Home | History | Annotate | Line # | Download | only in resize_ffs
resize_ffs.c revision 1.29
      1 /*	$NetBSD: resize_ffs.c,v 1.29 2011/08/15 00:30:25 dholland Exp $	*/
      2 /* From sources sent on February 17, 2003 */
      3 /*-
      4  * As its sole author, I explicitly place this code in the public
      5  *  domain.  Anyone may use it for any purpose (though I would
      6  *  appreciate credit where it is due).
      7  *
      8  *					der Mouse
      9  *
     10  *			       mouse (at) rodents.montreal.qc.ca
     11  *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
     12  */
     13 /*
     14  * resize_ffs:
     15  *
     16  * Resize a file system.  Is capable of both growing and shrinking.
     17  *
     18  * Usage: resize_ffs [-s newsize] [-y] file_system
     19  *
     20  * Example: resize_ffs -s 29574 /dev/rsd1e
     21  *
     22  * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
     23  *  each).
     24  *
     25  * Note: this currently requires gcc to build, since it is written
     26  *  depending on gcc-specific features, notably nested function
     27  *  definitions (which in at least a few cases depend on the lexical
     28  *  scoping gcc provides, so they can't be trivially moved outside).
     29  *
     30  * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
     31  *  one responsible for the "realloccgblk: can't find blk in cyl"
     32  *  problem and a more minor one which left fs_dsize wrong when
     33  *  shrinking.  (These actually indicate bugs in fsck too - it should
     34  *  have caught and fixed them.)
     35  *
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __RCSID("$NetBSD: resize_ffs.c,v 1.29 2011/08/15 00:30:25 dholland Exp $");
     40 
     41 #include <sys/disk.h>
     42 #include <sys/disklabel.h>
     43 #include <sys/dkio.h>
     44 #include <sys/ioctl.h>
     45 #include <sys/stat.h>
     46 #include <sys/mman.h>
     47 #include <sys/param.h>		/* MAXFRAG */
     48 #include <ufs/ffs/fs.h>
     49 #include <ufs/ffs/ffs_extern.h>
     50 #include <ufs/ufs/dir.h>
     51 #include <ufs/ufs/dinode.h>
     52 #include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */
     53 
     54 #include <err.h>
     55 #include <errno.h>
     56 #include <fcntl.h>
     57 #include <stdio.h>
     58 #include <stdlib.h>
     59 #include <strings.h>
     60 #include <unistd.h>
     61 
     62 /* new size of file system, in sectors */
     63 static uint64_t newsize;
     64 
     65 /* fd open onto disk device or file */
     66 static int fd;
     67 
     68 /* must we break up big I/O operations - see checksmallio() */
     69 static int smallio;
     70 
     71 /* size of a cg, in bytes, rounded up to a frag boundary */
     72 static int cgblksz;
     73 
     74 /* possible superblock localtions */
     75 static int search[] = SBLOCKSEARCH;
     76 /* location of the superblock */
     77 static off_t where;
     78 
     79 /* Superblocks. */
     80 static struct fs *oldsb;	/* before we started */
     81 static struct fs *newsb;	/* copy to work with */
     82 /* Buffer to hold the above.  Make sure it's aligned correctly. */
     83 static char sbbuf[2 * SBLOCKSIZE]
     84 	__attribute__((__aligned__(__alignof__(struct fs))));
     85 
     86 union dinode {
     87 	struct ufs1_dinode dp1;
     88 	struct ufs2_dinode dp2;
     89 };
     90 #define DIP(dp, field)							      \
     91 	((is_ufs2) ?							      \
     92 	    (dp)->dp2.field : (dp)->dp1.field)
     93 
     94 #define DIP_ASSIGN(dp, field, value)					      \
     95 	do {								      \
     96 		if (is_ufs2)						      \
     97 			(dp)->dp2.field = (value);			      \
     98 		else							      \
     99 			(dp)->dp1.field = (value);			      \
    100 	} while (0)
    101 
    102 /* a cg's worth of brand new squeaky-clean inodes */
    103 static struct ufs1_dinode *zinodes;
    104 
    105 /* pointers to the in-core cgs, read off disk and possibly modified */
    106 static struct cg **cgs;
    107 
    108 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
    109 static struct csum *csums;
    110 
    111 /* per-cg flags, indexed by cg number */
    112 static unsigned char *cgflags;
    113 #define CGF_DIRTY   0x01	/* needs to be written to disk */
    114 #define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
    115 #define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */
    116 
    117 /* when shrinking, these two arrays record how we want blocks to move.	 */
    118 /*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
    119 /*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
    120 /*  started out as inode i should end up as inode j.			 */
    121 static unsigned int *blkmove;
    122 static unsigned int *inomove;
    123 
    124 /* in-core copies of all inodes in the fs, indexed by inumber */
    125 union dinode *inodes;
    126 
    127 void *ibuf;	/* ptr to fs block-sized buffer for reading/writing inodes */
    128 
    129 /* byteswapped inodes */
    130 union dinode *sinodes;
    131 
    132 /* per-inode flags, indexed by inumber */
    133 static unsigned char *iflags;
    134 #define IF_DIRTY  0x01		/* needs to be written to disk */
    135 #define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
    136 				 * block of inodes, and applies to the whole
    137 				 * block. */
    138 
    139 /* resize_ffs works directly on dinodes, adapt blksize() */
    140 #define dblksize(fs, dip, lbn) \
    141 	(((lbn) >= NDADDR || DIP((dip), di_size) >= lblktosize(fs, (lbn) + 1)) \
    142 	    ? (fs)->fs_bsize						       \
    143 	    : (fragroundup(fs, blkoff(fs, DIP((dip), di_size)))))
    144 
    145 
    146 /*
    147  * Number of disk sectors per block/fragment
    148  */
    149 #define NSPB(fs)	(fsbtodb((fs),1) << (fs)->fs_fragshift)
    150 #define NSPF(fs)	(fsbtodb((fs),1))
    151 
    152 /* global flags */
    153 int is_ufs2 = 0;
    154 int needswap = 0;
    155 
    156 static void usage(void) __dead;
    157 
    158 /*
    159  * See if we need to break up large I/O operations.  This should never
    160  *  be needed, but under at least one <version,platform> combination,
    161  *  large enough disk transfers to the raw device hang.  So if we're
    162  *  talking to a character special device, play it safe; in this case,
    163  *  readat() and writeat() break everything up into pieces no larger
    164  *  than 8K, doing multiple syscalls for larger operations.
    165  */
    166 static void
    167 checksmallio(void)
    168 {
    169 	struct stat stb;
    170 
    171 	fstat(fd, &stb);
    172 	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
    173 }
    174 
    175 static int
    176 isplainfile(void)
    177 {
    178 	struct stat stb;
    179 
    180 	fstat(fd, &stb);
    181 	return S_ISREG(stb.st_mode);
    182 }
    183 /*
    184  * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
    185  *  units, ie, after fsbtodb(); size is in bytes.
    186  */
    187 static void
    188 readat(off_t blkno, void *buf, int size)
    189 {
    190 	/* Seek to the correct place. */
    191 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    192 		err(EXIT_FAILURE, "lseek failed");
    193 
    194 	/* See if we have to break up the transfer... */
    195 	if (smallio) {
    196 		char *bp;	/* pointer into buf */
    197 		int left;	/* bytes left to go */
    198 		int n;		/* number to do this time around */
    199 		int rv;		/* syscall return value */
    200 		bp = buf;
    201 		left = size;
    202 		while (left > 0) {
    203 			n = (left > 8192) ? 8192 : left;
    204 			rv = read(fd, bp, n);
    205 			if (rv < 0)
    206 				err(EXIT_FAILURE, "read failed");
    207 			if (rv != n)
    208 				errx(EXIT_FAILURE,
    209 				    "read: wanted %d, got %d", n, rv);
    210 			bp += n;
    211 			left -= n;
    212 		}
    213 	} else {
    214 		int rv;
    215 		rv = read(fd, buf, size);
    216 		if (rv < 0)
    217 			err(EXIT_FAILURE, "read failed");
    218 		if (rv != size)
    219 			errx(EXIT_FAILURE, "read: wanted %d, got %d",
    220 			    size, rv);
    221 	}
    222 }
    223 /*
    224  * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
    225  *  units, ie, after fsbtodb(); size is in bytes.
    226  */
    227 static void
    228 writeat(off_t blkno, const void *buf, int size)
    229 {
    230 	/* Seek to the correct place. */
    231 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    232 		err(EXIT_FAILURE, "lseek failed");
    233 	/* See if we have to break up the transfer... */
    234 	if (smallio) {
    235 		const char *bp;	/* pointer into buf */
    236 		int left;	/* bytes left to go */
    237 		int n;		/* number to do this time around */
    238 		int rv;		/* syscall return value */
    239 		bp = buf;
    240 		left = size;
    241 		while (left > 0) {
    242 			n = (left > 8192) ? 8192 : left;
    243 			rv = write(fd, bp, n);
    244 			if (rv < 0)
    245 				err(EXIT_FAILURE, "write failed");
    246 			if (rv != n)
    247 				errx(EXIT_FAILURE,
    248 				    "write: wanted %d, got %d", n, rv);
    249 			bp += n;
    250 			left -= n;
    251 		}
    252 	} else {
    253 		int rv;
    254 		rv = write(fd, buf, size);
    255 		if (rv < 0)
    256 			err(EXIT_FAILURE, "write failed");
    257 		if (rv != size)
    258 			errx(EXIT_FAILURE,
    259 			    "write: wanted %d, got %d", size, rv);
    260 	}
    261 }
    262 /*
    263  * Never-fail versions of malloc() and realloc(), and an allocation
    264  *  routine (which also never fails) for allocating memory that will
    265  *  never be freed until exit.
    266  */
    267 
    268 /*
    269  * Never-fail malloc.
    270  */
    271 static void *
    272 nfmalloc(size_t nb, const char *tag)
    273 {
    274 	void *rv;
    275 
    276 	rv = malloc(nb);
    277 	if (rv)
    278 		return (rv);
    279 	err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
    280 	    (unsigned long int) nb, tag);
    281 }
    282 /*
    283  * Never-fail realloc.
    284  */
    285 static void *
    286 nfrealloc(void *blk, size_t nb, const char *tag)
    287 {
    288 	void *rv;
    289 
    290 	rv = realloc(blk, nb);
    291 	if (rv)
    292 		return (rv);
    293 	err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
    294 	    (unsigned long int) nb, tag);
    295 }
    296 /*
    297  * Allocate memory that will never be freed or reallocated.  Arguably
    298  *  this routine should handle small allocations by chopping up pages,
    299  *  but that's not worth the bother; it's not called more than a
    300  *  handful of times per run, and if the allocations are that small the
    301  *  waste in giving each one its own page is ignorable.
    302  */
    303 static void *
    304 alloconce(size_t nb, const char *tag)
    305 {
    306 	void *rv;
    307 
    308 	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
    309 	if (rv != MAP_FAILED)
    310 		return (rv);
    311 	err(EXIT_FAILURE, "Can't map %lu bytes for %s",
    312 	    (unsigned long int) nb, tag);
    313 }
    314 /*
    315  * Load the cgs and csums off disk.  Also allocates the space to load
    316  *  them into and initializes the per-cg flags.
    317  */
    318 static void
    319 loadcgs(void)
    320 {
    321 	int cg;
    322 	char *cgp;
    323 
    324 	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
    325 	cgs = nfmalloc(oldsb->fs_ncg * sizeof(struct cg *), "cg pointers");
    326 	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
    327 	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
    328 	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
    329 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
    330 		cgs[cg] = (struct cg *) cgp;
    331 		readat(fsbtodb(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
    332 		if (needswap)
    333 			ffs_cg_swap(cgs[cg],cgs[cg],oldsb);
    334 		cgflags[cg] = 0;
    335 		cgp += cgblksz;
    336 	}
    337 	readat(fsbtodb(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
    338 	if (needswap)
    339 		ffs_csum_swap(csums,csums,oldsb->fs_cssize);
    340 }
    341 /*
    342  * Set n bits, starting with bit #base, in the bitmap pointed to by
    343  *  bitvec (which is assumed to be large enough to include bits base
    344  *  through base+n-1).
    345  */
    346 static void
    347 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
    348 {
    349 	if (n < 1)
    350 		return;		/* nothing to do */
    351 	if (base & 7) {		/* partial byte at beginning */
    352 		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
    353 			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
    354 			return;
    355 		}
    356 		bitvec[base >> 3] |= (~0U) << (base & 7);
    357 		n -= 8 - (base & 7);
    358 		base = (base & ~7) + 8;
    359 	}
    360 	if (n >= 8) {		/* do full bytes */
    361 		memset(bitvec + (base >> 3), 0xff, n >> 3);
    362 		base += n & ~7;
    363 		n &= 7;
    364 	}
    365 	if (n) {		/* partial byte at end */
    366 		bitvec[base >> 3] |= ~((~0U) << n);
    367 	}
    368 }
    369 /*
    370  * Clear n bits, starting with bit #base, in the bitmap pointed to by
    371  *  bitvec (which is assumed to be large enough to include bits base
    372  *  through base+n-1).  Code parallels set_bits().
    373  */
    374 static void
    375 clr_bits(unsigned char *bitvec, int base, int n)
    376 {
    377 	if (n < 1)
    378 		return;
    379 	if (base & 7) {
    380 		if (n <= 8 - (base & 7)) {
    381 			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
    382 			return;
    383 		}
    384 		bitvec[base >> 3] &= ~((~0U) << (base & 7));
    385 		n -= 8 - (base & 7);
    386 		base = (base & ~7) + 8;
    387 	}
    388 	if (n >= 8) {
    389 		memset(bitvec + (base >> 3), 0, n >> 3);
    390 		base += n & ~7;
    391 		n &= 7;
    392 	}
    393 	if (n) {
    394 		bitvec[base >> 3] &= (~0U) << n;
    395 	}
    396 }
    397 /*
    398  * Test whether bit #bit is set in the bitmap pointed to by bitvec.
    399  */
    400 static int
    401 bit_is_set(unsigned char *bitvec, int bit)
    402 {
    403 	return (bitvec[bit >> 3] & (1 << (bit & 7)));
    404 }
    405 /*
    406  * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
    407  */
    408 static int
    409 bit_is_clr(unsigned char *bitvec, int bit)
    410 {
    411 	return (!bit_is_set(bitvec, bit));
    412 }
    413 /*
    414  * Test whether a whole block of bits is set in a bitmap.  This is
    415  *  designed for testing (aligned) disk blocks in a bit-per-frag
    416  *  bitmap; it has assumptions wired into it based on that, essentially
    417  *  that the entire block fits into a single byte.  This returns true
    418  *  iff _all_ the bits are set; it is not just the complement of
    419  *  blk_is_clr on the same arguments (unless blkfrags==1).
    420  */
    421 static int
    422 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
    423 {
    424 	unsigned int mask;
    425 
    426 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    427 	return ((bitvec[blkbase >> 3] & mask) == mask);
    428 }
    429 /*
    430  * Test whether a whole block of bits is clear in a bitmap.  See
    431  *  blk_is_set (above) for assumptions.  This returns true iff _all_
    432  *  the bits are clear; it is not just the complement of blk_is_set on
    433  *  the same arguments (unless blkfrags==1).
    434  */
    435 static int
    436 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
    437 {
    438 	unsigned int mask;
    439 
    440 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    441 	return ((bitvec[blkbase >> 3] & mask) == 0);
    442 }
    443 /*
    444  * Initialize a new cg.  Called when growing.  Assumes memory has been
    445  *  allocated but not otherwise set up.  This code sets the fields of
    446  *  the cg, initializes the bitmaps (and cluster summaries, if
    447  *  applicable), updates both per-cylinder summary info and the global
    448  *  summary info in newsb; it also writes out new inodes for the cg.
    449  *
    450  * This code knows it can never be called for cg 0, which makes it a
    451  *  bit simpler than it would otherwise be.
    452  */
    453 static void
    454 initcg(int cgn)
    455 {
    456 	struct cg *cg;		/* The in-core cg, of course */
    457 	int base;		/* Disk address of cg base */
    458 	int dlow;		/* Size of pre-cg data area */
    459 	int dhigh;		/* Offset of post-inode data area, from base */
    460 	int dmax;		/* Offset of end of post-inode data area */
    461 	int i;			/* Generic loop index */
    462 	int n;			/* Generic count */
    463 	int start;		/* start of cg maps */
    464 
    465 	cg = cgs[cgn];
    466 	/* Place the data areas */
    467 	base = cgbase(newsb, cgn);
    468 	dlow = cgsblock(newsb, cgn) - base;
    469 	dhigh = cgdmin(newsb, cgn) - base;
    470 	dmax = newsb->fs_size - base;
    471 	if (dmax > newsb->fs_fpg)
    472 		dmax = newsb->fs_fpg;
    473 	start = &cg->cg_space[0] - (unsigned char *) cg;
    474 	/*
    475          * Clear out the cg - assumes all-0-bytes is the correct way
    476          * to initialize fields we don't otherwise touch, which is
    477          * perhaps not the right thing to do, but it's what fsck and
    478          * mkfs do.
    479          */
    480 	memset(cg, 0, newsb->fs_cgsize);
    481 	if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
    482 		cg->cg_time = newsb->fs_time;
    483 	cg->cg_magic = CG_MAGIC;
    484 	cg->cg_cgx = cgn;
    485 	cg->cg_niblk = newsb->fs_ipg;
    486 	cg->cg_ndblk = dmax;
    487 
    488 	if (is_ufs2) {
    489 		cg->cg_time = newsb->fs_time;
    490 		cg->cg_initediblk = newsb->fs_ipg < 2 * INOPB(newsb) ?
    491 		    newsb->fs_ipg : 2 * INOPB(newsb);
    492 		cg->cg_iusedoff = start;
    493 	} else {
    494 		cg->cg_old_time = newsb->fs_time;
    495 		cg->cg_old_niblk = cg->cg_niblk;
    496 		cg->cg_niblk = 0;
    497 		cg->cg_initediblk = 0;
    498 
    499 
    500 		cg->cg_old_ncyl = newsb->fs_old_cpg;
    501 		/* Update the cg_old_ncyl value for the last cylinder. */
    502 		if (cgn == newsb->fs_ncg - 1) {
    503 			if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
    504 				cg->cg_old_ncyl = newsb->fs_old_ncyl %
    505 				    newsb->fs_old_cpg;
    506 		}
    507 
    508 		/* Set up the bitmap pointers.  We have to be careful
    509 		 * to lay out the cg _exactly_ the way mkfs and fsck
    510 		 * do it, since fsck compares the _entire_ cg against
    511 		 * a recomputed cg, and whines if there is any
    512 		 * mismatch, including the bitmap offsets. */
    513 		/* XXX update this comment when fsck is fixed */
    514 		cg->cg_old_btotoff = start;
    515 		cg->cg_old_boff = cg->cg_old_btotoff
    516 		    + (newsb->fs_old_cpg * sizeof(int32_t));
    517 		cg->cg_iusedoff = cg->cg_old_boff +
    518 		    (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
    519 	}
    520 	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
    521 	if (newsb->fs_contigsumsize > 0) {
    522 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
    523 		cg->cg_clustersumoff = cg->cg_freeoff +
    524 		    howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t);
    525 		cg->cg_clustersumoff =
    526 		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
    527 		cg->cg_clusteroff = cg->cg_clustersumoff +
    528 		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
    529 		cg->cg_nextfreeoff = cg->cg_clusteroff +
    530 		    howmany(fragstoblks(newsb,newsb->fs_fpg), NBBY);
    531 		n = dlow / newsb->fs_frag;
    532 		if (n > 0) {
    533 			set_bits(cg_clustersfree(cg, 0), 0, n);
    534 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    535 			    newsb->fs_contigsumsize : n]++;
    536 		}
    537 	} else {
    538 		cg->cg_nextfreeoff = cg->cg_freeoff +
    539 		    howmany(newsb->fs_fpg, NBBY);
    540 	}
    541 	/* Mark the data areas as free; everything else is marked busy by the
    542 	 * memset() up at the top. */
    543 	set_bits(cg_blksfree(cg, 0), 0, dlow);
    544 	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
    545 	/* Initialize summary info */
    546 	cg->cg_cs.cs_ndir = 0;
    547 	cg->cg_cs.cs_nifree = newsb->fs_ipg;
    548 	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
    549 	cg->cg_cs.cs_nffree = 0;
    550 
    551 	/* This is the simplest way of doing this; we perhaps could
    552 	 * compute the correct cg_blktot()[] and cg_blks()[] values
    553 	 * other ways, but it would be complicated and hardly seems
    554 	 * worth the effort.  (The reason there isn't
    555 	 * frag-at-beginning and frag-at-end code here, like the code
    556 	 * below for the post-inode data area, is that the pre-sb data
    557 	 * area always starts at 0, and thus is block-aligned, and
    558 	 * always ends at the sb, which is block-aligned.) */
    559 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
    560 		for (i = 0; i < dlow; i += newsb->fs_frag) {
    561 			old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++;
    562 			old_cg_blks(newsb, cg,
    563 			    old_cbtocylno(newsb, i),
    564 			    0)[old_cbtorpos(newsb, i)]++;
    565 		}
    566 
    567 	/* Deal with a partial block at the beginning of the post-inode area.
    568 	 * I'm not convinced this can happen - I think the inodes are always
    569 	 * block-aligned and always an integral number of blocks - but it's
    570 	 * cheap to do the right thing just in case. */
    571 	if (dhigh % newsb->fs_frag) {
    572 		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
    573 		cg->cg_frsum[n]++;
    574 		cg->cg_cs.cs_nffree += n;
    575 		dhigh += n;
    576 	}
    577 	n = (dmax - dhigh) / newsb->fs_frag;
    578 	/* We have n full-size blocks in the post-inode data area. */
    579 	if (n > 0) {
    580 		cg->cg_cs.cs_nbfree += n;
    581 		if (newsb->fs_contigsumsize > 0) {
    582 			i = dhigh / newsb->fs_frag;
    583 			set_bits(cg_clustersfree(cg, 0), i, n);
    584 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    585 			    newsb->fs_contigsumsize : n]++;
    586 		}
    587 		if (is_ufs2 == 0)
    588 			for (i = n; i > 0; i--) {
    589 				old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
    590 					    dhigh)]++;
    591 				old_cg_blks(newsb, cg,
    592 				    old_cbtocylno(newsb, dhigh),
    593 				    0)[old_cbtorpos(newsb,
    594 					    dhigh)]++;
    595 				dhigh += newsb->fs_frag;
    596 			}
    597 	}
    598 	if (is_ufs2 == 0) {
    599 		/* Deal with any leftover frag at the end of the cg. */
    600 		i = dmax - dhigh;
    601 		if (i) {
    602 			cg->cg_frsum[i]++;
    603 			cg->cg_cs.cs_nffree += i;
    604 		}
    605 	}
    606 	/* Update the csum info. */
    607 	csums[cgn] = cg->cg_cs;
    608 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
    609 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
    610 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
    611 	if (is_ufs2 == 0)
    612 		/* Write out the cleared inodes. */
    613 		writeat(fsbtodb(newsb, cgimin(newsb, cgn)), zinodes,
    614 		    newsb->fs_ipg * sizeof(struct ufs1_dinode));
    615 	/* Dirty the cg. */
    616 	cgflags[cgn] |= CGF_DIRTY;
    617 }
    618 /*
    619  * Find free space, at least nfrags consecutive frags of it.  Pays no
    620  *  attention to block boundaries, but refuses to straddle cg
    621  *  boundaries, even if the disk blocks involved are in fact
    622  *  consecutive.  Return value is the frag number of the first frag of
    623  *  the block, or -1 if no space was found.  Uses newsb for sb values,
    624  *  and assumes the cgs[] structures correctly describe the area to be
    625  *  searched.
    626  *
    627  * XXX is there a bug lurking in the ignoring of block boundaries by
    628  *  the routine used by fragmove() in evict_data()?  Can an end-of-file
    629  *  frag legally straddle a block boundary?  If not, this should be
    630  *  cloned and fixed to stop at block boundaries for that use.  The
    631  *  current one may still be needed for csum info motion, in case that
    632  *  takes up more than a whole block (is the csum info allowed to begin
    633  *  partway through a block and continue into the following block?).
    634  *
    635  * If we wrap off the end of the file system back to the beginning, we
    636  *  can end up searching the end of the file system twice.  I ignore
    637  *  this inefficiency, since if that happens we're going to croak with
    638  *  a no-space error anyway, so it happens at most once.
    639  */
    640 static int
    641 find_freespace(unsigned int nfrags)
    642 {
    643 	static int hand = 0;	/* hand rotates through all frags in the fs */
    644 	int cgsize;		/* size of the cg hand currently points into */
    645 	int cgn;		/* number of cg hand currently points into */
    646 	int fwc;		/* frag-within-cg number of frag hand points
    647 				 * to */
    648 	int run;		/* length of run of free frags seen so far */
    649 	int secondpass;		/* have we wrapped from end of fs to
    650 				 * beginning? */
    651 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    652 
    653 	cgn = dtog(newsb, hand);
    654 	fwc = dtogd(newsb, hand);
    655 	secondpass = (hand == 0);
    656 	run = 0;
    657 	bits = cg_blksfree(cgs[cgn], 0);
    658 	cgsize = cgs[cgn]->cg_ndblk;
    659 	while (1) {
    660 		if (bit_is_set(bits, fwc)) {
    661 			run++;
    662 			if (run >= nfrags)
    663 				return (hand + 1 - run);
    664 		} else {
    665 			run = 0;
    666 		}
    667 		hand++;
    668 		fwc++;
    669 		if (fwc >= cgsize) {
    670 			fwc = 0;
    671 			cgn++;
    672 			if (cgn >= newsb->fs_ncg) {
    673 				hand = 0;
    674 				if (secondpass)
    675 					return (-1);
    676 				secondpass = 1;
    677 				cgn = 0;
    678 			}
    679 			bits = cg_blksfree(cgs[cgn], 0);
    680 			cgsize = cgs[cgn]->cg_ndblk;
    681 			run = 0;
    682 		}
    683 	}
    684 }
    685 /*
    686  * Find a free block of disk space.  Finds an entire block of frags,
    687  *  all of which are free.  Return value is the frag number of the
    688  *  first frag of the block, or -1 if no space was found.  Uses newsb
    689  *  for sb values, and assumes the cgs[] structures correctly describe
    690  *  the area to be searched.
    691  *
    692  * See find_freespace(), above, for remarks about hand wrapping around.
    693  */
    694 static int
    695 find_freeblock(void)
    696 {
    697 	static int hand = 0;	/* hand rotates through all frags in fs */
    698 	int cgn;		/* cg number of cg hand points into */
    699 	int fwc;		/* frag-within-cg number of frag hand points
    700 				 * to */
    701 	int cgsize;		/* size of cg hand points into */
    702 	int secondpass;		/* have we wrapped from end to beginning? */
    703 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    704 
    705 	cgn = dtog(newsb, hand);
    706 	fwc = dtogd(newsb, hand);
    707 	secondpass = (hand == 0);
    708 	bits = cg_blksfree(cgs[cgn], 0);
    709 	cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
    710 	while (1) {
    711 		if (blk_is_set(bits, fwc, newsb->fs_frag))
    712 			return (hand);
    713 		fwc += newsb->fs_frag;
    714 		hand += newsb->fs_frag;
    715 		if (fwc >= cgsize) {
    716 			fwc = 0;
    717 			cgn++;
    718 			if (cgn >= newsb->fs_ncg) {
    719 				hand = 0;
    720 				if (secondpass)
    721 					return (-1);
    722 				secondpass = 1;
    723 				cgn = 0;
    724 			}
    725 			bits = cg_blksfree(cgs[cgn], 0);
    726 			cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
    727 		}
    728 	}
    729 }
    730 /*
    731  * Find a free inode, returning its inumber or -1 if none was found.
    732  *  Uses newsb for sb values, and assumes the cgs[] structures
    733  *  correctly describe the area to be searched.
    734  *
    735  * See find_freespace(), above, for remarks about hand wrapping around.
    736  */
    737 static int
    738 find_freeinode(void)
    739 {
    740 	static int hand = 0;	/* hand rotates through all inodes in fs */
    741 	int cgn;		/* cg number of cg hand points into */
    742 	int iwc;		/* inode-within-cg number of inode hand points
    743 				 * to */
    744 	int secondpass;		/* have we wrapped from end to beginning? */
    745 	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */
    746 
    747 	cgn = hand / newsb->fs_ipg;
    748 	iwc = hand % newsb->fs_ipg;
    749 	secondpass = (hand == 0);
    750 	bits = cg_inosused(cgs[cgn], 0);
    751 	while (1) {
    752 		if (bit_is_clr(bits, iwc))
    753 			return (hand);
    754 		hand++;
    755 		iwc++;
    756 		if (iwc >= newsb->fs_ipg) {
    757 			iwc = 0;
    758 			cgn++;
    759 			if (cgn >= newsb->fs_ncg) {
    760 				hand = 0;
    761 				if (secondpass)
    762 					return (-1);
    763 				secondpass = 1;
    764 				cgn = 0;
    765 			}
    766 			bits = cg_inosused(cgs[cgn], 0);
    767 		}
    768 	}
    769 }
    770 /*
    771  * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
    772  *  for the appropriate cg, and marks the cg as dirty.
    773  */
    774 static void
    775 free_frag(int fno)
    776 {
    777 	int cgn;
    778 
    779 	cgn = dtog(newsb, fno);
    780 	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    781 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    782 }
    783 /*
    784  * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
    785  *  for the appropriate cg, and marks the cg as dirty.
    786  */
    787 static void
    788 alloc_frag(int fno)
    789 {
    790 	int cgn;
    791 
    792 	cgn = dtog(newsb, fno);
    793 	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    794 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    795 }
    796 /*
    797  * Fix up the csum array.  If shrinking, this involves freeing zero or
    798  *  more frags; if growing, it involves allocating them, or if the
    799  *  frags being grown into aren't free, finding space elsewhere for the
    800  *  csum info.  (If the number of occupied frags doesn't change,
    801  *  nothing happens here.)
    802  */
    803 static void
    804 csum_fixup(void)
    805 {
    806 	int nold;		/* # frags in old csum info */
    807 	int ntot;		/* # frags in new csum info */
    808 	int nnew;		/* ntot-nold */
    809 	int newloc;		/* new location for csum info, if necessary */
    810 	int i;			/* generic loop index */
    811 	int j;			/* generic loop index */
    812 	int f;			/* "from" frag number, if moving */
    813 	int t;			/* "to" frag number, if moving */
    814 	int cgn;		/* cg number, used when shrinking */
    815 
    816 	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
    817 	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
    818 	nnew = ntot - nold;
    819 	/* First, if there's no change in frag counts, it's easy. */
    820 	if (nnew == 0)
    821 		return;
    822 	/* Next, if we're shrinking, it's almost as easy.  Just free up any
    823 	 * frags in the old area we no longer need. */
    824 	if (nnew < 0) {
    825 		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
    826 		    j < 0;
    827 		    i--, j++) {
    828 			free_frag(i);
    829 		}
    830 		return;
    831 	}
    832 	/* We must be growing.  Check to see that the new csum area fits
    833 	 * within the file system.  I think this can never happen, since for
    834 	 * the csum area to grow, we must be adding at least one cg, so the
    835 	 * old csum area can't be this close to the end of the new file system.
    836 	 * But it's a cheap check. */
    837 	/* XXX what if csum info is at end of cg and grows into next cg, what
    838 	 * if it spills over onto the next cg's backup superblock?  Can this
    839 	 * happen? */
    840 	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
    841 		/* Okay, it fits - now,  see if the space we want is free. */
    842 		for ((i = newsb->fs_csaddr + nold), (j = nnew);
    843 		    j > 0;
    844 		    i++, j--) {
    845 			cgn = dtog(newsb, i);
    846 			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
    847 				dtogd(newsb, i)))
    848 				break;
    849 		}
    850 		if (j <= 0) {
    851 			/* Win win - all the frags we want are free. Allocate
    852 			 * 'em and we're all done.  */
    853 			for ((i = newsb->fs_csaddr + ntot - nnew),
    854 				 (j = nnew); j > 0; i++, j--) {
    855 				alloc_frag(i);
    856 			}
    857 			return;
    858 		}
    859 	}
    860 	/* We have to move the csum info, sigh.  Look for new space, free old
    861 	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
    862 	 * on disk at this point; the csum info will be written to the
    863 	 * then-current fs_csaddr as part of the final flush. */
    864 	newloc = find_freespace(ntot);
    865 	if (newloc < 0) {
    866 		printf("Sorry, no space available for new csums\n");
    867 		exit(EXIT_FAILURE);
    868 	}
    869 	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
    870 		if (i < nold) {
    871 			free_frag(f);
    872 		}
    873 		alloc_frag(t);
    874 	}
    875 	newsb->fs_csaddr = newloc;
    876 }
    877 /*
    878  * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
    879  *  data blocks in that cg to the total.
    880  */
    881 static void
    882 recompute_fs_dsize(void)
    883 {
    884 	int i;
    885 
    886 	newsb->fs_dsize = 0;
    887 	for (i = 0; i < newsb->fs_ncg; i++) {
    888 		int dlow;	/* size of before-sb data area */
    889 		int dhigh;	/* offset of post-inode data area */
    890 		int dmax;	/* total size of cg */
    891 		int base;	/* base of cg, since cgsblock() etc add it in */
    892 		base = cgbase(newsb, i);
    893 		dlow = cgsblock(newsb, i) - base;
    894 		dhigh = cgdmin(newsb, i) - base;
    895 		dmax = newsb->fs_size - base;
    896 		if (dmax > newsb->fs_fpg)
    897 			dmax = newsb->fs_fpg;
    898 		newsb->fs_dsize += dlow + dmax - dhigh;
    899 	}
    900 	/* Space in cg 0 before cgsblock is boot area, not free space! */
    901 	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
    902 	/* And of course the csum info takes up space. */
    903 	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
    904 }
    905 /*
    906  * Return the current time.  We call this and assign, rather than
    907  *  calling time() directly, as insulation against OSes where fs_time
    908  *  is not a time_t.
    909  */
    910 static time_t
    911 timestamp(void)
    912 {
    913 	time_t t;
    914 
    915 	time(&t);
    916 	return (t);
    917 }
    918 /*
    919  * Grow the file system.
    920  */
    921 static void
    922 grow(void)
    923 {
    924 	int i;
    925 
    926 	/* Update the timestamp. */
    927 	newsb->fs_time = timestamp();
    928 	/* Allocate and clear the new-inode area, in case we add any cgs. */
    929 	zinodes = alloconce(newsb->fs_ipg * sizeof(struct ufs1_dinode),
    930                             "zeroed inodes");
    931 	memset(zinodes, 0, newsb->fs_ipg * sizeof(struct ufs1_dinode));
    932 	/* Update the size. */
    933 	newsb->fs_size = dbtofsb(newsb, newsize);
    934 	/* Did we actually not grow?  (This can happen if newsize is less than
    935 	 * a frag larger than the old size - unlikely, but no excuse to
    936 	 * misbehave if it happens.) */
    937 	if (newsb->fs_size == oldsb->fs_size) {
    938 		printf("New fs size %"PRIu64" = odl fs size %"PRIu64
    939 		    ", not growing.\n", newsb->fs_size, oldsb->fs_size);
    940 		return;
    941 	}
    942 	/* Check that the new last sector (frag, actually) is writable.  Since
    943 	 * it's at least one frag larger than it used to be, we know we aren't
    944 	 * overwriting anything important by this.  (The choice of sbbuf as
    945 	 * what to write is irrelevant; it's just something handy that's known
    946 	 * to be at least one frag in size.) */
    947 	writeat(fsbtodb(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
    948 	if (is_ufs2)
    949 		newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
    950 	else {
    951 		/* Update fs_old_ncyl and fs_ncg. */
    952 		newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
    953 		    newsb->fs_old_spc);
    954 		newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
    955 	}
    956 
    957 	/* Does the last cg end before the end of its inode area? There is no
    958 	 * reason why this couldn't be handled, but it would complicate a lot
    959 	 * of code (in all file system code - fsck, kernel, etc) because of the
    960 	 * potential partial inode area, and the gain in space would be
    961 	 * minimal, at most the pre-sb data area. */
    962 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
    963 		newsb->fs_ncg--;
    964 		newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
    965 		newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc)
    966 		    / NSPF(newsb);
    967 		printf("Warning: last cylinder group is too small;\n");
    968 		printf("    dropping it.  New size = %lu.\n",
    969 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
    970 	}
    971 	/* Find out how big the csum area is, and realloc csums if bigger. */
    972 	newsb->fs_cssize = fragroundup(newsb,
    973 	    newsb->fs_ncg * sizeof(struct csum));
    974 	if (newsb->fs_cssize > oldsb->fs_cssize)
    975 		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
    976 	/* If we're adding any cgs, realloc structures and set up the new
    977 	   cgs. */
    978 	if (newsb->fs_ncg > oldsb->fs_ncg) {
    979 		char *cgp;
    980 		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(struct cg *),
    981                                 "cg pointers");
    982 		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
    983 		memset(cgflags + oldsb->fs_ncg, 0,
    984 		    newsb->fs_ncg - oldsb->fs_ncg);
    985 		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
    986                                 "cgs");
    987 		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
    988 			cgs[i] = (struct cg *) cgp;
    989 			initcg(i);
    990 			cgp += cgblksz;
    991 		}
    992 		cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
    993 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
    994 	}
    995 	/* If the old fs ended partway through a cg, we have to update the old
    996 	 * last cg (though possibly not to a full cg!). */
    997 	if (oldsb->fs_size % oldsb->fs_fpg) {
    998 		struct cg *cg;
    999 		int newcgsize;
   1000 		int prevcgtop;
   1001 		int oldcgsize;
   1002 		cg = cgs[oldsb->fs_ncg - 1];
   1003 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
   1004 		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
   1005 		newcgsize = newsb->fs_size - prevcgtop;
   1006 		if (newcgsize > newsb->fs_fpg)
   1007 			newcgsize = newsb->fs_fpg;
   1008 		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
   1009 		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
   1010 		cg->cg_old_ncyl = oldsb->fs_old_cpg;
   1011 		cg->cg_ndblk = newcgsize;
   1012 	}
   1013 	/* Fix up the csum info, if necessary. */
   1014 	csum_fixup();
   1015 	/* Make fs_dsize match the new reality. */
   1016 	recompute_fs_dsize();
   1017 }
   1018 /*
   1019  * Call (*fn)() for each inode, passing the inode and its inumber.  The
   1020  *  number of cylinder groups is pased in, so this can be used to map
   1021  *  over either the old or the new file system's set of inodes.
   1022  */
   1023 static void
   1024 map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg),
   1025 	   int ncg, void *cbarg) {
   1026 	int i;
   1027 	int ni;
   1028 
   1029 	ni = oldsb->fs_ipg * ncg;
   1030 	for (i = 0; i < ni; i++)
   1031 		(*fn) (inodes + i, i, cbarg);
   1032 }
   1033 /* Values for the third argument to the map function for
   1034  * map_inode_data_blocks.  MDB_DATA indicates the block is contains
   1035  * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
   1036  * indirect block.  The MDB_INDIR_PRE call is made before the indirect
   1037  * block pointers are followed and the pointed-to blocks scanned,
   1038  * MDB_INDIR_POST after.
   1039  */
   1040 #define MDB_DATA       1
   1041 #define MDB_INDIR_PRE  2
   1042 #define MDB_INDIR_POST 3
   1043 
   1044 typedef void (*mark_callback_t) (unsigned int blocknum, unsigned int nfrags,
   1045 				 unsigned int blksize, int opcode);
   1046 
   1047 /* Helper function - handles a data block.  Calls the callback
   1048  * function and returns number of bytes occupied in file (actually,
   1049  * rounded up to a frag boundary).  The name is historical.  */
   1050 static int
   1051 markblk(mark_callback_t fn, union dinode * di, int bn, off_t o)
   1052 {
   1053 	int sz;
   1054 	int nb;
   1055 
   1056 	if (o >= DIP(di,di_size))
   1057 		return (0);
   1058 	sz = dblksize(newsb, di, lblkno(newsb, o));
   1059 	nb = (sz > DIP(di,di_size) - o) ? DIP(di,di_size) - o : sz;
   1060 	if (bn)
   1061 		(*fn) (bn, numfrags(newsb, sz), nb, MDB_DATA);
   1062 	return (sz);
   1063 }
   1064 /* Helper function - handles an indirect block.  Makes the
   1065  * MDB_INDIR_PRE callback for the indirect block, loops over the
   1066  * pointers and recurses, and makes the MDB_INDIR_POST callback.
   1067  * Returns the number of bytes occupied in file, as does markblk().
   1068  * For the sake of update_for_data_move(), we read the indirect block
   1069  * _after_ making the _PRE callback.  The name is historical.  */
   1070 static int
   1071 markiblk(mark_callback_t fn, union dinode * di, int bn, off_t o, int lev)
   1072 {
   1073 	int i;
   1074 	int j;
   1075 	int tot;
   1076 	static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
   1077 	static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
   1078 	static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
   1079 	static int32_t *indirblks[3] = {
   1080 		&indirblk1[0], &indirblk2[0], &indirblk3[0]
   1081 	};
   1082 
   1083 	if (lev < 0)
   1084 		return (markblk(fn, di, bn, o));
   1085 	if (bn == 0) {
   1086 		for (i = newsb->fs_bsize;
   1087 		    lev >= 0;
   1088 		    i *= NINDIR(newsb), lev--);
   1089 		return (i);
   1090 	}
   1091 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
   1092 	readat(fsbtodb(newsb, bn), indirblks[lev], newsb->fs_bsize);
   1093 	if (needswap)
   1094 		for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
   1095 			indirblks[lev][i] = bswap32(indirblks[lev][i]);
   1096 	tot = 0;
   1097 	for (i = 0; i < NINDIR(newsb); i++) {
   1098 		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
   1099 		if (j == 0)
   1100 			break;
   1101 		o += j;
   1102 		tot += j;
   1103 	}
   1104 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
   1105 	return (tot);
   1106 }
   1107 
   1108 
   1109 /*
   1110  * Call (*fn)() for each data block for an inode.  This routine assumes
   1111  *  the inode is known to be of a type that has data blocks (file,
   1112  *  directory, or non-fast symlink).  The called function is:
   1113  *
   1114  * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
   1115  *
   1116  *  where blkno is the frag number, nf is the number of frags starting
   1117  *  at blkno (always <= fs_frag), nb is the number of bytes that belong
   1118  *  to the file (usually nf*fs_frag, often less for the last block/frag
   1119  *  of a file).
   1120  */
   1121 static void
   1122 map_inode_data_blocks(union dinode * di, mark_callback_t fn)
   1123 {
   1124 	off_t o;		/* offset within  inode */
   1125 	int inc;		/* increment for o - maybe should be off_t? */
   1126 	int b;			/* index within di_db[] and di_ib[] arrays */
   1127 
   1128 	/* Scan the direct blocks... */
   1129 	o = 0;
   1130 	for (b = 0; b < NDADDR; b++) {
   1131 		inc = markblk(fn, di, DIP(di,di_db[b]), o);
   1132 		if (inc == 0)
   1133 			break;
   1134 		o += inc;
   1135 	}
   1136 	/* ...and the indirect blocks. */
   1137 	if (inc) {
   1138 		for (b = 0; b < NIADDR; b++) {
   1139 			inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b);
   1140 			if (inc == 0)
   1141 				return;
   1142 			o += inc;
   1143 		}
   1144 	}
   1145 }
   1146 
   1147 static void
   1148 dblk_callback(union dinode * di, unsigned int inum, void *arg)
   1149 {
   1150 	mark_callback_t fn;
   1151 
   1152 	fn = (mark_callback_t) arg;
   1153 	switch (DIP(di,di_mode) & IFMT) {
   1154 	case IFLNK:
   1155 		if (DIP(di,di_size) > newsb->fs_maxsymlinklen) {
   1156 	case IFDIR:
   1157 	case IFREG:
   1158 			map_inode_data_blocks(di, fn);
   1159 		}
   1160 		break;
   1161 	}
   1162 }
   1163 /*
   1164  * Make a callback call, a la map_inode_data_blocks, for all data
   1165  *  blocks in the entire fs.  This is used only once, in
   1166  *  update_for_data_move, but it's out at top level because the complex
   1167  *  downward-funarg nesting that would otherwise result seems to give
   1168  *  gcc gastric distress.
   1169  */
   1170 static void
   1171 map_data_blocks(mark_callback_t fn, int ncg)
   1172 {
   1173 	map_inodes(&dblk_callback, ncg, (void *) fn);
   1174 }
   1175 /*
   1176  * Initialize the blkmove array.
   1177  */
   1178 static void
   1179 blkmove_init(void)
   1180 {
   1181 	int i;
   1182 
   1183 	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
   1184 	for (i = 0; i < oldsb->fs_size; i++)
   1185 		blkmove[i] = i;
   1186 }
   1187 /*
   1188  * Load the inodes off disk.  Allocates the structures and initializes
   1189  *  them - the inodes from disk, the flags to zero.
   1190  */
   1191 static void
   1192 loadinodes(void)
   1193 {
   1194 	int imax, ino, i, j;
   1195 	struct ufs1_dinode *dp1 = NULL;
   1196 	struct ufs2_dinode *dp2 = NULL;
   1197 
   1198 	/* read inodes one fs block at a time and copy them */
   1199 
   1200 	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
   1201 	    sizeof(union dinode), "inodes");
   1202 	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
   1203 	memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg);
   1204 
   1205 	ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf");
   1206 	if (is_ufs2)
   1207 		dp2 = (struct ufs2_dinode *)ibuf;
   1208 	else
   1209 		dp1 = (struct ufs1_dinode *)ibuf;
   1210 
   1211 	for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) {
   1212 		readat(fsbtodb(oldsb, ino_to_fsba(oldsb, ino)), ibuf,
   1213 		    oldsb->fs_bsize);
   1214 
   1215 		for (i = 0; i < oldsb->fs_inopb; i++) {
   1216 			if (is_ufs2) {
   1217 				if (needswap) {
   1218 					ffs_dinode2_swap(&(dp2[i]), &(dp2[i]));
   1219 					for (j = 0; j < NDADDR + NIADDR; j++)
   1220 						dp2[i].di_db[j] =
   1221 						    bswap32(dp2[i].di_db[j]);
   1222 				}
   1223 				memcpy(&inodes[ino].dp2, &dp2[i],
   1224 				    sizeof(struct ufs2_dinode));
   1225 			} else {
   1226 				if (needswap) {
   1227 					ffs_dinode1_swap(&(dp1[i]), &(dp1[i]));
   1228 					for (j = 0; j < NDADDR + NIADDR; j++)
   1229 						dp1[i].di_db[j] =
   1230 						    bswap32(dp1[i].di_db[j]);
   1231 				}
   1232 				memcpy(&inodes[ino].dp1, &dp1[i],
   1233 				    sizeof(struct ufs1_dinode));
   1234 			}
   1235 			    if (++ino > imax)
   1236 				    errx(EXIT_FAILURE,
   1237 					"Exceeded number of inodes");
   1238 		}
   1239 
   1240 	}
   1241 }
   1242 /*
   1243  * Report a file-system-too-full problem.
   1244  */
   1245 static void
   1246 toofull(void)
   1247 {
   1248 	printf("Sorry, would run out of data blocks\n");
   1249 	exit(EXIT_FAILURE);
   1250 }
   1251 /*
   1252  * Record a desire to move "n" frags from "from" to "to".
   1253  */
   1254 static void
   1255 mark_move(unsigned int from, unsigned int to, unsigned int n)
   1256 {
   1257 	for (; n > 0; n--)
   1258 		blkmove[from++] = to++;
   1259 }
   1260 /* Helper function - evict n frags, starting with start (cg-relative).
   1261  * The free bitmap is scanned, unallocated frags are ignored, and
   1262  * each block of consecutive allocated frags is moved as a unit.
   1263  */
   1264 static void
   1265 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
   1266 {
   1267 	int i;
   1268 	int run;
   1269 
   1270 	run = 0;
   1271 	for (i = 0; i <= n; i++) {
   1272 		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
   1273 			run++;
   1274 		} else {
   1275 			if (run > 0) {
   1276 				int off;
   1277 				off = find_freespace(run);
   1278 				if (off < 0)
   1279 					toofull();
   1280 				mark_move(base + start + i - run, off, run);
   1281 				set_bits(cg_blksfree(cg, 0), start + i - run,
   1282 				    run);
   1283 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1284 				    dtogd(oldsb, off), run);
   1285 			}
   1286 			run = 0;
   1287 		}
   1288 	}
   1289 }
   1290 /*
   1291  * Evict all data blocks from the given cg, starting at minfrag (based
   1292  *  at the beginning of the cg), for length nfrag.  The eviction is
   1293  *  assumed to be entirely data-area; this should not be called with a
   1294  *  range overlapping the metadata structures in the cg.  It also
   1295  *  assumes minfrag points into the given cg; it will misbehave if this
   1296  *  is not true.
   1297  *
   1298  * See the comment header on find_freespace() for one possible bug
   1299  *  lurking here.
   1300  */
   1301 static void
   1302 evict_data(struct cg * cg, unsigned int minfrag, unsigned int nfrag)
   1303 {
   1304 	int base;	/* base of cg (in frags from beginning of fs) */
   1305 
   1306 	base = cgbase(oldsb, cg->cg_cgx);
   1307 	/* Does the boundary fall in the middle of a block?  To avoid
   1308 	 * breaking between frags allocated as consecutive, we always
   1309 	 * evict the whole block in this case, though one could argue
   1310 	 * we should check to see if the frag before or after the
   1311 	 * break is unallocated. */
   1312 	if (minfrag % oldsb->fs_frag) {
   1313 		int n;
   1314 		n = minfrag % oldsb->fs_frag;
   1315 		minfrag -= n;
   1316 		nfrag += n;
   1317 	}
   1318 	/* Do whole blocks.  If a block is wholly free, skip it; if
   1319 	 * wholly allocated, move it in toto.  If neither, call
   1320 	 * fragmove() to move the frags to new locations. */
   1321 	while (nfrag >= oldsb->fs_frag) {
   1322 		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
   1323 			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
   1324 				oldsb->fs_frag)) {
   1325 				int off;
   1326 				off = find_freeblock();
   1327 				if (off < 0)
   1328 					toofull();
   1329 				mark_move(base + minfrag, off, oldsb->fs_frag);
   1330 				set_bits(cg_blksfree(cg, 0), minfrag,
   1331 				    oldsb->fs_frag);
   1332 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1333 				    dtogd(oldsb, off), oldsb->fs_frag);
   1334 			} else {
   1335 				fragmove(cg, base, minfrag, oldsb->fs_frag);
   1336 			}
   1337 		}
   1338 		minfrag += oldsb->fs_frag;
   1339 		nfrag -= oldsb->fs_frag;
   1340 	}
   1341 	/* Clean up any sub-block amount left over. */
   1342 	if (nfrag) {
   1343 		fragmove(cg, base, minfrag, nfrag);
   1344 	}
   1345 }
   1346 /*
   1347  * Move all data blocks according to blkmove.  We have to be careful,
   1348  *  because we may be updating indirect blocks that will themselves be
   1349  *  getting moved, or inode int32_t arrays that point to indirect
   1350  *  blocks that will be moved.  We call this before
   1351  *  update_for_data_move, and update_for_data_move does inodes first,
   1352  *  then indirect blocks in preorder, so as to make sure that the
   1353  *  file system is self-consistent at all points, for better crash
   1354  *  tolerance.  (We can get away with this only because all the writes
   1355  *  done by perform_data_move() are writing into space that's not used
   1356  *  by the old file system.)  If we crash, some things may point to the
   1357  *  old data and some to the new, but both copies are the same.  The
   1358  *  only wrong things should be csum info and free bitmaps, which fsck
   1359  *  is entirely capable of cleaning up.
   1360  *
   1361  * Since blkmove_init() initializes all blocks to move to their current
   1362  *  locations, we can have two blocks marked as wanting to move to the
   1363  *  same location, but only two and only when one of them is the one
   1364  *  that was already there.  So if blkmove[i]==i, we ignore that entry
   1365  *  entirely - for unallocated blocks, we don't want it (and may be
   1366  *  putting something else there), and for allocated blocks, we don't
   1367  *  want to copy it anywhere.
   1368  */
   1369 static void
   1370 perform_data_move(void)
   1371 {
   1372 	int i;
   1373 	int run;
   1374 	int maxrun;
   1375 	char buf[65536];
   1376 
   1377 	maxrun = sizeof(buf) / newsb->fs_fsize;
   1378 	run = 0;
   1379 	for (i = 0; i < oldsb->fs_size; i++) {
   1380 		if ((blkmove[i] == i) ||
   1381 		    (run >= maxrun) ||
   1382 		    ((run > 0) &&
   1383 			(blkmove[i] != blkmove[i - 1] + 1))) {
   1384 			if (run > 0) {
   1385 				readat(fsbtodb(oldsb, i - run), &buf[0],
   1386 				    run << oldsb->fs_fshift);
   1387 				writeat(fsbtodb(oldsb, blkmove[i - run]),
   1388 				    &buf[0], run << oldsb->fs_fshift);
   1389 			}
   1390 			run = 0;
   1391 		}
   1392 		if (blkmove[i] != i)
   1393 			run++;
   1394 	}
   1395 	if (run > 0) {
   1396 		readat(fsbtodb(oldsb, i - run), &buf[0],
   1397 		    run << oldsb->fs_fshift);
   1398 		writeat(fsbtodb(oldsb, blkmove[i - run]), &buf[0],
   1399 		    run << oldsb->fs_fshift);
   1400 	}
   1401 }
   1402 /*
   1403  * This modifies an array of int32_t, according to blkmove.  This is
   1404  *  used to update inode block arrays and indirect blocks to point to
   1405  *  the new locations of data blocks.
   1406  *
   1407  * Return value is the number of int32_ts that needed updating; in
   1408  *  particular, the return value is zero iff nothing was modified.
   1409  */
   1410 static int
   1411 movemap_blocks(int32_t * vec, int n)
   1412 {
   1413 	int rv;
   1414 
   1415 	rv = 0;
   1416 	for (; n > 0; n--, vec++) {
   1417 		if (blkmove[*vec] != *vec) {
   1418 			*vec = blkmove[*vec];
   1419 			rv++;
   1420 		}
   1421 	}
   1422 	return (rv);
   1423 }
   1424 static void
   1425 moveblocks_callback(union dinode * di, unsigned int inum, void *arg)
   1426 {
   1427 	void *dblkptr, *iblkptr; /* XXX */
   1428 
   1429 	switch (DIP(di,di_mode) & IFMT) {
   1430 	case IFLNK:
   1431 		if (DIP(di,di_size) <= oldsb->fs_maxsymlinklen) {
   1432 			break;
   1433 		}
   1434 		/* FALLTHROUGH */
   1435 	case IFDIR:
   1436 	case IFREG:
   1437 		if (is_ufs2) {
   1438 			dblkptr = &(di->dp2.di_db[0]);
   1439 			iblkptr = &(di->dp2.di_ib[0]);
   1440 		} else {
   1441 			dblkptr = &(di->dp1.di_db[0]);
   1442 			iblkptr = &(di->dp1.di_ib[0]);
   1443 		}
   1444 		/*
   1445 		 * Don't || these two calls; we need their
   1446 		 * side-effects.
   1447 		 */
   1448 		if (movemap_blocks(dblkptr, NDADDR)) {
   1449 			iflags[inum] |= IF_DIRTY;
   1450 		}
   1451 		if (movemap_blocks(iblkptr, NIADDR)) {
   1452 			iflags[inum] |= IF_DIRTY;
   1453 		}
   1454 		break;
   1455 	}
   1456 }
   1457 
   1458 static void
   1459 moveindir_callback(unsigned int off, unsigned int nfrag, unsigned int nbytes,
   1460 		   int kind)
   1461 {
   1462 	int i;
   1463 
   1464 	if (kind == MDB_INDIR_PRE) {
   1465 		int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
   1466 		readat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
   1467 		if (needswap)
   1468 			for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
   1469 				blk[i] = bswap32(blk[i]);
   1470 		if (movemap_blocks(&blk[0], NINDIR(oldsb))) {
   1471 			if (needswap)
   1472 				for (i = 0; i < howmany(MAXBSIZE,
   1473 					sizeof(int32_t)); i++)
   1474 					blk[i] = bswap32(blk[i]);
   1475 			writeat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
   1476 		}
   1477 	}
   1478 }
   1479 /*
   1480  * Update all inode data arrays and indirect blocks to point to the new
   1481  *  locations of data blocks.  See the comment header on
   1482  *  perform_data_move for some ordering considerations.
   1483  */
   1484 static void
   1485 update_for_data_move(void)
   1486 {
   1487 	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
   1488 	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
   1489 }
   1490 /*
   1491  * Initialize the inomove array.
   1492  */
   1493 static void
   1494 inomove_init(void)
   1495 {
   1496 	int i;
   1497 
   1498 	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
   1499                             "inomove");
   1500 	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
   1501 		inomove[i] = i;
   1502 }
   1503 /*
   1504  * Flush all dirtied inodes to disk.  Scans the inode flags array; for
   1505  *  each dirty inode, it sets the BDIRTY bit on the first inode in the
   1506  *  block containing the dirty inode.  Then it scans by blocks, and for
   1507  *  each marked block, writes it.
   1508  */
   1509 static void
   1510 flush_inodes(void)
   1511 {
   1512 	int i, j, k, na, ni, m;
   1513 	struct ufs1_dinode *dp1 = NULL;
   1514 	struct ufs2_dinode *dp2 = NULL;
   1515 
   1516 	na = NDADDR + NIADDR;
   1517 	ni = newsb->fs_ipg * newsb->fs_ncg;
   1518 	m = INOPB(newsb) - 1;
   1519 	for (i = 0; i < ni; i++) {
   1520 		if (iflags[i] & IF_DIRTY) {
   1521 			iflags[i & ~m] |= IF_BDIRTY;
   1522 		}
   1523 	}
   1524 	m++;
   1525 
   1526 	if (is_ufs2)
   1527 		dp2 = (struct ufs2_dinode *)ibuf;
   1528 	else
   1529 		dp1 = (struct ufs1_dinode *)ibuf;
   1530 
   1531 	for (i = 0; i < ni; i += m) {
   1532 		if (iflags[i] & IF_BDIRTY) {
   1533 			if (is_ufs2)
   1534 				for (j = 0; j < m; j++) {
   1535 					dp2[j] = inodes[i + j].dp2;
   1536 					if (needswap) {
   1537 						for (k = 0; k < na; k++)
   1538 							dp2[j].di_db[k]=
   1539 							    bswap32(dp2[j].di_db[k]);
   1540 						ffs_dinode2_swap(&dp2[j],
   1541 						    &dp2[j]);
   1542 					}
   1543 				}
   1544 			else
   1545 				for (j = 0; j < m; j++) {
   1546 					dp1[j] = inodes[i + j].dp1;
   1547 					if (needswap) {
   1548 						for (k = 0; k < na; k++)
   1549 							dp1[j].di_db[k]=
   1550 							    bswap32(dp1[j].di_db[k]);
   1551 						ffs_dinode1_swap(&dp1[j],
   1552 						    &dp1[j]);
   1553 					}
   1554 				}
   1555 
   1556 			writeat(fsbtodb(newsb, ino_to_fsba(newsb, i)),
   1557 			    ibuf, newsb->fs_bsize);
   1558 		}
   1559 	}
   1560 }
   1561 /*
   1562  * Evict all inodes from the specified cg.  shrink() already checked
   1563  *  that there were enough free inodes, so the no-free-inodes check is
   1564  *  a can't-happen.  If it does trip, the file system should be in good
   1565  *  enough shape for fsck to fix; see the comment on perform_data_move
   1566  *  for the considerations in question.
   1567  */
   1568 static void
   1569 evict_inodes(struct cg * cg)
   1570 {
   1571 	int inum;
   1572 	int i;
   1573 	int fi;
   1574 
   1575 	inum = newsb->fs_ipg * cg->cg_cgx;
   1576 	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
   1577 		if (DIP(inodes + inum,di_mode) != 0) {
   1578 			fi = find_freeinode();
   1579 			if (fi < 0) {
   1580 				printf("Sorry, inodes evaporated - "
   1581 				    "file system probably needs fsck\n");
   1582 				exit(EXIT_FAILURE);
   1583 			}
   1584 			inomove[inum] = fi;
   1585 			clr_bits(cg_inosused(cg, 0), i, 1);
   1586 			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
   1587 			    fi % newsb->fs_ipg, 1);
   1588 		}
   1589 	}
   1590 }
   1591 /*
   1592  * Move inodes from old locations to new.  Does not actually write
   1593  *  anything to disk; just copies in-core and sets dirty bits.
   1594  *
   1595  * We have to be careful here for reasons similar to those mentioned in
   1596  *  the comment header on perform_data_move, above: for the sake of
   1597  *  crash tolerance, we want to make sure everything is present at both
   1598  *  old and new locations before we update pointers.  So we call this
   1599  *  first, then flush_inodes() to get them out on disk, then update
   1600  *  directories to match.
   1601  */
   1602 static void
   1603 perform_inode_move(void)
   1604 {
   1605 	int i;
   1606 	int ni;
   1607 
   1608 	ni = oldsb->fs_ipg * oldsb->fs_ncg;
   1609 	for (i = 0; i < ni; i++) {
   1610 		if (inomove[i] != i) {
   1611 			inodes[inomove[i]] = inodes[i];
   1612 			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
   1613 		}
   1614 	}
   1615 }
   1616 /*
   1617  * Update the directory contained in the nb bytes at buf, to point to
   1618  *  inodes' new locations.
   1619  */
   1620 static int
   1621 update_dirents(char *buf, int nb)
   1622 {
   1623 	int rv;
   1624 #define d ((struct direct *)buf)
   1625 #define s32(x) (needswap?bswap32((x)):(x))
   1626 #define s16(x) (needswap?bswap16((x)):(x))
   1627 
   1628 	rv = 0;
   1629 	while (nb > 0) {
   1630 		if (inomove[s32(d->d_ino)] != s32(d->d_ino)) {
   1631 			rv++;
   1632 			d->d_ino = s32(inomove[s32(d->d_ino)]);
   1633 		}
   1634 		nb -= s16(d->d_reclen);
   1635 		buf += s16(d->d_reclen);
   1636 	}
   1637 	return (rv);
   1638 #undef d
   1639 #undef s32
   1640 #undef s16
   1641 }
   1642 /*
   1643  * Callback function for map_inode_data_blocks, for updating a
   1644  *  directory to point to new inode locations.
   1645  */
   1646 static void
   1647 update_dir_data(unsigned int bn, unsigned int size, unsigned int nb, int kind)
   1648 {
   1649 	if (kind == MDB_DATA) {
   1650 		union {
   1651 			struct direct d;
   1652 			char ch[MAXBSIZE];
   1653 		}     buf;
   1654 		readat(fsbtodb(oldsb, bn), &buf, size << oldsb->fs_fshift);
   1655 		if (update_dirents((char *) &buf, nb)) {
   1656 			writeat(fsbtodb(oldsb, bn), &buf,
   1657 			    size << oldsb->fs_fshift);
   1658 		}
   1659 	}
   1660 }
   1661 static void
   1662 dirmove_callback(union dinode * di, unsigned int inum, void *arg)
   1663 {
   1664 	switch (DIP(di,di_mode) & IFMT) {
   1665 	case IFDIR:
   1666 		map_inode_data_blocks(di, &update_dir_data);
   1667 		break;
   1668 	}
   1669 }
   1670 /*
   1671  * Update directory entries to point to new inode locations.
   1672  */
   1673 static void
   1674 update_for_inode_move(void)
   1675 {
   1676 	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
   1677 }
   1678 /*
   1679  * Shrink the file system.
   1680  */
   1681 static void
   1682 shrink(void)
   1683 {
   1684 	int i;
   1685 
   1686 	/* Load the inodes off disk - we'll need 'em. */
   1687 	loadinodes();
   1688 	/* Update the timestamp. */
   1689 	newsb->fs_time = timestamp();
   1690 	/* Update the size figures. */
   1691 	newsb->fs_size = dbtofsb(newsb, newsize);
   1692 	if (is_ufs2)
   1693 		newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
   1694 	else {
   1695 		newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
   1696 		    newsb->fs_old_spc);
   1697 		newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
   1698 	}
   1699 	/* Does the (new) last cg end before the end of its inode area?  See
   1700 	 * the similar code in grow() for more on this. */
   1701 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
   1702 		newsb->fs_ncg--;
   1703 		if (is_ufs2 == 0) {
   1704 			newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
   1705 			newsb->fs_size = (newsb->fs_old_ncyl *
   1706 			    newsb->fs_old_spc) / NSPF(newsb);
   1707 		} else
   1708 			newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg;
   1709 
   1710 		printf("Warning: last cylinder group is too small;\n");
   1711 		printf("    dropping it.  New size = %lu.\n",
   1712 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
   1713 	}
   1714 	/* Let's make sure we're not being shrunk into oblivion. */
   1715 	if (newsb->fs_ncg < 1) {
   1716 		printf("Size too small - file system would "
   1717 		    "have no cylinders\n");
   1718 		exit(EXIT_FAILURE);
   1719 	}
   1720 	/* Initialize for block motion. */
   1721 	blkmove_init();
   1722 	/* Update csum size, then fix up for the new size */
   1723 	newsb->fs_cssize = fragroundup(newsb,
   1724 	    newsb->fs_ncg * sizeof(struct csum));
   1725 	csum_fixup();
   1726 	/* Evict data from any cgs being wholly eliminated */
   1727 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
   1728 		int base;
   1729 		int dlow;
   1730 		int dhigh;
   1731 		int dmax;
   1732 		base = cgbase(oldsb, i);
   1733 		dlow = cgsblock(oldsb, i) - base;
   1734 		dhigh = cgdmin(oldsb, i) - base;
   1735 		dmax = oldsb->fs_size - base;
   1736 		if (dmax > cgs[i]->cg_ndblk)
   1737 			dmax = cgs[i]->cg_ndblk;
   1738 		evict_data(cgs[i], 0, dlow);
   1739 		evict_data(cgs[i], dhigh, dmax - dhigh);
   1740 		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
   1741 		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
   1742 		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
   1743 		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
   1744 	}
   1745 	/* Update the new last cg. */
   1746 	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
   1747 	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
   1748 	/* Is the new last cg partial?  If so, evict any data from the part
   1749 	 * being shrunken away. */
   1750 	if (newsb->fs_size % newsb->fs_fpg) {
   1751 		struct cg *cg;
   1752 		int oldcgsize;
   1753 		int newcgsize;
   1754 		cg = cgs[newsb->fs_ncg - 1];
   1755 		newcgsize = newsb->fs_size % newsb->fs_fpg;
   1756 		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
   1757 		    oldsb->fs_fpg);
   1758 		if (oldcgsize > oldsb->fs_fpg)
   1759 			oldcgsize = oldsb->fs_fpg;
   1760 		evict_data(cg, newcgsize, oldcgsize - newcgsize);
   1761 		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
   1762 	}
   1763 	/* Find out whether we would run out of inodes.  (Note we
   1764 	 * haven't actually done anything to the file system yet; all
   1765 	 * those evict_data calls just update blkmove.) */
   1766 	{
   1767 		int slop;
   1768 		slop = 0;
   1769 		for (i = 0; i < newsb->fs_ncg; i++)
   1770 			slop += cgs[i]->cg_cs.cs_nifree;
   1771 		for (; i < oldsb->fs_ncg; i++)
   1772 			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
   1773 		if (slop < 0) {
   1774 			printf("Sorry, would run out of inodes\n");
   1775 			exit(EXIT_FAILURE);
   1776 		}
   1777 	}
   1778 	/* Copy data, then update pointers to data.  See the comment
   1779 	 * header on perform_data_move for ordering considerations. */
   1780 	perform_data_move();
   1781 	update_for_data_move();
   1782 	/* Now do inodes.  Initialize, evict, move, update - see the
   1783 	 * comment header on perform_inode_move. */
   1784 	inomove_init();
   1785 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
   1786 		evict_inodes(cgs[i]);
   1787 	perform_inode_move();
   1788 	flush_inodes();
   1789 	update_for_inode_move();
   1790 	/* Recompute all the bitmaps; most of them probably need it anyway,
   1791 	 * the rest are just paranoia and not wanting to have to bother
   1792 	 * keeping track of exactly which ones require it. */
   1793 	for (i = 0; i < newsb->fs_ncg; i++)
   1794 		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
   1795 	/* Update the cg_old_ncyl value for the last cylinder. */
   1796 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
   1797 		cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
   1798 		    newsb->fs_old_ncyl % newsb->fs_old_cpg;
   1799 	/* Make fs_dsize match the new reality. */
   1800 	recompute_fs_dsize();
   1801 }
   1802 /*
   1803  * Recompute the block totals, block cluster summaries, and rotational
   1804  *  position summaries, for a given cg (specified by number), based on
   1805  *  its free-frag bitmap (cg_blksfree()[]).
   1806  */
   1807 static void
   1808 rescan_blkmaps(int cgn)
   1809 {
   1810 	struct cg *cg;
   1811 	int f;
   1812 	int b;
   1813 	int blkfree;
   1814 	int blkrun;
   1815 	int fragrun;
   1816 	int fwb;
   1817 
   1818 	cg = cgs[cgn];
   1819 	/* Subtract off the current totals from the sb's summary info */
   1820 	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
   1821 	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
   1822 	/* Clear counters and bitmaps. */
   1823 	cg->cg_cs.cs_nffree = 0;
   1824 	cg->cg_cs.cs_nbfree = 0;
   1825 	memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0]));
   1826 	memset(&old_cg_blktot(cg, 0)[0], 0,
   1827 	    newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
   1828 	memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0,
   1829 	    newsb->fs_old_cpg * newsb->fs_old_nrpos *
   1830 	    sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
   1831 	if (newsb->fs_contigsumsize > 0) {
   1832 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
   1833 		memset(&cg_clustersum(cg, 0)[1], 0,
   1834 		    newsb->fs_contigsumsize *
   1835 		    sizeof(cg_clustersum(cg, 0)[1]));
   1836 		if (is_ufs2)
   1837 			memset(&cg_clustersfree(cg, 0)[0], 0,
   1838 			    howmany(newsb->fs_fpg / NSPB(newsb), NBBY));
   1839 		else
   1840 			memset(&cg_clustersfree(cg, 0)[0], 0,
   1841 			    howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
   1842 				NSPB(newsb), NBBY));
   1843 	}
   1844 	/* Scan the free-frag bitmap.  Runs of free frags are kept
   1845 	 * track of with fragrun, and recorded into cg_frsum[] and
   1846 	 * cg_cs.cs_nffree; on each block boundary, entire free blocks
   1847 	 * are recorded as well. */
   1848 	blkfree = 1;
   1849 	blkrun = 0;
   1850 	fragrun = 0;
   1851 	f = 0;
   1852 	b = 0;
   1853 	fwb = 0;
   1854 	while (f < cg->cg_ndblk) {
   1855 		if (bit_is_set(cg_blksfree(cg, 0), f)) {
   1856 			fragrun++;
   1857 		} else {
   1858 			blkfree = 0;
   1859 			if (fragrun > 0) {
   1860 				cg->cg_frsum[fragrun]++;
   1861 				cg->cg_cs.cs_nffree += fragrun;
   1862 			}
   1863 			fragrun = 0;
   1864 		}
   1865 		f++;
   1866 		fwb++;
   1867 		if (fwb >= newsb->fs_frag) {
   1868 			if (blkfree) {
   1869 				cg->cg_cs.cs_nbfree++;
   1870 				if (newsb->fs_contigsumsize > 0)
   1871 					set_bits(cg_clustersfree(cg, 0), b, 1);
   1872 				if (is_ufs2 == 0) {
   1873 					old_cg_blktot(cg, 0)[
   1874 						old_cbtocylno(newsb,
   1875 						    f - newsb->fs_frag)]++;
   1876 					old_cg_blks(newsb, cg,
   1877 					    old_cbtocylno(newsb,
   1878 						f - newsb->fs_frag),
   1879 					    0)[old_cbtorpos(newsb,
   1880 						    f - newsb->fs_frag)]++;
   1881 				}
   1882 				blkrun++;
   1883 			} else {
   1884 				if (fragrun > 0) {
   1885 					cg->cg_frsum[fragrun]++;
   1886 					cg->cg_cs.cs_nffree += fragrun;
   1887 				}
   1888 				if (newsb->fs_contigsumsize > 0) {
   1889 					if (blkrun > 0) {
   1890 						cg_clustersum(cg, 0)[(blkrun
   1891 						    > newsb->fs_contigsumsize)
   1892 						    ? newsb->fs_contigsumsize
   1893 						    : blkrun]++;
   1894 					}
   1895 				}
   1896 				blkrun = 0;
   1897 			}
   1898 			fwb = 0;
   1899 			b++;
   1900 			blkfree = 1;
   1901 			fragrun = 0;
   1902 		}
   1903 	}
   1904 	if (fragrun > 0) {
   1905 		cg->cg_frsum[fragrun]++;
   1906 		cg->cg_cs.cs_nffree += fragrun;
   1907 	}
   1908 	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
   1909 		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
   1910 		    newsb->fs_contigsumsize : blkrun]++;
   1911 	}
   1912 	/*
   1913          * Put the updated summary info back into csums, and add it
   1914          * back into the sb's summary info.  Then mark the cg dirty.
   1915          */
   1916 	csums[cgn] = cg->cg_cs;
   1917 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
   1918 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
   1919 	cgflags[cgn] |= CGF_DIRTY;
   1920 }
   1921 /*
   1922  * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
   1923  *  values, for a cg, based on the in-core inodes for that cg.
   1924  */
   1925 static void
   1926 rescan_inomaps(int cgn)
   1927 {
   1928 	struct cg *cg;
   1929 	int inum;
   1930 	int iwc;
   1931 
   1932 	cg = cgs[cgn];
   1933 	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
   1934 	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
   1935 	cg->cg_cs.cs_ndir = 0;
   1936 	cg->cg_cs.cs_nifree = 0;
   1937 	memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY));
   1938 	inum = cgn * newsb->fs_ipg;
   1939 	if (cgn == 0) {
   1940 		set_bits(cg_inosused(cg, 0), 0, 2);
   1941 		iwc = 2;
   1942 		inum += 2;
   1943 	} else {
   1944 		iwc = 0;
   1945 	}
   1946 	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
   1947 		switch (DIP(inodes + inum, di_mode) & IFMT) {
   1948 		case 0:
   1949 			cg->cg_cs.cs_nifree++;
   1950 			break;
   1951 		case IFDIR:
   1952 			cg->cg_cs.cs_ndir++;
   1953 			/* fall through */
   1954 		default:
   1955 			set_bits(cg_inosused(cg, 0), iwc, 1);
   1956 			break;
   1957 		}
   1958 	}
   1959 	csums[cgn] = cg->cg_cs;
   1960 	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
   1961 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
   1962 	cgflags[cgn] |= CGF_DIRTY;
   1963 }
   1964 /*
   1965  * Flush cgs to disk, recomputing anything they're marked as needing.
   1966  */
   1967 static void
   1968 flush_cgs(void)
   1969 {
   1970 	int i;
   1971 
   1972 	for (i = 0; i < newsb->fs_ncg; i++) {
   1973 		if (cgflags[i] & CGF_BLKMAPS) {
   1974 			rescan_blkmaps(i);
   1975 		}
   1976 		if (cgflags[i] & CGF_INOMAPS) {
   1977 			rescan_inomaps(i);
   1978 		}
   1979 		if (cgflags[i] & CGF_DIRTY) {
   1980 			cgs[i]->cg_rotor = 0;
   1981 			cgs[i]->cg_frotor = 0;
   1982 			cgs[i]->cg_irotor = 0;
   1983 			if (needswap)
   1984 				ffs_cg_swap(cgs[i],cgs[i],newsb);
   1985 			writeat(fsbtodb(newsb, cgtod(newsb, i)), cgs[i],
   1986 			    cgblksz);
   1987 		}
   1988 	}
   1989 	if (needswap)
   1990 		ffs_csum_swap(csums,csums,newsb->fs_cssize);
   1991 	writeat(fsbtodb(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
   1992 }
   1993 /*
   1994  * Write the superblock, both to the main superblock and to each cg's
   1995  *  alternative superblock.
   1996  */
   1997 static void
   1998 write_sbs(void)
   1999 {
   2000 	int i;
   2001 
   2002 	if (newsb->fs_magic == FS_UFS1_MAGIC &&
   2003 	    (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
   2004 		newsb->fs_old_time = newsb->fs_time;
   2005 	    	newsb->fs_old_size = newsb->fs_size;
   2006 	    	/* we don't update fs_csaddr */
   2007 	    	newsb->fs_old_dsize = newsb->fs_dsize;
   2008 		newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
   2009 		newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
   2010 		newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
   2011 		newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
   2012 		/* fill fs_old_postbl_start with 256 bytes of 0xff? */
   2013 	}
   2014 	/* copy newsb back to oldsb, so we can use it for offsets if
   2015 	   newsb has been swapped for writing to disk */
   2016 	memcpy(oldsb, newsb, SBLOCKSIZE);
   2017 	if (needswap)
   2018 		ffs_sb_swap(newsb,newsb);
   2019 	writeat(where /  DEV_BSIZE, newsb, SBLOCKSIZE);
   2020 	for (i = 0; i < oldsb->fs_ncg; i++) {
   2021 		writeat(fsbtodb(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE);
   2022 	}
   2023 }
   2024 
   2025 static uint32_t
   2026 get_dev_size(char *dev_name)
   2027 {
   2028 	struct dkwedge_info dkw;
   2029 	struct partition *pp;
   2030 	struct disklabel lp;
   2031 	size_t ptn;
   2032 
   2033 	/* Get info about partition/wedge */
   2034 	if (ioctl(fd, DIOCGWEDGEINFO, &dkw) == -1) {
   2035 		if (ioctl(fd, DIOCGDINFO, &lp) == -1)
   2036 			return 0;
   2037 
   2038 		ptn = strchr(dev_name, '\0')[-1] - 'a';
   2039 		if (ptn >= lp.d_npartitions)
   2040 			return 0;
   2041 
   2042 		pp = &lp.d_partitions[ptn];
   2043 		return pp->p_size;
   2044 	}
   2045 
   2046 	return dkw.dkw_size;
   2047 }
   2048 
   2049 /*
   2050  * main().
   2051  */
   2052 int
   2053 main(int argc, char **argv)
   2054 {
   2055 	int ch;
   2056 	int ExpertFlag;
   2057 	int SFlag;
   2058 	size_t i;
   2059 
   2060 	char *special;
   2061 	char reply[5];
   2062 
   2063 	newsize = 0;
   2064 	ExpertFlag = 0;
   2065 	SFlag = 0;
   2066 
   2067 	while ((ch = getopt(argc, argv, "s:y")) != -1) {
   2068 		switch (ch) {
   2069 		case 's':
   2070 			SFlag = 1;
   2071 			newsize = (size_t)strtoul(optarg, NULL, 10);
   2072 			if(newsize < 1) {
   2073 				usage();
   2074 			}
   2075 			break;
   2076 		case 'y':
   2077 			ExpertFlag = 1;
   2078 			break;
   2079 		case '?':
   2080 			/* FALLTHROUGH */
   2081 		default:
   2082 			usage();
   2083 		}
   2084 	}
   2085 	argc -= optind;
   2086 	argv += optind;
   2087 
   2088 	if (argc != 1) {
   2089 		usage();
   2090 	}
   2091 
   2092 	special = *argv;
   2093 
   2094 	if (ExpertFlag == 0) {
   2095 		printf("It's required to manually run fsck on file system "
   2096 		    "before you can resize it\n\n"
   2097 		    " Did you run fsck on your disk (Yes/No) ? ");
   2098 		fgets(reply, (int)sizeof(reply), stdin);
   2099 		if (strcasecmp(reply, "Yes\n")) {
   2100 			printf("\n Nothing done \n");
   2101 			exit(EXIT_SUCCESS);
   2102 		}
   2103 	}
   2104 
   2105 	fd = open(special, O_RDWR, 0);
   2106 	if (fd < 0)
   2107 		err(EXIT_FAILURE, "Can't open `%s'", special);
   2108 	checksmallio();
   2109 
   2110 	if (SFlag == 0) {
   2111 		newsize = get_dev_size(special);
   2112 		if (newsize == 0)
   2113 			err(EXIT_FAILURE,
   2114 			    "Can't resize file system, newsize not known.");
   2115 	}
   2116 
   2117 	oldsb = (struct fs *) & sbbuf;
   2118 	newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
   2119 	for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
   2120 		readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
   2121 		switch (oldsb->fs_magic) {
   2122 		case FS_UFS2_MAGIC:
   2123 			/* FALLTHROUGH */
   2124 			is_ufs2 = 1;
   2125 		case FS_UFS1_MAGIC:
   2126 			needswap = 0;
   2127 			break;
   2128 		case FS_UFS2_MAGIC_SWAPPED:
   2129  			is_ufs2 = 1;
   2130 			/* FALLTHROUGH */
   2131 		case FS_UFS1_MAGIC_SWAPPED:
   2132 			needswap = 1;
   2133 			break;
   2134 		default:
   2135 			continue;
   2136 		}
   2137 		if (!is_ufs2 && where == SBLOCK_UFS2)
   2138 			continue;
   2139 		break;
   2140 	}
   2141 	if (where == (off_t)-1)
   2142 		errx(EXIT_FAILURE, "Bad magic number");
   2143 	if (needswap)
   2144 		ffs_sb_swap(oldsb,oldsb);
   2145 	if (oldsb->fs_magic == FS_UFS1_MAGIC &&
   2146 	    (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
   2147 		oldsb->fs_csaddr = oldsb->fs_old_csaddr;
   2148 		oldsb->fs_size = oldsb->fs_old_size;
   2149 		oldsb->fs_dsize = oldsb->fs_old_dsize;
   2150 		oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
   2151 		oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
   2152 		oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
   2153 		oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
   2154 		/* any others? */
   2155 		printf("Resizing with ffsv1 superblock\n");
   2156 	}
   2157 
   2158 	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
   2159 	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
   2160 	if (oldsb->fs_ipg % INOPB(oldsb)) {
   2161 		(void)fprintf(stderr, "ipg[%d] %% INOPB[%d] != 0\n",
   2162 		    (int) oldsb->fs_ipg, (int) INOPB(oldsb));
   2163 		exit(EXIT_FAILURE);
   2164 	}
   2165 	/* The superblock is bigger than struct fs (there are trailing
   2166 	 * tables, of non-fixed size); make sure we copy the whole
   2167 	 * thing.  SBLOCKSIZE may be an over-estimate, but we do this
   2168 	 * just once, so being generous is cheap. */
   2169 	memcpy(newsb, oldsb, SBLOCKSIZE);
   2170 	loadcgs();
   2171 	if (newsize > fsbtodb(oldsb, oldsb->fs_size)) {
   2172 		grow();
   2173 	} else if (newsize < fsbtodb(oldsb, oldsb->fs_size)) {
   2174 		if (is_ufs2)
   2175 			errx(EXIT_FAILURE,"shrinking not supported for ufs2");
   2176 		shrink();
   2177 	}
   2178 	flush_cgs();
   2179 	write_sbs();
   2180 	if (isplainfile())
   2181 		ftruncate(fd,newsize * DEV_BSIZE);
   2182 	return 0;
   2183 }
   2184 
   2185 static void
   2186 usage(void)
   2187 {
   2188 
   2189 	(void)fprintf(stderr, "usage: %s [-y] [-s size] special\n",
   2190 	    getprogname());
   2191 	exit(EXIT_FAILURE);
   2192 }
   2193