resize_ffs.c revision 1.40 1 /* $NetBSD: resize_ffs.c,v 1.40 2015/03/28 17:25:33 riastradh Exp $ */
2 /* From sources sent on February 17, 2003 */
3 /*-
4 * As its sole author, I explicitly place this code in the public
5 * domain. Anyone may use it for any purpose (though I would
6 * appreciate credit where it is due).
7 *
8 * der Mouse
9 *
10 * mouse (at) rodents.montreal.qc.ca
11 * 7D C8 61 52 5D E7 2D 39 4E F1 31 3E E8 B3 27 4B
12 */
13 /*
14 * resize_ffs:
15 *
16 * Resize a file system. Is capable of both growing and shrinking.
17 *
18 * Usage: resize_ffs [-s newsize] [-y] file_system
19 *
20 * Example: resize_ffs -s 29574 /dev/rsd1e
21 *
22 * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
23 * each).
24 *
25 * Note: this currently requires gcc to build, since it is written
26 * depending on gcc-specific features, notably nested function
27 * definitions (which in at least a few cases depend on the lexical
28 * scoping gcc provides, so they can't be trivially moved outside).
29 *
30 * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
31 * one responsible for the "realloccgblk: can't find blk in cyl"
32 * problem and a more minor one which left fs_dsize wrong when
33 * shrinking. (These actually indicate bugs in fsck too - it should
34 * have caught and fixed them.)
35 *
36 */
37
38 #include <sys/cdefs.h>
39 __RCSID("$NetBSD: resize_ffs.c,v 1.40 2015/03/28 17:25:33 riastradh Exp $");
40
41 #include <sys/disk.h>
42 #include <sys/disklabel.h>
43 #include <sys/dkio.h>
44 #include <sys/ioctl.h>
45 #include <sys/stat.h>
46 #include <sys/mman.h>
47 #include <sys/param.h> /* MAXFRAG */
48 #include <ufs/ffs/fs.h>
49 #include <ufs/ffs/ffs_extern.h>
50 #include <ufs/ufs/dir.h>
51 #include <ufs/ufs/dinode.h>
52 #include <ufs/ufs/ufs_bswap.h> /* ufs_rw32 */
53
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <strings.h>
60 #include <unistd.h>
61
62 /* new size of file system, in sectors */
63 static int64_t newsize;
64
65 /* fd open onto disk device or file */
66 static int fd;
67
68 /* must we break up big I/O operations - see checksmallio() */
69 static int smallio;
70
71 /* size of a cg, in bytes, rounded up to a frag boundary */
72 static int cgblksz;
73
74 /* possible superblock localtions */
75 static int search[] = SBLOCKSEARCH;
76 /* location of the superblock */
77 static off_t where;
78
79 /* Superblocks. */
80 static struct fs *oldsb; /* before we started */
81 static struct fs *newsb; /* copy to work with */
82 /* Buffer to hold the above. Make sure it's aligned correctly. */
83 static char sbbuf[2 * SBLOCKSIZE]
84 __attribute__((__aligned__(__alignof__(struct fs))));
85
86 union dinode {
87 struct ufs1_dinode dp1;
88 struct ufs2_dinode dp2;
89 };
90 #define DIP(dp, field) \
91 ((is_ufs2) ? \
92 (dp)->dp2.field : (dp)->dp1.field)
93
94 #define DIP_ASSIGN(dp, field, value) \
95 do { \
96 if (is_ufs2) \
97 (dp)->dp2.field = (value); \
98 else \
99 (dp)->dp1.field = (value); \
100 } while (0)
101
102 /* a cg's worth of brand new squeaky-clean inodes */
103 static struct ufs1_dinode *zinodes;
104
105 /* pointers to the in-core cgs, read off disk and possibly modified */
106 static struct cg **cgs;
107
108 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
109 static struct csum *csums;
110
111 /* per-cg flags, indexed by cg number */
112 static unsigned char *cgflags;
113 #define CGF_DIRTY 0x01 /* needs to be written to disk */
114 #define CGF_BLKMAPS 0x02 /* block bitmaps need rebuilding */
115 #define CGF_INOMAPS 0x04 /* inode bitmaps need rebuilding */
116
117 /* when shrinking, these two arrays record how we want blocks to move. */
118 /* if blkmove[i] is j, the frag that started out as frag #i should end */
119 /* up as frag #j. inomove[i]=j means, similarly, that the inode that */
120 /* started out as inode i should end up as inode j. */
121 static unsigned int *blkmove;
122 static unsigned int *inomove;
123
124 /* in-core copies of all inodes in the fs, indexed by inumber */
125 union dinode *inodes;
126
127 void *ibuf; /* ptr to fs block-sized buffer for reading/writing inodes */
128
129 /* byteswapped inodes */
130 union dinode *sinodes;
131
132 /* per-inode flags, indexed by inumber */
133 static unsigned char *iflags;
134 #define IF_DIRTY 0x01 /* needs to be written to disk */
135 #define IF_BDIRTY 0x02 /* like DIRTY, but is set on first inode in a
136 * block of inodes, and applies to the whole
137 * block. */
138
139 /* resize_ffs works directly on dinodes, adapt blksize() */
140 #define dblksize(fs, dip, lbn, filesize) \
141 (((lbn) >= UFS_NDADDR || (uint64_t)(filesize) >= ffs_lblktosize(fs, (lbn) + 1)) \
142 ? (fs)->fs_bsize \
143 : (ffs_fragroundup(fs, ffs_blkoff(fs, (filesize)))))
144
145
146 /*
147 * Number of disk sectors per block/fragment
148 */
149 #define NSPB(fs) (FFS_FSBTODB((fs),1) << (fs)->fs_fragshift)
150 #define NSPF(fs) (FFS_FSBTODB((fs),1))
151
152 /* global flags */
153 int is_ufs2 = 0;
154 int needswap = 0;
155
156 static void usage(void) __dead;
157
158 /*
159 * See if we need to break up large I/O operations. This should never
160 * be needed, but under at least one <version,platform> combination,
161 * large enough disk transfers to the raw device hang. So if we're
162 * talking to a character special device, play it safe; in this case,
163 * readat() and writeat() break everything up into pieces no larger
164 * than 8K, doing multiple syscalls for larger operations.
165 */
166 static void
167 checksmallio(void)
168 {
169 struct stat stb;
170
171 fstat(fd, &stb);
172 smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
173 }
174
175 static int
176 isplainfile(void)
177 {
178 struct stat stb;
179
180 fstat(fd, &stb);
181 return S_ISREG(stb.st_mode);
182 }
183 /*
184 * Read size bytes starting at blkno into buf. blkno is in DEV_BSIZE
185 * units, ie, after FFS_FSBTODB(); size is in bytes.
186 */
187 static void
188 readat(off_t blkno, void *buf, int size)
189 {
190 /* Seek to the correct place. */
191 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
192 err(EXIT_FAILURE, "lseek failed");
193
194 /* See if we have to break up the transfer... */
195 if (smallio) {
196 char *bp; /* pointer into buf */
197 int left; /* bytes left to go */
198 int n; /* number to do this time around */
199 int rv; /* syscall return value */
200 bp = buf;
201 left = size;
202 while (left > 0) {
203 n = (left > 8192) ? 8192 : left;
204 rv = read(fd, bp, n);
205 if (rv < 0)
206 err(EXIT_FAILURE, "read failed");
207 if (rv != n)
208 errx(EXIT_FAILURE,
209 "read: wanted %d, got %d", n, rv);
210 bp += n;
211 left -= n;
212 }
213 } else {
214 int rv;
215 rv = read(fd, buf, size);
216 if (rv < 0)
217 err(EXIT_FAILURE, "read failed");
218 if (rv != size)
219 errx(EXIT_FAILURE, "read: wanted %d, got %d",
220 size, rv);
221 }
222 }
223 /*
224 * Write size bytes from buf starting at blkno. blkno is in DEV_BSIZE
225 * units, ie, after FFS_FSBTODB(); size is in bytes.
226 */
227 static void
228 writeat(off_t blkno, const void *buf, int size)
229 {
230 /* Seek to the correct place. */
231 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
232 err(EXIT_FAILURE, "lseek failed");
233 /* See if we have to break up the transfer... */
234 if (smallio) {
235 const char *bp; /* pointer into buf */
236 int left; /* bytes left to go */
237 int n; /* number to do this time around */
238 int rv; /* syscall return value */
239 bp = buf;
240 left = size;
241 while (left > 0) {
242 n = (left > 8192) ? 8192 : left;
243 rv = write(fd, bp, n);
244 if (rv < 0)
245 err(EXIT_FAILURE, "write failed");
246 if (rv != n)
247 errx(EXIT_FAILURE,
248 "write: wanted %d, got %d", n, rv);
249 bp += n;
250 left -= n;
251 }
252 } else {
253 int rv;
254 rv = write(fd, buf, size);
255 if (rv < 0)
256 err(EXIT_FAILURE, "write failed");
257 if (rv != size)
258 errx(EXIT_FAILURE,
259 "write: wanted %d, got %d", size, rv);
260 }
261 }
262 /*
263 * Never-fail versions of malloc() and realloc(), and an allocation
264 * routine (which also never fails) for allocating memory that will
265 * never be freed until exit.
266 */
267
268 /*
269 * Never-fail malloc.
270 */
271 static void *
272 nfmalloc(size_t nb, const char *tag)
273 {
274 void *rv;
275
276 rv = malloc(nb);
277 if (rv)
278 return (rv);
279 err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
280 (unsigned long int) nb, tag);
281 }
282 /*
283 * Never-fail realloc.
284 */
285 static void *
286 nfrealloc(void *blk, size_t nb, const char *tag)
287 {
288 void *rv;
289
290 rv = realloc(blk, nb);
291 if (rv)
292 return (rv);
293 err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
294 (unsigned long int) nb, tag);
295 }
296 /*
297 * Allocate memory that will never be freed or reallocated. Arguably
298 * this routine should handle small allocations by chopping up pages,
299 * but that's not worth the bother; it's not called more than a
300 * handful of times per run, and if the allocations are that small the
301 * waste in giving each one its own page is ignorable.
302 */
303 static void *
304 alloconce(size_t nb, const char *tag)
305 {
306 void *rv;
307
308 rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
309 if (rv != MAP_FAILED)
310 return (rv);
311 err(EXIT_FAILURE, "Can't map %lu bytes for %s",
312 (unsigned long int) nb, tag);
313 }
314 /*
315 * Load the cgs and csums off disk. Also allocates the space to load
316 * them into and initializes the per-cg flags.
317 */
318 static void
319 loadcgs(void)
320 {
321 int cg;
322 char *cgp;
323
324 cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
325 cgs = nfmalloc(oldsb->fs_ncg * sizeof(*cgs), "cg pointers");
326 cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
327 cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
328 csums = nfmalloc(oldsb->fs_cssize, "cg summary");
329 for (cg = 0; cg < oldsb->fs_ncg; cg++) {
330 cgs[cg] = (struct cg *) cgp;
331 readat(FFS_FSBTODB(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
332 if (needswap)
333 ffs_cg_swap(cgs[cg],cgs[cg],oldsb);
334 cgflags[cg] = 0;
335 cgp += cgblksz;
336 }
337 readat(FFS_FSBTODB(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
338 if (needswap)
339 ffs_csum_swap(csums,csums,oldsb->fs_cssize);
340 }
341 /*
342 * Set n bits, starting with bit #base, in the bitmap pointed to by
343 * bitvec (which is assumed to be large enough to include bits base
344 * through base+n-1).
345 */
346 static void
347 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
348 {
349 if (n < 1)
350 return; /* nothing to do */
351 if (base & 7) { /* partial byte at beginning */
352 if (n <= 8 - (base & 7)) { /* entirely within one byte */
353 bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
354 return;
355 }
356 bitvec[base >> 3] |= (~0U) << (base & 7);
357 n -= 8 - (base & 7);
358 base = (base & ~7) + 8;
359 }
360 if (n >= 8) { /* do full bytes */
361 memset(bitvec + (base >> 3), 0xff, n >> 3);
362 base += n & ~7;
363 n &= 7;
364 }
365 if (n) { /* partial byte at end */
366 bitvec[base >> 3] |= ~((~0U) << n);
367 }
368 }
369 /*
370 * Clear n bits, starting with bit #base, in the bitmap pointed to by
371 * bitvec (which is assumed to be large enough to include bits base
372 * through base+n-1). Code parallels set_bits().
373 */
374 static void
375 clr_bits(unsigned char *bitvec, int base, int n)
376 {
377 if (n < 1)
378 return;
379 if (base & 7) {
380 if (n <= 8 - (base & 7)) {
381 bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
382 return;
383 }
384 bitvec[base >> 3] &= ~((~0U) << (base & 7));
385 n -= 8 - (base & 7);
386 base = (base & ~7) + 8;
387 }
388 if (n >= 8) {
389 memset(bitvec + (base >> 3), 0, n >> 3);
390 base += n & ~7;
391 n &= 7;
392 }
393 if (n) {
394 bitvec[base >> 3] &= (~0U) << n;
395 }
396 }
397 /*
398 * Test whether bit #bit is set in the bitmap pointed to by bitvec.
399 */
400 static int
401 bit_is_set(unsigned char *bitvec, int bit)
402 {
403 return (bitvec[bit >> 3] & (1 << (bit & 7)));
404 }
405 /*
406 * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
407 */
408 static int
409 bit_is_clr(unsigned char *bitvec, int bit)
410 {
411 return (!bit_is_set(bitvec, bit));
412 }
413 /*
414 * Test whether a whole block of bits is set in a bitmap. This is
415 * designed for testing (aligned) disk blocks in a bit-per-frag
416 * bitmap; it has assumptions wired into it based on that, essentially
417 * that the entire block fits into a single byte. This returns true
418 * iff _all_ the bits are set; it is not just the complement of
419 * blk_is_clr on the same arguments (unless blkfrags==1).
420 */
421 static int
422 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
423 {
424 unsigned int mask;
425
426 mask = (~((~0U) << blkfrags)) << (blkbase & 7);
427 return ((bitvec[blkbase >> 3] & mask) == mask);
428 }
429 /*
430 * Test whether a whole block of bits is clear in a bitmap. See
431 * blk_is_set (above) for assumptions. This returns true iff _all_
432 * the bits are clear; it is not just the complement of blk_is_set on
433 * the same arguments (unless blkfrags==1).
434 */
435 static int
436 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
437 {
438 unsigned int mask;
439
440 mask = (~((~0U) << blkfrags)) << (blkbase & 7);
441 return ((bitvec[blkbase >> 3] & mask) == 0);
442 }
443 /*
444 * Initialize a new cg. Called when growing. Assumes memory has been
445 * allocated but not otherwise set up. This code sets the fields of
446 * the cg, initializes the bitmaps (and cluster summaries, if
447 * applicable), updates both per-cylinder summary info and the global
448 * summary info in newsb; it also writes out new inodes for the cg.
449 *
450 * This code knows it can never be called for cg 0, which makes it a
451 * bit simpler than it would otherwise be.
452 */
453 static void
454 initcg(int cgn)
455 {
456 struct cg *cg; /* The in-core cg, of course */
457 int base; /* Disk address of cg base */
458 int dlow; /* Size of pre-cg data area */
459 int dhigh; /* Offset of post-inode data area, from base */
460 int dmax; /* Offset of end of post-inode data area */
461 int i; /* Generic loop index */
462 int n; /* Generic count */
463 int start; /* start of cg maps */
464
465 cg = cgs[cgn];
466 /* Place the data areas */
467 base = cgbase(newsb, cgn);
468 dlow = cgsblock(newsb, cgn) - base;
469 dhigh = cgdmin(newsb, cgn) - base;
470 dmax = newsb->fs_size - base;
471 if (dmax > newsb->fs_fpg)
472 dmax = newsb->fs_fpg;
473 start = &cg->cg_space[0] - (unsigned char *) cg;
474 /*
475 * Clear out the cg - assumes all-0-bytes is the correct way
476 * to initialize fields we don't otherwise touch, which is
477 * perhaps not the right thing to do, but it's what fsck and
478 * mkfs do.
479 */
480 memset(cg, 0, newsb->fs_cgsize);
481 if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
482 cg->cg_time = newsb->fs_time;
483 cg->cg_magic = CG_MAGIC;
484 cg->cg_cgx = cgn;
485 cg->cg_niblk = newsb->fs_ipg;
486 cg->cg_ndblk = dmax;
487
488 if (is_ufs2) {
489 cg->cg_time = newsb->fs_time;
490 cg->cg_initediblk = newsb->fs_ipg < 2 * FFS_INOPB(newsb) ?
491 newsb->fs_ipg : 2 * FFS_INOPB(newsb);
492 cg->cg_iusedoff = start;
493 } else {
494 cg->cg_old_time = newsb->fs_time;
495 cg->cg_old_niblk = cg->cg_niblk;
496 cg->cg_niblk = 0;
497 cg->cg_initediblk = 0;
498
499
500 cg->cg_old_ncyl = newsb->fs_old_cpg;
501 /* Update the cg_old_ncyl value for the last cylinder. */
502 if (cgn == newsb->fs_ncg - 1) {
503 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
504 cg->cg_old_ncyl = newsb->fs_old_ncyl %
505 newsb->fs_old_cpg;
506 }
507
508 /* Set up the bitmap pointers. We have to be careful
509 * to lay out the cg _exactly_ the way mkfs and fsck
510 * do it, since fsck compares the _entire_ cg against
511 * a recomputed cg, and whines if there is any
512 * mismatch, including the bitmap offsets. */
513 /* XXX update this comment when fsck is fixed */
514 cg->cg_old_btotoff = start;
515 cg->cg_old_boff = cg->cg_old_btotoff
516 + (newsb->fs_old_cpg * sizeof(int32_t));
517 cg->cg_iusedoff = cg->cg_old_boff +
518 (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
519 }
520 cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
521 if (newsb->fs_contigsumsize > 0) {
522 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
523 cg->cg_clustersumoff = cg->cg_freeoff +
524 howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t);
525 cg->cg_clustersumoff =
526 roundup(cg->cg_clustersumoff, sizeof(int32_t));
527 cg->cg_clusteroff = cg->cg_clustersumoff +
528 ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
529 cg->cg_nextfreeoff = cg->cg_clusteroff +
530 howmany(ffs_fragstoblks(newsb,newsb->fs_fpg), NBBY);
531 n = dlow / newsb->fs_frag;
532 if (n > 0) {
533 set_bits(cg_clustersfree(cg, 0), 0, n);
534 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
535 newsb->fs_contigsumsize : n]++;
536 }
537 } else {
538 cg->cg_nextfreeoff = cg->cg_freeoff +
539 howmany(newsb->fs_fpg, NBBY);
540 }
541 /* Mark the data areas as free; everything else is marked busy by the
542 * memset() up at the top. */
543 set_bits(cg_blksfree(cg, 0), 0, dlow);
544 set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
545 /* Initialize summary info */
546 cg->cg_cs.cs_ndir = 0;
547 cg->cg_cs.cs_nifree = newsb->fs_ipg;
548 cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
549 cg->cg_cs.cs_nffree = 0;
550
551 /* This is the simplest way of doing this; we perhaps could
552 * compute the correct cg_blktot()[] and cg_blks()[] values
553 * other ways, but it would be complicated and hardly seems
554 * worth the effort. (The reason there isn't
555 * frag-at-beginning and frag-at-end code here, like the code
556 * below for the post-inode data area, is that the pre-sb data
557 * area always starts at 0, and thus is block-aligned, and
558 * always ends at the sb, which is block-aligned.) */
559 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
560 for (i = 0; i < dlow; i += newsb->fs_frag) {
561 old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++;
562 old_cg_blks(newsb, cg,
563 old_cbtocylno(newsb, i),
564 0)[old_cbtorpos(newsb, i)]++;
565 }
566
567 /* Deal with a partial block at the beginning of the post-inode area.
568 * I'm not convinced this can happen - I think the inodes are always
569 * block-aligned and always an integral number of blocks - but it's
570 * cheap to do the right thing just in case. */
571 if (dhigh % newsb->fs_frag) {
572 n = newsb->fs_frag - (dhigh % newsb->fs_frag);
573 cg->cg_frsum[n]++;
574 cg->cg_cs.cs_nffree += n;
575 dhigh += n;
576 }
577 n = (dmax - dhigh) / newsb->fs_frag;
578 /* We have n full-size blocks in the post-inode data area. */
579 if (n > 0) {
580 cg->cg_cs.cs_nbfree += n;
581 if (newsb->fs_contigsumsize > 0) {
582 i = dhigh / newsb->fs_frag;
583 set_bits(cg_clustersfree(cg, 0), i, n);
584 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
585 newsb->fs_contigsumsize : n]++;
586 }
587 if (is_ufs2 == 0)
588 for (i = n; i > 0; i--) {
589 old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
590 dhigh)]++;
591 old_cg_blks(newsb, cg,
592 old_cbtocylno(newsb, dhigh),
593 0)[old_cbtorpos(newsb,
594 dhigh)]++;
595 dhigh += newsb->fs_frag;
596 }
597 }
598 if (is_ufs2 == 0) {
599 /* Deal with any leftover frag at the end of the cg. */
600 i = dmax - dhigh;
601 if (i) {
602 cg->cg_frsum[i]++;
603 cg->cg_cs.cs_nffree += i;
604 }
605 }
606 /* Update the csum info. */
607 csums[cgn] = cg->cg_cs;
608 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
609 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
610 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
611 if (is_ufs2 == 0)
612 /* Write out the cleared inodes. */
613 writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes,
614 newsb->fs_ipg * sizeof(*zinodes));
615 /* Dirty the cg. */
616 cgflags[cgn] |= CGF_DIRTY;
617 }
618 /*
619 * Find free space, at least nfrags consecutive frags of it. Pays no
620 * attention to block boundaries, but refuses to straddle cg
621 * boundaries, even if the disk blocks involved are in fact
622 * consecutive. Return value is the frag number of the first frag of
623 * the block, or -1 if no space was found. Uses newsb for sb values,
624 * and assumes the cgs[] structures correctly describe the area to be
625 * searched.
626 *
627 * XXX is there a bug lurking in the ignoring of block boundaries by
628 * the routine used by fragmove() in evict_data()? Can an end-of-file
629 * frag legally straddle a block boundary? If not, this should be
630 * cloned and fixed to stop at block boundaries for that use. The
631 * current one may still be needed for csum info motion, in case that
632 * takes up more than a whole block (is the csum info allowed to begin
633 * partway through a block and continue into the following block?).
634 *
635 * If we wrap off the end of the file system back to the beginning, we
636 * can end up searching the end of the file system twice. I ignore
637 * this inefficiency, since if that happens we're going to croak with
638 * a no-space error anyway, so it happens at most once.
639 */
640 static int
641 find_freespace(unsigned int nfrags)
642 {
643 static int hand = 0; /* hand rotates through all frags in the fs */
644 int cgsize; /* size of the cg hand currently points into */
645 int cgn; /* number of cg hand currently points into */
646 int fwc; /* frag-within-cg number of frag hand points
647 * to */
648 unsigned int run; /* length of run of free frags seen so far */
649 int secondpass; /* have we wrapped from end of fs to
650 * beginning? */
651 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
652
653 cgn = dtog(newsb, hand);
654 fwc = dtogd(newsb, hand);
655 secondpass = (hand == 0);
656 run = 0;
657 bits = cg_blksfree(cgs[cgn], 0);
658 cgsize = cgs[cgn]->cg_ndblk;
659 while (1) {
660 if (bit_is_set(bits, fwc)) {
661 run++;
662 if (run >= nfrags)
663 return (hand + 1 - run);
664 } else {
665 run = 0;
666 }
667 hand++;
668 fwc++;
669 if (fwc >= cgsize) {
670 fwc = 0;
671 cgn++;
672 if (cgn >= newsb->fs_ncg) {
673 hand = 0;
674 if (secondpass)
675 return (-1);
676 secondpass = 1;
677 cgn = 0;
678 }
679 bits = cg_blksfree(cgs[cgn], 0);
680 cgsize = cgs[cgn]->cg_ndblk;
681 run = 0;
682 }
683 }
684 }
685 /*
686 * Find a free block of disk space. Finds an entire block of frags,
687 * all of which are free. Return value is the frag number of the
688 * first frag of the block, or -1 if no space was found. Uses newsb
689 * for sb values, and assumes the cgs[] structures correctly describe
690 * the area to be searched.
691 *
692 * See find_freespace(), above, for remarks about hand wrapping around.
693 */
694 static int
695 find_freeblock(void)
696 {
697 static int hand = 0; /* hand rotates through all frags in fs */
698 int cgn; /* cg number of cg hand points into */
699 int fwc; /* frag-within-cg number of frag hand points
700 * to */
701 int cgsize; /* size of cg hand points into */
702 int secondpass; /* have we wrapped from end to beginning? */
703 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
704
705 cgn = dtog(newsb, hand);
706 fwc = dtogd(newsb, hand);
707 secondpass = (hand == 0);
708 bits = cg_blksfree(cgs[cgn], 0);
709 cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
710 while (1) {
711 if (blk_is_set(bits, fwc, newsb->fs_frag))
712 return (hand);
713 fwc += newsb->fs_frag;
714 hand += newsb->fs_frag;
715 if (fwc >= cgsize) {
716 fwc = 0;
717 cgn++;
718 if (cgn >= newsb->fs_ncg) {
719 hand = 0;
720 if (secondpass)
721 return (-1);
722 secondpass = 1;
723 cgn = 0;
724 }
725 bits = cg_blksfree(cgs[cgn], 0);
726 cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
727 }
728 }
729 }
730 /*
731 * Find a free inode, returning its inumber or -1 if none was found.
732 * Uses newsb for sb values, and assumes the cgs[] structures
733 * correctly describe the area to be searched.
734 *
735 * See find_freespace(), above, for remarks about hand wrapping around.
736 */
737 static int
738 find_freeinode(void)
739 {
740 static int hand = 0; /* hand rotates through all inodes in fs */
741 int cgn; /* cg number of cg hand points into */
742 int iwc; /* inode-within-cg number of inode hand points
743 * to */
744 int secondpass; /* have we wrapped from end to beginning? */
745 unsigned char *bits; /* cg_inosused()[] for cg hand points into */
746
747 cgn = hand / newsb->fs_ipg;
748 iwc = hand % newsb->fs_ipg;
749 secondpass = (hand == 0);
750 bits = cg_inosused(cgs[cgn], 0);
751 while (1) {
752 if (bit_is_clr(bits, iwc))
753 return (hand);
754 hand++;
755 iwc++;
756 if (iwc >= newsb->fs_ipg) {
757 iwc = 0;
758 cgn++;
759 if (cgn >= newsb->fs_ncg) {
760 hand = 0;
761 if (secondpass)
762 return (-1);
763 secondpass = 1;
764 cgn = 0;
765 }
766 bits = cg_inosused(cgs[cgn], 0);
767 }
768 }
769 }
770 /*
771 * Mark a frag as free. Sets the frag's bit in the cg_blksfree bitmap
772 * for the appropriate cg, and marks the cg as dirty.
773 */
774 static void
775 free_frag(int fno)
776 {
777 int cgn;
778
779 cgn = dtog(newsb, fno);
780 set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
781 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
782 }
783 /*
784 * Allocate a frag. Clears the frag's bit in the cg_blksfree bitmap
785 * for the appropriate cg, and marks the cg as dirty.
786 */
787 static void
788 alloc_frag(int fno)
789 {
790 int cgn;
791
792 cgn = dtog(newsb, fno);
793 clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
794 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
795 }
796 /*
797 * Fix up the csum array. If shrinking, this involves freeing zero or
798 * more frags; if growing, it involves allocating them, or if the
799 * frags being grown into aren't free, finding space elsewhere for the
800 * csum info. (If the number of occupied frags doesn't change,
801 * nothing happens here.)
802 */
803 static void
804 csum_fixup(void)
805 {
806 int nold; /* # frags in old csum info */
807 int ntot; /* # frags in new csum info */
808 int nnew; /* ntot-nold */
809 int newloc; /* new location for csum info, if necessary */
810 int i; /* generic loop index */
811 int j; /* generic loop index */
812 int f; /* "from" frag number, if moving */
813 int t; /* "to" frag number, if moving */
814 int cgn; /* cg number, used when shrinking */
815
816 ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
817 nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
818 nnew = ntot - nold;
819 /* First, if there's no change in frag counts, it's easy. */
820 if (nnew == 0)
821 return;
822 /* Next, if we're shrinking, it's almost as easy. Just free up any
823 * frags in the old area we no longer need. */
824 if (nnew < 0) {
825 for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
826 j < 0;
827 i--, j++) {
828 free_frag(i);
829 }
830 return;
831 }
832 /* We must be growing. Check to see that the new csum area fits
833 * within the file system. I think this can never happen, since for
834 * the csum area to grow, we must be adding at least one cg, so the
835 * old csum area can't be this close to the end of the new file system.
836 * But it's a cheap check. */
837 /* XXX what if csum info is at end of cg and grows into next cg, what
838 * if it spills over onto the next cg's backup superblock? Can this
839 * happen? */
840 if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
841 /* Okay, it fits - now, see if the space we want is free. */
842 for ((i = newsb->fs_csaddr + nold), (j = nnew);
843 j > 0;
844 i++, j--) {
845 cgn = dtog(newsb, i);
846 if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
847 dtogd(newsb, i)))
848 break;
849 }
850 if (j <= 0) {
851 /* Win win - all the frags we want are free. Allocate
852 * 'em and we're all done. */
853 for ((i = newsb->fs_csaddr + ntot - nnew),
854 (j = nnew); j > 0; i++, j--) {
855 alloc_frag(i);
856 }
857 return;
858 }
859 }
860 /* We have to move the csum info, sigh. Look for new space, free old
861 * space, and allocate new. Update fs_csaddr. We don't copy anything
862 * on disk at this point; the csum info will be written to the
863 * then-current fs_csaddr as part of the final flush. */
864 newloc = find_freespace(ntot);
865 if (newloc < 0)
866 errx(EXIT_FAILURE, "Sorry, no space available for new csums");
867 for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
868 if (i < nold) {
869 free_frag(f);
870 }
871 alloc_frag(t);
872 }
873 newsb->fs_csaddr = newloc;
874 }
875 /*
876 * Recompute newsb->fs_dsize. Just scans all cgs, adding the number of
877 * data blocks in that cg to the total.
878 */
879 static void
880 recompute_fs_dsize(void)
881 {
882 int i;
883
884 newsb->fs_dsize = 0;
885 for (i = 0; i < newsb->fs_ncg; i++) {
886 int dlow; /* size of before-sb data area */
887 int dhigh; /* offset of post-inode data area */
888 int dmax; /* total size of cg */
889 int base; /* base of cg, since cgsblock() etc add it in */
890 base = cgbase(newsb, i);
891 dlow = cgsblock(newsb, i) - base;
892 dhigh = cgdmin(newsb, i) - base;
893 dmax = newsb->fs_size - base;
894 if (dmax > newsb->fs_fpg)
895 dmax = newsb->fs_fpg;
896 newsb->fs_dsize += dlow + dmax - dhigh;
897 }
898 /* Space in cg 0 before cgsblock is boot area, not free space! */
899 newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
900 /* And of course the csum info takes up space. */
901 newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
902 }
903 /*
904 * Return the current time. We call this and assign, rather than
905 * calling time() directly, as insulation against OSes where fs_time
906 * is not a time_t.
907 */
908 static time_t
909 timestamp(void)
910 {
911 time_t t;
912
913 time(&t);
914 return (t);
915 }
916 /*
917 * Grow the file system.
918 */
919 static void
920 grow(void)
921 {
922 int i;
923
924 /* Update the timestamp. */
925 newsb->fs_time = timestamp();
926 /* Allocate and clear the new-inode area, in case we add any cgs. */
927 zinodes = alloconce(newsb->fs_ipg * sizeof(*zinodes), "zeroed inodes");
928 memset(zinodes, 0, newsb->fs_ipg * sizeof(*zinodes));
929 /* Update the size. */
930 newsb->fs_size = FFS_DBTOFSB(newsb, newsize);
931 /* Did we actually not grow? (This can happen if newsize is less than
932 * a frag larger than the old size - unlikely, but no excuse to
933 * misbehave if it happens.) */
934 if (newsb->fs_size == oldsb->fs_size) {
935 printf("New fs size %"PRIu64" = old fs size %"PRIu64
936 ", not growing.\n", newsb->fs_size, oldsb->fs_size);
937 return;
938 }
939 /* Check that the new last sector (frag, actually) is writable. Since
940 * it's at least one frag larger than it used to be, we know we aren't
941 * overwriting anything important by this. (The choice of sbbuf as
942 * what to write is irrelevant; it's just something handy that's known
943 * to be at least one frag in size.) */
944 writeat(FFS_FSBTODB(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
945 if (is_ufs2)
946 newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
947 else {
948 /* Update fs_old_ncyl and fs_ncg. */
949 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
950 newsb->fs_old_spc);
951 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
952 }
953
954 /* Does the last cg end before the end of its inode area? There is no
955 * reason why this couldn't be handled, but it would complicate a lot
956 * of code (in all file system code - fsck, kernel, etc) because of the
957 * potential partial inode area, and the gain in space would be
958 * minimal, at most the pre-sb data area. */
959 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
960 newsb->fs_ncg--;
961 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
962 newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc)
963 / NSPF(newsb);
964 printf("Warning: last cylinder group is too small;\n");
965 printf(" dropping it. New size = %lu.\n",
966 (unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size));
967 }
968 /* Find out how big the csum area is, and realloc csums if bigger. */
969 newsb->fs_cssize = ffs_fragroundup(newsb,
970 newsb->fs_ncg * sizeof(struct csum));
971 if (newsb->fs_cssize > oldsb->fs_cssize)
972 csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
973 /* If we're adding any cgs, realloc structures and set up the new
974 cgs. */
975 if (newsb->fs_ncg > oldsb->fs_ncg) {
976 char *cgp;
977 cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(*cgs),
978 "cg pointers");
979 cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
980 memset(cgflags + oldsb->fs_ncg, 0,
981 newsb->fs_ncg - oldsb->fs_ncg);
982 cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
983 "cgs");
984 for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
985 cgs[i] = (struct cg *) cgp;
986 initcg(i);
987 cgp += cgblksz;
988 }
989 cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
990 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
991 }
992 /* If the old fs ended partway through a cg, we have to update the old
993 * last cg (though possibly not to a full cg!). */
994 if (oldsb->fs_size % oldsb->fs_fpg) {
995 struct cg *cg;
996 int newcgsize;
997 int prevcgtop;
998 int oldcgsize;
999 cg = cgs[oldsb->fs_ncg - 1];
1000 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
1001 prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
1002 newcgsize = newsb->fs_size - prevcgtop;
1003 if (newcgsize > newsb->fs_fpg)
1004 newcgsize = newsb->fs_fpg;
1005 oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
1006 set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
1007 cg->cg_old_ncyl = oldsb->fs_old_cpg;
1008 cg->cg_ndblk = newcgsize;
1009 }
1010 /* Fix up the csum info, if necessary. */
1011 csum_fixup();
1012 /* Make fs_dsize match the new reality. */
1013 recompute_fs_dsize();
1014 }
1015 /*
1016 * Call (*fn)() for each inode, passing the inode and its inumber. The
1017 * number of cylinder groups is pased in, so this can be used to map
1018 * over either the old or the new file system's set of inodes.
1019 */
1020 static void
1021 map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg),
1022 int ncg, void *cbarg) {
1023 int i;
1024 int ni;
1025
1026 ni = oldsb->fs_ipg * ncg;
1027 for (i = 0; i < ni; i++)
1028 (*fn) (inodes + i, i, cbarg);
1029 }
1030 /* Values for the third argument to the map function for
1031 * map_inode_data_blocks. MDB_DATA indicates the block is contains
1032 * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
1033 * indirect block. The MDB_INDIR_PRE call is made before the indirect
1034 * block pointers are followed and the pointed-to blocks scanned,
1035 * MDB_INDIR_POST after.
1036 */
1037 #define MDB_DATA 1
1038 #define MDB_INDIR_PRE 2
1039 #define MDB_INDIR_POST 3
1040
1041 typedef void (*mark_callback_t) (off_t blocknum, unsigned int nfrags,
1042 unsigned int blksize, int opcode);
1043
1044 /* Helper function - handles a data block. Calls the callback
1045 * function and returns number of bytes occupied in file (actually,
1046 * rounded up to a frag boundary). The name is historical. */
1047 static int
1048 markblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o)
1049 {
1050 int sz;
1051 int nb;
1052 off_t filesize;
1053
1054 filesize = DIP(di,di_size);
1055 if (o >= filesize)
1056 return (0);
1057 sz = dblksize(newsb, di, ffs_lblkno(newsb, o), filesize);
1058 nb = (sz > filesize - o) ? filesize - o : sz;
1059 if (bn)
1060 (*fn) (bn, ffs_numfrags(newsb, sz), nb, MDB_DATA);
1061 return (sz);
1062 }
1063 /* Helper function - handles an indirect block. Makes the
1064 * MDB_INDIR_PRE callback for the indirect block, loops over the
1065 * pointers and recurses, and makes the MDB_INDIR_POST callback.
1066 * Returns the number of bytes occupied in file, as does markblk().
1067 * For the sake of update_for_data_move(), we read the indirect block
1068 * _after_ making the _PRE callback. The name is historical. */
1069 static int
1070 markiblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o, int lev)
1071 {
1072 int i;
1073 int j;
1074 unsigned k;
1075 int tot;
1076 static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
1077 static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
1078 static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
1079 static int32_t *indirblks[3] = {
1080 &indirblk1[0], &indirblk2[0], &indirblk3[0]
1081 };
1082
1083 if (lev < 0)
1084 return (markblk(fn, di, bn, o));
1085 if (bn == 0) {
1086 for (i = newsb->fs_bsize;
1087 lev >= 0;
1088 i *= FFS_NINDIR(newsb), lev--);
1089 return (i);
1090 }
1091 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
1092 readat(FFS_FSBTODB(newsb, bn), indirblks[lev], newsb->fs_bsize);
1093 if (needswap)
1094 for (k = 0; k < howmany(MAXBSIZE, sizeof(int32_t)); k++)
1095 indirblks[lev][k] = bswap32(indirblks[lev][k]);
1096 tot = 0;
1097 for (i = 0; i < FFS_NINDIR(newsb); i++) {
1098 j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
1099 if (j == 0)
1100 break;
1101 o += j;
1102 tot += j;
1103 }
1104 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
1105 return (tot);
1106 }
1107
1108
1109 /*
1110 * Call (*fn)() for each data block for an inode. This routine assumes
1111 * the inode is known to be of a type that has data blocks (file,
1112 * directory, or non-fast symlink). The called function is:
1113 *
1114 * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
1115 *
1116 * where blkno is the frag number, nf is the number of frags starting
1117 * at blkno (always <= fs_frag), nb is the number of bytes that belong
1118 * to the file (usually nf*fs_frag, often less for the last block/frag
1119 * of a file).
1120 */
1121 static void
1122 map_inode_data_blocks(union dinode * di, mark_callback_t fn)
1123 {
1124 off_t o; /* offset within inode */
1125 int inc; /* increment for o - maybe should be off_t? */
1126 int b; /* index within di_db[] and di_ib[] arrays */
1127
1128 /* Scan the direct blocks... */
1129 o = 0;
1130 for (b = 0; b < UFS_NDADDR; b++) {
1131 inc = markblk(fn, di, DIP(di,di_db[b]), o);
1132 if (inc == 0)
1133 break;
1134 o += inc;
1135 }
1136 /* ...and the indirect blocks. */
1137 if (inc) {
1138 for (b = 0; b < UFS_NIADDR; b++) {
1139 inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b);
1140 if (inc == 0)
1141 return;
1142 o += inc;
1143 }
1144 }
1145 }
1146
1147 static void
1148 dblk_callback(union dinode * di, unsigned int inum, void *arg)
1149 {
1150 mark_callback_t fn;
1151 off_t filesize;
1152
1153 filesize = DIP(di,di_size);
1154 fn = (mark_callback_t) arg;
1155 switch (DIP(di,di_mode) & IFMT) {
1156 case IFLNK:
1157 if (filesize <= newsb->fs_maxsymlinklen) {
1158 break;
1159 }
1160 /* FALLTHROUGH */
1161 case IFDIR:
1162 case IFREG:
1163 map_inode_data_blocks(di, fn);
1164 break;
1165 }
1166 }
1167 /*
1168 * Make a callback call, a la map_inode_data_blocks, for all data
1169 * blocks in the entire fs. This is used only once, in
1170 * update_for_data_move, but it's out at top level because the complex
1171 * downward-funarg nesting that would otherwise result seems to give
1172 * gcc gastric distress.
1173 */
1174 static void
1175 map_data_blocks(mark_callback_t fn, int ncg)
1176 {
1177 map_inodes(&dblk_callback, ncg, (void *) fn);
1178 }
1179 /*
1180 * Initialize the blkmove array.
1181 */
1182 static void
1183 blkmove_init(void)
1184 {
1185 int i;
1186
1187 blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
1188 for (i = 0; i < oldsb->fs_size; i++)
1189 blkmove[i] = i;
1190 }
1191 /*
1192 * Load the inodes off disk. Allocates the structures and initializes
1193 * them - the inodes from disk, the flags to zero.
1194 */
1195 static void
1196 loadinodes(void)
1197 {
1198 int imax, ino, i, j;
1199 struct ufs1_dinode *dp1 = NULL;
1200 struct ufs2_dinode *dp2 = NULL;
1201
1202 /* read inodes one fs block at a time and copy them */
1203
1204 inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
1205 sizeof(union dinode), "inodes");
1206 iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
1207 memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg);
1208
1209 ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf");
1210 if (is_ufs2)
1211 dp2 = (struct ufs2_dinode *)ibuf;
1212 else
1213 dp1 = (struct ufs1_dinode *)ibuf;
1214
1215 for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) {
1216 readat(FFS_FSBTODB(oldsb, ino_to_fsba(oldsb, ino)), ibuf,
1217 oldsb->fs_bsize);
1218
1219 for (i = 0; i < oldsb->fs_inopb; i++) {
1220 if (is_ufs2) {
1221 if (needswap) {
1222 ffs_dinode2_swap(&(dp2[i]), &(dp2[i]));
1223 for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++)
1224 dp2[i].di_db[j] =
1225 bswap32(dp2[i].di_db[j]);
1226 }
1227 memcpy(&inodes[ino].dp2, &dp2[i],
1228 sizeof(inodes[ino].dp2));
1229 } else {
1230 if (needswap) {
1231 ffs_dinode1_swap(&(dp1[i]), &(dp1[i]));
1232 for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++)
1233 dp1[i].di_db[j] =
1234 bswap32(dp1[i].di_db[j]);
1235 }
1236 memcpy(&inodes[ino].dp1, &dp1[i],
1237 sizeof(inodes[ino].dp1));
1238 }
1239 if (++ino > imax)
1240 errx(EXIT_FAILURE,
1241 "Exceeded number of inodes");
1242 }
1243
1244 }
1245 }
1246 /*
1247 * Report a file-system-too-full problem.
1248 */
1249 __dead static void
1250 toofull(void)
1251 {
1252 errx(EXIT_FAILURE, "Sorry, would run out of data blocks");
1253 }
1254 /*
1255 * Record a desire to move "n" frags from "from" to "to".
1256 */
1257 static void
1258 mark_move(unsigned int from, unsigned int to, unsigned int n)
1259 {
1260 for (; n > 0; n--)
1261 blkmove[from++] = to++;
1262 }
1263 /* Helper function - evict n frags, starting with start (cg-relative).
1264 * The free bitmap is scanned, unallocated frags are ignored, and
1265 * each block of consecutive allocated frags is moved as a unit.
1266 */
1267 static void
1268 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
1269 {
1270 unsigned int i;
1271 int run;
1272
1273 run = 0;
1274 for (i = 0; i <= n; i++) {
1275 if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
1276 run++;
1277 } else {
1278 if (run > 0) {
1279 int off;
1280 off = find_freespace(run);
1281 if (off < 0)
1282 toofull();
1283 mark_move(base + start + i - run, off, run);
1284 set_bits(cg_blksfree(cg, 0), start + i - run,
1285 run);
1286 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1287 dtogd(oldsb, off), run);
1288 }
1289 run = 0;
1290 }
1291 }
1292 }
1293 /*
1294 * Evict all data blocks from the given cg, starting at minfrag (based
1295 * at the beginning of the cg), for length nfrag. The eviction is
1296 * assumed to be entirely data-area; this should not be called with a
1297 * range overlapping the metadata structures in the cg. It also
1298 * assumes minfrag points into the given cg; it will misbehave if this
1299 * is not true.
1300 *
1301 * See the comment header on find_freespace() for one possible bug
1302 * lurking here.
1303 */
1304 static void
1305 evict_data(struct cg * cg, unsigned int minfrag, int nfrag)
1306 {
1307 int base; /* base of cg (in frags from beginning of fs) */
1308
1309 base = cgbase(oldsb, cg->cg_cgx);
1310 /* Does the boundary fall in the middle of a block? To avoid
1311 * breaking between frags allocated as consecutive, we always
1312 * evict the whole block in this case, though one could argue
1313 * we should check to see if the frag before or after the
1314 * break is unallocated. */
1315 if (minfrag % oldsb->fs_frag) {
1316 int n;
1317 n = minfrag % oldsb->fs_frag;
1318 minfrag -= n;
1319 nfrag += n;
1320 }
1321 /* Do whole blocks. If a block is wholly free, skip it; if
1322 * wholly allocated, move it in toto. If neither, call
1323 * fragmove() to move the frags to new locations. */
1324 while (nfrag >= oldsb->fs_frag) {
1325 if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
1326 if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
1327 oldsb->fs_frag)) {
1328 int off;
1329 off = find_freeblock();
1330 if (off < 0)
1331 toofull();
1332 mark_move(base + minfrag, off, oldsb->fs_frag);
1333 set_bits(cg_blksfree(cg, 0), minfrag,
1334 oldsb->fs_frag);
1335 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1336 dtogd(oldsb, off), oldsb->fs_frag);
1337 } else {
1338 fragmove(cg, base, minfrag, oldsb->fs_frag);
1339 }
1340 }
1341 minfrag += oldsb->fs_frag;
1342 nfrag -= oldsb->fs_frag;
1343 }
1344 /* Clean up any sub-block amount left over. */
1345 if (nfrag) {
1346 fragmove(cg, base, minfrag, nfrag);
1347 }
1348 }
1349 /*
1350 * Move all data blocks according to blkmove. We have to be careful,
1351 * because we may be updating indirect blocks that will themselves be
1352 * getting moved, or inode int32_t arrays that point to indirect
1353 * blocks that will be moved. We call this before
1354 * update_for_data_move, and update_for_data_move does inodes first,
1355 * then indirect blocks in preorder, so as to make sure that the
1356 * file system is self-consistent at all points, for better crash
1357 * tolerance. (We can get away with this only because all the writes
1358 * done by perform_data_move() are writing into space that's not used
1359 * by the old file system.) If we crash, some things may point to the
1360 * old data and some to the new, but both copies are the same. The
1361 * only wrong things should be csum info and free bitmaps, which fsck
1362 * is entirely capable of cleaning up.
1363 *
1364 * Since blkmove_init() initializes all blocks to move to their current
1365 * locations, we can have two blocks marked as wanting to move to the
1366 * same location, but only two and only when one of them is the one
1367 * that was already there. So if blkmove[i]==i, we ignore that entry
1368 * entirely - for unallocated blocks, we don't want it (and may be
1369 * putting something else there), and for allocated blocks, we don't
1370 * want to copy it anywhere.
1371 */
1372 static void
1373 perform_data_move(void)
1374 {
1375 int i;
1376 int run;
1377 int maxrun;
1378 char buf[65536];
1379
1380 maxrun = sizeof(buf) / newsb->fs_fsize;
1381 run = 0;
1382 for (i = 0; i < oldsb->fs_size; i++) {
1383 if ((blkmove[i] == (unsigned)i /*XXX cast*/) ||
1384 (run >= maxrun) ||
1385 ((run > 0) &&
1386 (blkmove[i] != blkmove[i - 1] + 1))) {
1387 if (run > 0) {
1388 readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
1389 run << oldsb->fs_fshift);
1390 writeat(FFS_FSBTODB(oldsb, blkmove[i - run]),
1391 &buf[0], run << oldsb->fs_fshift);
1392 }
1393 run = 0;
1394 }
1395 if (blkmove[i] != (unsigned)i /*XXX cast*/)
1396 run++;
1397 }
1398 if (run > 0) {
1399 readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
1400 run << oldsb->fs_fshift);
1401 writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), &buf[0],
1402 run << oldsb->fs_fshift);
1403 }
1404 }
1405 /*
1406 * This modifies an array of int32_t, according to blkmove. This is
1407 * used to update inode block arrays and indirect blocks to point to
1408 * the new locations of data blocks.
1409 *
1410 * Return value is the number of int32_ts that needed updating; in
1411 * particular, the return value is zero iff nothing was modified.
1412 */
1413 static int
1414 movemap_blocks(int32_t * vec, int n)
1415 {
1416 int rv;
1417
1418 rv = 0;
1419 for (; n > 0; n--, vec++) {
1420 if (blkmove[*vec] != (unsigned)*vec /*XXX cast*/) {
1421 *vec = blkmove[*vec];
1422 rv++;
1423 }
1424 }
1425 return (rv);
1426 }
1427 static void
1428 moveblocks_callback(union dinode * di, unsigned int inum, void *arg)
1429 {
1430 int32_t *dblkptr, *iblkptr;
1431
1432 switch (DIP(di,di_mode) & IFMT) {
1433 case IFLNK:
1434 if ((off_t)DIP(di,di_size) <= oldsb->fs_maxsymlinklen) {
1435 break;
1436 }
1437 /* FALLTHROUGH */
1438 case IFDIR:
1439 case IFREG:
1440 if (is_ufs2) {
1441 /* XXX these are not int32_t and this is WRONG! */
1442 dblkptr = (void *) &(di->dp2.di_db[0]);
1443 iblkptr = (void *) &(di->dp2.di_ib[0]);
1444 } else {
1445 dblkptr = &(di->dp1.di_db[0]);
1446 iblkptr = &(di->dp1.di_ib[0]);
1447 }
1448 /*
1449 * Don't || these two calls; we need their
1450 * side-effects.
1451 */
1452 if (movemap_blocks(dblkptr, UFS_NDADDR)) {
1453 iflags[inum] |= IF_DIRTY;
1454 }
1455 if (movemap_blocks(iblkptr, UFS_NIADDR)) {
1456 iflags[inum] |= IF_DIRTY;
1457 }
1458 break;
1459 }
1460 }
1461
1462 static void
1463 moveindir_callback(off_t off, unsigned int nfrag, unsigned int nbytes,
1464 int kind)
1465 {
1466 unsigned int i;
1467
1468 if (kind == MDB_INDIR_PRE) {
1469 int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
1470 readat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
1471 if (needswap)
1472 for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
1473 blk[i] = bswap32(blk[i]);
1474 if (movemap_blocks(&blk[0], FFS_NINDIR(oldsb))) {
1475 if (needswap)
1476 for (i = 0; i < howmany(MAXBSIZE,
1477 sizeof(int32_t)); i++)
1478 blk[i] = bswap32(blk[i]);
1479 writeat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
1480 }
1481 }
1482 }
1483 /*
1484 * Update all inode data arrays and indirect blocks to point to the new
1485 * locations of data blocks. See the comment header on
1486 * perform_data_move for some ordering considerations.
1487 */
1488 static void
1489 update_for_data_move(void)
1490 {
1491 map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
1492 map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
1493 }
1494 /*
1495 * Initialize the inomove array.
1496 */
1497 static void
1498 inomove_init(void)
1499 {
1500 int i;
1501
1502 inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
1503 "inomove");
1504 for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
1505 inomove[i] = i;
1506 }
1507 /*
1508 * Flush all dirtied inodes to disk. Scans the inode flags array; for
1509 * each dirty inode, it sets the BDIRTY bit on the first inode in the
1510 * block containing the dirty inode. Then it scans by blocks, and for
1511 * each marked block, writes it.
1512 */
1513 static void
1514 flush_inodes(void)
1515 {
1516 int i, j, k, na, ni, m;
1517 struct ufs1_dinode *dp1 = NULL;
1518 struct ufs2_dinode *dp2 = NULL;
1519
1520 na = UFS_NDADDR + UFS_NIADDR;
1521 ni = newsb->fs_ipg * newsb->fs_ncg;
1522 m = FFS_INOPB(newsb) - 1;
1523 for (i = 0; i < ni; i++) {
1524 if (iflags[i] & IF_DIRTY) {
1525 iflags[i & ~m] |= IF_BDIRTY;
1526 }
1527 }
1528 m++;
1529
1530 if (is_ufs2)
1531 dp2 = (struct ufs2_dinode *)ibuf;
1532 else
1533 dp1 = (struct ufs1_dinode *)ibuf;
1534
1535 for (i = 0; i < ni; i += m) {
1536 if (iflags[i] & IF_BDIRTY) {
1537 if (is_ufs2)
1538 for (j = 0; j < m; j++) {
1539 dp2[j] = inodes[i + j].dp2;
1540 if (needswap) {
1541 for (k = 0; k < na; k++)
1542 dp2[j].di_db[k]=
1543 bswap32(dp2[j].di_db[k]);
1544 ffs_dinode2_swap(&dp2[j],
1545 &dp2[j]);
1546 }
1547 }
1548 else
1549 for (j = 0; j < m; j++) {
1550 dp1[j] = inodes[i + j].dp1;
1551 if (needswap) {
1552 for (k = 0; k < na; k++)
1553 dp1[j].di_db[k]=
1554 bswap32(dp1[j].di_db[k]);
1555 ffs_dinode1_swap(&dp1[j],
1556 &dp1[j]);
1557 }
1558 }
1559
1560 writeat(FFS_FSBTODB(newsb, ino_to_fsba(newsb, i)),
1561 ibuf, newsb->fs_bsize);
1562 }
1563 }
1564 }
1565 /*
1566 * Evict all inodes from the specified cg. shrink() already checked
1567 * that there were enough free inodes, so the no-free-inodes check is
1568 * a can't-happen. If it does trip, the file system should be in good
1569 * enough shape for fsck to fix; see the comment on perform_data_move
1570 * for the considerations in question.
1571 */
1572 static void
1573 evict_inodes(struct cg * cg)
1574 {
1575 int inum;
1576 int i;
1577 int fi;
1578
1579 inum = newsb->fs_ipg * cg->cg_cgx;
1580 for (i = 0; i < newsb->fs_ipg; i++, inum++) {
1581 if (DIP(inodes + inum,di_mode) != 0) {
1582 fi = find_freeinode();
1583 if (fi < 0)
1584 errx(EXIT_FAILURE, "Sorry, inodes evaporated - "
1585 "file system probably needs fsck");
1586 inomove[inum] = fi;
1587 clr_bits(cg_inosused(cg, 0), i, 1);
1588 set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
1589 fi % newsb->fs_ipg, 1);
1590 }
1591 }
1592 }
1593 /*
1594 * Move inodes from old locations to new. Does not actually write
1595 * anything to disk; just copies in-core and sets dirty bits.
1596 *
1597 * We have to be careful here for reasons similar to those mentioned in
1598 * the comment header on perform_data_move, above: for the sake of
1599 * crash tolerance, we want to make sure everything is present at both
1600 * old and new locations before we update pointers. So we call this
1601 * first, then flush_inodes() to get them out on disk, then update
1602 * directories to match.
1603 */
1604 static void
1605 perform_inode_move(void)
1606 {
1607 unsigned int i;
1608 unsigned int ni;
1609
1610 ni = oldsb->fs_ipg * oldsb->fs_ncg;
1611 for (i = 0; i < ni; i++) {
1612 if (inomove[i] != i) {
1613 inodes[inomove[i]] = inodes[i];
1614 iflags[inomove[i]] = iflags[i] | IF_DIRTY;
1615 }
1616 }
1617 }
1618 /*
1619 * Update the directory contained in the nb bytes at buf, to point to
1620 * inodes' new locations.
1621 */
1622 static int
1623 update_dirents(char *buf, int nb)
1624 {
1625 int rv;
1626 #define d ((struct direct *)buf)
1627 #define s32(x) (needswap?bswap32((x)):(x))
1628 #define s16(x) (needswap?bswap16((x)):(x))
1629
1630 rv = 0;
1631 while (nb > 0) {
1632 if (inomove[s32(d->d_ino)] != s32(d->d_ino)) {
1633 rv++;
1634 d->d_ino = s32(inomove[s32(d->d_ino)]);
1635 }
1636 nb -= s16(d->d_reclen);
1637 buf += s16(d->d_reclen);
1638 }
1639 return (rv);
1640 #undef d
1641 #undef s32
1642 #undef s16
1643 }
1644 /*
1645 * Callback function for map_inode_data_blocks, for updating a
1646 * directory to point to new inode locations.
1647 */
1648 static void
1649 update_dir_data(off_t bn, unsigned int size, unsigned int nb, int kind)
1650 {
1651 if (kind == MDB_DATA) {
1652 union {
1653 struct direct d;
1654 char ch[MAXBSIZE];
1655 } buf;
1656 readat(FFS_FSBTODB(oldsb, bn), &buf, size << oldsb->fs_fshift);
1657 if (update_dirents((char *) &buf, nb)) {
1658 writeat(FFS_FSBTODB(oldsb, bn), &buf,
1659 size << oldsb->fs_fshift);
1660 }
1661 }
1662 }
1663 static void
1664 dirmove_callback(union dinode * di, unsigned int inum, void *arg)
1665 {
1666 switch (DIP(di,di_mode) & IFMT) {
1667 case IFDIR:
1668 map_inode_data_blocks(di, &update_dir_data);
1669 break;
1670 }
1671 }
1672 /*
1673 * Update directory entries to point to new inode locations.
1674 */
1675 static void
1676 update_for_inode_move(void)
1677 {
1678 map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
1679 }
1680 /*
1681 * Shrink the file system.
1682 */
1683 static void
1684 shrink(void)
1685 {
1686 int i;
1687
1688 /* Load the inodes off disk - we'll need 'em. */
1689 loadinodes();
1690 /* Update the timestamp. */
1691 newsb->fs_time = timestamp();
1692 /* Update the size figures. */
1693 newsb->fs_size = FFS_DBTOFSB(newsb, newsize);
1694 if (is_ufs2)
1695 newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
1696 else {
1697 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
1698 newsb->fs_old_spc);
1699 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
1700 }
1701 /* Does the (new) last cg end before the end of its inode area? See
1702 * the similar code in grow() for more on this. */
1703 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
1704 newsb->fs_ncg--;
1705 if (is_ufs2 == 0) {
1706 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
1707 newsb->fs_size = (newsb->fs_old_ncyl *
1708 newsb->fs_old_spc) / NSPF(newsb);
1709 } else
1710 newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg;
1711
1712 printf("Warning: last cylinder group is too small;\n");
1713 printf(" dropping it. New size = %lu.\n",
1714 (unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size));
1715 }
1716 /* Let's make sure we're not being shrunk into oblivion. */
1717 if (newsb->fs_ncg < 1)
1718 errx(EXIT_FAILURE, "Size too small - file system would "
1719 "have no cylinders");
1720 /* Initialize for block motion. */
1721 blkmove_init();
1722 /* Update csum size, then fix up for the new size */
1723 newsb->fs_cssize = ffs_fragroundup(newsb,
1724 newsb->fs_ncg * sizeof(struct csum));
1725 csum_fixup();
1726 /* Evict data from any cgs being wholly eliminated */
1727 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
1728 int base;
1729 int dlow;
1730 int dhigh;
1731 int dmax;
1732 base = cgbase(oldsb, i);
1733 dlow = cgsblock(oldsb, i) - base;
1734 dhigh = cgdmin(oldsb, i) - base;
1735 dmax = oldsb->fs_size - base;
1736 if (dmax > cgs[i]->cg_ndblk)
1737 dmax = cgs[i]->cg_ndblk;
1738 evict_data(cgs[i], 0, dlow);
1739 evict_data(cgs[i], dhigh, dmax - dhigh);
1740 newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
1741 newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
1742 newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
1743 newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
1744 }
1745 /* Update the new last cg. */
1746 cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
1747 ((newsb->fs_ncg - 1) * newsb->fs_fpg);
1748 /* Is the new last cg partial? If so, evict any data from the part
1749 * being shrunken away. */
1750 if (newsb->fs_size % newsb->fs_fpg) {
1751 struct cg *cg;
1752 int oldcgsize;
1753 int newcgsize;
1754 cg = cgs[newsb->fs_ncg - 1];
1755 newcgsize = newsb->fs_size % newsb->fs_fpg;
1756 oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
1757 oldsb->fs_fpg);
1758 if (oldcgsize > oldsb->fs_fpg)
1759 oldcgsize = oldsb->fs_fpg;
1760 evict_data(cg, newcgsize, oldcgsize - newcgsize);
1761 clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
1762 }
1763 /* Find out whether we would run out of inodes. (Note we
1764 * haven't actually done anything to the file system yet; all
1765 * those evict_data calls just update blkmove.) */
1766 {
1767 int slop;
1768 slop = 0;
1769 for (i = 0; i < newsb->fs_ncg; i++)
1770 slop += cgs[i]->cg_cs.cs_nifree;
1771 for (; i < oldsb->fs_ncg; i++)
1772 slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
1773 if (slop < 0)
1774 errx(EXIT_FAILURE, "Sorry, would run out of inodes");
1775 }
1776 /* Copy data, then update pointers to data. See the comment
1777 * header on perform_data_move for ordering considerations. */
1778 perform_data_move();
1779 update_for_data_move();
1780 /* Now do inodes. Initialize, evict, move, update - see the
1781 * comment header on perform_inode_move. */
1782 inomove_init();
1783 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
1784 evict_inodes(cgs[i]);
1785 perform_inode_move();
1786 flush_inodes();
1787 update_for_inode_move();
1788 /* Recompute all the bitmaps; most of them probably need it anyway,
1789 * the rest are just paranoia and not wanting to have to bother
1790 * keeping track of exactly which ones require it. */
1791 for (i = 0; i < newsb->fs_ncg; i++)
1792 cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
1793 /* Update the cg_old_ncyl value for the last cylinder. */
1794 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
1795 cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
1796 newsb->fs_old_ncyl % newsb->fs_old_cpg;
1797 /* Make fs_dsize match the new reality. */
1798 recompute_fs_dsize();
1799 }
1800 /*
1801 * Recompute the block totals, block cluster summaries, and rotational
1802 * position summaries, for a given cg (specified by number), based on
1803 * its free-frag bitmap (cg_blksfree()[]).
1804 */
1805 static void
1806 rescan_blkmaps(int cgn)
1807 {
1808 struct cg *cg;
1809 int f;
1810 int b;
1811 int blkfree;
1812 int blkrun;
1813 int fragrun;
1814 int fwb;
1815
1816 cg = cgs[cgn];
1817 /* Subtract off the current totals from the sb's summary info */
1818 newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
1819 newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
1820 /* Clear counters and bitmaps. */
1821 cg->cg_cs.cs_nffree = 0;
1822 cg->cg_cs.cs_nbfree = 0;
1823 memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0]));
1824 memset(&old_cg_blktot(cg, 0)[0], 0,
1825 newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
1826 memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0,
1827 newsb->fs_old_cpg * newsb->fs_old_nrpos *
1828 sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
1829 if (newsb->fs_contigsumsize > 0) {
1830 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
1831 memset(&cg_clustersum(cg, 0)[1], 0,
1832 newsb->fs_contigsumsize *
1833 sizeof(cg_clustersum(cg, 0)[1]));
1834 if (is_ufs2)
1835 memset(&cg_clustersfree(cg, 0)[0], 0,
1836 howmany(newsb->fs_fpg / NSPB(newsb), NBBY));
1837 else
1838 memset(&cg_clustersfree(cg, 0)[0], 0,
1839 howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
1840 NSPB(newsb), NBBY));
1841 }
1842 /* Scan the free-frag bitmap. Runs of free frags are kept
1843 * track of with fragrun, and recorded into cg_frsum[] and
1844 * cg_cs.cs_nffree; on each block boundary, entire free blocks
1845 * are recorded as well. */
1846 blkfree = 1;
1847 blkrun = 0;
1848 fragrun = 0;
1849 f = 0;
1850 b = 0;
1851 fwb = 0;
1852 while (f < cg->cg_ndblk) {
1853 if (bit_is_set(cg_blksfree(cg, 0), f)) {
1854 fragrun++;
1855 } else {
1856 blkfree = 0;
1857 if (fragrun > 0) {
1858 cg->cg_frsum[fragrun]++;
1859 cg->cg_cs.cs_nffree += fragrun;
1860 }
1861 fragrun = 0;
1862 }
1863 f++;
1864 fwb++;
1865 if (fwb >= newsb->fs_frag) {
1866 if (blkfree) {
1867 cg->cg_cs.cs_nbfree++;
1868 if (newsb->fs_contigsumsize > 0)
1869 set_bits(cg_clustersfree(cg, 0), b, 1);
1870 if (is_ufs2 == 0) {
1871 old_cg_blktot(cg, 0)[
1872 old_cbtocylno(newsb,
1873 f - newsb->fs_frag)]++;
1874 old_cg_blks(newsb, cg,
1875 old_cbtocylno(newsb,
1876 f - newsb->fs_frag),
1877 0)[old_cbtorpos(newsb,
1878 f - newsb->fs_frag)]++;
1879 }
1880 blkrun++;
1881 } else {
1882 if (fragrun > 0) {
1883 cg->cg_frsum[fragrun]++;
1884 cg->cg_cs.cs_nffree += fragrun;
1885 }
1886 if (newsb->fs_contigsumsize > 0) {
1887 if (blkrun > 0) {
1888 cg_clustersum(cg, 0)[(blkrun
1889 > newsb->fs_contigsumsize)
1890 ? newsb->fs_contigsumsize
1891 : blkrun]++;
1892 }
1893 }
1894 blkrun = 0;
1895 }
1896 fwb = 0;
1897 b++;
1898 blkfree = 1;
1899 fragrun = 0;
1900 }
1901 }
1902 if (fragrun > 0) {
1903 cg->cg_frsum[fragrun]++;
1904 cg->cg_cs.cs_nffree += fragrun;
1905 }
1906 if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
1907 cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
1908 newsb->fs_contigsumsize : blkrun]++;
1909 }
1910 /*
1911 * Put the updated summary info back into csums, and add it
1912 * back into the sb's summary info. Then mark the cg dirty.
1913 */
1914 csums[cgn] = cg->cg_cs;
1915 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
1916 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
1917 cgflags[cgn] |= CGF_DIRTY;
1918 }
1919 /*
1920 * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
1921 * values, for a cg, based on the in-core inodes for that cg.
1922 */
1923 static void
1924 rescan_inomaps(int cgn)
1925 {
1926 struct cg *cg;
1927 int inum;
1928 int iwc;
1929
1930 cg = cgs[cgn];
1931 newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
1932 newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
1933 cg->cg_cs.cs_ndir = 0;
1934 cg->cg_cs.cs_nifree = 0;
1935 memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY));
1936 inum = cgn * newsb->fs_ipg;
1937 if (cgn == 0) {
1938 set_bits(cg_inosused(cg, 0), 0, 2);
1939 iwc = 2;
1940 inum += 2;
1941 } else {
1942 iwc = 0;
1943 }
1944 for (; iwc < newsb->fs_ipg; iwc++, inum++) {
1945 switch (DIP(inodes + inum, di_mode) & IFMT) {
1946 case 0:
1947 cg->cg_cs.cs_nifree++;
1948 break;
1949 case IFDIR:
1950 cg->cg_cs.cs_ndir++;
1951 /* FALLTHROUGH */
1952 default:
1953 set_bits(cg_inosused(cg, 0), iwc, 1);
1954 break;
1955 }
1956 }
1957 csums[cgn] = cg->cg_cs;
1958 newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
1959 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
1960 cgflags[cgn] |= CGF_DIRTY;
1961 }
1962 /*
1963 * Flush cgs to disk, recomputing anything they're marked as needing.
1964 */
1965 static void
1966 flush_cgs(void)
1967 {
1968 int i;
1969
1970 for (i = 0; i < newsb->fs_ncg; i++) {
1971 if (cgflags[i] & CGF_BLKMAPS) {
1972 rescan_blkmaps(i);
1973 }
1974 if (cgflags[i] & CGF_INOMAPS) {
1975 rescan_inomaps(i);
1976 }
1977 if (cgflags[i] & CGF_DIRTY) {
1978 cgs[i]->cg_rotor = 0;
1979 cgs[i]->cg_frotor = 0;
1980 cgs[i]->cg_irotor = 0;
1981 if (needswap)
1982 ffs_cg_swap(cgs[i],cgs[i],newsb);
1983 writeat(FFS_FSBTODB(newsb, cgtod(newsb, i)), cgs[i],
1984 cgblksz);
1985 }
1986 }
1987 if (needswap)
1988 ffs_csum_swap(csums,csums,newsb->fs_cssize);
1989 writeat(FFS_FSBTODB(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
1990 }
1991 /*
1992 * Write the superblock, both to the main superblock and to each cg's
1993 * alternative superblock.
1994 */
1995 static void
1996 write_sbs(void)
1997 {
1998 int i;
1999
2000 if (newsb->fs_magic == FS_UFS1_MAGIC &&
2001 (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2002 newsb->fs_old_time = newsb->fs_time;
2003 newsb->fs_old_size = newsb->fs_size;
2004 /* we don't update fs_csaddr */
2005 newsb->fs_old_dsize = newsb->fs_dsize;
2006 newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
2007 newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
2008 newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
2009 newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
2010 /* fill fs_old_postbl_start with 256 bytes of 0xff? */
2011 }
2012 /* copy newsb back to oldsb, so we can use it for offsets if
2013 newsb has been swapped for writing to disk */
2014 memcpy(oldsb, newsb, SBLOCKSIZE);
2015 if (needswap)
2016 ffs_sb_swap(newsb,newsb);
2017 writeat(where / DEV_BSIZE, newsb, SBLOCKSIZE);
2018 for (i = 0; i < oldsb->fs_ncg; i++) {
2019 writeat(FFS_FSBTODB(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE);
2020 }
2021 }
2022
2023 static off_t
2024 get_dev_size(char *dev_name)
2025 {
2026 struct dkwedge_info dkw;
2027 struct partition *pp;
2028 struct disklabel lp;
2029 struct stat st;
2030 size_t ptn;
2031
2032 /* Get info about partition/wedge */
2033 if (ioctl(fd, DIOCGWEDGEINFO, &dkw) != -1)
2034 return dkw.dkw_size;
2035 if (ioctl(fd, DIOCGDINFO, &lp) != -1) {
2036 ptn = strchr(dev_name, '\0')[-1] - 'a';
2037 if (ptn >= lp.d_npartitions)
2038 return 0;
2039 pp = &lp.d_partitions[ptn];
2040 return pp->p_size;
2041 }
2042 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
2043 return st.st_size;
2044
2045 return 0;
2046 }
2047
2048 /*
2049 * main().
2050 */
2051 int
2052 main(int argc, char **argv)
2053 {
2054 int ch;
2055 int ExpertFlag;
2056 int SFlag;
2057 size_t i;
2058
2059 char *special;
2060 char reply[5];
2061
2062 newsize = 0;
2063 ExpertFlag = 0;
2064 SFlag = 0;
2065
2066 while ((ch = getopt(argc, argv, "s:y")) != -1) {
2067 switch (ch) {
2068 case 's':
2069 SFlag = 1;
2070 newsize = strtoll(optarg, NULL, 10);
2071 if(newsize < 1) {
2072 usage();
2073 }
2074 break;
2075 case 'y':
2076 ExpertFlag = 1;
2077 break;
2078 case '?':
2079 /* FALLTHROUGH */
2080 default:
2081 usage();
2082 }
2083 }
2084 argc -= optind;
2085 argv += optind;
2086
2087 if (argc != 1) {
2088 usage();
2089 }
2090
2091 special = *argv;
2092
2093 if (ExpertFlag == 0) {
2094 printf("It's required to manually run fsck on file system "
2095 "before you can resize it\n\n"
2096 " Did you run fsck on your disk (Yes/No) ? ");
2097 fgets(reply, (int)sizeof(reply), stdin);
2098 if (strcasecmp(reply, "Yes\n")) {
2099 printf("\n Nothing done \n");
2100 exit(EXIT_SUCCESS);
2101 }
2102 }
2103
2104 fd = open(special, O_RDWR, 0);
2105 if (fd < 0)
2106 err(EXIT_FAILURE, "Can't open `%s'", special);
2107 checksmallio();
2108
2109 if (SFlag == 0) {
2110 newsize = get_dev_size(special);
2111 if (newsize == 0)
2112 err(EXIT_FAILURE,
2113 "Can't resize file system, newsize not known.");
2114 }
2115
2116 oldsb = (struct fs *) & sbbuf;
2117 newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
2118 for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
2119 readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
2120 switch (oldsb->fs_magic) {
2121 case FS_UFS2_MAGIC:
2122 is_ufs2 = 1;
2123 /* FALLTHROUGH */
2124 case FS_UFS1_MAGIC:
2125 needswap = 0;
2126 break;
2127 case FS_UFS2_MAGIC_SWAPPED:
2128 is_ufs2 = 1;
2129 /* FALLTHROUGH */
2130 case FS_UFS1_MAGIC_SWAPPED:
2131 needswap = 1;
2132 break;
2133 default:
2134 continue;
2135 }
2136 if (!is_ufs2 && where == SBLOCK_UFS2)
2137 continue;
2138 break;
2139 }
2140 if (where == (off_t)-1)
2141 errx(EXIT_FAILURE, "Bad magic number");
2142 if (needswap)
2143 ffs_sb_swap(oldsb,oldsb);
2144 if (oldsb->fs_magic == FS_UFS1_MAGIC &&
2145 (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2146 oldsb->fs_csaddr = oldsb->fs_old_csaddr;
2147 oldsb->fs_size = oldsb->fs_old_size;
2148 oldsb->fs_dsize = oldsb->fs_old_dsize;
2149 oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
2150 oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
2151 oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
2152 oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
2153 /* any others? */
2154 printf("Resizing with ffsv1 superblock\n");
2155 }
2156
2157 oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
2158 oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
2159 if (oldsb->fs_ipg % FFS_INOPB(oldsb))
2160 errx(EXIT_FAILURE, "ipg[%d] %% FFS_INOPB[%d] != 0",
2161 (int) oldsb->fs_ipg, (int) FFS_INOPB(oldsb));
2162 /* The superblock is bigger than struct fs (there are trailing
2163 * tables, of non-fixed size); make sure we copy the whole
2164 * thing. SBLOCKSIZE may be an over-estimate, but we do this
2165 * just once, so being generous is cheap. */
2166 memcpy(newsb, oldsb, SBLOCKSIZE);
2167 loadcgs();
2168 if (newsize > FFS_FSBTODB(oldsb, oldsb->fs_size)) {
2169 grow();
2170 } else if (newsize < FFS_FSBTODB(oldsb, oldsb->fs_size)) {
2171 if (is_ufs2)
2172 errx(EXIT_FAILURE,"shrinking not supported for ufs2");
2173 shrink();
2174 }
2175 flush_cgs();
2176 write_sbs();
2177 if (isplainfile())
2178 ftruncate(fd,newsize * DEV_BSIZE);
2179 return 0;
2180 }
2181
2182 static void
2183 usage(void)
2184 {
2185
2186 (void)fprintf(stderr, "usage: %s [-y] [-s size] special\n",
2187 getprogname());
2188 exit(EXIT_FAILURE);
2189 }
2190