Home | History | Annotate | Line # | Download | only in resize_ffs
resize_ffs.c revision 1.4
      1 /*	$NetBSD: resize_ffs.c,v 1.4 2003/04/03 14:55:16 christos Exp $	*/
      2 /* From sources sent on February 17, 2003 */
      3 /*-
      4  * As its sole author, I explicitly place this code in the public
      5  *  domain.  Anyone may use it for any purpose (though I would
      6  *  appreciate credit where it is due).
      7  *
      8  *					der Mouse
      9  *
     10  *			       mouse (at) rodents.montreal.qc.ca
     11  *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
     12  */
     13 /*
     14  * resize_ffs:
     15  *
     16  * Resize a filesystem.  Is capable of both growing and shrinking.
     17  *
     18  * Usage: resize_ffs filesystem newsize
     19  *
     20  * Example: resize_ffs /dev/rsd1e 29574
     21  *
     22  * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
     23  *  each).
     24  *
     25  * Note: this currently requires gcc to build, since it is written
     26  *  depending on gcc-specific features, notably nested function
     27  *  definitions (which in at least a few cases depend on the lexical
     28  *  scoping gcc provides, so they can't be trivially moved outside).
     29  *
     30  * It will not do anything useful with filesystems in other than
     31  *  host-native byte order.  This really should be fixed (it's largely
     32  *  a historical accident; the original version of this program is
     33  *  older than bi-endian support in FFS).
     34  *
     35  * Many thanks go to John Kohl <jtk (at) netbsd.org> for finding bugs: the
     36  *  one responsible for the "realloccgblk: can't find blk in cyl"
     37  *  problem and a more minor one which left fs_dsize wrong when
     38  *  shrinking.  (These actually indicate bugs in fsck too - it should
     39  *  have caught and fixed them.)
     40  *
     41  */
     42 
     43 #include <stdio.h>
     44 #include <errno.h>
     45 #include <fcntl.h>
     46 #include <stdlib.h>
     47 #include <unistd.h>
     48 #include <strings.h>
     49 #include <err.h>
     50 #include <sys/stat.h>
     51 #include <sys/mman.h>
     52 #include <sys/param.h>		/* MAXFRAG */
     53 #include <ufs/ffs/fs.h>
     54 #include <ufs/ufs/dir.h>
     55 #include <ufs/ufs/dinode.h>
     56 #include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */
     57 
     58 /* Suppress warnings about unused arguments */
     59 #if	defined(__GNUC__) &&				\
     60 	( (__GNUC__ > 2) ||				\
     61 	  ( (__GNUC__ == 2) &&				\
     62 	    defined(__GNUC_MINOR__) &&			\
     63 	    (__GNUC_MINOR__ >= 7) ) )
     64 #define UNUSED_ARG(x) x __attribute__((__unused__))
     65 #define INLINE inline
     66 #else
     67 #define UNUSED_ARG(x) x
     68 #define INLINE			/**/
     69 #endif
     70 
     71 /* new size of filesystem, in sectors */
     72 static int newsize;
     73 
     74 /* fd open onto disk device */
     75 static int fd;
     76 
     77 /* must we break up big I/O operations - see checksmallio() */
     78 static int smallio;
     79 
     80 /* size of a cg, in bytes, rounded up to a frag boundary */
     81 static int cgblksz;
     82 
     83 /* possible superblock localtions */
     84 static int search[] = SBLOCKSEARCH;
     85 /* location of the superblock */
     86 static off_t where;
     87 
     88 /* Superblocks. */
     89 static struct fs *oldsb;	/* before we started */
     90 static struct fs *newsb;	/* copy to work with */
     91 /* Buffer to hold the above.  Make sure it's aligned correctly. */
     92 static char sbbuf[2 * SBLOCKSIZE] __attribute__((__aligned__(__alignof__(struct fs))));
     93 
     94 /* a cg's worth of brand new squeaky-clean inodes */
     95 static struct ufs1_dinode *zinodes;
     96 
     97 /* pointers to the in-core cgs, read off disk and possibly modified */
     98 static struct cg **cgs;
     99 
    100 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
    101 static struct csum *csums;
    102 
    103 /* per-cg flags, indexed by cg number */
    104 static unsigned char *cgflags;
    105 #define CGF_DIRTY   0x01	/* needs to be written to disk */
    106 #define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
    107 #define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */
    108 
    109 /* when shrinking, these two arrays record how we want blocks to move.	 */
    110 /*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
    111 /*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
    112 /*  started out as inode i should end up as inode j.			 */
    113 static unsigned int *blkmove;
    114 static unsigned int *inomove;
    115 
    116 /* in-core copies of all inodes in the fs, indexed by inumber */
    117 static struct ufs1_dinode *inodes;
    118 
    119 /* per-inode flags, indexed by inumber */
    120 static unsigned char *iflags;
    121 #define IF_DIRTY  0x01		/* needs to be written to disk */
    122 #define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
    123 				 * block of inodes, and applies to the whole
    124 				 * block. */
    125 
    126 /* Old FFS1 macros */
    127 #define cg_blktot(cgp, ns) \
    128     (cg_chkmagic(cgp, ns) ? \
    129     ((int32_t *)((u_int8_t *)(cgp) + ufs_rw32((cgp)->cg_old_btotoff, (ns)))) \
    130     : (((struct ocg *)(cgp))->cg_btot))
    131 #define cg_blks(fs, cgp, cylno, ns) \
    132     (cg_chkmagic(cgp, ns) ? \
    133     ((int16_t *)((u_int8_t *)(cgp) + ufs_rw32((cgp)->cg_old_boff, (ns))) + \
    134 	(cylno) * (fs)->fs_old_nrpos) \
    135     : (((struct ocg *)(cgp))->cg_b[cylno]))
    136 #define cbtocylno(fs, bno) \
    137    (fsbtodb(fs, bno) / (fs)->fs_old_spc)
    138 #define cbtorpos(fs, bno) \
    139     ((fs)->fs_old_nrpos <= 1 ? 0 : \
    140      (fsbtodb(fs, bno) % (fs)->fs_old_spc / \
    141       (fs)->fs_old_nsect * (fs)->fs_old_trackskew + \
    142       fsbtodb(fs, bno) % (fs)->fs_old_spc % \
    143       (fs)->fs_old_nsect * (fs)->fs_old_interleave) %\
    144     (fs)->fs_old_nsect * (fs)->fs_old_nrpos / (fs)->fs_old_npsect)
    145 #define dblksize(fs, dip, lbn) \
    146     (((lbn) >= NDADDR || (dip)->di_size >= lblktosize(fs, (lbn) + 1)) \
    147     ? (fs)->fs_bsize \
    148     : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
    149 
    150 
    151 /*
    152  * Number of disk sectors per block/fragment; assumes DEV_BSIZE byte
    153  * sector size.
    154  */
    155 #define NSPB(fs)	((fs)->fs_old_nspf << (fs)->fs_fragshift)
    156 #define NSPF(fs)	((fs)->fs_old_nspf)
    157 
    158 /*
    159  * See if we need to break up large I/O operations.  This should never
    160  *  be needed, but under at least one <version,platform> combination,
    161  *  large enough disk transfers to the raw device hang.  So if we're
    162  *  talking to a character special device, play it safe; in this case,
    163  *  readat() and writeat() break everything up into pieces no larger
    164  *  than 8K, doing multiple syscalls for larger operations.
    165  */
    166 static void
    167 checksmallio(void)
    168 {
    169 	struct stat stb;
    170 
    171 	fstat(fd, &stb);
    172 	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
    173 }
    174 /*
    175  * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
    176  *  units, ie, after fsbtodb(); size is in bytes.
    177  */
    178 static void
    179 readat(off_t blkno, void *buf, int size)
    180 {
    181 	/* Seek to the correct place. */
    182 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    183 		err(1, "lseek failed");
    184 
    185 	/* See if we have to break up the transfer... */
    186 	if (smallio) {
    187 		char *bp;	/* pointer into buf */
    188 		int left;	/* bytes left to go */
    189 		int n;		/* number to do this time around */
    190 		int rv;		/* syscall return value */
    191 		bp = buf;
    192 		left = size;
    193 		while (left > 0) {
    194 			n = (left > 8192) ? 8192 : left;
    195 			rv = read(fd, bp, n);
    196 			if (rv < 0)
    197 				err(1, "read failed");
    198 			if (rv != n)
    199 				errx(1, "read: wanted %d, got %d", n, rv);
    200 			bp += n;
    201 			left -= n;
    202 		}
    203 	} else {
    204 		int rv;
    205 		rv = read(fd, buf, size);
    206 		if (rv < 0)
    207 			err(1, "read failed");
    208 		if (rv != size)
    209 			errx(1, "read: wanted %d, got %d", size, rv);
    210 	}
    211 }
    212 /*
    213  * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
    214  *  units, ie, after fsbtodb(); size is in bytes.
    215  */
    216 static void
    217 writeat(off_t blkno, const void *buf, int size)
    218 {
    219 	/* Seek to the correct place. */
    220 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    221 		err(1, "lseek failed");
    222 	/* See if we have to break up the transfer... */
    223 	if (smallio) {
    224 		const char *bp;	/* pointer into buf */
    225 		int left;	/* bytes left to go */
    226 		int n;		/* number to do this time around */
    227 		int rv;		/* syscall return value */
    228 		bp = buf;
    229 		left = size;
    230 		while (left > 0) {
    231 			n = (left > 8192) ? 8192 : left;
    232 			rv = write(fd, bp, n);
    233 			if (rv < 0)
    234 				err(1, "write failed");
    235 			if (rv != n)
    236 				errx(1, "write: wanted %d, got %d", n, rv);
    237 			bp += n;
    238 			left -= n;
    239 		}
    240 	} else {
    241 		int rv;
    242 		rv = write(fd, buf, size);
    243 		if (rv < 0)
    244 			err(1, "write failed");
    245 		if (rv != size)
    246 			errx(1, "write: wanted %d, got %d", size, rv);
    247 	}
    248 }
    249 /*
    250  * Never-fail versions of malloc() and realloc(), and an allocation
    251  *  routine (which also never fails) for allocating memory that will
    252  *  never be freed until exit.
    253  */
    254 
    255 /*
    256  * Never-fail malloc.
    257  */
    258 static void *
    259 nfmalloc(size_t nb, const char *tag)
    260 {
    261 	void *rv;
    262 
    263 	rv = malloc(nb);
    264 	if (rv)
    265 		return (rv);
    266 	err(1, "Can't allocate %lu bytes for %s",
    267 	    (unsigned long int) nb, tag);
    268 }
    269 /*
    270  * Never-fail realloc.
    271  */
    272 static void *
    273 nfrealloc(void *blk, size_t nb, const char *tag)
    274 {
    275 	void *rv;
    276 
    277 	rv = realloc(blk, nb);
    278 	if (rv)
    279 		return (rv);
    280 	err(1, "Can't re-allocate %lu bytes for %s",
    281 	    (unsigned long int) nb, tag);
    282 }
    283 /*
    284  * Allocate memory that will never be freed or reallocated.  Arguably
    285  *  this routine should handle small allocations by chopping up pages,
    286  *  but that's not worth the bother; it's not called more than a
    287  *  handful of times per run, and if the allocations are that small the
    288  *  waste in giving each one its own page is ignorable.
    289  */
    290 static void *
    291 alloconce(size_t nb, const char *tag)
    292 {
    293 	void *rv;
    294 
    295 	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
    296 	if (rv != MAP_FAILED)
    297 		return (rv);
    298 	err(1, "Can't map %lu bytes for %s",
    299 	    (unsigned long int) nb, tag);
    300 }
    301 /*
    302  * Load the cgs and csums off disk.  Also allocates the space to load
    303  *  them into and initializes the per-cg flags.
    304  */
    305 static void
    306 loadcgs(void)
    307 {
    308 	int cg;
    309 	char *cgp;
    310 
    311 	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
    312 	cgs = nfmalloc(oldsb->fs_ncg * sizeof(struct cg *), "cg pointers");
    313 	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
    314 	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
    315 	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
    316 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
    317 		cgs[cg] = (struct cg *) cgp;
    318 		readat(fsbtodb(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
    319 		cgflags[cg] = 0;
    320 		cgp += cgblksz;
    321 	}
    322 	readat(fsbtodb(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
    323 }
    324 /*
    325  * Set n bits, starting with bit #base, in the bitmap pointed to by
    326  *  bitvec (which is assumed to be large enough to include bits base
    327  *  through base+n-1).
    328  */
    329 static void
    330 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
    331 {
    332 	if (n < 1)
    333 		return;		/* nothing to do */
    334 	if (base & 7) {		/* partial byte at beginning */
    335 		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
    336 			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
    337 			return;
    338 		}
    339 		bitvec[base >> 3] |= (~0U) << (base & 7);
    340 		n -= 8 - (base & 7);
    341 		base = (base & ~7) + 8;
    342 	}
    343 	if (n >= 8) {		/* do full bytes */
    344 		memset(bitvec + (base >> 3), 0xff, n >> 3);
    345 		base += n & ~7;
    346 		n &= 7;
    347 	}
    348 	if (n) {		/* partial byte at end */
    349 		bitvec[base >> 3] |= ~((~0U) << n);
    350 	}
    351 }
    352 /*
    353  * Clear n bits, starting with bit #base, in the bitmap pointed to by
    354  *  bitvec (which is assumed to be large enough to include bits base
    355  *  through base+n-1).  Code parallels set_bits().
    356  */
    357 static void
    358 clr_bits(unsigned char *bitvec, int base, int n)
    359 {
    360 	if (n < 1)
    361 		return;
    362 	if (base & 7) {
    363 		if (n <= 8 - (base & 7)) {
    364 			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
    365 			return;
    366 		}
    367 		bitvec[base >> 3] &= ~((~0U) << (base & 7));
    368 		n -= 8 - (base & 7);
    369 		base = (base & ~7) + 8;
    370 	}
    371 	if (n >= 8) {
    372 		bzero(bitvec + (base >> 3), n >> 3);
    373 		base += n & ~7;
    374 		n &= 7;
    375 	}
    376 	if (n) {
    377 		bitvec[base >> 3] &= (~0U) << n;
    378 	}
    379 }
    380 /*
    381  * Test whether bit #bit is set in the bitmap pointed to by bitvec.
    382  */
    383 INLINE static int
    384 bit_is_set(unsigned char *bitvec, int bit)
    385 {
    386 	return (bitvec[bit >> 3] & (1 << (bit & 7)));
    387 }
    388 /*
    389  * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
    390  */
    391 INLINE static int
    392 bit_is_clr(unsigned char *bitvec, int bit)
    393 {
    394 	return (!bit_is_set(bitvec, bit));
    395 }
    396 /*
    397  * Test whether a whole block of bits is set in a bitmap.  This is
    398  *  designed for testing (aligned) disk blocks in a bit-per-frag
    399  *  bitmap; it has assumptions wired into it based on that, essentially
    400  *  that the entire block fits into a single byte.  This returns true
    401  *  iff _all_ the bits are set; it is not just the complement of
    402  *  blk_is_clr on the same arguments (unless blkfrags==1).
    403  */
    404 INLINE static int
    405 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
    406 {
    407 	unsigned int mask;
    408 
    409 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    410 	return ((bitvec[blkbase >> 3] & mask) == mask);
    411 }
    412 /*
    413  * Test whether a whole block of bits is clear in a bitmap.  See
    414  *  blk_is_set (above) for assumptions.  This returns true iff _all_
    415  *  the bits are clear; it is not just the complement of blk_is_set on
    416  *  the same arguments (unless blkfrags==1).
    417  */
    418 INLINE static int
    419 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
    420 {
    421 	unsigned int mask;
    422 
    423 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    424 	return ((bitvec[blkbase >> 3] & mask) == 0);
    425 }
    426 /*
    427  * Initialize a new cg.  Called when growing.  Assumes memory has been
    428  *  allocated but not otherwise set up.  This code sets the fields of
    429  *  the cg, initializes the bitmaps (and cluster summaries, if
    430  *  applicable), updates both per-cylinder summary info and the global
    431  *  summary info in newsb; it also writes out new inodes for the cg.
    432  *
    433  * This code knows it can never be called for cg 0, which makes it a
    434  *  bit simpler than it would otherwise be.
    435  */
    436 static void
    437 initcg(int cgn)
    438 {
    439 	struct cg *cg;		/* The in-core cg, of course */
    440 	int base;		/* Disk address of cg base */
    441 	int dlow;		/* Size of pre-cg data area */
    442 	int dhigh;		/* Offset of post-inode data area, from base */
    443 	int dmax;		/* Offset of end of post-inode data area */
    444 	int i;			/* Generic loop index */
    445 	int n;			/* Generic count */
    446 
    447 	cg = cgs[cgn];
    448 	/* Place the data areas */
    449 	base = cgbase(newsb, cgn);
    450 	dlow = cgsblock(newsb, cgn) - base;
    451 	dhigh = cgdmin(newsb, cgn) - base;
    452 	dmax = newsb->fs_size - base;
    453 	if (dmax > newsb->fs_fpg)
    454 		dmax = newsb->fs_fpg;
    455 	/*
    456          * Clear out the cg - assumes all-0-bytes is the correct way
    457          * to initialize fields we don't otherwise touch, which is
    458          * perhaps not the right thing to do, but it's what fsck and
    459          * mkfs do.
    460          */
    461 	bzero(cg, newsb->fs_cgsize);
    462 	cg->cg_time = newsb->fs_time;
    463 	cg->cg_magic = CG_MAGIC;
    464 	cg->cg_cgx = cgn;
    465 	cg->cg_old_ncyl = newsb->fs_old_cpg;
    466 	/* fsck whines if the cg->cg_old_ncyl value in the last cg is fs_old_cpg
    467 	 * instead of zero, when fs_old_cpg is the correct value. */
    468 	/* XXX fix once fsck is fixed */
    469 	if ((cgn == newsb->fs_ncg - 1) /* && (newsb->fs_old_ncyl % newsb->fs_old_cpg) */ ) {
    470 		cg->cg_old_ncyl = newsb->fs_old_ncyl % newsb->fs_old_cpg;
    471 	}
    472 	cg->cg_niblk = newsb->fs_ipg;
    473 	cg->cg_ndblk = dmax;
    474 	/* Set up the bitmap pointers.  We have to be careful to lay out the
    475 	 * cg _exactly_ the way mkfs and fsck do it, since fsck compares the
    476 	 * _entire_ cg against a recomputed cg, and whines if there is any
    477 	 * mismatch, including the bitmap offsets. */
    478 	/* XXX update this comment when fsck is fixed */
    479 	cg->cg_old_btotoff = &cg->cg_space[0] - (unsigned char *) cg;
    480 	cg->cg_old_boff = cg->cg_old_btotoff
    481 	    + (newsb->fs_old_cpg * sizeof(int32_t));
    482 	cg->cg_iusedoff = cg->cg_old_boff +
    483 	    (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
    484 	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
    485 	if (newsb->fs_contigsumsize > 0) {
    486 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
    487 		cg->cg_clustersumoff = cg->cg_freeoff +
    488 		    howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb),
    489 		    NBBY) - sizeof(int32_t);
    490 		cg->cg_clustersumoff =
    491 		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
    492 		cg->cg_clusteroff = cg->cg_clustersumoff +
    493 		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
    494 		cg->cg_nextfreeoff = cg->cg_clusteroff +
    495 		    howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPB(newsb),
    496 		    NBBY);
    497 		n = dlow / newsb->fs_frag;
    498 		if (n > 0) {
    499 			set_bits(cg_clustersfree(cg, 0), 0, n);
    500 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    501 			    newsb->fs_contigsumsize : n]++;
    502 		}
    503 	} else {
    504 		cg->cg_nextfreeoff = cg->cg_freeoff +
    505 		    howmany(newsb->fs_old_cpg * newsb->fs_old_spc / NSPF(newsb),
    506 		    NBBY);
    507 	}
    508 	/* Mark the data areas as free; everything else is marked busy by the
    509 	 * bzero up at the top. */
    510 	set_bits(cg_blksfree(cg, 0), 0, dlow);
    511 	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
    512 	/* Initialize summary info */
    513 	cg->cg_cs.cs_ndir = 0;
    514 	cg->cg_cs.cs_nifree = newsb->fs_ipg;
    515 	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
    516 	cg->cg_cs.cs_nffree = 0;
    517 
    518 	/* This is the simplest way of doing this; we perhaps could compute
    519 	 * the correct cg_blktot()[] and cg_blks()[] values other ways, but it
    520 	 * would be complicated and hardly seems worth the effort.  (The
    521 	 * reason there isn't frag-at-beginning and frag-at-end code here,
    522 	 * like the code below for the post-inode data area, is that the
    523 	 * pre-sb data area always starts at 0, and thus is block-aligned, and
    524 	 * always ends at the sb, which is block-aligned.) */
    525 	for (i = 0; i < dlow; i += newsb->fs_frag) {
    526 		cg_blktot(cg, 0)[cbtocylno(newsb, i)]++;
    527 		cg_blks(newsb, cg, cbtocylno(newsb, i), 0)[cbtorpos(newsb, i)]++;
    528 	}
    529 	/* Deal with a partial block at the beginning of the post-inode area.
    530 	 * I'm not convinced this can happen - I think the inodes are always
    531 	 * block-aligned and always an integral number of blocks - but it's
    532 	 * cheap to do the right thing just in case. */
    533 	if (dhigh % newsb->fs_frag) {
    534 		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
    535 		cg->cg_frsum[n]++;
    536 		cg->cg_cs.cs_nffree += n;
    537 		dhigh += n;
    538 	}
    539 	n = (dmax - dhigh) / newsb->fs_frag;
    540 	/* We have n full-size blocks in the post-inode data area. */
    541 	if (n > 0) {
    542 		cg->cg_cs.cs_nbfree += n;
    543 		if (newsb->fs_contigsumsize > 0) {
    544 			i = dhigh / newsb->fs_frag;
    545 			set_bits(cg_clustersfree(cg, 0), i, n);
    546 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    547 			    newsb->fs_contigsumsize : n]++;
    548 		}
    549 		for (i = n; i > 0; i--) {
    550 			cg_blktot(cg, 0)[cbtocylno(newsb, dhigh)]++;
    551 			cg_blks(newsb, cg,
    552 			    cbtocylno(newsb, dhigh), 0)[cbtorpos(newsb,
    553 				dhigh)]++;
    554 			dhigh += newsb->fs_frag;
    555 		}
    556 	}
    557 	/* Deal with any leftover frag at the end of the cg. */
    558 	i = dmax - dhigh;
    559 	if (i) {
    560 		cg->cg_frsum[i]++;
    561 		cg->cg_cs.cs_nffree += i;
    562 	}
    563 	/* Update the csum info. */
    564 	csums[cgn] = cg->cg_cs;
    565 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
    566 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
    567 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
    568 	/* Write out the cleared inodes. */
    569 	writeat(fsbtodb(newsb, cgimin(newsb, cgn)), zinodes,
    570 	    newsb->fs_ipg * sizeof(struct ufs1_dinode));
    571 	/* Dirty the cg. */
    572 	cgflags[cgn] |= CGF_DIRTY;
    573 }
    574 /*
    575  * Find free space, at least nfrags consecutive frags of it.  Pays no
    576  *  attention to block boundaries, but refuses to straddle cg
    577  *  boundaries, even if the disk blocks involved are in fact
    578  *  consecutive.  Return value is the frag number of the first frag of
    579  *  the block, or -1 if no space was found.  Uses newsb for sb values,
    580  *  and assumes the cgs[] structures correctly describe the area to be
    581  *  searched.
    582  *
    583  * XXX is there a bug lurking in the ignoring of block boundaries by
    584  *  the routine used by fragmove() in evict_data()?  Can an end-of-file
    585  *  frag legally straddle a block boundary?  If not, this should be
    586  *  cloned and fixed to stop at block boundaries for that use.  The
    587  *  current one may still be needed for csum info motion, in case that
    588  *  takes up more than a whole block (is the csum info allowed to begin
    589  *  partway through a block and continue into the following block?).
    590  *
    591  * If we wrap off the end of the filesystem back to the beginning, we
    592  *  can end up searching the end of the filesystem twice.  I ignore
    593  *  this inefficiency, since if that happens we're going to croak with
    594  *  a no-space error anyway, so it happens at most once.
    595  */
    596 static int
    597 find_freespace(unsigned int nfrags)
    598 {
    599 	static int hand = 0;	/* hand rotates through all frags in the fs */
    600 	int cgsize;		/* size of the cg hand currently points into */
    601 	int cgn;		/* number of cg hand currently points into */
    602 	int fwc;		/* frag-within-cg number of frag hand points
    603 				 * to */
    604 	int run;		/* length of run of free frags seen so far */
    605 	int secondpass;		/* have we wrapped from end of fs to
    606 				 * beginning? */
    607 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    608 
    609 	cgn = dtog(newsb, hand);
    610 	fwc = dtogd(newsb, hand);
    611 	secondpass = (hand == 0);
    612 	run = 0;
    613 	bits = cg_blksfree(cgs[cgn], 0);
    614 	cgsize = cgs[cgn]->cg_ndblk;
    615 	while (1) {
    616 		if (bit_is_set(bits, fwc)) {
    617 			run++;
    618 			if (run >= nfrags)
    619 				return (hand + 1 - run);
    620 		} else {
    621 			run = 0;
    622 		}
    623 		hand++;
    624 		fwc++;
    625 		if (fwc >= cgsize) {
    626 			fwc = 0;
    627 			cgn++;
    628 			if (cgn >= newsb->fs_ncg) {
    629 				hand = 0;
    630 				if (secondpass)
    631 					return (-1);
    632 				secondpass = 1;
    633 				cgn = 0;
    634 			}
    635 			bits = cg_blksfree(cgs[cgn], 0);
    636 			cgsize = cgs[cgn]->cg_ndblk;
    637 			run = 0;
    638 		}
    639 	}
    640 }
    641 /*
    642  * Find a free block of disk space.  Finds an entire block of frags,
    643  *  all of which are free.  Return value is the frag number of the
    644  *  first frag of the block, or -1 if no space was found.  Uses newsb
    645  *  for sb values, and assumes the cgs[] structures correctly describe
    646  *  the area to be searched.
    647  *
    648  * See find_freespace(), above, for remarks about hand wrapping around.
    649  */
    650 static int
    651 find_freeblock(void)
    652 {
    653 	static int hand = 0;	/* hand rotates through all frags in fs */
    654 	int cgn;		/* cg number of cg hand points into */
    655 	int fwc;		/* frag-within-cg number of frag hand points
    656 				 * to */
    657 	int cgsize;		/* size of cg hand points into */
    658 	int secondpass;		/* have we wrapped from end to beginning? */
    659 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    660 
    661 	cgn = dtog(newsb, hand);
    662 	fwc = dtogd(newsb, hand);
    663 	secondpass = (hand == 0);
    664 	bits = cg_blksfree(cgs[cgn], 0);
    665 	cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
    666 	while (1) {
    667 		if (blk_is_set(bits, fwc, newsb->fs_frag))
    668 			return (hand);
    669 		fwc += newsb->fs_frag;
    670 		hand += newsb->fs_frag;
    671 		if (fwc >= cgsize) {
    672 			fwc = 0;
    673 			cgn++;
    674 			if (cgn >= newsb->fs_ncg) {
    675 				hand = 0;
    676 				if (secondpass)
    677 					return (-1);
    678 				secondpass = 1;
    679 				cgn = 0;
    680 			}
    681 			bits = cg_blksfree(cgs[cgn], 0);
    682 			cgsize = blknum(newsb, cgs[cgn]->cg_ndblk);
    683 		}
    684 	}
    685 }
    686 /*
    687  * Find a free inode, returning its inumber or -1 if none was found.
    688  *  Uses newsb for sb values, and assumes the cgs[] structures
    689  *  correctly describe the area to be searched.
    690  *
    691  * See find_freespace(), above, for remarks about hand wrapping around.
    692  */
    693 static int
    694 find_freeinode(void)
    695 {
    696 	static int hand = 0;	/* hand rotates through all inodes in fs */
    697 	int cgn;		/* cg number of cg hand points into */
    698 	int iwc;		/* inode-within-cg number of inode hand points
    699 				 * to */
    700 	int secondpass;		/* have we wrapped from end to beginning? */
    701 	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */
    702 
    703 	cgn = hand / newsb->fs_ipg;
    704 	iwc = hand % newsb->fs_ipg;
    705 	secondpass = (hand == 0);
    706 	bits = cg_inosused(cgs[cgn], 0);
    707 	while (1) {
    708 		if (bit_is_clr(bits, iwc))
    709 			return (hand);
    710 		hand++;
    711 		iwc++;
    712 		if (iwc >= newsb->fs_ipg) {
    713 			iwc = 0;
    714 			cgn++;
    715 			if (cgn >= newsb->fs_ncg) {
    716 				hand = 0;
    717 				if (secondpass)
    718 					return (-1);
    719 				secondpass = 1;
    720 				cgn = 0;
    721 			}
    722 			bits = cg_inosused(cgs[cgn], 0);
    723 		}
    724 	}
    725 }
    726 /*
    727  * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
    728  *  for the appropriate cg, and marks the cg as dirty.
    729  */
    730 static void
    731 free_frag(int fno)
    732 {
    733 	int cgn;
    734 
    735 	cgn = dtog(newsb, fno);
    736 	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    737 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    738 }
    739 /*
    740  * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
    741  *  for the appropriate cg, and marks the cg as dirty.
    742  */
    743 static void
    744 alloc_frag(int fno)
    745 {
    746 	int cgn;
    747 
    748 	cgn = dtog(newsb, fno);
    749 	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    750 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    751 }
    752 /*
    753  * Fix up the csum array.  If shrinking, this involves freeing zero or
    754  *  more frags; if growing, it involves allocating them, or if the
    755  *  frags being grown into aren't free, finding space elsewhere for the
    756  *  csum info.  (If the number of occupied frags doesn't change,
    757  *  nothing happens here.)
    758  */
    759 static void
    760 csum_fixup(void)
    761 {
    762 	int nold;		/* # frags in old csum info */
    763 	int ntot;		/* # frags in new csum info */
    764 	int nnew;		/* ntot-nold */
    765 	int newloc;		/* new location for csum info, if necessary */
    766 	int i;			/* generic loop index */
    767 	int j;			/* generic loop index */
    768 	int f;			/* "from" frag number, if moving */
    769 	int t;			/* "to" frag number, if moving */
    770 	int cgn;		/* cg number, used when shrinking */
    771 
    772 	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
    773 	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
    774 	nnew = ntot - nold;
    775 	/* First, if there's no change in frag counts, it's easy. */
    776 	if (nnew == 0)
    777 		return;
    778 	/* Next, if we're shrinking, it's almost as easy.  Just free up any
    779 	 * frags in the old area we no longer need. */
    780 	if (nnew < 0) {
    781 		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
    782 		    j < 0;
    783 		    i--, j++) {
    784 			free_frag(i);
    785 		}
    786 		return;
    787 	}
    788 	/* We must be growing.  Check to see that the new csum area fits
    789 	 * within the filesystem.  I think this can never happen, since for
    790 	 * the csum area to grow, we must be adding at least one cg, so the
    791 	 * old csum area can't be this close to the end of the new filesystem.
    792 	 * But it's a cheap check. */
    793 	/* XXX what if csum info is at end of cg and grows into next cg, what
    794 	 * if it spills over onto the next cg's backup superblock?  Can this
    795 	 * happen? */
    796 	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
    797 		/* Okay, it fits - now,  see if the space we want is free. */
    798 		for ((i = newsb->fs_csaddr + nold), (j = nnew);
    799 		    j > 0;
    800 		    i++, j--) {
    801 			cgn = dtog(newsb, i);
    802 			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
    803 				dtogd(newsb, i)))
    804 				break;
    805 		}
    806 		if (j <= 0) {
    807 			/* Win win - all the frags we want are free. Allocate
    808 			 * 'em and we're all done.  */
    809 			for ((i = newsb->fs_csaddr + ntot - nnew), (j = nnew); j > 0; i++, j--) {
    810 				alloc_frag(i);
    811 			}
    812 			return;
    813 		}
    814 	}
    815 	/* We have to move the csum info, sigh.  Look for new space, free old
    816 	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
    817 	 * on disk at this point; the csum info will be written to the
    818 	 * then-current fs_csaddr as part of the final flush. */
    819 	newloc = find_freespace(ntot);
    820 	if (newloc < 0) {
    821 		printf("Sorry, no space available for new csums\n");
    822 		exit(1);
    823 	}
    824 	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
    825 		if (i < nold) {
    826 			free_frag(f);
    827 		}
    828 		alloc_frag(t);
    829 	}
    830 	newsb->fs_csaddr = newloc;
    831 }
    832 /*
    833  * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
    834  *  data blocks in that cg to the total.
    835  */
    836 static void
    837 recompute_fs_dsize(void)
    838 {
    839 	int i;
    840 
    841 	newsb->fs_dsize = 0;
    842 	for (i = 0; i < newsb->fs_ncg; i++) {
    843 		int dlow;	/* size of before-sb data area */
    844 		int dhigh;	/* offset of post-inode data area */
    845 		int dmax;	/* total size of cg */
    846 		int base;	/* base of cg, since cgsblock() etc add it in */
    847 		base = cgbase(newsb, i);
    848 		dlow = cgsblock(newsb, i) - base;
    849 		dhigh = cgdmin(newsb, i) - base;
    850 		dmax = newsb->fs_size - base;
    851 		if (dmax > newsb->fs_fpg)
    852 			dmax = newsb->fs_fpg;
    853 		newsb->fs_dsize += dlow + dmax - dhigh;
    854 	}
    855 	/* Space in cg 0 before cgsblock is boot area, not free space! */
    856 	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
    857 	/* And of course the csum info takes up space. */
    858 	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
    859 }
    860 /*
    861  * Return the current time.  We call this and assign, rather than
    862  *  calling time() directly, as insulation against OSes where fs_time
    863  *  is not a time_t.
    864  */
    865 static time_t
    866 timestamp(void)
    867 {
    868 	time_t t;
    869 
    870 	time(&t);
    871 	return (t);
    872 }
    873 /*
    874  * Grow the filesystem.
    875  */
    876 static void
    877 grow(void)
    878 {
    879 	int i;
    880 
    881 	/* Update the timestamp. */
    882 	newsb->fs_time = timestamp();
    883 	/* Allocate and clear the new-inode area, in case we add any cgs. */
    884 	zinodes = alloconce(newsb->fs_ipg * sizeof(struct ufs1_dinode),
    885                             "zeroed inodes");
    886 	bzero(zinodes, newsb->fs_ipg * sizeof(struct ufs1_dinode));
    887 	/* Update the size. */
    888 	newsb->fs_size = dbtofsb(newsb, newsize);
    889 	/* Did we actually not grow?  (This can happen if newsize is less than
    890 	 * a frag larger than the old size - unlikely, but no excuse to
    891 	 * misbehave if it happens.) */
    892 	if (newsb->fs_size == oldsb->fs_size)
    893 		return;
    894 	/* Check that the new last sector (frag, actually) is writable.  Since
    895 	 * it's at least one frag larger than it used to be, we know we aren't
    896 	 * overwriting anything important by this.  (The choice of sbbuf as
    897 	 * what to write is irrelevant; it's just something handy that's known
    898 	 * to be at least one frag in size.) */
    899 	writeat(newsb->fs_size - 1, &sbbuf, newsb->fs_fsize);
    900 	/* Update fs_old_ncyl and fs_ncg. */
    901 	newsb->fs_old_ncyl = (newsb->fs_size * NSPF(newsb)) / newsb->fs_old_spc;
    902 	newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
    903 	/* Does the last cg end before the end of its inode area? There is no
    904 	 * reason why this couldn't be handled, but it would complicate a lot
    905 	 * of code (in all filesystem code - fsck, kernel, etc) because of the
    906 	 * potential partial inode area, and the gain in space would be
    907 	 * minimal, at most the pre-sb data area. */
    908 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
    909 		newsb->fs_ncg--;
    910 		newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
    911 		newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc) / NSPF(newsb);
    912 		printf("Warning: last cylinder group is too small;\n");
    913 		printf("    dropping it.  New size = %lu.\n",
    914 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
    915 	}
    916 	/* Find out how big the csum area is, and realloc csums if bigger. */
    917 	newsb->fs_cssize = fragroundup(newsb,
    918 	    newsb->fs_ncg * sizeof(struct csum));
    919 	if (newsb->fs_cssize > oldsb->fs_cssize)
    920 		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
    921 	/* If we're adding any cgs, realloc structures and set up the new cgs. */
    922 	if (newsb->fs_ncg > oldsb->fs_ncg) {
    923 		char *cgp;
    924 		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(struct cg *),
    925                                 "cg pointers");
    926 		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
    927 		bzero(cgflags + oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
    928 		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
    929                                 "cgs");
    930 		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
    931 			cgs[i] = (struct cg *) cgp;
    932 			initcg(i);
    933 			cgp += cgblksz;
    934 		}
    935 		cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
    936 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
    937 	}
    938 	/* If the old fs ended partway through a cg, we have to update the old
    939 	 * last cg (though possibly not to a full cg!). */
    940 	if (oldsb->fs_size % oldsb->fs_fpg) {
    941 		struct cg *cg;
    942 		int newcgsize;
    943 		int prevcgtop;
    944 		int oldcgsize;
    945 		cg = cgs[oldsb->fs_ncg - 1];
    946 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
    947 		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
    948 		newcgsize = newsb->fs_size - prevcgtop;
    949 		if (newcgsize > newsb->fs_fpg)
    950 			newcgsize = newsb->fs_fpg;
    951 		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
    952 		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
    953 		cg->cg_old_ncyl = howmany(newcgsize * NSPF(newsb), newsb->fs_old_spc);
    954 		cg->cg_ndblk = newcgsize;
    955 	}
    956 	/* Fix up the csum info, if necessary. */
    957 	csum_fixup();
    958 	/* Make fs_dsize match the new reality. */
    959 	recompute_fs_dsize();
    960 }
    961 /*
    962  * Call (*fn)() for each inode, passing the inode and its inumber.  The
    963  *  number of cylinder groups is pased in, so this can be used to map
    964  *  over either the old or the new filesystem's set of inodes.
    965  */
    966 static void
    967      map_inodes(void (*fn) (struct ufs1_dinode * di, unsigned int, void *arg), int ncg, void *cbarg) {
    968 	int i;
    969 	int ni;
    970 
    971 	ni = oldsb->fs_ipg * ncg;
    972 	for (i = 0; i < ni; i++)
    973 		(*fn) (inodes + i, i, cbarg);
    974 }
    975 /* Values for the third argument to the map function for
    976  * map_inode_data_blocks.  MDB_DATA indicates the block is contains
    977  * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
    978  * indirect block.  The MDB_INDIR_PRE call is made before the indirect
    979  * block pointers are followed and the pointed-to blocks scanned,
    980  * MDB_INDIR_POST after.
    981  */
    982 #define MDB_DATA       1
    983 #define MDB_INDIR_PRE  2
    984 #define MDB_INDIR_POST 3
    985 
    986 typedef void (*mark_callback_t) (unsigned int blocknum, unsigned int nfrags, unsigned int blksize, int opcode);
    987 
    988 /* Helper function - handles a data block.  Calls the callback
    989  * function and returns number of bytes occupied in file (actually,
    990  * rounded up to a frag boundary).  The name is historical.  */
    991 static int
    992 markblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o)
    993 {
    994 	int sz;
    995 	int nb;
    996 	if (o >= di->di_size)
    997 		return (0);
    998 	sz = dblksize(newsb, di, lblkno(newsb, o));
    999 	nb = (sz > di->di_size - o) ? di->di_size - o : sz;
   1000 	if (bn)
   1001 		(*fn) (bn, numfrags(newsb, sz), nb, MDB_DATA);
   1002 	return (sz);
   1003 }
   1004 /* Helper function - handles an indirect block.  Makes the
   1005  * MDB_INDIR_PRE callback for the indirect block, loops over the
   1006  * pointers and recurses, and makes the MDB_INDIR_POST callback.
   1007  * Returns the number of bytes occupied in file, as does markblk().
   1008  * For the sake of update_for_data_move(), we read the indirect block
   1009  * _after_ making the _PRE callback.  The name is historical.  */
   1010 static int
   1011 markiblk(mark_callback_t fn, struct ufs1_dinode * di, int bn, off_t o, int lev)
   1012 {
   1013 	int i;
   1014 	int j;
   1015 	int tot;
   1016 	static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
   1017 	static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
   1018 	static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
   1019 	static int32_t *indirblks[3] = {
   1020 		&indirblk1[0], &indirblk2[0], &indirblk3[0]
   1021 	};
   1022 	if (lev < 0)
   1023 		return (markblk(fn, di, bn, o));
   1024 	if (bn == 0) {
   1025 		for (i = newsb->fs_bsize;
   1026 		    lev >= 0;
   1027 		    i *= NINDIR(newsb), lev--);
   1028 		return (i);
   1029 	}
   1030 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
   1031 	readat(fsbtodb(newsb, bn), indirblks[lev], newsb->fs_bsize);
   1032 	tot = 0;
   1033 	for (i = 0; i < NINDIR(newsb); i++) {
   1034 		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
   1035 		if (j == 0)
   1036 			break;
   1037 		o += j;
   1038 		tot += j;
   1039 	}
   1040 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
   1041 	return (tot);
   1042 }
   1043 
   1044 
   1045 /*
   1046  * Call (*fn)() for each data block for an inode.  This routine assumes
   1047  *  the inode is known to be of a type that has data blocks (file,
   1048  *  directory, or non-fast symlink).  The called function is:
   1049  *
   1050  * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
   1051  *
   1052  *  where blkno is the frag number, nf is the number of frags starting
   1053  *  at blkno (always <= fs_frag), nb is the number of bytes that belong
   1054  *  to the file (usually nf*fs_frag, often less for the last block/frag
   1055  *  of a file).
   1056  */
   1057 static void
   1058 map_inode_data_blocks(struct ufs1_dinode * di, mark_callback_t fn)
   1059 {
   1060 	off_t o;		/* offset within  inode */
   1061 	int inc;		/* increment for o - maybe should be off_t? */
   1062 	int b;			/* index within di_db[] and di_ib[] arrays */
   1063 
   1064 	/* Scan the direct blocks... */
   1065 	o = 0;
   1066 	for (b = 0; b < NDADDR; b++) {
   1067 		inc = markblk(fn, di, di->di_db[b], o);
   1068 		if (inc == 0)
   1069 			break;
   1070 		o += inc;
   1071 	}
   1072 	/* ...and the indirect blocks. */
   1073 	if (inc) {
   1074 		for (b = 0; b < NIADDR; b++) {
   1075 			inc = markiblk(fn, di, di->di_ib[b], o, b);
   1076 			if (inc == 0)
   1077 				return;
   1078 			o += inc;
   1079 		}
   1080 	}
   1081 }
   1082 
   1083 static void
   1084 dblk_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
   1085 {
   1086 	mark_callback_t fn;
   1087 	fn = (mark_callback_t) arg;
   1088 	switch (di->di_mode & IFMT) {
   1089 	case IFLNK:
   1090 		if (di->di_size > newsb->fs_maxsymlinklen) {
   1091 	case IFDIR:
   1092 	case IFREG:
   1093 			map_inode_data_blocks(di, fn);
   1094 		}
   1095 		break;
   1096 	}
   1097 }
   1098 /*
   1099  * Make a callback call, a la map_inode_data_blocks, for all data
   1100  *  blocks in the entire fs.  This is used only once, in
   1101  *  update_for_data_move, but it's out at top level because the complex
   1102  *  downward-funarg nesting that would otherwise result seems to give
   1103  *  gcc gastric distress.
   1104  */
   1105 static void
   1106 map_data_blocks(mark_callback_t fn, int ncg)
   1107 {
   1108 	map_inodes(&dblk_callback, ncg, (void *) fn);
   1109 }
   1110 /*
   1111  * Initialize the blkmove array.
   1112  */
   1113 static void
   1114 blkmove_init(void)
   1115 {
   1116 	int i;
   1117 
   1118 	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
   1119 	for (i = 0; i < oldsb->fs_size; i++)
   1120 		blkmove[i] = i;
   1121 }
   1122 /*
   1123  * Load the inodes off disk.  Allocates the structures and initializes
   1124  *  them - the inodes from disk, the flags to zero.
   1125  */
   1126 static void
   1127 loadinodes(void)
   1128 {
   1129 	int cg;
   1130 	struct ufs1_dinode *iptr;
   1131 
   1132 	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg * sizeof(struct ufs1_dinode), "inodes");
   1133 	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
   1134 	bzero(iflags, oldsb->fs_ncg * oldsb->fs_ipg);
   1135 	iptr = inodes;
   1136 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
   1137 		readat(fsbtodb(oldsb, cgimin(oldsb, cg)), iptr,
   1138 		    oldsb->fs_ipg * sizeof(struct ufs1_dinode));
   1139 		iptr += oldsb->fs_ipg;
   1140 	}
   1141 }
   1142 /*
   1143  * Report a filesystem-too-full problem.
   1144  */
   1145 static void
   1146 toofull(void)
   1147 {
   1148 	printf("Sorry, would run out of data blocks\n");
   1149 	exit(1);
   1150 }
   1151 /*
   1152  * Record a desire to move "n" frags from "from" to "to".
   1153  */
   1154 static void
   1155 mark_move(unsigned int from, unsigned int to, unsigned int n)
   1156 {
   1157 	for (; n > 0; n--)
   1158 		blkmove[from++] = to++;
   1159 }
   1160 /* Helper function - evict n frags, starting with start (cg-relative).
   1161  * The free bitmap is scanned, unallocated frags are ignored, and
   1162  * each block of consecutive allocated frags is moved as a unit.
   1163  */
   1164 static void
   1165 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
   1166 {
   1167 	int i;
   1168 	int run;
   1169 	run = 0;
   1170 	for (i = 0; i <= n; i++) {
   1171 		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
   1172 			run++;
   1173 		} else {
   1174 			if (run > 0) {
   1175 				int off;
   1176 				off = find_freespace(run);
   1177 				if (off < 0)
   1178 					toofull();
   1179 				mark_move(base + start + i - run, off, run);
   1180 				set_bits(cg_blksfree(cg, 0), start + i - run,
   1181 				    run);
   1182 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1183 				    dtogd(oldsb, off), run);
   1184 			}
   1185 			run = 0;
   1186 		}
   1187 	}
   1188 }
   1189 /*
   1190  * Evict all data blocks from the given cg, starting at minfrag (based
   1191  *  at the beginning of the cg), for length nfrag.  The eviction is
   1192  *  assumed to be entirely data-area; this should not be called with a
   1193  *  range overlapping the metadata structures in the cg.  It also
   1194  *  assumes minfrag points into the given cg; it will misbehave if this
   1195  *  is not true.
   1196  *
   1197  * See the comment header on find_freespace() for one possible bug
   1198  *  lurking here.
   1199  */
   1200 static void
   1201 evict_data(struct cg * cg, unsigned int minfrag, unsigned int nfrag)
   1202 {
   1203 	int base;		/* base of cg (in frags from beginning of fs) */
   1204 
   1205 
   1206 	base = cgbase(oldsb, cg->cg_cgx);
   1207 	/* Does the boundary fall in the middle of a block?  To avoid breaking
   1208 	 * between frags allocated as consecutive, we always evict the whole
   1209 	 * block in this case, though one could argue we should check to see
   1210 	 * if the frag before or after the break is unallocated. */
   1211 	if (minfrag % oldsb->fs_frag) {
   1212 		int n;
   1213 		n = minfrag % oldsb->fs_frag;
   1214 		minfrag -= n;
   1215 		nfrag += n;
   1216 	}
   1217 	/* Do whole blocks.  If a block is wholly free, skip it; if wholly
   1218 	 * allocated, move it in toto.  If neither, call fragmove() to move
   1219 	 * the frags to new locations. */
   1220 	while (nfrag >= oldsb->fs_frag) {
   1221 		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
   1222 			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
   1223 				oldsb->fs_frag)) {
   1224 				int off;
   1225 				off = find_freeblock();
   1226 				if (off < 0)
   1227 					toofull();
   1228 				mark_move(base + minfrag, off, oldsb->fs_frag);
   1229 				set_bits(cg_blksfree(cg, 0), minfrag,
   1230 				    oldsb->fs_frag);
   1231 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1232 				    dtogd(oldsb, off), oldsb->fs_frag);
   1233 			} else {
   1234 				fragmove(cg, base, minfrag, oldsb->fs_frag);
   1235 			}
   1236 		}
   1237 		minfrag += oldsb->fs_frag;
   1238 		nfrag -= oldsb->fs_frag;
   1239 	}
   1240 	/* Clean up any sub-block amount left over. */
   1241 	if (nfrag) {
   1242 		fragmove(cg, base, minfrag, nfrag);
   1243 	}
   1244 }
   1245 /*
   1246  * Move all data blocks according to blkmove.  We have to be careful,
   1247  *  because we may be updating indirect blocks that will themselves be
   1248  *  getting moved, or inode int32_t arrays that point to indirect
   1249  *  blocks that will be moved.  We call this before
   1250  *  update_for_data_move, and update_for_data_move does inodes first,
   1251  *  then indirect blocks in preorder, so as to make sure that the
   1252  *  filesystem is self-consistent at all points, for better crash
   1253  *  tolerance.  (We can get away with this only because all the writes
   1254  *  done by perform_data_move() are writing into space that's not used
   1255  *  by the old filesystem.)  If we crash, some things may point to the
   1256  *  old data and some to the new, but both copies are the same.  The
   1257  *  only wrong things should be csum info and free bitmaps, which fsck
   1258  *  is entirely capable of cleaning up.
   1259  *
   1260  * Since blkmove_init() initializes all blocks to move to their current
   1261  *  locations, we can have two blocks marked as wanting to move to the
   1262  *  same location, but only two and only when one of them is the one
   1263  *  that was already there.  So if blkmove[i]==i, we ignore that entry
   1264  *  entirely - for unallocated blocks, we don't want it (and may be
   1265  *  putting something else there), and for allocated blocks, we don't
   1266  *  want to copy it anywhere.
   1267  */
   1268 static void
   1269 perform_data_move(void)
   1270 {
   1271 	int i;
   1272 	int run;
   1273 	int maxrun;
   1274 	char buf[65536];
   1275 
   1276 	maxrun = sizeof(buf) / newsb->fs_fsize;
   1277 	run = 0;
   1278 	for (i = 0; i < oldsb->fs_size; i++) {
   1279 		if ((blkmove[i] == i) ||
   1280 		    (run >= maxrun) ||
   1281 		    ((run > 0) &&
   1282 			(blkmove[i] != blkmove[i - 1] + 1))) {
   1283 			if (run > 0) {
   1284 				readat(fsbtodb(oldsb, i - run), &buf[0],
   1285 				    run << oldsb->fs_fshift);
   1286 				writeat(fsbtodb(oldsb, blkmove[i - run]),
   1287 				    &buf[0], run << oldsb->fs_fshift);
   1288 			}
   1289 			run = 0;
   1290 		}
   1291 		if (blkmove[i] != i)
   1292 			run++;
   1293 	}
   1294 	if (run > 0) {
   1295 		readat(fsbtodb(oldsb, i - run), &buf[0],
   1296 		    run << oldsb->fs_fshift);
   1297 		writeat(fsbtodb(oldsb, blkmove[i - run]), &buf[0],
   1298 		    run << oldsb->fs_fshift);
   1299 	}
   1300 }
   1301 /*
   1302  * This modifies an array of int32_t, according to blkmove.  This is
   1303  *  used to update inode block arrays and indirect blocks to point to
   1304  *  the new locations of data blocks.
   1305  *
   1306  * Return value is the number of int32_ts that needed updating; in
   1307  *  particular, the return value is zero iff nothing was modified.
   1308  */
   1309 static int
   1310 movemap_blocks(int32_t * vec, int n)
   1311 {
   1312 	int rv;
   1313 
   1314 	rv = 0;
   1315 	for (; n > 0; n--, vec++) {
   1316 		if (blkmove[*vec] != *vec) {
   1317 			*vec = blkmove[*vec];
   1318 			rv++;
   1319 		}
   1320 	}
   1321 	return (rv);
   1322 }
   1323 static void
   1324 moveblocks_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
   1325 {
   1326 	switch (di->di_mode & IFMT) {
   1327 	case IFLNK:
   1328 		if (di->di_size > oldsb->fs_maxsymlinklen) {
   1329 	case IFDIR:
   1330 	case IFREG:
   1331 			/* don't || these two calls; we need their
   1332 			 * side-effects */
   1333 			if (movemap_blocks(&di->di_db[0], NDADDR)) {
   1334 				iflags[inum] |= IF_DIRTY;
   1335 			}
   1336 			if (movemap_blocks(&di->di_ib[0], NIADDR)) {
   1337 				iflags[inum] |= IF_DIRTY;
   1338 			}
   1339 		}
   1340 		break;
   1341 	}
   1342 }
   1343 
   1344 static void
   1345 moveindir_callback(unsigned int off, unsigned int nfrag, unsigned int nbytes, int kind)
   1346 {
   1347 	if (kind == MDB_INDIR_PRE) {
   1348 		int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
   1349 		readat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
   1350 		if (movemap_blocks(&blk[0], NINDIR(oldsb))) {
   1351 			writeat(fsbtodb(oldsb, off), &blk[0], oldsb->fs_bsize);
   1352 		}
   1353 	}
   1354 }
   1355 /*
   1356  * Update all inode data arrays and indirect blocks to point to the new
   1357  *  locations of data blocks.  See the comment header on
   1358  *  perform_data_move for some ordering considerations.
   1359  */
   1360 static void
   1361 update_for_data_move(void)
   1362 {
   1363 	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
   1364 	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
   1365 }
   1366 /*
   1367  * Initialize the inomove array.
   1368  */
   1369 static void
   1370 inomove_init(void)
   1371 {
   1372 	int i;
   1373 
   1374 	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
   1375                             "inomove");
   1376 	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
   1377 		inomove[i] = i;
   1378 }
   1379 /*
   1380  * Flush all dirtied inodes to disk.  Scans the inode flags array; for
   1381  *  each dirty inode, it sets the BDIRTY bit on the first inode in the
   1382  *  block containing the dirty inode.  Then it scans by blocks, and for
   1383  *  each marked block, writes it.
   1384  */
   1385 static void
   1386 flush_inodes(void)
   1387 {
   1388 	int i;
   1389 	int ni;
   1390 	int m;
   1391 
   1392 	ni = newsb->fs_ipg * newsb->fs_ncg;
   1393 	m = INOPB(newsb) - 1;
   1394 	for (i = 0; i < ni; i++) {
   1395 		if (iflags[i] & IF_DIRTY) {
   1396 			iflags[i & ~m] |= IF_BDIRTY;
   1397 		}
   1398 	}
   1399 	m++;
   1400 	for (i = 0; i < ni; i += m) {
   1401 		if (iflags[i] & IF_BDIRTY) {
   1402 			writeat(fsbtodb(newsb, ino_to_fsba(newsb, i)),
   1403 			    inodes + i, newsb->fs_bsize);
   1404 		}
   1405 	}
   1406 }
   1407 /*
   1408  * Evict all inodes from the specified cg.  shrink() already checked
   1409  *  that there were enough free inodes, so the no-free-inodes check is
   1410  *  a can't-happen.  If it does trip, the filesystem should be in good
   1411  *  enough shape for fsck to fix; see the comment on perform_data_move
   1412  *  for the considerations in question.
   1413  */
   1414 static void
   1415 evict_inodes(struct cg * cg)
   1416 {
   1417 	int inum;
   1418 	int i;
   1419 	int fi;
   1420 
   1421 	inum = newsb->fs_ipg * cg->cg_cgx;
   1422 	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
   1423 		if (inodes[inum].di_mode != 0) {
   1424 			fi = find_freeinode();
   1425 			if (fi < 0) {
   1426 				printf("Sorry, inodes evaporated - "
   1427 				    "filesystem probably needs fsck\n");
   1428 				exit(1);
   1429 			}
   1430 			inomove[inum] = fi;
   1431 			clr_bits(cg_inosused(cg, 0), i, 1);
   1432 			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
   1433 			    fi % newsb->fs_ipg, 1);
   1434 		}
   1435 	}
   1436 }
   1437 /*
   1438  * Move inodes from old locations to new.  Does not actually write
   1439  *  anything to disk; just copies in-core and sets dirty bits.
   1440  *
   1441  * We have to be careful here for reasons similar to those mentioned in
   1442  *  the comment header on perform_data_move, above: for the sake of
   1443  *  crash tolerance, we want to make sure everything is present at both
   1444  *  old and new locations before we update pointers.  So we call this
   1445  *  first, then flush_inodes() to get them out on disk, then update
   1446  *  directories to match.
   1447  */
   1448 static void
   1449 perform_inode_move(void)
   1450 {
   1451 	int i;
   1452 	int ni;
   1453 
   1454 	ni = oldsb->fs_ipg * oldsb->fs_ncg;
   1455 	for (i = 0; i < ni; i++) {
   1456 		if (inomove[i] != i) {
   1457 			inodes[inomove[i]] = inodes[i];
   1458 			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
   1459 		}
   1460 	}
   1461 }
   1462 /*
   1463  * Update the directory contained in the nb bytes at buf, to point to
   1464  *  inodes' new locations.
   1465  */
   1466 static int
   1467 update_dirents(char *buf, int nb)
   1468 {
   1469 	int rv;
   1470 #define d ((struct direct *)buf)
   1471 
   1472 	rv = 0;
   1473 	while (nb > 0) {
   1474 		if (inomove[d->d_ino] != d->d_ino) {
   1475 			rv++;
   1476 			d->d_ino = inomove[d->d_ino];
   1477 		}
   1478 		nb -= d->d_reclen;
   1479 		buf += d->d_reclen;
   1480 	}
   1481 	return (rv);
   1482 #undef d
   1483 }
   1484 /*
   1485  * Callback function for map_inode_data_blocks, for updating a
   1486  *  directory to point to new inode locations.
   1487  */
   1488 static void
   1489 update_dir_data(unsigned int bn, unsigned int size, unsigned int nb, int kind)
   1490 {
   1491 	if (kind == MDB_DATA) {
   1492 		union {
   1493 			struct direct d;
   1494 			char ch[MAXBSIZE];
   1495 		}     buf;
   1496 		readat(fsbtodb(oldsb, bn), &buf, size << oldsb->fs_fshift);
   1497 		if (update_dirents((char *) &buf, nb)) {
   1498 			writeat(fsbtodb(oldsb, bn), &buf,
   1499 			    size << oldsb->fs_fshift);
   1500 		}
   1501 	}
   1502 }
   1503 static void
   1504 dirmove_callback(struct ufs1_dinode * di, unsigned int inum, void *arg)
   1505 {
   1506 	switch (di->di_mode & IFMT) {
   1507 	case IFDIR:
   1508 		map_inode_data_blocks(di, &update_dir_data);
   1509 		break;
   1510 	}
   1511 }
   1512 /*
   1513  * Update directory entries to point to new inode locations.
   1514  */
   1515 static void
   1516 update_for_inode_move(void)
   1517 {
   1518 	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
   1519 }
   1520 /*
   1521  * Shrink the filesystem.
   1522  */
   1523 static void
   1524 shrink(void)
   1525 {
   1526 	int i;
   1527 
   1528 	/* Load the inodes off disk - we'll need 'em. */
   1529 	loadinodes();
   1530 	/* Update the timestamp. */
   1531 	newsb->fs_time = timestamp();
   1532 	/* Update the size figures. */
   1533 	newsb->fs_size = dbtofsb(newsb, newsize);
   1534 	newsb->fs_old_ncyl = (newsb->fs_size * NSPF(newsb)) / newsb->fs_old_spc;
   1535 	newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
   1536 	/* Does the (new) last cg end before the end of its inode area?  See
   1537 	 * the similar code in grow() for more on this. */
   1538 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
   1539 		newsb->fs_ncg--;
   1540 		newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
   1541 		newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc) / NSPF(newsb);
   1542 		printf("Warning: last cylinder group is too small;\n");
   1543 		printf("    dropping it.  New size = %lu.\n",
   1544 		    (unsigned long int) fsbtodb(newsb, newsb->fs_size));
   1545 	}
   1546 	/* Let's make sure we're not being shrunk into oblivion. */
   1547 	if (newsb->fs_ncg < 1) {
   1548 		printf("Size too small - filesystem would have no cylinders\n");
   1549 		exit(1);
   1550 	}
   1551 	/* Initialize for block motion. */
   1552 	blkmove_init();
   1553 	/* Update csum size, then fix up for the new size */
   1554 	newsb->fs_cssize = fragroundup(newsb,
   1555 	    newsb->fs_ncg * sizeof(struct csum));
   1556 	csum_fixup();
   1557 	/* Evict data from any cgs being wholly eliminiated */
   1558 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
   1559 		int base;
   1560 		int dlow;
   1561 		int dhigh;
   1562 		int dmax;
   1563 		base = cgbase(oldsb, i);
   1564 		dlow = cgsblock(oldsb, i) - base;
   1565 		dhigh = cgdmin(oldsb, i) - base;
   1566 		dmax = oldsb->fs_size - base;
   1567 		if (dmax > cgs[i]->cg_ndblk)
   1568 			dmax = cgs[i]->cg_ndblk;
   1569 		evict_data(cgs[i], 0, dlow);
   1570 		evict_data(cgs[i], dhigh, dmax - dhigh);
   1571 		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
   1572 		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
   1573 		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
   1574 		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
   1575 	}
   1576 	/* Update the new last cg. */
   1577 	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
   1578 	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
   1579 	/* Is the new last cg partial?  If so, evict any data from the part
   1580 	 * being shrunken away. */
   1581 	if (newsb->fs_size % newsb->fs_fpg) {
   1582 		struct cg *cg;
   1583 		int oldcgsize;
   1584 		int newcgsize;
   1585 		cg = cgs[newsb->fs_ncg - 1];
   1586 		newcgsize = newsb->fs_size % newsb->fs_fpg;
   1587 		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) & oldsb->fs_fpg);
   1588 		if (oldcgsize > oldsb->fs_fpg)
   1589 			oldcgsize = oldsb->fs_fpg;
   1590 		evict_data(cg, newcgsize, oldcgsize - newcgsize);
   1591 		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
   1592 	}
   1593 	/* Find out whether we would run out of inodes.  (Note we haven't
   1594 	 * actually done anything to the filesystem yet; all those evict_data
   1595 	 * calls just update blkmove.) */
   1596 	{
   1597 		int slop;
   1598 		slop = 0;
   1599 		for (i = 0; i < newsb->fs_ncg; i++)
   1600 			slop += cgs[i]->cg_cs.cs_nifree;
   1601 		for (; i < oldsb->fs_ncg; i++)
   1602 			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
   1603 		if (slop < 0) {
   1604 			printf("Sorry, would run out of inodes\n");
   1605 			exit(1);
   1606 		}
   1607 	}
   1608 	/* Copy data, then update pointers to data.  See the comment header on
   1609 	 * perform_data_move for ordering considerations. */
   1610 	perform_data_move();
   1611 	update_for_data_move();
   1612 	/* Now do inodes.  Initialize, evict, move, update - see the comment
   1613 	 * header on perform_inode_move. */
   1614 	inomove_init();
   1615 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
   1616 		evict_inodes(cgs[i]);
   1617 	perform_inode_move();
   1618 	flush_inodes();
   1619 	update_for_inode_move();
   1620 	/* Recompute all the bitmaps; most of them probably need it anyway,
   1621 	 * the rest are just paranoia and not wanting to have to bother
   1622 	 * keeping track of exactly which ones require it. */
   1623 	for (i = 0; i < newsb->fs_ncg; i++)
   1624 		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
   1625 	/* Update the cg_old_ncyl value for the last cylinder.  The condition is
   1626 	 * commented out because fsck whines if not - see the similar
   1627 	 * condition in grow() for more. */
   1628 	/* XXX fix once fsck is fixed */
   1629 	/* if (newsb->fs_old_ncyl % newsb->fs_old_cpg) XXX */
   1630 /*XXXJTK*/
   1631 	cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
   1632 	    newsb->fs_old_ncyl % newsb->fs_old_cpg;
   1633 	/* Make fs_dsize match the new reality. */
   1634 	recompute_fs_dsize();
   1635 }
   1636 /*
   1637  * Recompute the block totals, block cluster summaries, and rotational
   1638  *  position summaries, for a given cg (specified by number), based on
   1639  *  its free-frag bitmap (cg_blksfree()[]).
   1640  */
   1641 static void
   1642 rescan_blkmaps(int cgn)
   1643 {
   1644 	struct cg *cg;
   1645 	int f;
   1646 	int b;
   1647 	int blkfree;
   1648 	int blkrun;
   1649 	int fragrun;
   1650 	int fwb;
   1651 
   1652 	cg = cgs[cgn];
   1653 	/* Subtract off the current totals from the sb's summary info */
   1654 	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
   1655 	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
   1656 	/* Clear counters and bitmaps. */
   1657 	cg->cg_cs.cs_nffree = 0;
   1658 	cg->cg_cs.cs_nbfree = 0;
   1659 	bzero(&cg->cg_frsum[0], MAXFRAG * sizeof(cg->cg_frsum[0]));
   1660 	bzero(&cg_blktot(cg, 0)[0],
   1661 	    newsb->fs_old_cpg * sizeof(cg_blktot(cg, 0)[0]));
   1662 	bzero(&cg_blks(newsb, cg, 0, 0)[0],
   1663 	    newsb->fs_old_cpg * newsb->fs_old_nrpos *
   1664 	    sizeof(cg_blks(newsb, cg, 0, 0)[0]));
   1665 	if (newsb->fs_contigsumsize > 0) {
   1666 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
   1667 		bzero(&cg_clustersum(cg, 0)[1],
   1668 		    newsb->fs_contigsumsize *
   1669 		    sizeof(cg_clustersum(cg, 0)[1]));
   1670 		bzero(&cg_clustersfree(cg, 0)[0],
   1671 		    howmany((newsb->fs_old_cpg * newsb->fs_old_spc) / NSPB(newsb),
   1672 			NBBY));
   1673 	}
   1674 	/* Scan the free-frag bitmap.  Runs of free frags are kept track of
   1675 	 * with fragrun, and recorded into cg_frsum[] and cg_cs.cs_nffree; on
   1676 	 * each block boundary, entire free blocks are recorded as well. */
   1677 	blkfree = 1;
   1678 	blkrun = 0;
   1679 	fragrun = 0;
   1680 	f = 0;
   1681 	b = 0;
   1682 	fwb = 0;
   1683 	while (f < cg->cg_ndblk) {
   1684 		if (bit_is_set(cg_blksfree(cg, 0), f)) {
   1685 			fragrun++;
   1686 		} else {
   1687 			blkfree = 0;
   1688 			if (fragrun > 0) {
   1689 				cg->cg_frsum[fragrun]++;
   1690 				cg->cg_cs.cs_nffree += fragrun;
   1691 			}
   1692 			fragrun = 0;
   1693 		}
   1694 		f++;
   1695 		fwb++;
   1696 		if (fwb >= newsb->fs_frag) {
   1697 			if (blkfree) {
   1698 				cg->cg_cs.cs_nbfree++;
   1699 				if (newsb->fs_contigsumsize > 0)
   1700 					set_bits(cg_clustersfree(cg, 0), b, 1);
   1701 				cg_blktot(cg, 0)[cbtocylno(newsb, f - newsb->fs_frag)]++;
   1702 				cg_blks(newsb, cg,
   1703 				    cbtocylno(newsb, f - newsb->fs_frag),
   1704 				    0)[cbtorpos(newsb, f - newsb->fs_frag)]++;
   1705 				blkrun++;
   1706 			} else {
   1707 				if (fragrun > 0) {
   1708 					cg->cg_frsum[fragrun]++;
   1709 					cg->cg_cs.cs_nffree += fragrun;
   1710 				}
   1711 				if (newsb->fs_contigsumsize > 0) {
   1712 					if (blkrun > 0) {
   1713 						cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ? newsb->fs_contigsumsize : blkrun]++;
   1714 					}
   1715 				}
   1716 				blkrun = 0;
   1717 			}
   1718 			fwb = 0;
   1719 			b++;
   1720 			blkfree = 1;
   1721 			fragrun = 0;
   1722 		}
   1723 	}
   1724 	if (fragrun > 0) {
   1725 		cg->cg_frsum[fragrun]++;
   1726 		cg->cg_cs.cs_nffree += fragrun;
   1727 	}
   1728 	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
   1729 		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
   1730 		    newsb->fs_contigsumsize : blkrun]++;
   1731 	}
   1732 	/*
   1733          * Put the updated summary info back into csums, and add it
   1734          * back into the sb's summary info.  Then mark the cg dirty.
   1735          */
   1736 	csums[cgn] = cg->cg_cs;
   1737 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
   1738 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
   1739 	cgflags[cgn] |= CGF_DIRTY;
   1740 }
   1741 /*
   1742  * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
   1743  *  values, for a cg, based on the in-core inodes for that cg.
   1744  */
   1745 static void
   1746 rescan_inomaps(int cgn)
   1747 {
   1748 	struct cg *cg;
   1749 	int inum;
   1750 	int iwc;
   1751 
   1752 	cg = cgs[cgn];
   1753 	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
   1754 	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
   1755 	cg->cg_cs.cs_ndir = 0;
   1756 	cg->cg_cs.cs_nifree = 0;
   1757 	bzero(&cg_inosused(cg, 0)[0], howmany(newsb->fs_ipg, NBBY));
   1758 	inum = cgn * newsb->fs_ipg;
   1759 	if (cgn == 0) {
   1760 		set_bits(cg_inosused(cg, 0), 0, 2);
   1761 		iwc = 2;
   1762 		inum += 2;
   1763 	} else {
   1764 		iwc = 0;
   1765 	}
   1766 	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
   1767 		switch (inodes[inum].di_mode & IFMT) {
   1768 		case 0:
   1769 			cg->cg_cs.cs_nifree++;
   1770 			break;
   1771 		case IFDIR:
   1772 			cg->cg_cs.cs_ndir++;
   1773 			/* fall through */
   1774 		default:
   1775 			set_bits(cg_inosused(cg, 0), iwc, 1);
   1776 			break;
   1777 		}
   1778 	}
   1779 	csums[cgn] = cg->cg_cs;
   1780 	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
   1781 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
   1782 	cgflags[cgn] |= CGF_DIRTY;
   1783 }
   1784 /*
   1785  * Flush cgs to disk, recomputing anything they're marked as needing.
   1786  */
   1787 static void
   1788 flush_cgs(void)
   1789 {
   1790 	int i;
   1791 
   1792 	for (i = 0; i < newsb->fs_ncg; i++) {
   1793 		if (cgflags[i] & CGF_BLKMAPS) {
   1794 			rescan_blkmaps(i);
   1795 		}
   1796 		if (cgflags[i] & CGF_INOMAPS) {
   1797 			rescan_inomaps(i);
   1798 		}
   1799 		if (cgflags[i] & CGF_DIRTY) {
   1800 			cgs[i]->cg_rotor = 0;
   1801 			cgs[i]->cg_frotor = 0;
   1802 			cgs[i]->cg_irotor = 0;
   1803 			writeat(fsbtodb(newsb, cgtod(newsb, i)), cgs[i],
   1804 			    cgblksz);
   1805 		}
   1806 	}
   1807 	writeat(fsbtodb(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
   1808 }
   1809 /*
   1810  * Write the superblock, both to the main superblock and to each cg's
   1811  *  alternative superblock.
   1812  */
   1813 static void
   1814 write_sbs(void)
   1815 {
   1816 	int i;
   1817 
   1818 	writeat(where, newsb, SBLOCKSIZE);
   1819 	for (i = 0; i < newsb->fs_ncg; i++) {
   1820 		writeat(fsbtodb(newsb, cgsblock(newsb, i)), newsb, SBLOCKSIZE);
   1821 	}
   1822 }
   1823 /*
   1824  * main().
   1825  */
   1826 int main(int, char **);
   1827 int
   1828 main(int ac, char **av)
   1829 {
   1830 	size_t i;
   1831 	if (ac != 3) {
   1832 		fprintf(stderr, "Usage: %s filesystem new-size\n",
   1833 		    getprogname());
   1834 		exit(1);
   1835 	}
   1836 	fd = open(av[1], O_RDWR, 0);
   1837 	if (fd < 0)
   1838 		err(1, "Cannot open `%s'", av[1]);
   1839 	checksmallio();
   1840 	newsize = atoi(av[2]);
   1841 	oldsb = (struct fs *) & sbbuf;
   1842 	newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
   1843 	for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
   1844 		readat(where, oldsb, SBLOCKSIZE);
   1845 		if (oldsb->fs_magic == FS_UFS1_MAGIC)
   1846 			break;
   1847 	}
   1848 	if (where == (off_t)-1)
   1849 		errx(1, "Bad magic number");
   1850 	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
   1851 	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
   1852 	if (oldsb->fs_ipg % INOPB(oldsb)) {
   1853 		printf("ipg[%d] %% INOPB[%d] != 0\n", (int) oldsb->fs_ipg,
   1854 		    (int) INOPB(oldsb));
   1855 		exit(1);
   1856 	}
   1857 	/* The superblock is bigger than struct fs (there are trailing tables,
   1858 	 * of non-fixed size); make sure we copy the whole thing.  SBLOCKSIZE may
   1859 	 * be an over-estimate, but we do this just once, so being generous is
   1860 	 * cheap. */
   1861 	bcopy(oldsb, newsb, SBLOCKSIZE);
   1862 	loadcgs();
   1863 	if (newsize > fsbtodb(oldsb, oldsb->fs_size)) {
   1864 		grow();
   1865 	} else if (newsize < fsbtodb(oldsb, oldsb->fs_size)) {
   1866 		shrink();
   1867 	}
   1868 	flush_cgs();
   1869 	write_sbs();
   1870 	exit(0);
   1871 }
   1872