load the inodes off disk. Allocates the structures and initializes
1187 * them - the inodes from disk, the flags to zero.
1188 */
1189 static void
1190 loadinodes(void)
1191 {
1192 int imax, ino, i, j;
1193 struct ufs1_dinode *dp1 = NULL;
1194 struct ufs2_dinode *dp2 = NULL;
1195
1196 /* read inodes one fs block at a time and copy them */
1197
1198 inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
1199 sizeof(union dinode), "inodes");
1200 iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
1201 memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg);
1202
1203 ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf");
1204 if (is_ufs2)
1205 dp2 = (struct ufs2_dinode *)ibuf;
1206 else
1207 dp1 = (struct ufs1_dinode *)ibuf;
1208
1209 for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) {
1210 readat(fsbtodb(oldsb, ino_to_fsba(oldsb, ino)), ibuf,
1211 oldsb->fs_bsize);
1212
1213 for (i = 0; i < oldsb->fs_inopb; i++) {
1214 if (is_ufs2) {
1215 if (needswap) {
1216 ffs_dinode2_swap(&(dp2[i]), &(dp2[i]));
1217 for (j = 0; j < NDADDR + NIADDR; j++)
1218 dp2[i].di_db[j] =
1219 bswap32(dp2[i].di_db[j]);
1220 }
1221 memcpy(&inodes[ino].dp2, &dp2[i],
1222 sizeof(struct ufs2_dinode));
1223 } else {
1224 if (needswap) {
1225 ffs_dinode1_swap(&(dp1[i]), &(dp1[i]));
1226 for (j = 0; j < NDADDR + NIADDR; j++)
1227 dp1[i].di_db[j] =
1228 bswap32(dp1[i].di_db[j]);
1229 }
1230 memcpy(&inodes[ino].dp1, &dp1[i],
1231 sizeof(struct ufs1_dinode));
1232 }
1233 if (++ino > imax)
1234 errx(EXIT_FAILURE,
1235 "Exceeded number of inodes");
1236 }
1237
1238 }
1239 }
1240 /*
1241 * Report a file-system-too-full problem.
1242 */
1243 static void
1244 toofull(void)
1245 {
1246 printf("Sorry, would run out of data blocks\n");
1247 exit(EXIT_FAILURE);
1248 }
1249 /*
1250 * Record a desire to move "n" frags from "from" to "to".
1251 */
1252 static void
1253 mark_move(unsigned int from, unsigned int to, unsigned int n)
1254 {
1255 for (; n > 0; n--)
1256 blkmove[from++] = to++;
1257 }
1258 /* Helper function - evict n frags, starting with start (cg-relative).
1259 * The free bitmap is scanned, unallocated frags are ignored, and
1260 * each block of consecutive allocated frags is moved as a unit.
1261 */
1262 static void
1263 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
1264 {
1265 int i;
1266 int run;
1267
1268 run = 0;
1269 for (i = 0; i <= n; i++) {
1270 if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
1271 run++;
1272 } else {
1273 if (run > 0) {
1274 int off;
1275 off = find_freespace(run);
1276 if (off < 0)
1277 toofull();
1278 mark_move(base + start + i - run, off, run);
1279 set_bits(cg_blksfree(cg, 0), start + i - run,
1280 run);
1281 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1282 dtogd(oldsb, off), run);
1283 }
1284 run = 0;
1285 }
1286 }
1287 }
1288 /*
1289 * Evict all data blocks from the given cg, starting at minfrag (based
1290 * at the beginning of the cg), for length nfrag. The eviction is
1291 * assumed to be entirely data-area; this should not be called with a
1292 * range overlapping the metadata structures in the cg. It also
1293 * assumes minfrag points into the given cg; it will misbehave if this
1294 * is not true.
1295 *
1296 * See the comment header on find_freespace() for one possible bug
1297 * lurking here.
1298 */
1299 static void
1300 evict_data(struct cg * cg, unsigned int minfrag, unsigned int nfrag)
1301 {
1302 int base; /* base of cg (in frags from beginning of fs) */
1303
1304 base = cgbase(oldsb, cg->cg_cgx);
1305 /* Does the boundary fall in the middle of a block? To avoid
1306 * breaking between frags allocated as consecutive, we always
1307 * evict the whole block in this case, though one could argue
1308 * we should check to see if the frag before or after the
1309 * break is unallocated. */
1310 if (minfrag % oldsb->fs_frag) {
1311 int n;
1312 n = minfrag % oldsb->fs_frag;
1313 minfrag -= n;
1314 nfrag += n;
1315 }
1316 /* Do whole blocks. If a block is wholly free, skip it; if
1317 * wholly allocated, move it in toto. If neither, call
1318 * fragmove() to move the frags to new locations. */
1319 while (nfrag >= oldsb->fs_frag) {
1320 if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
1321 if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
1322 oldsb->fs_frag)) {
1323 int off;
1324 off = find_freeblock();
1325 if (off < 0)
1326 toofull();
1327 mark_move(base + minfrag, off, oldsb->fs_frag);
1328 set_bits(cg_blksfree(cg, 0), minfrag,
1329 oldsb->fs_frag);
1330 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1331 dtogd(oldsb, off), oldsb->fs_frag);
1332 } else {
1333 fragmove(cg, base, minfrag, oldsb->fs_frag);
1334 }
1335 }
1336 minfrag += oldsb->fs_frag;
1337 nfrag -= oldsb->fs_frag;
1338 }
1339 /* Clean up any sub-block amount left over. */
1340 if (nfrag) {
1341 fragmove(cg, base, minfrag, nfrag);
1342 }
1343 }
1344 /*
1345 * Move all data blocks according to blkmove. We have to be careful,
1346 * because we may be updating indirect blocks that will themselves be
1347 * getting moved, or inode int32_t arrays that point to indirect
1348 * blocks that will be moved. We call this before
1349 * update_for_data_move, and update_for_data_move does inodes first,
1350 * then indirect blocks in preorder, so as to make sure that the
1351 * file system is self-consistent at all points, for better crash
1352 * tolerance. (We can get away with this only because all the writes
1353 * done by perform_data_move() are writing into space that's not used
1354 * by the old file system.) If we crash, some things may point to the
1355 * old data and some to the new, but both copies are the same. The
1356 * only wrong things should be csum info and free bitmaps, which fsck
1357 * is entirely capable of cleaning up.
1358 *
1359 * Since blkmove_init() initializes all blocks to move to their current
1360 * locations, we can have two blocks marked as wanting to move to the
1361 * same location, but only two and only when one of them is the one
1362 * that was already there. So if blkmove[i]==i, we ignore that entry
1363 * entirely - for unallocated blocks, we don't want it (and may be
1364 * putting something else there), and for allocated blocks, we don't
1365 * want to copy it anywhere.
1366 */
1367 static void
1368 perform_data_move(void)
1369 {
1370 int i;
1371 int run;
1372 int maxrun;
1373 char buf[65536];
1374
1375 maxrun = sizeof(buf) / newsb->fs_fsize;
1376 run = 0;
1377 for (i = 0; i < oldsb->fs_size; i++) {
1378 if ((blkmove[i] == i) ||
1379 (run >= maxrun) ||
1380 ((run > 0) &&
1381 (blkmove[i] != blkmove[i - 1] + 1))) {
1382 if (run > 0) {
1383 readat(fsbtodb(oldsb, i - run), &buf[0],
1384 run << oldsb->fs_fshift);
1385 writeat(fsbtodb(oldsb, blkmove[i - run]),
1386 &buf[0], run << oldsb->fs_fshift);
1387 }
1388 run = 0;
1389 }
1390 if (blkmove[i] != i)
1391 run++;
1392 }
1393 if (run > 0) {
1394 readat(fsbtodb(oldsb, i - run), &buf[0],
1395 run << oldsb->fs_fshift);
1396 writeat(fsbtodb(oldsb, blkmove[i - run]), &buf[0],
1397 run << oldsb->fs_fshift);
1398 }
1399 }
1400 /*
1401 * This modifies an array of int32_t, according to blkmove. This is
1402 * used to update inode block arrays and indirect blocks to point to
1403 * the new locations of data blocks.
1404 *
1405 * Return value is the number of int32_ts that needed updating; in
1406 * particular, the return value is zero iff nothing was modified.
1407 */
1408 static int
1409 movemap_blocks(int32_t * vec, int n)
1410 {
1411 int rv;
1412
1413 rv = 0;
1414 for (; n > 0; n--, vec++) {
1415 if (blkmove[*vec] != *vec) {
1416 *vec = blkmove[*vec];
1417 rv++;
1418 }
1419 }
1420 return (rv);
1421 }
1422 static void
1423 moveblocks_callback(union dinode * di, unsigned int inum, void *arg)
1424 {
1425 void *dblkptr, *iblkptr; /* XXX */
1426
1427 switch (DIP(di,di_mode) & IFMT) {
1428 case IFLNK:
1429 if (DIP(di,di_size) > oldsb->fs_maxsymlinklen) {
1430 case IFDIR:
1431 case IFREG:
1432 if (is_ufs2) {
1433 dblkptr = &(di->dp2.di_db[0]);
1434 iblkptr = &(di->dp2.di_ib[0]);
1435 } else {
1436 dblkptr = &(di->dp1.di_db[0]);
1437 iblkptr = &(di->dp1.di_ib[0]);
1438 }
1439 /*
1440 * Don't || these two calls; we need their
1441 * side-effects.
1442 */
1443 if (movemap_blocks(dblkptr, NDADDR)) {
1444 iflags[inum] |= IF_DIRTY;
1445 }
1446 if (movemap_blocks(iblkptr, NIADDR)) {
1447 iflags[inum] |= IF_DIRTY;
1448 }
1449 }
1450 break;
1451 }
1452 }
1453
1454 static void
1455 moveindir_callback(unsigned int off, unsigned int nfrag, unsigned int nbytes,
1456 int kind)
1457 {
1458 int i;
1459
1460 if (kind == MDB_INDIR_PRE) {
1461 int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
1462 readat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
1463 if (needswap)
1464 for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
1465 blk[i] = bswap32(blk[i]);
1466 if (movemap_blocks(&blk[0], NINDIR(oldsb))) {
1467 if (needswap)
1468 for (i = 0; i < howmany(MAXBSIZE,
1469 sizeof(int32_t)); i++)
1470 blk[i] = bswap32(blk[i]);
1471 writeat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
1472 }
1473 }
1474 }
1475 /*
1476 * Update all inode data arrays and indirect blocks to point to the new
1477 * locations of data blocks. See the comment header on
1478 * perform_data_move for some ordering considerations.
1479 */
1480 static void
1481 update_for_data_move(void)
1482 {
1483 map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
1484 map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
1485 }
1486 /*
1487 * Initialize the inomove array.
1488 */
1489 static void
1490 inomove_init(void)
1491 {
1492 int i;
1493
1494 inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
1495 "inomove");
1496 for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
1497 inomove[i] = i;
1498 }
1499 /*
1500 * Flush all dirtied inodes to disk. Scans the inode flags array; for
1501 * each dirty inode, it sets the BDIRTY bit on the first inode in the
1502 * block containing the dirty inode. Then it scans by blocks, and for
1503 * each marked block, writes it.
1504 */
1505 static void
1506 flush_inodes(void)
1507 {
1508 int i, j, k, na, ni, m;
1509 struct ufs1_dinode *dp1 = NULL;
1510 struct ufs2_dinode *dp2 = NULL;
1511
1512 na = NDADDR + NIADDR;
1513 ni = newsb->fs_ipg * newsb->fs_ncg;
1514 m = INOPB(newsb) - 1;
1515 for (i = 0; i < ni; i++) {
1516 if (iflags[i] & IF_DIRTY) {
1517 iflags[i & ~m] |= IF_BDIRTY;
1518 }
1519 }
1520 m++;
1521
1522 if (is_ufs2)
1523 dp2 = (struct ufs2_dinode *)ibuf;
1524 else
1525 dp1 = (struct ufs1_dinode *)ibuf;
1526
1527 for (i = 0; i < ni; i += m) {
1528 if (iflags[i] & IF_BDIRTY) {
1529 if (is_ufs2)
1530 for (j = 0; j < m; j++) {
1531 dp2[j] = inodes[i + j].dp2;
1532 if (needswap) {
1533 for (k = 0; k < na; k++)
1534 dp2[j].di_db[k]=
1535 bswap32(dp2[j].di_db[k]);
1536 ffs_dinode2_swap(&dp2[j],
1537 &dp2[j]);
1538 }
1539 }
1540 else
1541 for (j = 0; j < m; j++) {
1542 dp1[j] = inodes[i + j].dp1;
1543 if (needswap) {
1544 for (k = 0; k < na; k++)
1545 dp1[j].di_db[k]=
1546 bswap32(dp1[j].di_db[k]);
1547 ffs_dinode1_swap(&dp1[j],
1548 &dp1[j]);
1549 }
1550 }
1551
1552 writeat(fsbtodb(newsb, ino_to_fsba(newsb, i)),
1553 ibuf, newsb->fs_bsize);
1554 }
1555 }
1556 }
1557 /*
1558 * Evict all inodes from the specified cg. shrink() already checked
1559 * that there were enough free inodes, so the no-free-inodes check is
1560 * a can't-happen. If it does trip, the file system should be in good
1561 * enough shape for fsck to fix; see the comment on perform_data_move
1562 * for the considerations in question.
1563 */
1564 static void
1565 evict_inodes(struct cg * cg)
1566 {
1567 int inum;
1568 int i;
1569 int fi;
1570
1571 inum = newsb->fs_ipg * cg->cg_cgx;
1572 for (i = 0; i < newsb->fs_ipg; i++, inum++) {
1573 if (DIP(inodes + inum,di_mode) != 0) {
1574 fi = find_freeinode();
1575 if (fi < 0) {
1576 printf("Sorry, inodes evaporated - "
1577 "file system probably needs fsck\n");
1578 exit(EXIT_FAILURE);
1579 }
1580 inomove[inum] = fi;
1581 clr_bits(cg_inosused(cg, 0), i, 1);
1582 set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
1583 fi % newsb->fs_ipg, 1);
1584 }
1585 }
1586 }
1587 /*
1588 * Move inodes from old locations to new. Does not actually write
1589 * anything to disk; just copies in-core and sets dirty bits.
1590 *
1591 * We have to be careful here for reasons similar to those mentioned in
1592 * the comment header on perform_data_move, above: for the sake of
1593 * crash tolerance, we want to make sure everything is present at both
1594 * old and new locations before we update pointers. So we call this
1595 * first, then flush_inodes() to get them out on disk, then update
1596 * directories to match.
1597 */
1598 static void
1599 perform_inode_move(void)
1600 {
1601 int i;
1602 int ni;
1603
1604 ni = oldsb->fs_ipg * oldsb->fs_ncg;
1605 for (i = 0; i < ni; i++) {
1606 if (inomove[i] != i) {
1607 inodes[inomove[i]] = inodes[i];
1608 iflags[inomove[i]] = iflags[i] | IF_DIRTY;
1609 }
1610 }
1611 }
1612 /*
1613 * Update the directory contained in the nb bytes at buf, to point to
1614 * inodes' new locations.
1615 */
1616 static int
1617 update_dirents(char *buf, int nb)
1618 {
1619 int rv;
1620 #define d ((struct direct *)buf)
1621 #define s32(x) (needswap?bswap32((x)):(x))
1622 #define s16(x) (needswap?bswap16((x)):(x))
1623
1624 rv = 0;
1625 while (nb > 0) {
1626 if (inomove[s32(d->d_ino)] != s32(d->d_ino)) {
1627 rv++;
1628 d->d_ino = s32(inomove[s32(d->d_ino)]);
1629 }
1630 nb -= s16(d->d_reclen);
1631 buf += s16(d->d_reclen);
1632 }
1633 return (rv);
1634 #undef d
1635 #undef s32
1636 #undef s16
1637 }
1638 /*
1639 * Callback function for map_inode_data_blocks, for updating a
1640 * directory to point to new inode locations.
1641 */
1642 static void
1643 update_dir_data(unsigned int bn, unsigned int size, unsigned int nb, int kind)
1644 {
1645 if (kind == MDB_DATA) {
1646 union {
1647 struct direct d;
1648 char ch[MAXBSIZE];
1649 } buf;
1650 readat(fsbtodb(oldsb, bn), &buf, size << oldsb->fs_fshift);
1651 if (update_dirents((char *) &buf, nb)) {
1652 writeat(fsbtodb(oldsb, bn), &buf,
1653 size << oldsb->fs_fshift);
1654 }
1655 }
1656 }
1657 static void
1658 dirmove_callback(union dinode * di, unsigned int inum, void *arg)
1659 {
1660 switch (DIP(di,di_mode) & IFMT) {
1661 case IFDIR:
1662 map_inode_data_blocks(di, &update_dir_data);
1663 break;
1664 }
1665 }
1666 /*
1667 * Update directory entries to point to new inode locations.
1668 */
1669 static void
1670 update_for_inode_move(void)
1671 {
1672 map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
1673 }
1674 /*
1675 * Shrink the file system.
1676 */
1677 static void
1678 shrink(void)
1679 {
1680 int i;
1681
1682 /* Load the inodes off disk - we'll need 'em. */
1683 loadinodes();
1684 /* Update the timestamp. */
1685 newsb->fs_time = timestamp();
1686 /* Update the size figures. */
1687 newsb->fs_size = dbtofsb(newsb, newsize);
1688 if (is_ufs2)
1689 newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
1690 else {
1691 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
1692 newsb->fs_old_spc);
1693 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
1694 }
1695 /* Does the (new) last cg end before the end of its inode area? See
1696 * the similar code in grow() for more on this. */
1697 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
1698 newsb->fs_ncg--;
1699 if (is_ufs2 == 0) {
1700 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
1701 newsb->fs_size = (newsb->fs_old_ncyl *
1702 newsb->fs_old_spc) / NSPF(newsb);
1703 } else
1704 newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg;
1705
1706 printf("Warning: last cylinder group is too small;\n");
1707 printf(" dropping it. New size = %lu.\n",
1708 (unsigned long int) fsbtodb(newsb, newsb->fs_size));
1709 }
1710 /* Let's make sure we're not being shrunk into oblivion. */
1711 if (newsb->fs_ncg < 1) {
1712 printf("Size too small - file system would "
1713 "have no cylinders\n");
1714 exit(EXIT_FAILURE);
1715 }
1716 /* Initialize for block motion. */
1717 blkmove_init();
1718 /* Update csum size, then fix up for the new size */
1719 newsb->fs_cssize = fragroundup(newsb,
1720 newsb->fs_ncg * sizeof(struct csum));
1721 csum_fixup();
1722 /* Evict data from any cgs being wholly eliminated */
1723 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
1724 int base;
1725 int dlow;
1726 int dhigh;
1727 int dmax;
1728 base = cgbase(oldsb, i);
1729 dlow = cgsblock(oldsb, i) - base;
1730 dhigh = cgdmin(oldsb, i) - base;
1731 dmax = oldsb->fs_size - base;
1732 if (dmax > cgs[i]->cg_ndblk)
1733 dmax = cgs[i]->cg_ndblk;
1734 evict_data(cgs[i], 0, dlow);
1735 evict_data(cgs[i], dhigh, dmax - dhigh);
1736 newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
1737 newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
1738 newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
1739 newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
1740 }
1741 /* Update the new last cg. */
1742 cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
1743 ((newsb->fs_ncg - 1) * newsb->fs_fpg);
1744 /* Is the new last cg partial? If so, evict any data from the part
1745 * being shrunken away. */
1746 if (newsb->fs_size % newsb->fs_fpg) {
1747 struct cg *cg;
1748 int oldcgsize;
1749 int newcgsize;
1750 cg = cgs[newsb->fs_ncg - 1];
1751 newcgsize = newsb->fs_size % newsb->fs_fpg;
1752 oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
1753 oldsb->fs_fpg);
1754 if (oldcgsize > oldsb->fs_fpg)
1755 oldcgsize = oldsb->fs_fpg;
1756 evict_data(cg, newcgsize, oldcgsize - newcgsize);
1757 clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
1758 }
1759 /* Find out whether we would run out of inodes. (Note we
1760 * haven't actually done anything to the file system yet; all
1761 * those evict_data calls just update blkmove.) */
1762 {
1763 int slop;
1764 slop = 0;
1765 for (i = 0; i < newsb->fs_ncg; i++)
1766 slop += cgs[i]->cg_cs.cs_nifree;
1767 for (; i < oldsb->fs_ncg; i++)
1768 slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
1769 if (slop < 0) {
1770 printf("Sorry, would run out of inodes\n");
1771 exit(EXIT_FAILURE);
1772 }
1773 }
1774 /* Copy data, then update pointers to data. See the comment
1775 * header on perform_data_move for ordering considerations. */
1776 perform_data_move();
1777 update_for_data_move();
1778 /* Now do inodes. Initialize, evict, move, update - see the
1779 * comment header on perform_inode_move. */
1780 inomove_init();
1781 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
1782 evict_inodes(cgs[i]);
1783 perform_inode_move();
1784 flush_inodes();
1785 update_for_inode_move();
1786 /* Recompute all the bitmaps; most of them probably need it anyway,
1787 * the rest are just paranoia and not wanting to have to bother
1788 * keeping track of exactly which ones require it. */
1789 for (i = 0; i < newsb->fs_ncg; i++)
1790 cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
1791 /* Update the cg_old_ncyl value for the last cylinder. */
1792 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
1793 cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
1794 newsb->fs_old_ncyl % newsb->fs_old_cpg;
1795 /* Make fs_dsize match the new reality. */
1796 recompute_fs_dsize();
1797 }
1798 /*
1799 * Recompute the block totals, block cluster summaries, and rotational
1800 * position summaries, for a given cg (specified by number), based on
1801 * its free-frag bitmap (cg_blksfree()[]).
1802 */
1803 static void
1804 rescan_blkmaps(int cgn)
1805 {
1806 struct cg *cg;
1807 int f;
1808 int b;
1809 int blkfree;
1810 int blkrun;
1811 int fragrun;
1812 int fwb;
1813
1814 cg = cgs[cgn];
1815 /* Subtract off the current totals from the sb's summary info */
1816 newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
1817 newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
1818 /* Clear counters and bitmaps. */
1819 cg->cg_cs.cs_nffree = 0;
1820 cg->cg_cs.cs_nbfree = 0;
1821 memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0]));
1822 memset(&old_cg_blktot(cg, 0)[0], 0,
1823 newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
1824 memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0,
1825 newsb->fs_old_cpg * newsb->fs_old_nrpos *
1826 sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
1827 if (newsb->fs_contigsumsize > 0) {
1828 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
1829 memset(&cg_clustersum(cg, 0)[1], 0,
1830 newsb->fs_contigsumsize *
1831 sizeof(cg_clustersum(cg, 0)[1]));
1832 if (is_ufs2)
1833 memset(&cg_clustersfree(cg, 0)[0], 0,
1834 howmany(newsb->fs_fpg / NSPB(newsb), NBBY));
1835 else
1836 memset(&cg_clustersfree(cg, 0)[0], 0,
1837 howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
1838 NSPB(newsb), NBBY));
1839 }
1840 /* Scan the free-frag bitmap. Runs of free frags are kept
1841 * track of with fragrun, and recorded into cg_frsum[] and
1842 * cg_cs.cs_nffree; on each block boundary, entire free blocks
1843 * are recorded as well. */
1844 blkfree = 1;
1845 blkrun = 0;
1846 fragrun = 0;
1847 f = 0;
1848 b = 0;
1849 fwb = 0;
1850 while (f < cg->cg_ndblk) {
1851 if (bit_is_set(cg_blksfree(cg, 0), f)) {
1852 fragrun++;
1853 } else {
1854 blkfree = 0;
1855 if (fragrun > 0) {
1856 cg->cg_frsum[fragrun]++;
1857 cg->cg_cs.cs_nffree += fragrun;
1858 }
1859 fragrun = 0;
1860 }
1861 f++;
1862 fwb++;
1863 if (fwb >= newsb->fs_frag) {
1864 if (blkfree) {
1865 cg->cg_cs.cs_nbfree++;
1866 if (newsb->fs_contigsumsize > 0)
1867 set_bits(cg_clustersfree(cg, 0), b, 1);
1868 if (is_ufs2 == 0) {
1869 old_cg_blktot(cg, 0)[
1870 old_cbtocylno(newsb,
1871 f - newsb->fs_frag)]++;
1872 old_cg_blks(newsb, cg,
1873 old_cbtocylno(newsb,
1874 f - newsb->fs_frag),
1875 0)[old_cbtorpos(newsb,
1876 f - newsb->fs_frag)]++;
1877 }
1878 blkrun++;
1879 } else {
1880 if (fragrun > 0) {
1881 cg->cg_frsum[fragrun]++;
1882 cg->cg_cs.cs_nffree += fragrun;
1883 }
1884 if (newsb->fs_contigsumsize > 0) {
1885 if (blkrun > 0) {
1886 cg_clustersum(cg, 0)[(blkrun
1887 > newsb->fs_contigsumsize)
1888 ? newsb->fs_contigsumsize
1889 : blkrun]++;
1890 }
1891 }
1892 blkrun = 0;
1893 }
1894 fwb = 0;
1895 b++;
1896 blkfree = 1;
1897 fragrun = 0;
1898 }
1899 }
1900 if (fragrun > 0) {
1901 cg->cg_frsum[fragrun]++;
1902 cg->cg_cs.cs_nffree += fragrun;
1903 }
1904 if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
1905 cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
1906 newsb->fs_contigsumsize : blkrun]++;
1907 }
1908 /*
1909 * Put the updated summary info back into csums, and add it
1910 * back into the sb's summary info. Then mark the cg dirty.
1911 */
1912 csums[cgn] = cg->cg_cs;
1913 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
1914 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
1915 cgflags[cgn] |= CGF_DIRTY;
1916 }
1917 /*
1918 * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
1919 * values, for a cg, based on the in-core inodes for that cg.
1920 */
1921 static void
1922 rescan_inomaps(int cgn)
1923 {
1924 struct cg *cg;
1925 int inum;
1926 int iwc;
1927
1928 cg = cgs[cgn];
1929 newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
1930 newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
1931 cg->cg_cs.cs_ndir = 0;
1932 cg->cg_cs.cs_nifree = 0;
1933 memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY));
1934 inum = cgn * newsb->fs_ipg;
1935 if (cgn == 0) {
1936 set_bits(cg_inosused(cg, 0), 0, 2);
1937 iwc = 2;
1938 inum += 2;
1939 } else {
1940 iwc = 0;
1941 }
1942 for (; iwc < newsb->fs_ipg; iwc++, inum++) {
1943 switch (DIP(inodes + inum, di_mode) & IFMT) {
1944 case 0:
1945 cg->cg_cs.cs_nifree++;
1946 break;
1947 case IFDIR:
1948 cg->cg_cs.cs_ndir++;
1949 /* fall through */
1950 default:
1951 set_bits(cg_inosused(cg, 0), iwc, 1);
1952 break;
1953 }
1954 }
1955 csums[cgn] = cg->cg_cs;
1956 newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
1957 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
1958 cgflags[cgn] |= CGF_DIRTY;
1959 }
1960 /*
1961 * Flush cgs to disk, recomputing anything they're marked as needing.
1962 */
1963 static void
1964 flush_cgs(void)
1965 {
1966 int i;
1967
1968 for (i = 0; i < newsb->fs_ncg; i++) {
1969 if (cgflags[i] & CGF_BLKMAPS) {
1970 rescan_blkmaps(i);
1971 }
1972 if (cgflags[i] & CGF_INOMAPS) {
1973 rescan_inomaps(i);
1974 }
1975 if (cgflags[i] & CGF_DIRTY) {
1976 cgs[i]->cg_rotor = 0;
1977 cgs[i]->cg_frotor = 0;
1978 cgs[i]->cg_irotor = 0;
1979 if (needswap)
1980 ffs_cg_swap(cgs[i],cgs[i],newsb);
1981 writeat(fsbtodb(newsb, cgtod(newsb, i)), cgs[i],
1982 cgblksz);
1983 }
1984 }
1985 if (needswap)
1986 ffs_csum_swap(csums,csums,newsb->fs_cssize);
1987 writeat(fsbtodb(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
1988 }
1989 /*
1990 * Write the superblock, both to the main superblock and to each cg's
1991 * alternative superblock.
1992 */
1993 static void
1994 write_sbs(void)
1995 {
1996 int i;
1997
1998 if (newsb->fs_magic == FS_UFS1_MAGIC &&
1999 (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2000 newsb->fs_old_time = newsb->fs_time;
2001 newsb->fs_old_size = newsb->fs_size;
2002 /* we don't update fs_csaddr */
2003 newsb->fs_old_dsize = newsb->fs_dsize;
2004 newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
2005 newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
2006 newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
2007 newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
2008 /* fill fs_old_postbl_start with 256 bytes of 0xff? */
2009 }
2010 /* copy newsb back to oldsb, so we can use it for offsets if
2011 newsb has been swapped for writing to disk */
2012 memcpy(oldsb, newsb, SBLOCKSIZE);
2013 if (needswap)
2014 ffs_sb_swap(newsb,newsb);
2015 writeat(where / DEV_BSIZE, newsb, SBLOCKSIZE);
2016 for (i = 0; i < oldsb->fs_ncg; i++) {
2017 writeat(fsbtodb(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE);
2018 }
2019 }
2020
2021 static uint32_t
2022 get_dev_size(char *dev_name)
2023 {
2024 struct dkwedge_info dkw;
2025 struct partition *pp;
2026 struct disklabel lp;
2027 size_t ptn;
2028
2029 /* Get info about partition/wedge */
2030 if (ioctl(fd, DIOCGWEDGEINFO, &dkw) == -1) {
2031 if (ioctl(fd, DIOCGDINFO, &lp) == -1)
2032 return 0;
2033
2034 ptn = strchr(dev_name, '\0')[-1] - 'a';
2035 if (ptn >= lp.d_npartitions)
2036 return 0;
2037
2038 pp = &lp.d_partitions[ptn];
2039 return pp->p_size;
2040 }
2041
2042 return dkw.dkw_size;
2043 }
2044
2045 /*
2046 * main().
2047 */
2048 int
2049 main(int argc, char **argv)
2050 {
2051 int ch;
2052 int ExpertFlag;
2053 int SFlag;
2054 size_t i;
2055
2056 char *special;
2057 char reply[5];
2058
2059 newsize = 0;
2060 ExpertFlag = 0;
2061 SFlag = 0;
2062
2063 while ((ch = getopt(argc, argv, "s:y")) != -1) {
2064 switch (ch) {
2065 case 's':
2066 SFlag = 1;
2067 newsize = (size_t)strtoul(optarg, NULL, 10);
2068 if(newsize < 1) {
2069 usage();
2070 }
2071 break;
2072 case 'y':
2073 ExpertFlag = 1;
2074 break;
2075 case '?':
2076 /* FALLTHROUGH */
2077 default:
2078 usage();
2079 }
2080 }
2081 argc -= optind;
2082 argv += optind;
2083
2084 if (argc != 1) {
2085 usage();
2086 }
2087
2088 special = *argv;
2089
2090 if (ExpertFlag == 0) {
2091 printf("It's required to manually run fsck on file system "
2092 "before you can resize it\n\n"
2093 " Did you run fsck on your disk (Yes/No) ? ");
2094 fgets(reply, (int)sizeof(reply), stdin);
2095 if (strcasecmp(reply, "Yes\n")) {
2096 printf("\n Nothing done \n");
2097 exit(EXIT_SUCCESS);
2098 }
2099 }
2100
2101 fd = open(special, O_RDWR, 0);
2102 if (fd < 0)
2103 err(EXIT_FAILURE, "Can't open `%s'", special);
2104 checksmallio();
2105
2106 if (SFlag == 0) {
2107 newsize = get_dev_size(special);
2108 if (newsize == 0)
2109 err(EXIT_FAILURE,
2110 "Can't resize file system, newsize not known.");
2111 }
2112
2113 oldsb = (struct fs *) & sbbuf;
2114 newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
2115 for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
2116 readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
2117 switch (oldsb->fs_magic) {
2118 case FS_UFS2_MAGIC:
2119 /* FALLTHROUGH */
2120 is_ufs2 = 1;
2121 case FS_UFS1_MAGIC:
2122 needswap = 0;
2123 break;
2124 case FS_UFS2_MAGIC_SWAPPED:
2125 is_ufs2 = 1;
2126 /* FALLTHROUGH */
2127 case FS_UFS1_MAGIC_SWAPPED:
2128 needswap = 1;
2129 break;
2130 default:
2131 continue;
2132 }
2133 if (!is_ufs2 && where == SBLOCK_UFS2)
2134 continue;
2135 break;
2136 }
2137 if (where == (off_t)-1)
2138 errx(EXIT_FAILURE, "Bad magic number");
2139 if (needswap)
2140 ffs_sb_swap(oldsb,oldsb);
2141 if (oldsb->fs_magic == FS_UFS1_MAGIC &&
2142 (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2143 oldsb->fs_csaddr = oldsb->fs_old_csaddr;
2144 oldsb->fs_size = oldsb->fs_old_size;
2145 oldsb->fs_dsize = oldsb->fs_old_dsize;
2146 oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
2147 oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
2148 oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
2149 oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
2150 /* any others? */
2151 printf("Resizing with ffsv1 superblock\n");
2152 }
2153
2154 oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
2155 oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
2156 if (oldsb->fs_ipg % INOPB(oldsb)) {
2157 (void)fprintf(stderr, "ipg[%d] %% INOPB[%d] != 0\n",
2158 (int) oldsb->fs_ipg, (int) INOPB(oldsb));
2159 exit(EXIT_FAILURE);
2160 }
2161 /* The superblock is bigger than struct fs (there are trailing
2162 * tables, of non-fixed size); make sure we copy the whole
2163 * thing. SBLOCKSIZE may be an over-estimate, but we do this
2164 * just once, so being generous is cheap. */
2165 memcpy(newsb, oldsb, SBLOCKSIZE);
2166 loadcgs();
2167 if (newsize > fsbtodb(oldsb, oldsb->fs_size)) {
2168 grow();
2169 } else if (newsize < fsbtodb(oldsb, oldsb->fs_size)) {
2170 if (is_ufs2)
2171 errx(EXIT_FAILURE,"shrinking not supported for ufs2");
2172 shrink();
2173 }
2174 flush_cgs();
2175 write_sbs();
2176 if (isplainfile())
2177 ftruncate(fd,newsize * DEV_BSIZE);
2178 return 0;
2179 }
2180
2181 static void
2182 usage(void)
2183 {
2184
2185 (void)fprintf(stderr, "usage: %s [-y] [-s size] special\n",
2186 getprogname());
2187 exit(EXIT_FAILURE);
2188 }
2189