resize_ffs.c revision 1.38.6.1.2.1 1 /* $NetBSD: resize_ffs.c,v 1.38.6.1.2.1 2017/10/23 19:24:33 snj Exp $ */
2 /* From sources sent on February 17, 2003 */
3 /*-
4 * As its sole author, I explicitly place this code in the public
5 * domain. Anyone may use it for any purpose (though I would
6 * appreciate credit where it is due).
7 *
8 * der Mouse
9 *
10 * mouse (at) rodents.montreal.qc.ca
11 * 7D C8 61 52 5D E7 2D 39 4E F1 31 3E E8 B3 27 4B
12 */
13 /*
14 * resize_ffs:
15 *
16 * Resize a file system. Is capable of both growing and shrinking.
17 *
18 * Usage: resize_ffs [-s newsize] [-y] file_system
19 *
20 * Example: resize_ffs -s 29574 /dev/rsd1e
21 *
22 * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
23 * each).
24 *
25 * Note: this currently requires gcc to build, since it is written
26 * depending on gcc-specific features, notably nested function
27 * definitions (which in at least a few cases depend on the lexical
28 * scoping gcc provides, so they can't be trivially moved outside).
29 *
30 * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
31 * one responsible for the "realloccgblk: can't find blk in cyl"
32 * problem and a more minor one which left fs_dsize wrong when
33 * shrinking. (These actually indicate bugs in fsck too - it should
34 * have caught and fixed them.)
35 *
36 */
37
38 #include <sys/cdefs.h>
39 __RCSID("$NetBSD: resize_ffs.c,v 1.38.6.1.2.1 2017/10/23 19:24:33 snj Exp $");
40
41 #include <sys/disk.h>
42 #include <sys/disklabel.h>
43 #include <sys/dkio.h>
44 #include <sys/ioctl.h>
45 #include <sys/stat.h>
46 #include <sys/mman.h>
47 #include <sys/param.h> /* MAXFRAG */
48 #include <ufs/ffs/fs.h>
49 #include <ufs/ffs/ffs_extern.h>
50 #include <ufs/ufs/dir.h>
51 #include <ufs/ufs/dinode.h>
52 #include <ufs/ufs/ufs_bswap.h> /* ufs_rw32 */
53
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <strings.h>
60 #include <unistd.h>
61
62 #include "progress.h"
63
64 /* new size of file system, in sectors */
65 static int64_t newsize;
66
67 /* fd open onto disk device or file */
68 static int fd;
69
70 /* disk device or file path */
71 char *special;
72
73 /* must we break up big I/O operations - see checksmallio() */
74 static int smallio;
75
76 /* size of a cg, in bytes, rounded up to a frag boundary */
77 static int cgblksz;
78
79 /* possible superblock localtions */
80 static int search[] = SBLOCKSEARCH;
81 /* location of the superblock */
82 static off_t where;
83
84 /* Superblocks. */
85 static struct fs *oldsb; /* before we started */
86 static struct fs *newsb; /* copy to work with */
87 /* Buffer to hold the above. Make sure it's aligned correctly. */
88 static char sbbuf[2 * SBLOCKSIZE]
89 __attribute__((__aligned__(__alignof__(struct fs))));
90
91 union dinode {
92 struct ufs1_dinode dp1;
93 struct ufs2_dinode dp2;
94 };
95 #define DIP(dp, field) \
96 ((is_ufs2) ? \
97 (dp)->dp2.field : (dp)->dp1.field)
98
99 #define DIP_ASSIGN(dp, field, value) \
100 do { \
101 if (is_ufs2) \
102 (dp)->dp2.field = (value); \
103 else \
104 (dp)->dp1.field = (value); \
105 } while (0)
106
107 /* a cg's worth of brand new squeaky-clean inodes */
108 static struct ufs1_dinode *zinodes;
109
110 /* pointers to the in-core cgs, read off disk and possibly modified */
111 static struct cg **cgs;
112
113 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
114 static struct csum *csums;
115
116 /* per-cg flags, indexed by cg number */
117 static unsigned char *cgflags;
118 #define CGF_DIRTY 0x01 /* needs to be written to disk */
119 #define CGF_BLKMAPS 0x02 /* block bitmaps need rebuilding */
120 #define CGF_INOMAPS 0x04 /* inode bitmaps need rebuilding */
121
122 /* when shrinking, these two arrays record how we want blocks to move. */
123 /* if blkmove[i] is j, the frag that started out as frag #i should end */
124 /* up as frag #j. inomove[i]=j means, similarly, that the inode that */
125 /* started out as inode i should end up as inode j. */
126 static unsigned int *blkmove;
127 static unsigned int *inomove;
128
129 /* in-core copies of all inodes in the fs, indexed by inumber */
130 union dinode *inodes;
131
132 void *ibuf; /* ptr to fs block-sized buffer for reading/writing inodes */
133
134 /* byteswapped inodes */
135 union dinode *sinodes;
136
137 /* per-inode flags, indexed by inumber */
138 static unsigned char *iflags;
139 #define IF_DIRTY 0x01 /* needs to be written to disk */
140 #define IF_BDIRTY 0x02 /* like DIRTY, but is set on first inode in a
141 * block of inodes, and applies to the whole
142 * block. */
143
144 /* resize_ffs works directly on dinodes, adapt blksize() */
145 #define dblksize(fs, dip, lbn, filesize) \
146 (((lbn) >= UFS_NDADDR || (uint64_t)(filesize) >= ffs_lblktosize(fs, (lbn) + 1)) \
147 ? (fs)->fs_bsize \
148 : (ffs_fragroundup(fs, ffs_blkoff(fs, (filesize)))))
149
150
151 /*
152 * Number of disk sectors per block/fragment
153 */
154 #define NSPB(fs) (FFS_FSBTODB((fs),1) << (fs)->fs_fragshift)
155 #define NSPF(fs) (FFS_FSBTODB((fs),1))
156
157 /* global flags */
158 int is_ufs2 = 0;
159 int needswap = 0;
160 int verbose = 0;
161 int progress = 0;
162
163 static void usage(void) __dead;
164
165 /*
166 * See if we need to break up large I/O operations. This should never
167 * be needed, but under at least one <version,platform> combination,
168 * large enough disk transfers to the raw device hang. So if we're
169 * talking to a character special device, play it safe; in this case,
170 * readat() and writeat() break everything up into pieces no larger
171 * than 8K, doing multiple syscalls for larger operations.
172 */
173 static void
174 checksmallio(void)
175 {
176 struct stat stb;
177
178 fstat(fd, &stb);
179 smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
180 }
181
182 static int
183 isplainfile(void)
184 {
185 struct stat stb;
186
187 fstat(fd, &stb);
188 return S_ISREG(stb.st_mode);
189 }
190 /*
191 * Read size bytes starting at blkno into buf. blkno is in DEV_BSIZE
192 * units, ie, after FFS_FSBTODB(); size is in bytes.
193 */
194 static void
195 readat(off_t blkno, void *buf, int size)
196 {
197 /* Seek to the correct place. */
198 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
199 err(EXIT_FAILURE, "lseek failed");
200
201 /* See if we have to break up the transfer... */
202 if (smallio) {
203 char *bp; /* pointer into buf */
204 int left; /* bytes left to go */
205 int n; /* number to do this time around */
206 int rv; /* syscall return value */
207 bp = buf;
208 left = size;
209 while (left > 0) {
210 n = (left > 8192) ? 8192 : left;
211 rv = read(fd, bp, n);
212 if (rv < 0)
213 err(EXIT_FAILURE, "read failed");
214 if (rv != n)
215 errx(EXIT_FAILURE,
216 "read: wanted %d, got %d", n, rv);
217 bp += n;
218 left -= n;
219 }
220 } else {
221 int rv;
222 rv = read(fd, buf, size);
223 if (rv < 0)
224 err(EXIT_FAILURE, "read failed");
225 if (rv != size)
226 errx(EXIT_FAILURE, "read: wanted %d, got %d",
227 size, rv);
228 }
229 }
230 /*
231 * Write size bytes from buf starting at blkno. blkno is in DEV_BSIZE
232 * units, ie, after FFS_FSBTODB(); size is in bytes.
233 */
234 static void
235 writeat(off_t blkno, const void *buf, int size)
236 {
237 /* Seek to the correct place. */
238 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
239 err(EXIT_FAILURE, "lseek failed");
240 /* See if we have to break up the transfer... */
241 if (smallio) {
242 const char *bp; /* pointer into buf */
243 int left; /* bytes left to go */
244 int n; /* number to do this time around */
245 int rv; /* syscall return value */
246 bp = buf;
247 left = size;
248 while (left > 0) {
249 n = (left > 8192) ? 8192 : left;
250 rv = write(fd, bp, n);
251 if (rv < 0)
252 err(EXIT_FAILURE, "write failed");
253 if (rv != n)
254 errx(EXIT_FAILURE,
255 "write: wanted %d, got %d", n, rv);
256 bp += n;
257 left -= n;
258 }
259 } else {
260 int rv;
261 rv = write(fd, buf, size);
262 if (rv < 0)
263 err(EXIT_FAILURE, "write failed");
264 if (rv != size)
265 errx(EXIT_FAILURE,
266 "write: wanted %d, got %d", size, rv);
267 }
268 }
269 /*
270 * Never-fail versions of malloc() and realloc(), and an allocation
271 * routine (which also never fails) for allocating memory that will
272 * never be freed until exit.
273 */
274
275 /*
276 * Never-fail malloc.
277 */
278 static void *
279 nfmalloc(size_t nb, const char *tag)
280 {
281 void *rv;
282
283 rv = malloc(nb);
284 if (rv)
285 return (rv);
286 err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
287 (unsigned long int) nb, tag);
288 }
289 /*
290 * Never-fail realloc.
291 */
292 static void *
293 nfrealloc(void *blk, size_t nb, const char *tag)
294 {
295 void *rv;
296
297 rv = realloc(blk, nb);
298 if (rv)
299 return (rv);
300 err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
301 (unsigned long int) nb, tag);
302 }
303 /*
304 * Allocate memory that will never be freed or reallocated. Arguably
305 * this routine should handle small allocations by chopping up pages,
306 * but that's not worth the bother; it's not called more than a
307 * handful of times per run, and if the allocations are that small the
308 * waste in giving each one its own page is ignorable.
309 */
310 static void *
311 alloconce(size_t nb, const char *tag)
312 {
313 void *rv;
314
315 rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
316 if (rv != MAP_FAILED)
317 return (rv);
318 err(EXIT_FAILURE, "Can't map %lu bytes for %s",
319 (unsigned long int) nb, tag);
320 }
321 /*
322 * Load the cgs and csums off disk. Also allocates the space to load
323 * them into and initializes the per-cg flags.
324 */
325 static void
326 loadcgs(void)
327 {
328 int cg;
329 char *cgp;
330
331 cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
332 cgs = nfmalloc(oldsb->fs_ncg * sizeof(*cgs), "cg pointers");
333 cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
334 cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
335 csums = nfmalloc(oldsb->fs_cssize, "cg summary");
336 for (cg = 0; cg < oldsb->fs_ncg; cg++) {
337 cgs[cg] = (struct cg *) cgp;
338 readat(FFS_FSBTODB(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
339 if (needswap)
340 ffs_cg_swap(cgs[cg],cgs[cg],oldsb);
341 cgflags[cg] = 0;
342 cgp += cgblksz;
343 }
344 readat(FFS_FSBTODB(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
345 if (needswap)
346 ffs_csum_swap(csums,csums,oldsb->fs_cssize);
347 }
348 /*
349 * Set n bits, starting with bit #base, in the bitmap pointed to by
350 * bitvec (which is assumed to be large enough to include bits base
351 * through base+n-1).
352 */
353 static void
354 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
355 {
356 if (n < 1)
357 return; /* nothing to do */
358 if (base & 7) { /* partial byte at beginning */
359 if (n <= 8 - (base & 7)) { /* entirely within one byte */
360 bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
361 return;
362 }
363 bitvec[base >> 3] |= (~0U) << (base & 7);
364 n -= 8 - (base & 7);
365 base = (base & ~7) + 8;
366 }
367 if (n >= 8) { /* do full bytes */
368 memset(bitvec + (base >> 3), 0xff, n >> 3);
369 base += n & ~7;
370 n &= 7;
371 }
372 if (n) { /* partial byte at end */
373 bitvec[base >> 3] |= ~((~0U) << n);
374 }
375 }
376 /*
377 * Clear n bits, starting with bit #base, in the bitmap pointed to by
378 * bitvec (which is assumed to be large enough to include bits base
379 * through base+n-1). Code parallels set_bits().
380 */
381 static void
382 clr_bits(unsigned char *bitvec, int base, int n)
383 {
384 if (n < 1)
385 return;
386 if (base & 7) {
387 if (n <= 8 - (base & 7)) {
388 bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
389 return;
390 }
391 bitvec[base >> 3] &= ~((~0U) << (base & 7));
392 n -= 8 - (base & 7);
393 base = (base & ~7) + 8;
394 }
395 if (n >= 8) {
396 memset(bitvec + (base >> 3), 0, n >> 3);
397 base += n & ~7;
398 n &= 7;
399 }
400 if (n) {
401 bitvec[base >> 3] &= (~0U) << n;
402 }
403 }
404 /*
405 * Test whether bit #bit is set in the bitmap pointed to by bitvec.
406 */
407 static int
408 bit_is_set(unsigned char *bitvec, int bit)
409 {
410 return (bitvec[bit >> 3] & (1 << (bit & 7)));
411 }
412 /*
413 * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
414 */
415 static int
416 bit_is_clr(unsigned char *bitvec, int bit)
417 {
418 return (!bit_is_set(bitvec, bit));
419 }
420 /*
421 * Test whether a whole block of bits is set in a bitmap. This is
422 * designed for testing (aligned) disk blocks in a bit-per-frag
423 * bitmap; it has assumptions wired into it based on that, essentially
424 * that the entire block fits into a single byte. This returns true
425 * iff _all_ the bits are set; it is not just the complement of
426 * blk_is_clr on the same arguments (unless blkfrags==1).
427 */
428 static int
429 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
430 {
431 unsigned int mask;
432
433 mask = (~((~0U) << blkfrags)) << (blkbase & 7);
434 return ((bitvec[blkbase >> 3] & mask) == mask);
435 }
436 /*
437 * Test whether a whole block of bits is clear in a bitmap. See
438 * blk_is_set (above) for assumptions. This returns true iff _all_
439 * the bits are clear; it is not just the complement of blk_is_set on
440 * the same arguments (unless blkfrags==1).
441 */
442 static int
443 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
444 {
445 unsigned int mask;
446
447 mask = (~((~0U) << blkfrags)) << (blkbase & 7);
448 return ((bitvec[blkbase >> 3] & mask) == 0);
449 }
450 /*
451 * Initialize a new cg. Called when growing. Assumes memory has been
452 * allocated but not otherwise set up. This code sets the fields of
453 * the cg, initializes the bitmaps (and cluster summaries, if
454 * applicable), updates both per-cylinder summary info and the global
455 * summary info in newsb; it also writes out new inodes for the cg.
456 *
457 * This code knows it can never be called for cg 0, which makes it a
458 * bit simpler than it would otherwise be.
459 */
460 static void
461 initcg(int cgn)
462 {
463 struct cg *cg; /* The in-core cg, of course */
464 int64_t base; /* Disk address of cg base */
465 int64_t dlow; /* Size of pre-cg data area */
466 int64_t dhigh; /* Offset of post-inode data area, from base */
467 int64_t dmax; /* Offset of end of post-inode data area */
468 int i; /* Generic loop index */
469 int n; /* Generic count */
470 int start; /* start of cg maps */
471
472 cg = cgs[cgn];
473 /* Place the data areas */
474 base = cgbase(newsb, cgn);
475 dlow = cgsblock(newsb, cgn) - base;
476 dhigh = cgdmin(newsb, cgn) - base;
477 dmax = newsb->fs_size - base;
478 if (dmax > newsb->fs_fpg)
479 dmax = newsb->fs_fpg;
480 start = (unsigned char *)&cg->cg_space[0] - (unsigned char *) cg;
481 /*
482 * Clear out the cg - assumes all-0-bytes is the correct way
483 * to initialize fields we don't otherwise touch, which is
484 * perhaps not the right thing to do, but it's what fsck and
485 * mkfs do.
486 */
487 memset(cg, 0, newsb->fs_cgsize);
488 if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
489 cg->cg_time = newsb->fs_time;
490 cg->cg_magic = CG_MAGIC;
491 cg->cg_cgx = cgn;
492 cg->cg_niblk = newsb->fs_ipg;
493 cg->cg_ndblk = dmax;
494
495 if (is_ufs2) {
496 cg->cg_time = newsb->fs_time;
497 cg->cg_initediblk = newsb->fs_ipg < 2 * FFS_INOPB(newsb) ?
498 newsb->fs_ipg : 2 * FFS_INOPB(newsb);
499 cg->cg_iusedoff = start;
500 } else {
501 cg->cg_old_time = newsb->fs_time;
502 cg->cg_old_niblk = cg->cg_niblk;
503 cg->cg_niblk = 0;
504 cg->cg_initediblk = 0;
505
506
507 cg->cg_old_ncyl = newsb->fs_old_cpg;
508 /* Update the cg_old_ncyl value for the last cylinder. */
509 if (cgn == newsb->fs_ncg - 1) {
510 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
511 cg->cg_old_ncyl = newsb->fs_old_ncyl %
512 newsb->fs_old_cpg;
513 }
514
515 /* Set up the bitmap pointers. We have to be careful
516 * to lay out the cg _exactly_ the way mkfs and fsck
517 * do it, since fsck compares the _entire_ cg against
518 * a recomputed cg, and whines if there is any
519 * mismatch, including the bitmap offsets. */
520 /* XXX update this comment when fsck is fixed */
521 cg->cg_old_btotoff = start;
522 cg->cg_old_boff = cg->cg_old_btotoff
523 + (newsb->fs_old_cpg * sizeof(int32_t));
524 cg->cg_iusedoff = cg->cg_old_boff +
525 (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
526 }
527 cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
528 if (newsb->fs_contigsumsize > 0) {
529 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
530 cg->cg_clustersumoff = cg->cg_freeoff +
531 howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t);
532 cg->cg_clustersumoff =
533 roundup(cg->cg_clustersumoff, sizeof(int32_t));
534 cg->cg_clusteroff = cg->cg_clustersumoff +
535 ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
536 cg->cg_nextfreeoff = cg->cg_clusteroff +
537 howmany(ffs_fragstoblks(newsb,newsb->fs_fpg), NBBY);
538 n = dlow / newsb->fs_frag;
539 if (n > 0) {
540 set_bits(cg_clustersfree(cg, 0), 0, n);
541 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
542 newsb->fs_contigsumsize : n]++;
543 }
544 } else {
545 cg->cg_nextfreeoff = cg->cg_freeoff +
546 howmany(newsb->fs_fpg, NBBY);
547 }
548 /* Mark the data areas as free; everything else is marked busy by the
549 * memset() up at the top. */
550 set_bits(cg_blksfree(cg, 0), 0, dlow);
551 set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
552 /* Initialize summary info */
553 cg->cg_cs.cs_ndir = 0;
554 cg->cg_cs.cs_nifree = newsb->fs_ipg;
555 cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
556 cg->cg_cs.cs_nffree = 0;
557
558 /* This is the simplest way of doing this; we perhaps could
559 * compute the correct cg_blktot()[] and cg_blks()[] values
560 * other ways, but it would be complicated and hardly seems
561 * worth the effort. (The reason there isn't
562 * frag-at-beginning and frag-at-end code here, like the code
563 * below for the post-inode data area, is that the pre-sb data
564 * area always starts at 0, and thus is block-aligned, and
565 * always ends at the sb, which is block-aligned.) */
566 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
567 int64_t di;
568
569 for (di = 0; di < dlow; di += newsb->fs_frag) {
570 old_cg_blktot(cg, 0)[old_cbtocylno(newsb, di)]++;
571 old_cg_blks(newsb, cg,
572 old_cbtocylno(newsb, di),
573 0)[old_cbtorpos(newsb, di)]++;
574 }
575 }
576
577 /* Deal with a partial block at the beginning of the post-inode area.
578 * I'm not convinced this can happen - I think the inodes are always
579 * block-aligned and always an integral number of blocks - but it's
580 * cheap to do the right thing just in case. */
581 if (dhigh % newsb->fs_frag) {
582 n = newsb->fs_frag - (dhigh % newsb->fs_frag);
583 cg->cg_frsum[n]++;
584 cg->cg_cs.cs_nffree += n;
585 dhigh += n;
586 }
587 n = (dmax - dhigh) / newsb->fs_frag;
588 /* We have n full-size blocks in the post-inode data area. */
589 if (n > 0) {
590 cg->cg_cs.cs_nbfree += n;
591 if (newsb->fs_contigsumsize > 0) {
592 i = dhigh / newsb->fs_frag;
593 set_bits(cg_clustersfree(cg, 0), i, n);
594 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
595 newsb->fs_contigsumsize : n]++;
596 }
597 for (i = n; i > 0; i--) {
598 if (is_ufs2 == 0) {
599 old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
600 dhigh)]++;
601 old_cg_blks(newsb, cg,
602 old_cbtocylno(newsb, dhigh),
603 0)[old_cbtorpos(newsb,
604 dhigh)]++;
605 }
606 dhigh += newsb->fs_frag;
607 }
608 }
609 /* Deal with any leftover frag at the end of the cg. */
610 i = dmax - dhigh;
611 if (i) {
612 cg->cg_frsum[i]++;
613 cg->cg_cs.cs_nffree += i;
614 }
615 /* Update the csum info. */
616 csums[cgn] = cg->cg_cs;
617 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
618 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
619 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
620 if (is_ufs2 == 0)
621 /* Write out the cleared inodes. */
622 writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes,
623 newsb->fs_ipg * sizeof(*zinodes));
624 /* Dirty the cg. */
625 cgflags[cgn] |= CGF_DIRTY;
626 }
627 /*
628 * Find free space, at least nfrags consecutive frags of it. Pays no
629 * attention to block boundaries, but refuses to straddle cg
630 * boundaries, even if the disk blocks involved are in fact
631 * consecutive. Return value is the frag number of the first frag of
632 * the block, or -1 if no space was found. Uses newsb for sb values,
633 * and assumes the cgs[] structures correctly describe the area to be
634 * searched.
635 *
636 * XXX is there a bug lurking in the ignoring of block boundaries by
637 * the routine used by fragmove() in evict_data()? Can an end-of-file
638 * frag legally straddle a block boundary? If not, this should be
639 * cloned and fixed to stop at block boundaries for that use. The
640 * current one may still be needed for csum info motion, in case that
641 * takes up more than a whole block (is the csum info allowed to begin
642 * partway through a block and continue into the following block?).
643 *
644 * If we wrap off the end of the file system back to the beginning, we
645 * can end up searching the end of the file system twice. I ignore
646 * this inefficiency, since if that happens we're going to croak with
647 * a no-space error anyway, so it happens at most once.
648 */
649 static int
650 find_freespace(unsigned int nfrags)
651 {
652 static int hand = 0; /* hand rotates through all frags in the fs */
653 int cgsize; /* size of the cg hand currently points into */
654 int cgn; /* number of cg hand currently points into */
655 int fwc; /* frag-within-cg number of frag hand points
656 * to */
657 unsigned int run; /* length of run of free frags seen so far */
658 int secondpass; /* have we wrapped from end of fs to
659 * beginning? */
660 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
661
662 cgn = dtog(newsb, hand);
663 fwc = dtogd(newsb, hand);
664 secondpass = (hand == 0);
665 run = 0;
666 bits = cg_blksfree(cgs[cgn], 0);
667 cgsize = cgs[cgn]->cg_ndblk;
668 while (1) {
669 if (bit_is_set(bits, fwc)) {
670 run++;
671 if (run >= nfrags)
672 return (hand + 1 - run);
673 } else {
674 run = 0;
675 }
676 hand++;
677 fwc++;
678 if (fwc >= cgsize) {
679 fwc = 0;
680 cgn++;
681 if (cgn >= newsb->fs_ncg) {
682 hand = 0;
683 if (secondpass)
684 return (-1);
685 secondpass = 1;
686 cgn = 0;
687 }
688 bits = cg_blksfree(cgs[cgn], 0);
689 cgsize = cgs[cgn]->cg_ndblk;
690 run = 0;
691 }
692 }
693 }
694 /*
695 * Find a free block of disk space. Finds an entire block of frags,
696 * all of which are free. Return value is the frag number of the
697 * first frag of the block, or -1 if no space was found. Uses newsb
698 * for sb values, and assumes the cgs[] structures correctly describe
699 * the area to be searched.
700 *
701 * See find_freespace(), above, for remarks about hand wrapping around.
702 */
703 static int
704 find_freeblock(void)
705 {
706 static int hand = 0; /* hand rotates through all frags in fs */
707 int cgn; /* cg number of cg hand points into */
708 int fwc; /* frag-within-cg number of frag hand points
709 * to */
710 int cgsize; /* size of cg hand points into */
711 int secondpass; /* have we wrapped from end to beginning? */
712 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
713
714 cgn = dtog(newsb, hand);
715 fwc = dtogd(newsb, hand);
716 secondpass = (hand == 0);
717 bits = cg_blksfree(cgs[cgn], 0);
718 cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
719 while (1) {
720 if (blk_is_set(bits, fwc, newsb->fs_frag))
721 return (hand);
722 fwc += newsb->fs_frag;
723 hand += newsb->fs_frag;
724 if (fwc >= cgsize) {
725 fwc = 0;
726 cgn++;
727 if (cgn >= newsb->fs_ncg) {
728 hand = 0;
729 if (secondpass)
730 return (-1);
731 secondpass = 1;
732 cgn = 0;
733 }
734 bits = cg_blksfree(cgs[cgn], 0);
735 cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
736 }
737 }
738 }
739 /*
740 * Find a free inode, returning its inumber or -1 if none was found.
741 * Uses newsb for sb values, and assumes the cgs[] structures
742 * correctly describe the area to be searched.
743 *
744 * See find_freespace(), above, for remarks about hand wrapping around.
745 */
746 static int
747 find_freeinode(void)
748 {
749 static int hand = 0; /* hand rotates through all inodes in fs */
750 int cgn; /* cg number of cg hand points into */
751 int iwc; /* inode-within-cg number of inode hand points
752 * to */
753 int secondpass; /* have we wrapped from end to beginning? */
754 unsigned char *bits; /* cg_inosused()[] for cg hand points into */
755
756 cgn = hand / newsb->fs_ipg;
757 iwc = hand % newsb->fs_ipg;
758 secondpass = (hand == 0);
759 bits = cg_inosused(cgs[cgn], 0);
760 while (1) {
761 if (bit_is_clr(bits, iwc))
762 return (hand);
763 hand++;
764 iwc++;
765 if (iwc >= newsb->fs_ipg) {
766 iwc = 0;
767 cgn++;
768 if (cgn >= newsb->fs_ncg) {
769 hand = 0;
770 if (secondpass)
771 return (-1);
772 secondpass = 1;
773 cgn = 0;
774 }
775 bits = cg_inosused(cgs[cgn], 0);
776 }
777 }
778 }
779 /*
780 * Mark a frag as free. Sets the frag's bit in the cg_blksfree bitmap
781 * for the appropriate cg, and marks the cg as dirty.
782 */
783 static void
784 free_frag(int fno)
785 {
786 int cgn;
787
788 cgn = dtog(newsb, fno);
789 set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
790 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
791 }
792 /*
793 * Allocate a frag. Clears the frag's bit in the cg_blksfree bitmap
794 * for the appropriate cg, and marks the cg as dirty.
795 */
796 static void
797 alloc_frag(int fno)
798 {
799 int cgn;
800
801 cgn = dtog(newsb, fno);
802 clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
803 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
804 }
805 /*
806 * Fix up the csum array. If shrinking, this involves freeing zero or
807 * more frags; if growing, it involves allocating them, or if the
808 * frags being grown into aren't free, finding space elsewhere for the
809 * csum info. (If the number of occupied frags doesn't change,
810 * nothing happens here.)
811 */
812 static void
813 csum_fixup(void)
814 {
815 int nold; /* # frags in old csum info */
816 int ntot; /* # frags in new csum info */
817 int nnew; /* ntot-nold */
818 int newloc; /* new location for csum info, if necessary */
819 int i; /* generic loop index */
820 int j; /* generic loop index */
821 int f; /* "from" frag number, if moving */
822 int t; /* "to" frag number, if moving */
823 int cgn; /* cg number, used when shrinking */
824
825 ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
826 nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
827 nnew = ntot - nold;
828 /* First, if there's no change in frag counts, it's easy. */
829 if (nnew == 0)
830 return;
831 /* Next, if we're shrinking, it's almost as easy. Just free up any
832 * frags in the old area we no longer need. */
833 if (nnew < 0) {
834 for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
835 j < 0;
836 i--, j++) {
837 free_frag(i);
838 }
839 return;
840 }
841 /* We must be growing. Check to see that the new csum area fits
842 * within the file system. I think this can never happen, since for
843 * the csum area to grow, we must be adding at least one cg, so the
844 * old csum area can't be this close to the end of the new file system.
845 * But it's a cheap check. */
846 /* XXX what if csum info is at end of cg and grows into next cg, what
847 * if it spills over onto the next cg's backup superblock? Can this
848 * happen? */
849 if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
850 /* Okay, it fits - now, see if the space we want is free. */
851 for ((i = newsb->fs_csaddr + nold), (j = nnew);
852 j > 0;
853 i++, j--) {
854 cgn = dtog(newsb, i);
855 if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
856 dtogd(newsb, i)))
857 break;
858 }
859 if (j <= 0) {
860 /* Win win - all the frags we want are free. Allocate
861 * 'em and we're all done. */
862 for ((i = newsb->fs_csaddr + ntot - nnew),
863 (j = nnew); j > 0; i++, j--) {
864 alloc_frag(i);
865 }
866 return;
867 }
868 }
869 /* We have to move the csum info, sigh. Look for new space, free old
870 * space, and allocate new. Update fs_csaddr. We don't copy anything
871 * on disk at this point; the csum info will be written to the
872 * then-current fs_csaddr as part of the final flush. */
873 newloc = find_freespace(ntot);
874 if (newloc < 0)
875 errx(EXIT_FAILURE, "Sorry, no space available for new csums");
876 for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
877 if (i < nold) {
878 free_frag(f);
879 }
880 alloc_frag(t);
881 }
882 newsb->fs_csaddr = newloc;
883 }
884 /*
885 * Recompute newsb->fs_dsize. Just scans all cgs, adding the number of
886 * data blocks in that cg to the total.
887 */
888 static void
889 recompute_fs_dsize(void)
890 {
891 int i;
892
893 newsb->fs_dsize = 0;
894 for (i = 0; i < newsb->fs_ncg; i++) {
895 int64_t dlow; /* size of before-sb data area */
896 int64_t dhigh; /* offset of post-inode data area */
897 int64_t dmax; /* total size of cg */
898 int64_t base; /* base of cg, since cgsblock() etc add it in */
899 base = cgbase(newsb, i);
900 dlow = cgsblock(newsb, i) - base;
901 dhigh = cgdmin(newsb, i) - base;
902 dmax = newsb->fs_size - base;
903 if (dmax > newsb->fs_fpg)
904 dmax = newsb->fs_fpg;
905 newsb->fs_dsize += dlow + dmax - dhigh;
906 }
907 /* Space in cg 0 before cgsblock is boot area, not free space! */
908 newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
909 /* And of course the csum info takes up space. */
910 newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
911 }
912 /*
913 * Return the current time. We call this and assign, rather than
914 * calling time() directly, as insulation against OSes where fs_time
915 * is not a time_t.
916 */
917 static time_t
918 timestamp(void)
919 {
920 time_t t;
921
922 time(&t);
923 return (t);
924 }
925
926 /*
927 * Calculate new filesystem geometry
928 * return 0 if geometry actually changed
929 */
930 static int
931 makegeometry(int chatter)
932 {
933
934 /* Update the size. */
935 newsb->fs_size = FFS_DBTOFSB(newsb, newsize);
936 if (is_ufs2)
937 newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
938 else {
939 /* Update fs_old_ncyl and fs_ncg. */
940 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
941 newsb->fs_old_spc);
942 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
943 }
944
945 /* Does the last cg end before the end of its inode area? There is no
946 * reason why this couldn't be handled, but it would complicate a lot
947 * of code (in all file system code - fsck, kernel, etc) because of the
948 * potential partial inode area, and the gain in space would be
949 * minimal, at most the pre-sb data area. */
950 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
951 newsb->fs_ncg--;
952 if (is_ufs2)
953 newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg;
954 else {
955 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
956 newsb->fs_size = (newsb->fs_old_ncyl *
957 newsb->fs_old_spc) / NSPF(newsb);
958 }
959 if (chatter || verbose) {
960 printf("Warning: last cylinder group is too small;\n");
961 printf(" dropping it. New size = %lu.\n",
962 (unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size));
963 }
964 }
965
966 /* Did we actually not grow? (This can happen if newsize is less than
967 * a frag larger than the old size - unlikely, but no excuse to
968 * misbehave if it happens.) */
969 if (newsb->fs_size == oldsb->fs_size)
970 return 1;
971
972 return 0;
973 }
974
975
976 /*
977 * Grow the file system.
978 */
979 static void
980 grow(void)
981 {
982 int i;
983
984 if (makegeometry(1)) {
985 printf("New fs size %"PRIu64" = old fs size %"PRIu64
986 ", not growing.\n", newsb->fs_size, oldsb->fs_size);
987 return;
988 }
989
990 if (verbose) {
991 printf("Growing fs from %"PRIu64" blocks to %"PRIu64
992 " blocks.\n", oldsb->fs_size, newsb->fs_size);
993 }
994
995 /* Update the timestamp. */
996 newsb->fs_time = timestamp();
997 /* Allocate and clear the new-inode area, in case we add any cgs. */
998 zinodes = alloconce(newsb->fs_ipg * sizeof(*zinodes), "zeroed inodes");
999 memset(zinodes, 0, newsb->fs_ipg * sizeof(*zinodes));
1000
1001 /* Check that the new last sector (frag, actually) is writable. Since
1002 * it's at least one frag larger than it used to be, we know we aren't
1003 * overwriting anything important by this. (The choice of sbbuf as
1004 * what to write is irrelevant; it's just something handy that's known
1005 * to be at least one frag in size.) */
1006 writeat(FFS_FSBTODB(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
1007
1008 /* Find out how big the csum area is, and realloc csums if bigger. */
1009 newsb->fs_cssize = ffs_fragroundup(newsb,
1010 newsb->fs_ncg * sizeof(struct csum));
1011 if (newsb->fs_cssize > oldsb->fs_cssize)
1012 csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
1013 /* If we're adding any cgs, realloc structures and set up the new
1014 cgs. */
1015 if (newsb->fs_ncg > oldsb->fs_ncg) {
1016 char *cgp;
1017 cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(*cgs),
1018 "cg pointers");
1019 cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
1020 memset(cgflags + oldsb->fs_ncg, 0,
1021 newsb->fs_ncg - oldsb->fs_ncg);
1022 cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
1023 "cgs");
1024 for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
1025 cgs[i] = (struct cg *) cgp;
1026 progress_bar(special, "grow cg",
1027 i - oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
1028 initcg(i);
1029 cgp += cgblksz;
1030 }
1031 cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
1032 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
1033 }
1034 /* If the old fs ended partway through a cg, we have to update the old
1035 * last cg (though possibly not to a full cg!). */
1036 if (oldsb->fs_size % oldsb->fs_fpg) {
1037 struct cg *cg;
1038 int64_t newcgsize;
1039 int64_t prevcgtop;
1040 int64_t oldcgsize;
1041 cg = cgs[oldsb->fs_ncg - 1];
1042 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
1043 prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
1044 newcgsize = newsb->fs_size - prevcgtop;
1045 if (newcgsize > newsb->fs_fpg)
1046 newcgsize = newsb->fs_fpg;
1047 oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
1048 set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
1049 cg->cg_old_ncyl = oldsb->fs_old_cpg;
1050 cg->cg_ndblk = newcgsize;
1051 }
1052 /* Fix up the csum info, if necessary. */
1053 csum_fixup();
1054 /* Make fs_dsize match the new reality. */
1055 recompute_fs_dsize();
1056
1057 progress_done();
1058 }
1059 /*
1060 * Call (*fn)() for each inode, passing the inode and its inumber. The
1061 * number of cylinder groups is pased in, so this can be used to map
1062 * over either the old or the new file system's set of inodes.
1063 */
1064 static void
1065 map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg),
1066 int ncg, void *cbarg) {
1067 int i;
1068 int ni;
1069
1070 ni = oldsb->fs_ipg * ncg;
1071 for (i = 0; i < ni; i++)
1072 (*fn) (inodes + i, i, cbarg);
1073 }
1074 /* Values for the third argument to the map function for
1075 * map_inode_data_blocks. MDB_DATA indicates the block is contains
1076 * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
1077 * indirect block. The MDB_INDIR_PRE call is made before the indirect
1078 * block pointers are followed and the pointed-to blocks scanned,
1079 * MDB_INDIR_POST after.
1080 */
1081 #define MDB_DATA 1
1082 #define MDB_INDIR_PRE 2
1083 #define MDB_INDIR_POST 3
1084
1085 typedef void (*mark_callback_t) (off_t blocknum, unsigned int nfrags,
1086 unsigned int blksize, int opcode);
1087
1088 /* Helper function - handles a data block. Calls the callback
1089 * function and returns number of bytes occupied in file (actually,
1090 * rounded up to a frag boundary). The name is historical. */
1091 static int
1092 markblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o)
1093 {
1094 int sz;
1095 int nb;
1096 off_t filesize;
1097
1098 filesize = DIP(di,di_size);
1099 if (o >= filesize)
1100 return (0);
1101 sz = dblksize(newsb, di, ffs_lblkno(newsb, o), filesize);
1102 nb = (sz > filesize - o) ? filesize - o : sz;
1103 if (bn)
1104 (*fn) (bn, ffs_numfrags(newsb, sz), nb, MDB_DATA);
1105 return (sz);
1106 }
1107 /* Helper function - handles an indirect block. Makes the
1108 * MDB_INDIR_PRE callback for the indirect block, loops over the
1109 * pointers and recurses, and makes the MDB_INDIR_POST callback.
1110 * Returns the number of bytes occupied in file, as does markblk().
1111 * For the sake of update_for_data_move(), we read the indirect block
1112 * _after_ making the _PRE callback. The name is historical. */
1113 static off_t
1114 markiblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o, int lev)
1115 {
1116 int i;
1117 unsigned k;
1118 off_t j, tot;
1119 static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
1120 static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
1121 static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
1122 static int32_t *indirblks[3] = {
1123 &indirblk1[0], &indirblk2[0], &indirblk3[0]
1124 };
1125
1126 if (lev < 0)
1127 return (markblk(fn, di, bn, o));
1128 if (bn == 0) {
1129 for (j = newsb->fs_bsize;
1130 lev >= 0;
1131 j *= FFS_NINDIR(newsb), lev--);
1132 return (j);
1133 }
1134 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
1135 readat(FFS_FSBTODB(newsb, bn), indirblks[lev], newsb->fs_bsize);
1136 if (needswap)
1137 for (k = 0; k < howmany(MAXBSIZE, sizeof(int32_t)); k++)
1138 indirblks[lev][k] = bswap32(indirblks[lev][k]);
1139 tot = 0;
1140 for (i = 0; i < FFS_NINDIR(newsb); i++) {
1141 j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
1142 if (j == 0)
1143 break;
1144 o += j;
1145 tot += j;
1146 }
1147 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
1148 return (tot);
1149 }
1150
1151
1152 /*
1153 * Call (*fn)() for each data block for an inode. This routine assumes
1154 * the inode is known to be of a type that has data blocks (file,
1155 * directory, or non-fast symlink). The called function is:
1156 *
1157 * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
1158 *
1159 * where blkno is the frag number, nf is the number of frags starting
1160 * at blkno (always <= fs_frag), nb is the number of bytes that belong
1161 * to the file (usually nf*fs_frag, often less for the last block/frag
1162 * of a file).
1163 */
1164 static void
1165 map_inode_data_blocks(union dinode * di, mark_callback_t fn)
1166 {
1167 off_t o; /* offset within inode */
1168 off_t inc; /* increment for o */
1169 int b; /* index within di_db[] and di_ib[] arrays */
1170
1171 /* Scan the direct blocks... */
1172 o = 0;
1173 for (b = 0; b < UFS_NDADDR; b++) {
1174 inc = markblk(fn, di, DIP(di,di_db[b]), o);
1175 if (inc == 0)
1176 break;
1177 o += inc;
1178 }
1179 /* ...and the indirect blocks. */
1180 if (inc) {
1181 for (b = 0; b < UFS_NIADDR; b++) {
1182 inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b);
1183 if (inc == 0)
1184 return;
1185 o += inc;
1186 }
1187 }
1188 }
1189
1190 static void
1191 dblk_callback(union dinode * di, unsigned int inum, void *arg)
1192 {
1193 mark_callback_t fn;
1194 off_t filesize;
1195
1196 filesize = DIP(di,di_size);
1197 fn = (mark_callback_t) arg;
1198 switch (DIP(di,di_mode) & IFMT) {
1199 case IFLNK:
1200 if (filesize <= newsb->fs_maxsymlinklen) {
1201 break;
1202 }
1203 /* FALLTHROUGH */
1204 case IFDIR:
1205 case IFREG:
1206 map_inode_data_blocks(di, fn);
1207 break;
1208 }
1209 }
1210 /*
1211 * Make a callback call, a la map_inode_data_blocks, for all data
1212 * blocks in the entire fs. This is used only once, in
1213 * update_for_data_move, but it's out at top level because the complex
1214 * downward-funarg nesting that would otherwise result seems to give
1215 * gcc gastric distress.
1216 */
1217 static void
1218 map_data_blocks(mark_callback_t fn, int ncg)
1219 {
1220 map_inodes(&dblk_callback, ncg, (void *) fn);
1221 }
1222 /*
1223 * Initialize the blkmove array.
1224 */
1225 static void
1226 blkmove_init(void)
1227 {
1228 int i;
1229
1230 blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
1231 for (i = 0; i < oldsb->fs_size; i++)
1232 blkmove[i] = i;
1233 }
1234 /*
1235 * Load the inodes off disk. Allocates the structures and initializes
1236 * them - the inodes from disk, the flags to zero.
1237 */
1238 static void
1239 loadinodes(void)
1240 {
1241 int imax, ino, i, j;
1242 struct ufs1_dinode *dp1 = NULL;
1243 struct ufs2_dinode *dp2 = NULL;
1244
1245 /* read inodes one fs block at a time and copy them */
1246
1247 inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
1248 sizeof(union dinode), "inodes");
1249 iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
1250 memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg);
1251
1252 ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf");
1253 if (is_ufs2)
1254 dp2 = (struct ufs2_dinode *)ibuf;
1255 else
1256 dp1 = (struct ufs1_dinode *)ibuf;
1257
1258 for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) {
1259 readat(FFS_FSBTODB(oldsb, ino_to_fsba(oldsb, ino)), ibuf,
1260 oldsb->fs_bsize);
1261
1262 for (i = 0; i < oldsb->fs_inopb; i++) {
1263 if (is_ufs2) {
1264 if (needswap) {
1265 ffs_dinode2_swap(&(dp2[i]), &(dp2[i]));
1266 for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++)
1267 dp2[i].di_db[j] =
1268 bswap32(dp2[i].di_db[j]);
1269 }
1270 memcpy(&inodes[ino].dp2, &dp2[i],
1271 sizeof(inodes[ino].dp2));
1272 } else {
1273 if (needswap) {
1274 ffs_dinode1_swap(&(dp1[i]), &(dp1[i]));
1275 for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++)
1276 dp1[i].di_db[j] =
1277 bswap32(dp1[i].di_db[j]);
1278 }
1279 memcpy(&inodes[ino].dp1, &dp1[i],
1280 sizeof(inodes[ino].dp1));
1281 }
1282 if (++ino > imax)
1283 errx(EXIT_FAILURE,
1284 "Exceeded number of inodes");
1285 }
1286
1287 }
1288 }
1289 /*
1290 * Report a file-system-too-full problem.
1291 */
1292 __dead static void
1293 toofull(void)
1294 {
1295 errx(EXIT_FAILURE, "Sorry, would run out of data blocks");
1296 }
1297 /*
1298 * Record a desire to move "n" frags from "from" to "to".
1299 */
1300 static void
1301 mark_move(unsigned int from, unsigned int to, unsigned int n)
1302 {
1303 for (; n > 0; n--)
1304 blkmove[from++] = to++;
1305 }
1306 /* Helper function - evict n frags, starting with start (cg-relative).
1307 * The free bitmap is scanned, unallocated frags are ignored, and
1308 * each block of consecutive allocated frags is moved as a unit.
1309 */
1310 static void
1311 fragmove(struct cg * cg, int64_t base, unsigned int start, unsigned int n)
1312 {
1313 unsigned int i;
1314 int run;
1315
1316 run = 0;
1317 for (i = 0; i <= n; i++) {
1318 if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
1319 run++;
1320 } else {
1321 if (run > 0) {
1322 int off;
1323 off = find_freespace(run);
1324 if (off < 0)
1325 toofull();
1326 mark_move(base + start + i - run, off, run);
1327 set_bits(cg_blksfree(cg, 0), start + i - run,
1328 run);
1329 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1330 dtogd(oldsb, off), run);
1331 }
1332 run = 0;
1333 }
1334 }
1335 }
1336 /*
1337 * Evict all data blocks from the given cg, starting at minfrag (based
1338 * at the beginning of the cg), for length nfrag. The eviction is
1339 * assumed to be entirely data-area; this should not be called with a
1340 * range overlapping the metadata structures in the cg. It also
1341 * assumes minfrag points into the given cg; it will misbehave if this
1342 * is not true.
1343 *
1344 * See the comment header on find_freespace() for one possible bug
1345 * lurking here.
1346 */
1347 static void
1348 evict_data(struct cg * cg, unsigned int minfrag, int nfrag)
1349 {
1350 int64_t base; /* base of cg (in frags from beginning of fs) */
1351
1352 base = cgbase(oldsb, cg->cg_cgx);
1353 /* Does the boundary fall in the middle of a block? To avoid
1354 * breaking between frags allocated as consecutive, we always
1355 * evict the whole block in this case, though one could argue
1356 * we should check to see if the frag before or after the
1357 * break is unallocated. */
1358 if (minfrag % oldsb->fs_frag) {
1359 int n;
1360 n = minfrag % oldsb->fs_frag;
1361 minfrag -= n;
1362 nfrag += n;
1363 }
1364 /* Do whole blocks. If a block is wholly free, skip it; if
1365 * wholly allocated, move it in toto. If neither, call
1366 * fragmove() to move the frags to new locations. */
1367 while (nfrag >= oldsb->fs_frag) {
1368 if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
1369 if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
1370 oldsb->fs_frag)) {
1371 int off;
1372 off = find_freeblock();
1373 if (off < 0)
1374 toofull();
1375 mark_move(base + minfrag, off, oldsb->fs_frag);
1376 set_bits(cg_blksfree(cg, 0), minfrag,
1377 oldsb->fs_frag);
1378 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1379 dtogd(oldsb, off), oldsb->fs_frag);
1380 } else {
1381 fragmove(cg, base, minfrag, oldsb->fs_frag);
1382 }
1383 }
1384 minfrag += oldsb->fs_frag;
1385 nfrag -= oldsb->fs_frag;
1386 }
1387 /* Clean up any sub-block amount left over. */
1388 if (nfrag) {
1389 fragmove(cg, base, minfrag, nfrag);
1390 }
1391 }
1392 /*
1393 * Move all data blocks according to blkmove. We have to be careful,
1394 * because we may be updating indirect blocks that will themselves be
1395 * getting moved, or inode int32_t arrays that point to indirect
1396 * blocks that will be moved. We call this before
1397 * update_for_data_move, and update_for_data_move does inodes first,
1398 * then indirect blocks in preorder, so as to make sure that the
1399 * file system is self-consistent at all points, for better crash
1400 * tolerance. (We can get away with this only because all the writes
1401 * done by perform_data_move() are writing into space that's not used
1402 * by the old file system.) If we crash, some things may point to the
1403 * old data and some to the new, but both copies are the same. The
1404 * only wrong things should be csum info and free bitmaps, which fsck
1405 * is entirely capable of cleaning up.
1406 *
1407 * Since blkmove_init() initializes all blocks to move to their current
1408 * locations, we can have two blocks marked as wanting to move to the
1409 * same location, but only two and only when one of them is the one
1410 * that was already there. So if blkmove[i]==i, we ignore that entry
1411 * entirely - for unallocated blocks, we don't want it (and may be
1412 * putting something else there), and for allocated blocks, we don't
1413 * want to copy it anywhere.
1414 */
1415 static void
1416 perform_data_move(void)
1417 {
1418 int i;
1419 int run;
1420 int maxrun;
1421 char buf[65536];
1422
1423 maxrun = sizeof(buf) / newsb->fs_fsize;
1424 run = 0;
1425 for (i = 0; i < oldsb->fs_size; i++) {
1426 if ((blkmove[i] == (unsigned)i /*XXX cast*/) ||
1427 (run >= maxrun) ||
1428 ((run > 0) &&
1429 (blkmove[i] != blkmove[i - 1] + 1))) {
1430 if (run > 0) {
1431 readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
1432 run << oldsb->fs_fshift);
1433 writeat(FFS_FSBTODB(oldsb, blkmove[i - run]),
1434 &buf[0], run << oldsb->fs_fshift);
1435 }
1436 run = 0;
1437 }
1438 if (blkmove[i] != (unsigned)i /*XXX cast*/)
1439 run++;
1440 }
1441 if (run > 0) {
1442 readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
1443 run << oldsb->fs_fshift);
1444 writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), &buf[0],
1445 run << oldsb->fs_fshift);
1446 }
1447 }
1448 /*
1449 * This modifies an array of int32_t, according to blkmove. This is
1450 * used to update inode block arrays and indirect blocks to point to
1451 * the new locations of data blocks.
1452 *
1453 * Return value is the number of int32_ts that needed updating; in
1454 * particular, the return value is zero iff nothing was modified.
1455 */
1456 static int
1457 movemap_blocks(int32_t * vec, int n)
1458 {
1459 int rv;
1460
1461 rv = 0;
1462 for (; n > 0; n--, vec++) {
1463 if (blkmove[*vec] != (unsigned)*vec /*XXX cast*/) {
1464 *vec = blkmove[*vec];
1465 rv++;
1466 }
1467 }
1468 return (rv);
1469 }
1470 static void
1471 moveblocks_callback(union dinode * di, unsigned int inum, void *arg)
1472 {
1473 int32_t *dblkptr, *iblkptr;
1474
1475 switch (DIP(di,di_mode) & IFMT) {
1476 case IFLNK:
1477 if ((off_t)DIP(di,di_size) <= oldsb->fs_maxsymlinklen) {
1478 break;
1479 }
1480 /* FALLTHROUGH */
1481 case IFDIR:
1482 case IFREG:
1483 if (is_ufs2) {
1484 /* XXX these are not int32_t and this is WRONG! */
1485 dblkptr = (void *) &(di->dp2.di_db[0]);
1486 iblkptr = (void *) &(di->dp2.di_ib[0]);
1487 } else {
1488 dblkptr = &(di->dp1.di_db[0]);
1489 iblkptr = &(di->dp1.di_ib[0]);
1490 }
1491 /*
1492 * Don't || these two calls; we need their
1493 * side-effects.
1494 */
1495 if (movemap_blocks(dblkptr, UFS_NDADDR)) {
1496 iflags[inum] |= IF_DIRTY;
1497 }
1498 if (movemap_blocks(iblkptr, UFS_NIADDR)) {
1499 iflags[inum] |= IF_DIRTY;
1500 }
1501 break;
1502 }
1503 }
1504
1505 static void
1506 moveindir_callback(off_t off, unsigned int nfrag, unsigned int nbytes,
1507 int kind)
1508 {
1509 unsigned int i;
1510
1511 if (kind == MDB_INDIR_PRE) {
1512 int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
1513 readat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
1514 if (needswap)
1515 for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
1516 blk[i] = bswap32(blk[i]);
1517 if (movemap_blocks(&blk[0], FFS_NINDIR(oldsb))) {
1518 if (needswap)
1519 for (i = 0; i < howmany(MAXBSIZE,
1520 sizeof(int32_t)); i++)
1521 blk[i] = bswap32(blk[i]);
1522 writeat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
1523 }
1524 }
1525 }
1526 /*
1527 * Update all inode data arrays and indirect blocks to point to the new
1528 * locations of data blocks. See the comment header on
1529 * perform_data_move for some ordering considerations.
1530 */
1531 static void
1532 update_for_data_move(void)
1533 {
1534 map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
1535 map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
1536 }
1537 /*
1538 * Initialize the inomove array.
1539 */
1540 static void
1541 inomove_init(void)
1542 {
1543 int i;
1544
1545 inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
1546 "inomove");
1547 for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
1548 inomove[i] = i;
1549 }
1550 /*
1551 * Flush all dirtied inodes to disk. Scans the inode flags array; for
1552 * each dirty inode, it sets the BDIRTY bit on the first inode in the
1553 * block containing the dirty inode. Then it scans by blocks, and for
1554 * each marked block, writes it.
1555 */
1556 static void
1557 flush_inodes(void)
1558 {
1559 int i, j, k, na, ni, m;
1560 struct ufs1_dinode *dp1 = NULL;
1561 struct ufs2_dinode *dp2 = NULL;
1562
1563 na = UFS_NDADDR + UFS_NIADDR;
1564 ni = newsb->fs_ipg * newsb->fs_ncg;
1565 m = FFS_INOPB(newsb) - 1;
1566 for (i = 0; i < ni; i++) {
1567 if (iflags[i] & IF_DIRTY) {
1568 iflags[i & ~m] |= IF_BDIRTY;
1569 }
1570 }
1571 m++;
1572
1573 if (is_ufs2)
1574 dp2 = (struct ufs2_dinode *)ibuf;
1575 else
1576 dp1 = (struct ufs1_dinode *)ibuf;
1577
1578 for (i = 0; i < ni; i += m) {
1579 if (iflags[i] & IF_BDIRTY) {
1580 if (is_ufs2)
1581 for (j = 0; j < m; j++) {
1582 dp2[j] = inodes[i + j].dp2;
1583 if (needswap) {
1584 for (k = 0; k < na; k++)
1585 dp2[j].di_db[k]=
1586 bswap32(dp2[j].di_db[k]);
1587 ffs_dinode2_swap(&dp2[j],
1588 &dp2[j]);
1589 }
1590 }
1591 else
1592 for (j = 0; j < m; j++) {
1593 dp1[j] = inodes[i + j].dp1;
1594 if (needswap) {
1595 for (k = 0; k < na; k++)
1596 dp1[j].di_db[k]=
1597 bswap32(dp1[j].di_db[k]);
1598 ffs_dinode1_swap(&dp1[j],
1599 &dp1[j]);
1600 }
1601 }
1602
1603 writeat(FFS_FSBTODB(newsb, ino_to_fsba(newsb, i)),
1604 ibuf, newsb->fs_bsize);
1605 }
1606 }
1607 }
1608 /*
1609 * Evict all inodes from the specified cg. shrink() already checked
1610 * that there were enough free inodes, so the no-free-inodes check is
1611 * a can't-happen. If it does trip, the file system should be in good
1612 * enough shape for fsck to fix; see the comment on perform_data_move
1613 * for the considerations in question.
1614 */
1615 static void
1616 evict_inodes(struct cg * cg)
1617 {
1618 int inum;
1619 int i;
1620 int fi;
1621
1622 inum = newsb->fs_ipg * cg->cg_cgx;
1623 for (i = 0; i < newsb->fs_ipg; i++, inum++) {
1624 if (DIP(inodes + inum,di_mode) != 0) {
1625 fi = find_freeinode();
1626 if (fi < 0)
1627 errx(EXIT_FAILURE, "Sorry, inodes evaporated - "
1628 "file system probably needs fsck");
1629 inomove[inum] = fi;
1630 clr_bits(cg_inosused(cg, 0), i, 1);
1631 set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
1632 fi % newsb->fs_ipg, 1);
1633 }
1634 }
1635 }
1636 /*
1637 * Move inodes from old locations to new. Does not actually write
1638 * anything to disk; just copies in-core and sets dirty bits.
1639 *
1640 * We have to be careful here for reasons similar to those mentioned in
1641 * the comment header on perform_data_move, above: for the sake of
1642 * crash tolerance, we want to make sure everything is present at both
1643 * old and new locations before we update pointers. So we call this
1644 * first, then flush_inodes() to get them out on disk, then update
1645 * directories to match.
1646 */
1647 static void
1648 perform_inode_move(void)
1649 {
1650 unsigned int i;
1651 unsigned int ni;
1652
1653 ni = oldsb->fs_ipg * oldsb->fs_ncg;
1654 for (i = 0; i < ni; i++) {
1655 if (inomove[i] != i) {
1656 inodes[inomove[i]] = inodes[i];
1657 iflags[inomove[i]] = iflags[i] | IF_DIRTY;
1658 }
1659 }
1660 }
1661 /*
1662 * Update the directory contained in the nb bytes at buf, to point to
1663 * inodes' new locations.
1664 */
1665 static int
1666 update_dirents(char *buf, int nb)
1667 {
1668 int rv;
1669 #define d ((struct direct *)buf)
1670 #define s32(x) (needswap?bswap32((x)):(x))
1671 #define s16(x) (needswap?bswap16((x)):(x))
1672
1673 rv = 0;
1674 while (nb > 0) {
1675 if (inomove[s32(d->d_ino)] != s32(d->d_ino)) {
1676 rv++;
1677 d->d_ino = s32(inomove[s32(d->d_ino)]);
1678 }
1679 nb -= s16(d->d_reclen);
1680 buf += s16(d->d_reclen);
1681 }
1682 return (rv);
1683 #undef d
1684 #undef s32
1685 #undef s16
1686 }
1687 /*
1688 * Callback function for map_inode_data_blocks, for updating a
1689 * directory to point to new inode locations.
1690 */
1691 static void
1692 update_dir_data(off_t bn, unsigned int size, unsigned int nb, int kind)
1693 {
1694 if (kind == MDB_DATA) {
1695 union {
1696 struct direct d;
1697 char ch[MAXBSIZE];
1698 } buf;
1699 readat(FFS_FSBTODB(oldsb, bn), &buf, size << oldsb->fs_fshift);
1700 if (update_dirents((char *) &buf, nb)) {
1701 writeat(FFS_FSBTODB(oldsb, bn), &buf,
1702 size << oldsb->fs_fshift);
1703 }
1704 }
1705 }
1706 static void
1707 dirmove_callback(union dinode * di, unsigned int inum, void *arg)
1708 {
1709 switch (DIP(di,di_mode) & IFMT) {
1710 case IFDIR:
1711 map_inode_data_blocks(di, &update_dir_data);
1712 break;
1713 }
1714 }
1715 /*
1716 * Update directory entries to point to new inode locations.
1717 */
1718 static void
1719 update_for_inode_move(void)
1720 {
1721 map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
1722 }
1723 /*
1724 * Shrink the file system.
1725 */
1726 static void
1727 shrink(void)
1728 {
1729 int i;
1730
1731 if (makegeometry(1)) {
1732 printf("New fs size %"PRIu64" = old fs size %"PRIu64
1733 ", not shrinking.\n", newsb->fs_size, oldsb->fs_size);
1734 return;
1735 }
1736
1737 /* Let's make sure we're not being shrunk into oblivion. */
1738 if (newsb->fs_ncg < 1)
1739 errx(EXIT_FAILURE, "Size too small - file system would "
1740 "have no cylinders");
1741
1742 if (verbose) {
1743 printf("Shrinking fs from %"PRIu64" blocks to %"PRIu64
1744 " blocks.\n", oldsb->fs_size, newsb->fs_size);
1745 }
1746
1747 /* Load the inodes off disk - we'll need 'em. */
1748 loadinodes();
1749
1750 /* Update the timestamp. */
1751 newsb->fs_time = timestamp();
1752
1753 /* Initialize for block motion. */
1754 blkmove_init();
1755 /* Update csum size, then fix up for the new size */
1756 newsb->fs_cssize = ffs_fragroundup(newsb,
1757 newsb->fs_ncg * sizeof(struct csum));
1758 csum_fixup();
1759 /* Evict data from any cgs being wholly eliminated */
1760 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
1761 int64_t base;
1762 int64_t dlow;
1763 int64_t dhigh;
1764 int64_t dmax;
1765 base = cgbase(oldsb, i);
1766 dlow = cgsblock(oldsb, i) - base;
1767 dhigh = cgdmin(oldsb, i) - base;
1768 dmax = oldsb->fs_size - base;
1769 if (dmax > cgs[i]->cg_ndblk)
1770 dmax = cgs[i]->cg_ndblk;
1771 evict_data(cgs[i], 0, dlow);
1772 evict_data(cgs[i], dhigh, dmax - dhigh);
1773 newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
1774 newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
1775 newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
1776 newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
1777 }
1778 /* Update the new last cg. */
1779 cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
1780 ((newsb->fs_ncg - 1) * newsb->fs_fpg);
1781 /* Is the new last cg partial? If so, evict any data from the part
1782 * being shrunken away. */
1783 if (newsb->fs_size % newsb->fs_fpg) {
1784 struct cg *cg;
1785 int oldcgsize;
1786 int newcgsize;
1787 cg = cgs[newsb->fs_ncg - 1];
1788 newcgsize = newsb->fs_size % newsb->fs_fpg;
1789 oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
1790 oldsb->fs_fpg);
1791 if (oldcgsize > oldsb->fs_fpg)
1792 oldcgsize = oldsb->fs_fpg;
1793 evict_data(cg, newcgsize, oldcgsize - newcgsize);
1794 clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
1795 }
1796 /* Find out whether we would run out of inodes. (Note we
1797 * haven't actually done anything to the file system yet; all
1798 * those evict_data calls just update blkmove.) */
1799 {
1800 int slop;
1801 slop = 0;
1802 for (i = 0; i < newsb->fs_ncg; i++)
1803 slop += cgs[i]->cg_cs.cs_nifree;
1804 for (; i < oldsb->fs_ncg; i++)
1805 slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
1806 if (slop < 0)
1807 errx(EXIT_FAILURE, "Sorry, would run out of inodes");
1808 }
1809 /* Copy data, then update pointers to data. See the comment
1810 * header on perform_data_move for ordering considerations. */
1811 perform_data_move();
1812 update_for_data_move();
1813 /* Now do inodes. Initialize, evict, move, update - see the
1814 * comment header on perform_inode_move. */
1815 inomove_init();
1816 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
1817 evict_inodes(cgs[i]);
1818 perform_inode_move();
1819 flush_inodes();
1820 update_for_inode_move();
1821 /* Recompute all the bitmaps; most of them probably need it anyway,
1822 * the rest are just paranoia and not wanting to have to bother
1823 * keeping track of exactly which ones require it. */
1824 for (i = 0; i < newsb->fs_ncg; i++)
1825 cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
1826 /* Update the cg_old_ncyl value for the last cylinder. */
1827 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
1828 cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
1829 newsb->fs_old_ncyl % newsb->fs_old_cpg;
1830 /* Make fs_dsize match the new reality. */
1831 recompute_fs_dsize();
1832 }
1833 /*
1834 * Recompute the block totals, block cluster summaries, and rotational
1835 * position summaries, for a given cg (specified by number), based on
1836 * its free-frag bitmap (cg_blksfree()[]).
1837 */
1838 static void
1839 rescan_blkmaps(int cgn)
1840 {
1841 struct cg *cg;
1842 int f;
1843 int b;
1844 int blkfree;
1845 int blkrun;
1846 int fragrun;
1847 int fwb;
1848
1849 cg = cgs[cgn];
1850 /* Subtract off the current totals from the sb's summary info */
1851 newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
1852 newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
1853 /* Clear counters and bitmaps. */
1854 cg->cg_cs.cs_nffree = 0;
1855 cg->cg_cs.cs_nbfree = 0;
1856 memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0]));
1857 memset(&old_cg_blktot(cg, 0)[0], 0,
1858 newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
1859 memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0,
1860 newsb->fs_old_cpg * newsb->fs_old_nrpos *
1861 sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
1862 if (newsb->fs_contigsumsize > 0) {
1863 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
1864 memset(&cg_clustersum(cg, 0)[1], 0,
1865 newsb->fs_contigsumsize *
1866 sizeof(cg_clustersum(cg, 0)[1]));
1867 if (is_ufs2)
1868 memset(&cg_clustersfree(cg, 0)[0], 0,
1869 howmany(newsb->fs_fpg / NSPB(newsb), NBBY));
1870 else
1871 memset(&cg_clustersfree(cg, 0)[0], 0,
1872 howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
1873 NSPB(newsb), NBBY));
1874 }
1875 /* Scan the free-frag bitmap. Runs of free frags are kept
1876 * track of with fragrun, and recorded into cg_frsum[] and
1877 * cg_cs.cs_nffree; on each block boundary, entire free blocks
1878 * are recorded as well. */
1879 blkfree = 1;
1880 blkrun = 0;
1881 fragrun = 0;
1882 f = 0;
1883 b = 0;
1884 fwb = 0;
1885 while (f < cg->cg_ndblk) {
1886 if (bit_is_set(cg_blksfree(cg, 0), f)) {
1887 fragrun++;
1888 } else {
1889 blkfree = 0;
1890 if (fragrun > 0) {
1891 cg->cg_frsum[fragrun]++;
1892 cg->cg_cs.cs_nffree += fragrun;
1893 }
1894 fragrun = 0;
1895 }
1896 f++;
1897 fwb++;
1898 if (fwb >= newsb->fs_frag) {
1899 if (blkfree) {
1900 cg->cg_cs.cs_nbfree++;
1901 if (newsb->fs_contigsumsize > 0)
1902 set_bits(cg_clustersfree(cg, 0), b, 1);
1903 if (is_ufs2 == 0) {
1904 old_cg_blktot(cg, 0)[
1905 old_cbtocylno(newsb,
1906 f - newsb->fs_frag)]++;
1907 old_cg_blks(newsb, cg,
1908 old_cbtocylno(newsb,
1909 f - newsb->fs_frag),
1910 0)[old_cbtorpos(newsb,
1911 f - newsb->fs_frag)]++;
1912 }
1913 blkrun++;
1914 } else {
1915 if (fragrun > 0) {
1916 cg->cg_frsum[fragrun]++;
1917 cg->cg_cs.cs_nffree += fragrun;
1918 }
1919 if (newsb->fs_contigsumsize > 0) {
1920 if (blkrun > 0) {
1921 cg_clustersum(cg, 0)[(blkrun
1922 > newsb->fs_contigsumsize)
1923 ? newsb->fs_contigsumsize
1924 : blkrun]++;
1925 }
1926 }
1927 blkrun = 0;
1928 }
1929 fwb = 0;
1930 b++;
1931 blkfree = 1;
1932 fragrun = 0;
1933 }
1934 }
1935 if (fragrun > 0) {
1936 cg->cg_frsum[fragrun]++;
1937 cg->cg_cs.cs_nffree += fragrun;
1938 }
1939 if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
1940 cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
1941 newsb->fs_contigsumsize : blkrun]++;
1942 }
1943 /*
1944 * Put the updated summary info back into csums, and add it
1945 * back into the sb's summary info. Then mark the cg dirty.
1946 */
1947 csums[cgn] = cg->cg_cs;
1948 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
1949 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
1950 cgflags[cgn] |= CGF_DIRTY;
1951 }
1952 /*
1953 * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
1954 * values, for a cg, based on the in-core inodes for that cg.
1955 */
1956 static void
1957 rescan_inomaps(int cgn)
1958 {
1959 struct cg *cg;
1960 int inum;
1961 int iwc;
1962
1963 cg = cgs[cgn];
1964 newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
1965 newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
1966 cg->cg_cs.cs_ndir = 0;
1967 cg->cg_cs.cs_nifree = 0;
1968 memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY));
1969 inum = cgn * newsb->fs_ipg;
1970 if (cgn == 0) {
1971 set_bits(cg_inosused(cg, 0), 0, 2);
1972 iwc = 2;
1973 inum += 2;
1974 } else {
1975 iwc = 0;
1976 }
1977 for (; iwc < newsb->fs_ipg; iwc++, inum++) {
1978 switch (DIP(inodes + inum, di_mode) & IFMT) {
1979 case 0:
1980 cg->cg_cs.cs_nifree++;
1981 break;
1982 case IFDIR:
1983 cg->cg_cs.cs_ndir++;
1984 /* FALLTHROUGH */
1985 default:
1986 set_bits(cg_inosused(cg, 0), iwc, 1);
1987 break;
1988 }
1989 }
1990 csums[cgn] = cg->cg_cs;
1991 newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
1992 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
1993 cgflags[cgn] |= CGF_DIRTY;
1994 }
1995 /*
1996 * Flush cgs to disk, recomputing anything they're marked as needing.
1997 */
1998 static void
1999 flush_cgs(void)
2000 {
2001 int i;
2002
2003 for (i = 0; i < newsb->fs_ncg; i++) {
2004 progress_bar(special, "flush cg",
2005 i, newsb->fs_ncg - 1);
2006 if (cgflags[i] & CGF_BLKMAPS) {
2007 rescan_blkmaps(i);
2008 }
2009 if (cgflags[i] & CGF_INOMAPS) {
2010 rescan_inomaps(i);
2011 }
2012 if (cgflags[i] & CGF_DIRTY) {
2013 cgs[i]->cg_rotor = 0;
2014 cgs[i]->cg_frotor = 0;
2015 cgs[i]->cg_irotor = 0;
2016 if (needswap)
2017 ffs_cg_swap(cgs[i],cgs[i],newsb);
2018 writeat(FFS_FSBTODB(newsb, cgtod(newsb, i)), cgs[i],
2019 cgblksz);
2020 }
2021 }
2022 if (needswap)
2023 ffs_csum_swap(csums,csums,newsb->fs_cssize);
2024 writeat(FFS_FSBTODB(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
2025
2026 progress_done();
2027 }
2028 /*
2029 * Write the superblock, both to the main superblock and to each cg's
2030 * alternative superblock.
2031 */
2032 static void
2033 write_sbs(void)
2034 {
2035 int i;
2036
2037 if (newsb->fs_magic == FS_UFS1_MAGIC &&
2038 (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2039 newsb->fs_old_time = newsb->fs_time;
2040 newsb->fs_old_size = newsb->fs_size;
2041 /* we don't update fs_csaddr */
2042 newsb->fs_old_dsize = newsb->fs_dsize;
2043 newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
2044 newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
2045 newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
2046 newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
2047 /* fill fs_old_postbl_start with 256 bytes of 0xff? */
2048 }
2049 /* copy newsb back to oldsb, so we can use it for offsets if
2050 newsb has been swapped for writing to disk */
2051 memcpy(oldsb, newsb, SBLOCKSIZE);
2052 if (needswap)
2053 ffs_sb_swap(newsb,newsb);
2054 writeat(where / DEV_BSIZE, newsb, SBLOCKSIZE);
2055 for (i = 0; i < oldsb->fs_ncg; i++) {
2056 progress_bar(special, "write sb",
2057 i, oldsb->fs_ncg - 1);
2058 writeat(FFS_FSBTODB(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE);
2059 }
2060
2061 progress_done();
2062 }
2063
2064 /*
2065 * Check to see wether new size changes the filesystem
2066 * return exit code
2067 */
2068 static int
2069 checkonly(void)
2070 {
2071 if (makegeometry(0)) {
2072 if (verbose) {
2073 printf("Wouldn't change: already %" PRId64
2074 " blocks\n", (int64_t)oldsb->fs_size);
2075 }
2076 return 1;
2077 }
2078
2079 if (verbose) {
2080 printf("Would change: newsize: %" PRId64 " oldsize: %"
2081 PRId64 " fsdb: %" PRId64 "\n", FFS_DBTOFSB(oldsb, newsize),
2082 (int64_t)oldsb->fs_size,
2083 (int64_t)oldsb->fs_fsbtodb);
2084 }
2085 return 0;
2086 }
2087
2088 static off_t
2089 get_dev_size(char *dev_name)
2090 {
2091 struct dkwedge_info dkw;
2092 struct partition *pp;
2093 struct disklabel lp;
2094 struct stat st;
2095 size_t ptn;
2096
2097 /* Get info about partition/wedge */
2098 if (ioctl(fd, DIOCGWEDGEINFO, &dkw) != -1)
2099 return dkw.dkw_size;
2100 if (ioctl(fd, DIOCGDINFO, &lp) != -1) {
2101 ptn = strchr(dev_name, '\0')[-1] - 'a';
2102 if (ptn >= lp.d_npartitions)
2103 return 0;
2104 pp = &lp.d_partitions[ptn];
2105 return pp->p_size;
2106 }
2107 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
2108 return st.st_size / DEV_BSIZE;
2109
2110 return 0;
2111 }
2112
2113 /*
2114 * main().
2115 */
2116 int
2117 main(int argc, char **argv)
2118 {
2119 int ch;
2120 int CheckOnlyFlag;
2121 int ExpertFlag;
2122 int SFlag;
2123 size_t i;
2124
2125 char reply[5];
2126
2127 newsize = 0;
2128 ExpertFlag = 0;
2129 SFlag = 0;
2130 CheckOnlyFlag = 0;
2131
2132 while ((ch = getopt(argc, argv, "cps:vy")) != -1) {
2133 switch (ch) {
2134 case 'c':
2135 CheckOnlyFlag = 1;
2136 break;
2137 case 'p':
2138 progress = 1;
2139 break;
2140 case 's':
2141 SFlag = 1;
2142 newsize = strtoll(optarg, NULL, 10);
2143 if(newsize < 1) {
2144 usage();
2145 }
2146 break;
2147 case 'v':
2148 verbose = 1;
2149 break;
2150 case 'y':
2151 ExpertFlag = 1;
2152 break;
2153 case '?':
2154 /* FALLTHROUGH */
2155 default:
2156 usage();
2157 }
2158 }
2159 argc -= optind;
2160 argv += optind;
2161
2162 if (argc != 1) {
2163 usage();
2164 }
2165
2166 special = *argv;
2167
2168 if (ExpertFlag == 0 && CheckOnlyFlag == 0) {
2169 printf("It's required to manually run fsck on file system "
2170 "before you can resize it\n\n"
2171 " Did you run fsck on your disk (Yes/No) ? ");
2172 fgets(reply, (int)sizeof(reply), stdin);
2173 if (strcasecmp(reply, "Yes\n")) {
2174 printf("\n Nothing done \n");
2175 exit(EXIT_SUCCESS);
2176 }
2177 }
2178
2179 fd = open(special, O_RDWR, 0);
2180 if (fd < 0)
2181 err(EXIT_FAILURE, "Can't open `%s'", special);
2182 checksmallio();
2183
2184 if (SFlag == 0) {
2185 newsize = get_dev_size(special);
2186 if (newsize == 0)
2187 err(EXIT_FAILURE,
2188 "Can't resize file system, newsize not known.");
2189 }
2190
2191 oldsb = (struct fs *) & sbbuf;
2192 newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
2193 for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
2194 readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
2195 switch (oldsb->fs_magic) {
2196 case FS_UFS2_MAGIC:
2197 is_ufs2 = 1;
2198 /* FALLTHROUGH */
2199 case FS_UFS1_MAGIC:
2200 needswap = 0;
2201 break;
2202 case FS_UFS2_MAGIC_SWAPPED:
2203 is_ufs2 = 1;
2204 /* FALLTHROUGH */
2205 case FS_UFS1_MAGIC_SWAPPED:
2206 needswap = 1;
2207 break;
2208 default:
2209 continue;
2210 }
2211 if (!is_ufs2 && where == SBLOCK_UFS2)
2212 continue;
2213 break;
2214 }
2215 if (where == (off_t)-1)
2216 errx(EXIT_FAILURE, "Bad magic number");
2217 if (needswap)
2218 ffs_sb_swap(oldsb,oldsb);
2219 if (oldsb->fs_magic == FS_UFS1_MAGIC &&
2220 (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2221 oldsb->fs_csaddr = oldsb->fs_old_csaddr;
2222 oldsb->fs_size = oldsb->fs_old_size;
2223 oldsb->fs_dsize = oldsb->fs_old_dsize;
2224 oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
2225 oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
2226 oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
2227 oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
2228 /* any others? */
2229 printf("Resizing with ffsv1 superblock\n");
2230 }
2231
2232 oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
2233 oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
2234 if (oldsb->fs_ipg % FFS_INOPB(oldsb))
2235 errx(EXIT_FAILURE, "ipg[%d] %% FFS_INOPB[%d] != 0",
2236 (int) oldsb->fs_ipg, (int) FFS_INOPB(oldsb));
2237 /* The superblock is bigger than struct fs (there are trailing
2238 * tables, of non-fixed size); make sure we copy the whole
2239 * thing. SBLOCKSIZE may be an over-estimate, but we do this
2240 * just once, so being generous is cheap. */
2241 memcpy(newsb, oldsb, SBLOCKSIZE);
2242
2243 if (progress) {
2244 progress_ttywidth(0);
2245 signal(SIGWINCH, progress_ttywidth);
2246 }
2247
2248 loadcgs();
2249
2250 if (progress && !CheckOnlyFlag) {
2251 progress_switch(progress);
2252 progress_init();
2253 }
2254
2255 if (newsize > FFS_FSBTODB(oldsb, oldsb->fs_size)) {
2256 if (CheckOnlyFlag)
2257 exit(checkonly());
2258 grow();
2259 } else if (newsize < FFS_FSBTODB(oldsb, oldsb->fs_size)) {
2260 if (is_ufs2)
2261 errx(EXIT_FAILURE,"shrinking not supported for ufs2");
2262 if (CheckOnlyFlag)
2263 exit(checkonly());
2264 shrink();
2265 } else {
2266 if (CheckOnlyFlag)
2267 exit(checkonly());
2268 if (verbose)
2269 printf("No change requested: already %" PRId64
2270 " blocks\n", (int64_t)oldsb->fs_size);
2271 }
2272
2273 flush_cgs();
2274 write_sbs();
2275 if (isplainfile())
2276 ftruncate(fd,newsize * DEV_BSIZE);
2277 return 0;
2278 }
2279
2280 static void
2281 usage(void)
2282 {
2283
2284 (void)fprintf(stderr, "usage: %s [-cpvy] [-s size] special\n",
2285 getprogname());
2286 exit(EXIT_FAILURE);
2287 }
2288