resize_ffs.c revision 1.41 1 /* $NetBSD: resize_ffs.c,v 1.41 2015/03/29 19:33:55 chopps Exp $ */
2 /* From sources sent on February 17, 2003 */
3 /*-
4 * As its sole author, I explicitly place this code in the public
5 * domain. Anyone may use it for any purpose (though I would
6 * appreciate credit where it is due).
7 *
8 * der Mouse
9 *
10 * mouse (at) rodents.montreal.qc.ca
11 * 7D C8 61 52 5D E7 2D 39 4E F1 31 3E E8 B3 27 4B
12 */
13 /*
14 * resize_ffs:
15 *
16 * Resize a file system. Is capable of both growing and shrinking.
17 *
18 * Usage: resize_ffs [-s newsize] [-y] file_system
19 *
20 * Example: resize_ffs -s 29574 /dev/rsd1e
21 *
22 * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
23 * each).
24 *
25 * Note: this currently requires gcc to build, since it is written
26 * depending on gcc-specific features, notably nested function
27 * definitions (which in at least a few cases depend on the lexical
28 * scoping gcc provides, so they can't be trivially moved outside).
29 *
30 * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
31 * one responsible for the "realloccgblk: can't find blk in cyl"
32 * problem and a more minor one which left fs_dsize wrong when
33 * shrinking. (These actually indicate bugs in fsck too - it should
34 * have caught and fixed them.)
35 *
36 */
37
38 #include <sys/cdefs.h>
39 __RCSID("$NetBSD: resize_ffs.c,v 1.41 2015/03/29 19:33:55 chopps Exp $");
40
41 #include <sys/disk.h>
42 #include <sys/disklabel.h>
43 #include <sys/dkio.h>
44 #include <sys/ioctl.h>
45 #include <sys/stat.h>
46 #include <sys/mman.h>
47 #include <sys/param.h> /* MAXFRAG */
48 #include <ufs/ffs/fs.h>
49 #include <ufs/ffs/ffs_extern.h>
50 #include <ufs/ufs/dir.h>
51 #include <ufs/ufs/dinode.h>
52 #include <ufs/ufs/ufs_bswap.h> /* ufs_rw32 */
53
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <strings.h>
60 #include <unistd.h>
61
62 /* new size of file system, in sectors */
63 static int64_t newsize;
64
65 /* fd open onto disk device or file */
66 static int fd;
67
68 /* must we break up big I/O operations - see checksmallio() */
69 static int smallio;
70
71 /* size of a cg, in bytes, rounded up to a frag boundary */
72 static int cgblksz;
73
74 /* possible superblock localtions */
75 static int search[] = SBLOCKSEARCH;
76 /* location of the superblock */
77 static off_t where;
78
79 /* Superblocks. */
80 static struct fs *oldsb; /* before we started */
81 static struct fs *newsb; /* copy to work with */
82 /* Buffer to hold the above. Make sure it's aligned correctly. */
83 static char sbbuf[2 * SBLOCKSIZE]
84 __attribute__((__aligned__(__alignof__(struct fs))));
85
86 union dinode {
87 struct ufs1_dinode dp1;
88 struct ufs2_dinode dp2;
89 };
90 #define DIP(dp, field) \
91 ((is_ufs2) ? \
92 (dp)->dp2.field : (dp)->dp1.field)
93
94 #define DIP_ASSIGN(dp, field, value) \
95 do { \
96 if (is_ufs2) \
97 (dp)->dp2.field = (value); \
98 else \
99 (dp)->dp1.field = (value); \
100 } while (0)
101
102 /* a cg's worth of brand new squeaky-clean inodes */
103 static struct ufs1_dinode *zinodes;
104
105 /* pointers to the in-core cgs, read off disk and possibly modified */
106 static struct cg **cgs;
107
108 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
109 static struct csum *csums;
110
111 /* per-cg flags, indexed by cg number */
112 static unsigned char *cgflags;
113 #define CGF_DIRTY 0x01 /* needs to be written to disk */
114 #define CGF_BLKMAPS 0x02 /* block bitmaps need rebuilding */
115 #define CGF_INOMAPS 0x04 /* inode bitmaps need rebuilding */
116
117 /* when shrinking, these two arrays record how we want blocks to move. */
118 /* if blkmove[i] is j, the frag that started out as frag #i should end */
119 /* up as frag #j. inomove[i]=j means, similarly, that the inode that */
120 /* started out as inode i should end up as inode j. */
121 static unsigned int *blkmove;
122 static unsigned int *inomove;
123
124 /* in-core copies of all inodes in the fs, indexed by inumber */
125 union dinode *inodes;
126
127 void *ibuf; /* ptr to fs block-sized buffer for reading/writing inodes */
128
129 /* byteswapped inodes */
130 union dinode *sinodes;
131
132 /* per-inode flags, indexed by inumber */
133 static unsigned char *iflags;
134 #define IF_DIRTY 0x01 /* needs to be written to disk */
135 #define IF_BDIRTY 0x02 /* like DIRTY, but is set on first inode in a
136 * block of inodes, and applies to the whole
137 * block. */
138
139 /* resize_ffs works directly on dinodes, adapt blksize() */
140 #define dblksize(fs, dip, lbn, filesize) \
141 (((lbn) >= UFS_NDADDR || (uint64_t)(filesize) >= ffs_lblktosize(fs, (lbn) + 1)) \
142 ? (fs)->fs_bsize \
143 : (ffs_fragroundup(fs, ffs_blkoff(fs, (filesize)))))
144
145
146 /*
147 * Number of disk sectors per block/fragment
148 */
149 #define NSPB(fs) (FFS_FSBTODB((fs),1) << (fs)->fs_fragshift)
150 #define NSPF(fs) (FFS_FSBTODB((fs),1))
151
152 /* global flags */
153 int is_ufs2 = 0;
154 int needswap = 0;
155 int verbose = 0;
156
157 static void usage(void) __dead;
158
159 /*
160 * See if we need to break up large I/O operations. This should never
161 * be needed, but under at least one <version,platform> combination,
162 * large enough disk transfers to the raw device hang. So if we're
163 * talking to a character special device, play it safe; in this case,
164 * readat() and writeat() break everything up into pieces no larger
165 * than 8K, doing multiple syscalls for larger operations.
166 */
167 static void
168 checksmallio(void)
169 {
170 struct stat stb;
171
172 fstat(fd, &stb);
173 smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
174 }
175
176 static int
177 isplainfile(void)
178 {
179 struct stat stb;
180
181 fstat(fd, &stb);
182 return S_ISREG(stb.st_mode);
183 }
184 /*
185 * Read size bytes starting at blkno into buf. blkno is in DEV_BSIZE
186 * units, ie, after FFS_FSBTODB(); size is in bytes.
187 */
188 static void
189 readat(off_t blkno, void *buf, int size)
190 {
191 /* Seek to the correct place. */
192 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
193 err(EXIT_FAILURE, "lseek failed");
194
195 /* See if we have to break up the transfer... */
196 if (smallio) {
197 char *bp; /* pointer into buf */
198 int left; /* bytes left to go */
199 int n; /* number to do this time around */
200 int rv; /* syscall return value */
201 bp = buf;
202 left = size;
203 while (left > 0) {
204 n = (left > 8192) ? 8192 : left;
205 rv = read(fd, bp, n);
206 if (rv < 0)
207 err(EXIT_FAILURE, "read failed");
208 if (rv != n)
209 errx(EXIT_FAILURE,
210 "read: wanted %d, got %d", n, rv);
211 bp += n;
212 left -= n;
213 }
214 } else {
215 int rv;
216 rv = read(fd, buf, size);
217 if (rv < 0)
218 err(EXIT_FAILURE, "read failed");
219 if (rv != size)
220 errx(EXIT_FAILURE, "read: wanted %d, got %d",
221 size, rv);
222 }
223 }
224 /*
225 * Write size bytes from buf starting at blkno. blkno is in DEV_BSIZE
226 * units, ie, after FFS_FSBTODB(); size is in bytes.
227 */
228 static void
229 writeat(off_t blkno, const void *buf, int size)
230 {
231 /* Seek to the correct place. */
232 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
233 err(EXIT_FAILURE, "lseek failed");
234 /* See if we have to break up the transfer... */
235 if (smallio) {
236 const char *bp; /* pointer into buf */
237 int left; /* bytes left to go */
238 int n; /* number to do this time around */
239 int rv; /* syscall return value */
240 bp = buf;
241 left = size;
242 while (left > 0) {
243 n = (left > 8192) ? 8192 : left;
244 rv = write(fd, bp, n);
245 if (rv < 0)
246 err(EXIT_FAILURE, "write failed");
247 if (rv != n)
248 errx(EXIT_FAILURE,
249 "write: wanted %d, got %d", n, rv);
250 bp += n;
251 left -= n;
252 }
253 } else {
254 int rv;
255 rv = write(fd, buf, size);
256 if (rv < 0)
257 err(EXIT_FAILURE, "write failed");
258 if (rv != size)
259 errx(EXIT_FAILURE,
260 "write: wanted %d, got %d", size, rv);
261 }
262 }
263 /*
264 * Never-fail versions of malloc() and realloc(), and an allocation
265 * routine (which also never fails) for allocating memory that will
266 * never be freed until exit.
267 */
268
269 /*
270 * Never-fail malloc.
271 */
272 static void *
273 nfmalloc(size_t nb, const char *tag)
274 {
275 void *rv;
276
277 rv = malloc(nb);
278 if (rv)
279 return (rv);
280 err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
281 (unsigned long int) nb, tag);
282 }
283 /*
284 * Never-fail realloc.
285 */
286 static void *
287 nfrealloc(void *blk, size_t nb, const char *tag)
288 {
289 void *rv;
290
291 rv = realloc(blk, nb);
292 if (rv)
293 return (rv);
294 err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
295 (unsigned long int) nb, tag);
296 }
297 /*
298 * Allocate memory that will never be freed or reallocated. Arguably
299 * this routine should handle small allocations by chopping up pages,
300 * but that's not worth the bother; it's not called more than a
301 * handful of times per run, and if the allocations are that small the
302 * waste in giving each one its own page is ignorable.
303 */
304 static void *
305 alloconce(size_t nb, const char *tag)
306 {
307 void *rv;
308
309 rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
310 if (rv != MAP_FAILED)
311 return (rv);
312 err(EXIT_FAILURE, "Can't map %lu bytes for %s",
313 (unsigned long int) nb, tag);
314 }
315 /*
316 * Load the cgs and csums off disk. Also allocates the space to load
317 * them into and initializes the per-cg flags.
318 */
319 static void
320 loadcgs(void)
321 {
322 int cg;
323 char *cgp;
324
325 cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
326 cgs = nfmalloc(oldsb->fs_ncg * sizeof(*cgs), "cg pointers");
327 cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
328 cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
329 csums = nfmalloc(oldsb->fs_cssize, "cg summary");
330 for (cg = 0; cg < oldsb->fs_ncg; cg++) {
331 cgs[cg] = (struct cg *) cgp;
332 readat(FFS_FSBTODB(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
333 if (needswap)
334 ffs_cg_swap(cgs[cg],cgs[cg],oldsb);
335 cgflags[cg] = 0;
336 cgp += cgblksz;
337 }
338 readat(FFS_FSBTODB(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
339 if (needswap)
340 ffs_csum_swap(csums,csums,oldsb->fs_cssize);
341 }
342 /*
343 * Set n bits, starting with bit #base, in the bitmap pointed to by
344 * bitvec (which is assumed to be large enough to include bits base
345 * through base+n-1).
346 */
347 static void
348 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
349 {
350 if (n < 1)
351 return; /* nothing to do */
352 if (base & 7) { /* partial byte at beginning */
353 if (n <= 8 - (base & 7)) { /* entirely within one byte */
354 bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
355 return;
356 }
357 bitvec[base >> 3] |= (~0U) << (base & 7);
358 n -= 8 - (base & 7);
359 base = (base & ~7) + 8;
360 }
361 if (n >= 8) { /* do full bytes */
362 memset(bitvec + (base >> 3), 0xff, n >> 3);
363 base += n & ~7;
364 n &= 7;
365 }
366 if (n) { /* partial byte at end */
367 bitvec[base >> 3] |= ~((~0U) << n);
368 }
369 }
370 /*
371 * Clear n bits, starting with bit #base, in the bitmap pointed to by
372 * bitvec (which is assumed to be large enough to include bits base
373 * through base+n-1). Code parallels set_bits().
374 */
375 static void
376 clr_bits(unsigned char *bitvec, int base, int n)
377 {
378 if (n < 1)
379 return;
380 if (base & 7) {
381 if (n <= 8 - (base & 7)) {
382 bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
383 return;
384 }
385 bitvec[base >> 3] &= ~((~0U) << (base & 7));
386 n -= 8 - (base & 7);
387 base = (base & ~7) + 8;
388 }
389 if (n >= 8) {
390 memset(bitvec + (base >> 3), 0, n >> 3);
391 base += n & ~7;
392 n &= 7;
393 }
394 if (n) {
395 bitvec[base >> 3] &= (~0U) << n;
396 }
397 }
398 /*
399 * Test whether bit #bit is set in the bitmap pointed to by bitvec.
400 */
401 static int
402 bit_is_set(unsigned char *bitvec, int bit)
403 {
404 return (bitvec[bit >> 3] & (1 << (bit & 7)));
405 }
406 /*
407 * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
408 */
409 static int
410 bit_is_clr(unsigned char *bitvec, int bit)
411 {
412 return (!bit_is_set(bitvec, bit));
413 }
414 /*
415 * Test whether a whole block of bits is set in a bitmap. This is
416 * designed for testing (aligned) disk blocks in a bit-per-frag
417 * bitmap; it has assumptions wired into it based on that, essentially
418 * that the entire block fits into a single byte. This returns true
419 * iff _all_ the bits are set; it is not just the complement of
420 * blk_is_clr on the same arguments (unless blkfrags==1).
421 */
422 static int
423 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
424 {
425 unsigned int mask;
426
427 mask = (~((~0U) << blkfrags)) << (blkbase & 7);
428 return ((bitvec[blkbase >> 3] & mask) == mask);
429 }
430 /*
431 * Test whether a whole block of bits is clear in a bitmap. See
432 * blk_is_set (above) for assumptions. This returns true iff _all_
433 * the bits are clear; it is not just the complement of blk_is_set on
434 * the same arguments (unless blkfrags==1).
435 */
436 static int
437 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
438 {
439 unsigned int mask;
440
441 mask = (~((~0U) << blkfrags)) << (blkbase & 7);
442 return ((bitvec[blkbase >> 3] & mask) == 0);
443 }
444 /*
445 * Initialize a new cg. Called when growing. Assumes memory has been
446 * allocated but not otherwise set up. This code sets the fields of
447 * the cg, initializes the bitmaps (and cluster summaries, if
448 * applicable), updates both per-cylinder summary info and the global
449 * summary info in newsb; it also writes out new inodes for the cg.
450 *
451 * This code knows it can never be called for cg 0, which makes it a
452 * bit simpler than it would otherwise be.
453 */
454 static void
455 initcg(int cgn)
456 {
457 struct cg *cg; /* The in-core cg, of course */
458 int base; /* Disk address of cg base */
459 int dlow; /* Size of pre-cg data area */
460 int dhigh; /* Offset of post-inode data area, from base */
461 int dmax; /* Offset of end of post-inode data area */
462 int i; /* Generic loop index */
463 int n; /* Generic count */
464 int start; /* start of cg maps */
465
466 cg = cgs[cgn];
467 /* Place the data areas */
468 base = cgbase(newsb, cgn);
469 dlow = cgsblock(newsb, cgn) - base;
470 dhigh = cgdmin(newsb, cgn) - base;
471 dmax = newsb->fs_size - base;
472 if (dmax > newsb->fs_fpg)
473 dmax = newsb->fs_fpg;
474 start = &cg->cg_space[0] - (unsigned char *) cg;
475 /*
476 * Clear out the cg - assumes all-0-bytes is the correct way
477 * to initialize fields we don't otherwise touch, which is
478 * perhaps not the right thing to do, but it's what fsck and
479 * mkfs do.
480 */
481 memset(cg, 0, newsb->fs_cgsize);
482 if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
483 cg->cg_time = newsb->fs_time;
484 cg->cg_magic = CG_MAGIC;
485 cg->cg_cgx = cgn;
486 cg->cg_niblk = newsb->fs_ipg;
487 cg->cg_ndblk = dmax;
488
489 if (is_ufs2) {
490 cg->cg_time = newsb->fs_time;
491 cg->cg_initediblk = newsb->fs_ipg < 2 * FFS_INOPB(newsb) ?
492 newsb->fs_ipg : 2 * FFS_INOPB(newsb);
493 cg->cg_iusedoff = start;
494 } else {
495 cg->cg_old_time = newsb->fs_time;
496 cg->cg_old_niblk = cg->cg_niblk;
497 cg->cg_niblk = 0;
498 cg->cg_initediblk = 0;
499
500
501 cg->cg_old_ncyl = newsb->fs_old_cpg;
502 /* Update the cg_old_ncyl value for the last cylinder. */
503 if (cgn == newsb->fs_ncg - 1) {
504 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
505 cg->cg_old_ncyl = newsb->fs_old_ncyl %
506 newsb->fs_old_cpg;
507 }
508
509 /* Set up the bitmap pointers. We have to be careful
510 * to lay out the cg _exactly_ the way mkfs and fsck
511 * do it, since fsck compares the _entire_ cg against
512 * a recomputed cg, and whines if there is any
513 * mismatch, including the bitmap offsets. */
514 /* XXX update this comment when fsck is fixed */
515 cg->cg_old_btotoff = start;
516 cg->cg_old_boff = cg->cg_old_btotoff
517 + (newsb->fs_old_cpg * sizeof(int32_t));
518 cg->cg_iusedoff = cg->cg_old_boff +
519 (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
520 }
521 cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
522 if (newsb->fs_contigsumsize > 0) {
523 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
524 cg->cg_clustersumoff = cg->cg_freeoff +
525 howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t);
526 cg->cg_clustersumoff =
527 roundup(cg->cg_clustersumoff, sizeof(int32_t));
528 cg->cg_clusteroff = cg->cg_clustersumoff +
529 ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
530 cg->cg_nextfreeoff = cg->cg_clusteroff +
531 howmany(ffs_fragstoblks(newsb,newsb->fs_fpg), NBBY);
532 n = dlow / newsb->fs_frag;
533 if (n > 0) {
534 set_bits(cg_clustersfree(cg, 0), 0, n);
535 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
536 newsb->fs_contigsumsize : n]++;
537 }
538 } else {
539 cg->cg_nextfreeoff = cg->cg_freeoff +
540 howmany(newsb->fs_fpg, NBBY);
541 }
542 /* Mark the data areas as free; everything else is marked busy by the
543 * memset() up at the top. */
544 set_bits(cg_blksfree(cg, 0), 0, dlow);
545 set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
546 /* Initialize summary info */
547 cg->cg_cs.cs_ndir = 0;
548 cg->cg_cs.cs_nifree = newsb->fs_ipg;
549 cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
550 cg->cg_cs.cs_nffree = 0;
551
552 /* This is the simplest way of doing this; we perhaps could
553 * compute the correct cg_blktot()[] and cg_blks()[] values
554 * other ways, but it would be complicated and hardly seems
555 * worth the effort. (The reason there isn't
556 * frag-at-beginning and frag-at-end code here, like the code
557 * below for the post-inode data area, is that the pre-sb data
558 * area always starts at 0, and thus is block-aligned, and
559 * always ends at the sb, which is block-aligned.) */
560 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
561 for (i = 0; i < dlow; i += newsb->fs_frag) {
562 old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++;
563 old_cg_blks(newsb, cg,
564 old_cbtocylno(newsb, i),
565 0)[old_cbtorpos(newsb, i)]++;
566 }
567
568 /* Deal with a partial block at the beginning of the post-inode area.
569 * I'm not convinced this can happen - I think the inodes are always
570 * block-aligned and always an integral number of blocks - but it's
571 * cheap to do the right thing just in case. */
572 if (dhigh % newsb->fs_frag) {
573 n = newsb->fs_frag - (dhigh % newsb->fs_frag);
574 cg->cg_frsum[n]++;
575 cg->cg_cs.cs_nffree += n;
576 dhigh += n;
577 }
578 n = (dmax - dhigh) / newsb->fs_frag;
579 /* We have n full-size blocks in the post-inode data area. */
580 if (n > 0) {
581 cg->cg_cs.cs_nbfree += n;
582 if (newsb->fs_contigsumsize > 0) {
583 i = dhigh / newsb->fs_frag;
584 set_bits(cg_clustersfree(cg, 0), i, n);
585 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
586 newsb->fs_contigsumsize : n]++;
587 }
588 if (is_ufs2 == 0)
589 for (i = n; i > 0; i--) {
590 old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
591 dhigh)]++;
592 old_cg_blks(newsb, cg,
593 old_cbtocylno(newsb, dhigh),
594 0)[old_cbtorpos(newsb,
595 dhigh)]++;
596 dhigh += newsb->fs_frag;
597 }
598 }
599 if (is_ufs2 == 0) {
600 /* Deal with any leftover frag at the end of the cg. */
601 i = dmax - dhigh;
602 if (i) {
603 cg->cg_frsum[i]++;
604 cg->cg_cs.cs_nffree += i;
605 }
606 }
607 /* Update the csum info. */
608 csums[cgn] = cg->cg_cs;
609 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
610 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
611 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
612 if (is_ufs2 == 0)
613 /* Write out the cleared inodes. */
614 writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes,
615 newsb->fs_ipg * sizeof(*zinodes));
616 /* Dirty the cg. */
617 cgflags[cgn] |= CGF_DIRTY;
618 }
619 /*
620 * Find free space, at least nfrags consecutive frags of it. Pays no
621 * attention to block boundaries, but refuses to straddle cg
622 * boundaries, even if the disk blocks involved are in fact
623 * consecutive. Return value is the frag number of the first frag of
624 * the block, or -1 if no space was found. Uses newsb for sb values,
625 * and assumes the cgs[] structures correctly describe the area to be
626 * searched.
627 *
628 * XXX is there a bug lurking in the ignoring of block boundaries by
629 * the routine used by fragmove() in evict_data()? Can an end-of-file
630 * frag legally straddle a block boundary? If not, this should be
631 * cloned and fixed to stop at block boundaries for that use. The
632 * current one may still be needed for csum info motion, in case that
633 * takes up more than a whole block (is the csum info allowed to begin
634 * partway through a block and continue into the following block?).
635 *
636 * If we wrap off the end of the file system back to the beginning, we
637 * can end up searching the end of the file system twice. I ignore
638 * this inefficiency, since if that happens we're going to croak with
639 * a no-space error anyway, so it happens at most once.
640 */
641 static int
642 find_freespace(unsigned int nfrags)
643 {
644 static int hand = 0; /* hand rotates through all frags in the fs */
645 int cgsize; /* size of the cg hand currently points into */
646 int cgn; /* number of cg hand currently points into */
647 int fwc; /* frag-within-cg number of frag hand points
648 * to */
649 unsigned int run; /* length of run of free frags seen so far */
650 int secondpass; /* have we wrapped from end of fs to
651 * beginning? */
652 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
653
654 cgn = dtog(newsb, hand);
655 fwc = dtogd(newsb, hand);
656 secondpass = (hand == 0);
657 run = 0;
658 bits = cg_blksfree(cgs[cgn], 0);
659 cgsize = cgs[cgn]->cg_ndblk;
660 while (1) {
661 if (bit_is_set(bits, fwc)) {
662 run++;
663 if (run >= nfrags)
664 return (hand + 1 - run);
665 } else {
666 run = 0;
667 }
668 hand++;
669 fwc++;
670 if (fwc >= cgsize) {
671 fwc = 0;
672 cgn++;
673 if (cgn >= newsb->fs_ncg) {
674 hand = 0;
675 if (secondpass)
676 return (-1);
677 secondpass = 1;
678 cgn = 0;
679 }
680 bits = cg_blksfree(cgs[cgn], 0);
681 cgsize = cgs[cgn]->cg_ndblk;
682 run = 0;
683 }
684 }
685 }
686 /*
687 * Find a free block of disk space. Finds an entire block of frags,
688 * all of which are free. Return value is the frag number of the
689 * first frag of the block, or -1 if no space was found. Uses newsb
690 * for sb values, and assumes the cgs[] structures correctly describe
691 * the area to be searched.
692 *
693 * See find_freespace(), above, for remarks about hand wrapping around.
694 */
695 static int
696 find_freeblock(void)
697 {
698 static int hand = 0; /* hand rotates through all frags in fs */
699 int cgn; /* cg number of cg hand points into */
700 int fwc; /* frag-within-cg number of frag hand points
701 * to */
702 int cgsize; /* size of cg hand points into */
703 int secondpass; /* have we wrapped from end to beginning? */
704 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
705
706 cgn = dtog(newsb, hand);
707 fwc = dtogd(newsb, hand);
708 secondpass = (hand == 0);
709 bits = cg_blksfree(cgs[cgn], 0);
710 cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
711 while (1) {
712 if (blk_is_set(bits, fwc, newsb->fs_frag))
713 return (hand);
714 fwc += newsb->fs_frag;
715 hand += newsb->fs_frag;
716 if (fwc >= cgsize) {
717 fwc = 0;
718 cgn++;
719 if (cgn >= newsb->fs_ncg) {
720 hand = 0;
721 if (secondpass)
722 return (-1);
723 secondpass = 1;
724 cgn = 0;
725 }
726 bits = cg_blksfree(cgs[cgn], 0);
727 cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
728 }
729 }
730 }
731 /*
732 * Find a free inode, returning its inumber or -1 if none was found.
733 * Uses newsb for sb values, and assumes the cgs[] structures
734 * correctly describe the area to be searched.
735 *
736 * See find_freespace(), above, for remarks about hand wrapping around.
737 */
738 static int
739 find_freeinode(void)
740 {
741 static int hand = 0; /* hand rotates through all inodes in fs */
742 int cgn; /* cg number of cg hand points into */
743 int iwc; /* inode-within-cg number of inode hand points
744 * to */
745 int secondpass; /* have we wrapped from end to beginning? */
746 unsigned char *bits; /* cg_inosused()[] for cg hand points into */
747
748 cgn = hand / newsb->fs_ipg;
749 iwc = hand % newsb->fs_ipg;
750 secondpass = (hand == 0);
751 bits = cg_inosused(cgs[cgn], 0);
752 while (1) {
753 if (bit_is_clr(bits, iwc))
754 return (hand);
755 hand++;
756 iwc++;
757 if (iwc >= newsb->fs_ipg) {
758 iwc = 0;
759 cgn++;
760 if (cgn >= newsb->fs_ncg) {
761 hand = 0;
762 if (secondpass)
763 return (-1);
764 secondpass = 1;
765 cgn = 0;
766 }
767 bits = cg_inosused(cgs[cgn], 0);
768 }
769 }
770 }
771 /*
772 * Mark a frag as free. Sets the frag's bit in the cg_blksfree bitmap
773 * for the appropriate cg, and marks the cg as dirty.
774 */
775 static void
776 free_frag(int fno)
777 {
778 int cgn;
779
780 cgn = dtog(newsb, fno);
781 set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
782 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
783 }
784 /*
785 * Allocate a frag. Clears the frag's bit in the cg_blksfree bitmap
786 * for the appropriate cg, and marks the cg as dirty.
787 */
788 static void
789 alloc_frag(int fno)
790 {
791 int cgn;
792
793 cgn = dtog(newsb, fno);
794 clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
795 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
796 }
797 /*
798 * Fix up the csum array. If shrinking, this involves freeing zero or
799 * more frags; if growing, it involves allocating them, or if the
800 * frags being grown into aren't free, finding space elsewhere for the
801 * csum info. (If the number of occupied frags doesn't change,
802 * nothing happens here.)
803 */
804 static void
805 csum_fixup(void)
806 {
807 int nold; /* # frags in old csum info */
808 int ntot; /* # frags in new csum info */
809 int nnew; /* ntot-nold */
810 int newloc; /* new location for csum info, if necessary */
811 int i; /* generic loop index */
812 int j; /* generic loop index */
813 int f; /* "from" frag number, if moving */
814 int t; /* "to" frag number, if moving */
815 int cgn; /* cg number, used when shrinking */
816
817 ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
818 nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
819 nnew = ntot - nold;
820 /* First, if there's no change in frag counts, it's easy. */
821 if (nnew == 0)
822 return;
823 /* Next, if we're shrinking, it's almost as easy. Just free up any
824 * frags in the old area we no longer need. */
825 if (nnew < 0) {
826 for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
827 j < 0;
828 i--, j++) {
829 free_frag(i);
830 }
831 return;
832 }
833 /* We must be growing. Check to see that the new csum area fits
834 * within the file system. I think this can never happen, since for
835 * the csum area to grow, we must be adding at least one cg, so the
836 * old csum area can't be this close to the end of the new file system.
837 * But it's a cheap check. */
838 /* XXX what if csum info is at end of cg and grows into next cg, what
839 * if it spills over onto the next cg's backup superblock? Can this
840 * happen? */
841 if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
842 /* Okay, it fits - now, see if the space we want is free. */
843 for ((i = newsb->fs_csaddr + nold), (j = nnew);
844 j > 0;
845 i++, j--) {
846 cgn = dtog(newsb, i);
847 if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
848 dtogd(newsb, i)))
849 break;
850 }
851 if (j <= 0) {
852 /* Win win - all the frags we want are free. Allocate
853 * 'em and we're all done. */
854 for ((i = newsb->fs_csaddr + ntot - nnew),
855 (j = nnew); j > 0; i++, j--) {
856 alloc_frag(i);
857 }
858 return;
859 }
860 }
861 /* We have to move the csum info, sigh. Look for new space, free old
862 * space, and allocate new. Update fs_csaddr. We don't copy anything
863 * on disk at this point; the csum info will be written to the
864 * then-current fs_csaddr as part of the final flush. */
865 newloc = find_freespace(ntot);
866 if (newloc < 0)
867 errx(EXIT_FAILURE, "Sorry, no space available for new csums");
868 for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
869 if (i < nold) {
870 free_frag(f);
871 }
872 alloc_frag(t);
873 }
874 newsb->fs_csaddr = newloc;
875 }
876 /*
877 * Recompute newsb->fs_dsize. Just scans all cgs, adding the number of
878 * data blocks in that cg to the total.
879 */
880 static void
881 recompute_fs_dsize(void)
882 {
883 int i;
884
885 newsb->fs_dsize = 0;
886 for (i = 0; i < newsb->fs_ncg; i++) {
887 int dlow; /* size of before-sb data area */
888 int dhigh; /* offset of post-inode data area */
889 int dmax; /* total size of cg */
890 int base; /* base of cg, since cgsblock() etc add it in */
891 base = cgbase(newsb, i);
892 dlow = cgsblock(newsb, i) - base;
893 dhigh = cgdmin(newsb, i) - base;
894 dmax = newsb->fs_size - base;
895 if (dmax > newsb->fs_fpg)
896 dmax = newsb->fs_fpg;
897 newsb->fs_dsize += dlow + dmax - dhigh;
898 }
899 /* Space in cg 0 before cgsblock is boot area, not free space! */
900 newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
901 /* And of course the csum info takes up space. */
902 newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
903 }
904 /*
905 * Return the current time. We call this and assign, rather than
906 * calling time() directly, as insulation against OSes where fs_time
907 * is not a time_t.
908 */
909 static time_t
910 timestamp(void)
911 {
912 time_t t;
913
914 time(&t);
915 return (t);
916 }
917 /*
918 * Grow the file system.
919 */
920 static void
921 grow(void)
922 {
923 int i;
924
925 /* Update the timestamp. */
926 newsb->fs_time = timestamp();
927 /* Allocate and clear the new-inode area, in case we add any cgs. */
928 zinodes = alloconce(newsb->fs_ipg * sizeof(*zinodes), "zeroed inodes");
929 memset(zinodes, 0, newsb->fs_ipg * sizeof(*zinodes));
930 /* Update the size. */
931 newsb->fs_size = FFS_DBTOFSB(newsb, newsize);
932 /* Did we actually not grow? (This can happen if newsize is less than
933 * a frag larger than the old size - unlikely, but no excuse to
934 * misbehave if it happens.) */
935 if (newsb->fs_size == oldsb->fs_size) {
936 printf("New fs size %"PRIu64" = old fs size %"PRIu64
937 ", not growing.\n", newsb->fs_size, oldsb->fs_size);
938 return;
939 }
940 /* Check that the new last sector (frag, actually) is writable. Since
941 * it's at least one frag larger than it used to be, we know we aren't
942 * overwriting anything important by this. (The choice of sbbuf as
943 * what to write is irrelevant; it's just something handy that's known
944 * to be at least one frag in size.) */
945 writeat(FFS_FSBTODB(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
946 if (is_ufs2)
947 newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
948 else {
949 /* Update fs_old_ncyl and fs_ncg. */
950 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
951 newsb->fs_old_spc);
952 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
953 }
954
955 /* Does the last cg end before the end of its inode area? There is no
956 * reason why this couldn't be handled, but it would complicate a lot
957 * of code (in all file system code - fsck, kernel, etc) because of the
958 * potential partial inode area, and the gain in space would be
959 * minimal, at most the pre-sb data area. */
960 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
961 newsb->fs_ncg--;
962 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
963 newsb->fs_size = (newsb->fs_old_ncyl * newsb->fs_old_spc)
964 / NSPF(newsb);
965 printf("Warning: last cylinder group is too small;\n");
966 printf(" dropping it. New size = %lu.\n",
967 (unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size));
968 }
969 /* Find out how big the csum area is, and realloc csums if bigger. */
970 newsb->fs_cssize = ffs_fragroundup(newsb,
971 newsb->fs_ncg * sizeof(struct csum));
972 if (newsb->fs_cssize > oldsb->fs_cssize)
973 csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
974 /* If we're adding any cgs, realloc structures and set up the new
975 cgs. */
976 if (newsb->fs_ncg > oldsb->fs_ncg) {
977 char *cgp;
978 cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(*cgs),
979 "cg pointers");
980 cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
981 memset(cgflags + oldsb->fs_ncg, 0,
982 newsb->fs_ncg - oldsb->fs_ncg);
983 cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
984 "cgs");
985 for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
986 cgs[i] = (struct cg *) cgp;
987 initcg(i);
988 cgp += cgblksz;
989 }
990 cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
991 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
992 }
993 /* If the old fs ended partway through a cg, we have to update the old
994 * last cg (though possibly not to a full cg!). */
995 if (oldsb->fs_size % oldsb->fs_fpg) {
996 struct cg *cg;
997 int newcgsize;
998 int prevcgtop;
999 int oldcgsize;
1000 cg = cgs[oldsb->fs_ncg - 1];
1001 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
1002 prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
1003 newcgsize = newsb->fs_size - prevcgtop;
1004 if (newcgsize > newsb->fs_fpg)
1005 newcgsize = newsb->fs_fpg;
1006 oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
1007 set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
1008 cg->cg_old_ncyl = oldsb->fs_old_cpg;
1009 cg->cg_ndblk = newcgsize;
1010 }
1011 /* Fix up the csum info, if necessary. */
1012 csum_fixup();
1013 /* Make fs_dsize match the new reality. */
1014 recompute_fs_dsize();
1015 }
1016 /*
1017 * Call (*fn)() for each inode, passing the inode and its inumber. The
1018 * number of cylinder groups is pased in, so this can be used to map
1019 * over either the old or the new file system's set of inodes.
1020 */
1021 static void
1022 map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg),
1023 int ncg, void *cbarg) {
1024 int i;
1025 int ni;
1026
1027 ni = oldsb->fs_ipg * ncg;
1028 for (i = 0; i < ni; i++)
1029 (*fn) (inodes + i, i, cbarg);
1030 }
1031 /* Values for the third argument to the map function for
1032 * map_inode_data_blocks. MDB_DATA indicates the block is contains
1033 * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
1034 * indirect block. The MDB_INDIR_PRE call is made before the indirect
1035 * block pointers are followed and the pointed-to blocks scanned,
1036 * MDB_INDIR_POST after.
1037 */
1038 #define MDB_DATA 1
1039 #define MDB_INDIR_PRE 2
1040 #define MDB_INDIR_POST 3
1041
1042 typedef void (*mark_callback_t) (off_t blocknum, unsigned int nfrags,
1043 unsigned int blksize, int opcode);
1044
1045 /* Helper function - handles a data block. Calls the callback
1046 * function and returns number of bytes occupied in file (actually,
1047 * rounded up to a frag boundary). The name is historical. */
1048 static int
1049 markblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o)
1050 {
1051 int sz;
1052 int nb;
1053 off_t filesize;
1054
1055 filesize = DIP(di,di_size);
1056 if (o >= filesize)
1057 return (0);
1058 sz = dblksize(newsb, di, ffs_lblkno(newsb, o), filesize);
1059 nb = (sz > filesize - o) ? filesize - o : sz;
1060 if (bn)
1061 (*fn) (bn, ffs_numfrags(newsb, sz), nb, MDB_DATA);
1062 return (sz);
1063 }
1064 /* Helper function - handles an indirect block. Makes the
1065 * MDB_INDIR_PRE callback for the indirect block, loops over the
1066 * pointers and recurses, and makes the MDB_INDIR_POST callback.
1067 * Returns the number of bytes occupied in file, as does markblk().
1068 * For the sake of update_for_data_move(), we read the indirect block
1069 * _after_ making the _PRE callback. The name is historical. */
1070 static int
1071 markiblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o, int lev)
1072 {
1073 int i;
1074 int j;
1075 unsigned k;
1076 int tot;
1077 static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
1078 static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
1079 static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
1080 static int32_t *indirblks[3] = {
1081 &indirblk1[0], &indirblk2[0], &indirblk3[0]
1082 };
1083
1084 if (lev < 0)
1085 return (markblk(fn, di, bn, o));
1086 if (bn == 0) {
1087 for (i = newsb->fs_bsize;
1088 lev >= 0;
1089 i *= FFS_NINDIR(newsb), lev--);
1090 return (i);
1091 }
1092 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
1093 readat(FFS_FSBTODB(newsb, bn), indirblks[lev], newsb->fs_bsize);
1094 if (needswap)
1095 for (k = 0; k < howmany(MAXBSIZE, sizeof(int32_t)); k++)
1096 indirblks[lev][k] = bswap32(indirblks[lev][k]);
1097 tot = 0;
1098 for (i = 0; i < FFS_NINDIR(newsb); i++) {
1099 j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
1100 if (j == 0)
1101 break;
1102 o += j;
1103 tot += j;
1104 }
1105 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
1106 return (tot);
1107 }
1108
1109
1110 /*
1111 * Call (*fn)() for each data block for an inode. This routine assumes
1112 * the inode is known to be of a type that has data blocks (file,
1113 * directory, or non-fast symlink). The called function is:
1114 *
1115 * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
1116 *
1117 * where blkno is the frag number, nf is the number of frags starting
1118 * at blkno (always <= fs_frag), nb is the number of bytes that belong
1119 * to the file (usually nf*fs_frag, often less for the last block/frag
1120 * of a file).
1121 */
1122 static void
1123 map_inode_data_blocks(union dinode * di, mark_callback_t fn)
1124 {
1125 off_t o; /* offset within inode */
1126 int inc; /* increment for o - maybe should be off_t? */
1127 int b; /* index within di_db[] and di_ib[] arrays */
1128
1129 /* Scan the direct blocks... */
1130 o = 0;
1131 for (b = 0; b < UFS_NDADDR; b++) {
1132 inc = markblk(fn, di, DIP(di,di_db[b]), o);
1133 if (inc == 0)
1134 break;
1135 o += inc;
1136 }
1137 /* ...and the indirect blocks. */
1138 if (inc) {
1139 for (b = 0; b < UFS_NIADDR; b++) {
1140 inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b);
1141 if (inc == 0)
1142 return;
1143 o += inc;
1144 }
1145 }
1146 }
1147
1148 static void
1149 dblk_callback(union dinode * di, unsigned int inum, void *arg)
1150 {
1151 mark_callback_t fn;
1152 off_t filesize;
1153
1154 filesize = DIP(di,di_size);
1155 fn = (mark_callback_t) arg;
1156 switch (DIP(di,di_mode) & IFMT) {
1157 case IFLNK:
1158 if (filesize <= newsb->fs_maxsymlinklen) {
1159 break;
1160 }
1161 /* FALLTHROUGH */
1162 case IFDIR:
1163 case IFREG:
1164 map_inode_data_blocks(di, fn);
1165 break;
1166 }
1167 }
1168 /*
1169 * Make a callback call, a la map_inode_data_blocks, for all data
1170 * blocks in the entire fs. This is used only once, in
1171 * update_for_data_move, but it's out at top level because the complex
1172 * downward-funarg nesting that would otherwise result seems to give
1173 * gcc gastric distress.
1174 */
1175 static void
1176 map_data_blocks(mark_callback_t fn, int ncg)
1177 {
1178 map_inodes(&dblk_callback, ncg, (void *) fn);
1179 }
1180 /*
1181 * Initialize the blkmove array.
1182 */
1183 static void
1184 blkmove_init(void)
1185 {
1186 int i;
1187
1188 blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
1189 for (i = 0; i < oldsb->fs_size; i++)
1190 blkmove[i] = i;
1191 }
1192 /*
1193 * Load the inodes off disk. Allocates the structures and initializes
1194 * them - the inodes from disk, the flags to zero.
1195 */
1196 static void
1197 loadinodes(void)
1198 {
1199 int imax, ino, i, j;
1200 struct ufs1_dinode *dp1 = NULL;
1201 struct ufs2_dinode *dp2 = NULL;
1202
1203 /* read inodes one fs block at a time and copy them */
1204
1205 inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
1206 sizeof(union dinode), "inodes");
1207 iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
1208 memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg);
1209
1210 ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf");
1211 if (is_ufs2)
1212 dp2 = (struct ufs2_dinode *)ibuf;
1213 else
1214 dp1 = (struct ufs1_dinode *)ibuf;
1215
1216 for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) {
1217 readat(FFS_FSBTODB(oldsb, ino_to_fsba(oldsb, ino)), ibuf,
1218 oldsb->fs_bsize);
1219
1220 for (i = 0; i < oldsb->fs_inopb; i++) {
1221 if (is_ufs2) {
1222 if (needswap) {
1223 ffs_dinode2_swap(&(dp2[i]), &(dp2[i]));
1224 for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++)
1225 dp2[i].di_db[j] =
1226 bswap32(dp2[i].di_db[j]);
1227 }
1228 memcpy(&inodes[ino].dp2, &dp2[i],
1229 sizeof(inodes[ino].dp2));
1230 } else {
1231 if (needswap) {
1232 ffs_dinode1_swap(&(dp1[i]), &(dp1[i]));
1233 for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++)
1234 dp1[i].di_db[j] =
1235 bswap32(dp1[i].di_db[j]);
1236 }
1237 memcpy(&inodes[ino].dp1, &dp1[i],
1238 sizeof(inodes[ino].dp1));
1239 }
1240 if (++ino > imax)
1241 errx(EXIT_FAILURE,
1242 "Exceeded number of inodes");
1243 }
1244
1245 }
1246 }
1247 /*
1248 * Report a file-system-too-full problem.
1249 */
1250 __dead static void
1251 toofull(void)
1252 {
1253 errx(EXIT_FAILURE, "Sorry, would run out of data blocks");
1254 }
1255 /*
1256 * Record a desire to move "n" frags from "from" to "to".
1257 */
1258 static void
1259 mark_move(unsigned int from, unsigned int to, unsigned int n)
1260 {
1261 for (; n > 0; n--)
1262 blkmove[from++] = to++;
1263 }
1264 /* Helper function - evict n frags, starting with start (cg-relative).
1265 * The free bitmap is scanned, unallocated frags are ignored, and
1266 * each block of consecutive allocated frags is moved as a unit.
1267 */
1268 static void
1269 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
1270 {
1271 unsigned int i;
1272 int run;
1273
1274 run = 0;
1275 for (i = 0; i <= n; i++) {
1276 if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
1277 run++;
1278 } else {
1279 if (run > 0) {
1280 int off;
1281 off = find_freespace(run);
1282 if (off < 0)
1283 toofull();
1284 mark_move(base + start + i - run, off, run);
1285 set_bits(cg_blksfree(cg, 0), start + i - run,
1286 run);
1287 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1288 dtogd(oldsb, off), run);
1289 }
1290 run = 0;
1291 }
1292 }
1293 }
1294 /*
1295 * Evict all data blocks from the given cg, starting at minfrag (based
1296 * at the beginning of the cg), for length nfrag. The eviction is
1297 * assumed to be entirely data-area; this should not be called with a
1298 * range overlapping the metadata structures in the cg. It also
1299 * assumes minfrag points into the given cg; it will misbehave if this
1300 * is not true.
1301 *
1302 * See the comment header on find_freespace() for one possible bug
1303 * lurking here.
1304 */
1305 static void
1306 evict_data(struct cg * cg, unsigned int minfrag, int nfrag)
1307 {
1308 int base; /* base of cg (in frags from beginning of fs) */
1309
1310 base = cgbase(oldsb, cg->cg_cgx);
1311 /* Does the boundary fall in the middle of a block? To avoid
1312 * breaking between frags allocated as consecutive, we always
1313 * evict the whole block in this case, though one could argue
1314 * we should check to see if the frag before or after the
1315 * break is unallocated. */
1316 if (minfrag % oldsb->fs_frag) {
1317 int n;
1318 n = minfrag % oldsb->fs_frag;
1319 minfrag -= n;
1320 nfrag += n;
1321 }
1322 /* Do whole blocks. If a block is wholly free, skip it; if
1323 * wholly allocated, move it in toto. If neither, call
1324 * fragmove() to move the frags to new locations. */
1325 while (nfrag >= oldsb->fs_frag) {
1326 if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
1327 if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
1328 oldsb->fs_frag)) {
1329 int off;
1330 off = find_freeblock();
1331 if (off < 0)
1332 toofull();
1333 mark_move(base + minfrag, off, oldsb->fs_frag);
1334 set_bits(cg_blksfree(cg, 0), minfrag,
1335 oldsb->fs_frag);
1336 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1337 dtogd(oldsb, off), oldsb->fs_frag);
1338 } else {
1339 fragmove(cg, base, minfrag, oldsb->fs_frag);
1340 }
1341 }
1342 minfrag += oldsb->fs_frag;
1343 nfrag -= oldsb->fs_frag;
1344 }
1345 /* Clean up any sub-block amount left over. */
1346 if (nfrag) {
1347 fragmove(cg, base, minfrag, nfrag);
1348 }
1349 }
1350 /*
1351 * Move all data blocks according to blkmove. We have to be careful,
1352 * because we may be updating indirect blocks that will themselves be
1353 * getting moved, or inode int32_t arrays that point to indirect
1354 * blocks that will be moved. We call this before
1355 * update_for_data_move, and update_for_data_move does inodes first,
1356 * then indirect blocks in preorder, so as to make sure that the
1357 * file system is self-consistent at all points, for better crash
1358 * tolerance. (We can get away with this only because all the writes
1359 * done by perform_data_move() are writing into space that's not used
1360 * by the old file system.) If we crash, some things may point to the
1361 * old data and some to the new, but both copies are the same. The
1362 * only wrong things should be csum info and free bitmaps, which fsck
1363 * is entirely capable of cleaning up.
1364 *
1365 * Since blkmove_init() initializes all blocks to move to their current
1366 * locations, we can have two blocks marked as wanting to move to the
1367 * same location, but only two and only when one of them is the one
1368 * that was already there. So if blkmove[i]==i, we ignore that entry
1369 * entirely - for unallocated blocks, we don't want it (and may be
1370 * putting something else there), and for allocated blocks, we don't
1371 * want to copy it anywhere.
1372 */
1373 static void
1374 perform_data_move(void)
1375 {
1376 int i;
1377 int run;
1378 int maxrun;
1379 char buf[65536];
1380
1381 maxrun = sizeof(buf) / newsb->fs_fsize;
1382 run = 0;
1383 for (i = 0; i < oldsb->fs_size; i++) {
1384 if ((blkmove[i] == (unsigned)i /*XXX cast*/) ||
1385 (run >= maxrun) ||
1386 ((run > 0) &&
1387 (blkmove[i] != blkmove[i - 1] + 1))) {
1388 if (run > 0) {
1389 readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
1390 run << oldsb->fs_fshift);
1391 writeat(FFS_FSBTODB(oldsb, blkmove[i - run]),
1392 &buf[0], run << oldsb->fs_fshift);
1393 }
1394 run = 0;
1395 }
1396 if (blkmove[i] != (unsigned)i /*XXX cast*/)
1397 run++;
1398 }
1399 if (run > 0) {
1400 readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
1401 run << oldsb->fs_fshift);
1402 writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), &buf[0],
1403 run << oldsb->fs_fshift);
1404 }
1405 }
1406 /*
1407 * This modifies an array of int32_t, according to blkmove. This is
1408 * used to update inode block arrays and indirect blocks to point to
1409 * the new locations of data blocks.
1410 *
1411 * Return value is the number of int32_ts that needed updating; in
1412 * particular, the return value is zero iff nothing was modified.
1413 */
1414 static int
1415 movemap_blocks(int32_t * vec, int n)
1416 {
1417 int rv;
1418
1419 rv = 0;
1420 for (; n > 0; n--, vec++) {
1421 if (blkmove[*vec] != (unsigned)*vec /*XXX cast*/) {
1422 *vec = blkmove[*vec];
1423 rv++;
1424 }
1425 }
1426 return (rv);
1427 }
1428 static void
1429 moveblocks_callback(union dinode * di, unsigned int inum, void *arg)
1430 {
1431 int32_t *dblkptr, *iblkptr;
1432
1433 switch (DIP(di,di_mode) & IFMT) {
1434 case IFLNK:
1435 if ((off_t)DIP(di,di_size) <= oldsb->fs_maxsymlinklen) {
1436 break;
1437 }
1438 /* FALLTHROUGH */
1439 case IFDIR:
1440 case IFREG:
1441 if (is_ufs2) {
1442 /* XXX these are not int32_t and this is WRONG! */
1443 dblkptr = (void *) &(di->dp2.di_db[0]);
1444 iblkptr = (void *) &(di->dp2.di_ib[0]);
1445 } else {
1446 dblkptr = &(di->dp1.di_db[0]);
1447 iblkptr = &(di->dp1.di_ib[0]);
1448 }
1449 /*
1450 * Don't || these two calls; we need their
1451 * side-effects.
1452 */
1453 if (movemap_blocks(dblkptr, UFS_NDADDR)) {
1454 iflags[inum] |= IF_DIRTY;
1455 }
1456 if (movemap_blocks(iblkptr, UFS_NIADDR)) {
1457 iflags[inum] |= IF_DIRTY;
1458 }
1459 break;
1460 }
1461 }
1462
1463 static void
1464 moveindir_callback(off_t off, unsigned int nfrag, unsigned int nbytes,
1465 int kind)
1466 {
1467 unsigned int i;
1468
1469 if (kind == MDB_INDIR_PRE) {
1470 int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
1471 readat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
1472 if (needswap)
1473 for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
1474 blk[i] = bswap32(blk[i]);
1475 if (movemap_blocks(&blk[0], FFS_NINDIR(oldsb))) {
1476 if (needswap)
1477 for (i = 0; i < howmany(MAXBSIZE,
1478 sizeof(int32_t)); i++)
1479 blk[i] = bswap32(blk[i]);
1480 writeat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
1481 }
1482 }
1483 }
1484 /*
1485 * Update all inode data arrays and indirect blocks to point to the new
1486 * locations of data blocks. See the comment header on
1487 * perform_data_move for some ordering considerations.
1488 */
1489 static void
1490 update_for_data_move(void)
1491 {
1492 map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
1493 map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
1494 }
1495 /*
1496 * Initialize the inomove array.
1497 */
1498 static void
1499 inomove_init(void)
1500 {
1501 int i;
1502
1503 inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
1504 "inomove");
1505 for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
1506 inomove[i] = i;
1507 }
1508 /*
1509 * Flush all dirtied inodes to disk. Scans the inode flags array; for
1510 * each dirty inode, it sets the BDIRTY bit on the first inode in the
1511 * block containing the dirty inode. Then it scans by blocks, and for
1512 * each marked block, writes it.
1513 */
1514 static void
1515 flush_inodes(void)
1516 {
1517 int i, j, k, na, ni, m;
1518 struct ufs1_dinode *dp1 = NULL;
1519 struct ufs2_dinode *dp2 = NULL;
1520
1521 na = UFS_NDADDR + UFS_NIADDR;
1522 ni = newsb->fs_ipg * newsb->fs_ncg;
1523 m = FFS_INOPB(newsb) - 1;
1524 for (i = 0; i < ni; i++) {
1525 if (iflags[i] & IF_DIRTY) {
1526 iflags[i & ~m] |= IF_BDIRTY;
1527 }
1528 }
1529 m++;
1530
1531 if (is_ufs2)
1532 dp2 = (struct ufs2_dinode *)ibuf;
1533 else
1534 dp1 = (struct ufs1_dinode *)ibuf;
1535
1536 for (i = 0; i < ni; i += m) {
1537 if (iflags[i] & IF_BDIRTY) {
1538 if (is_ufs2)
1539 for (j = 0; j < m; j++) {
1540 dp2[j] = inodes[i + j].dp2;
1541 if (needswap) {
1542 for (k = 0; k < na; k++)
1543 dp2[j].di_db[k]=
1544 bswap32(dp2[j].di_db[k]);
1545 ffs_dinode2_swap(&dp2[j],
1546 &dp2[j]);
1547 }
1548 }
1549 else
1550 for (j = 0; j < m; j++) {
1551 dp1[j] = inodes[i + j].dp1;
1552 if (needswap) {
1553 for (k = 0; k < na; k++)
1554 dp1[j].di_db[k]=
1555 bswap32(dp1[j].di_db[k]);
1556 ffs_dinode1_swap(&dp1[j],
1557 &dp1[j]);
1558 }
1559 }
1560
1561 writeat(FFS_FSBTODB(newsb, ino_to_fsba(newsb, i)),
1562 ibuf, newsb->fs_bsize);
1563 }
1564 }
1565 }
1566 /*
1567 * Evict all inodes from the specified cg. shrink() already checked
1568 * that there were enough free inodes, so the no-free-inodes check is
1569 * a can't-happen. If it does trip, the file system should be in good
1570 * enough shape for fsck to fix; see the comment on perform_data_move
1571 * for the considerations in question.
1572 */
1573 static void
1574 evict_inodes(struct cg * cg)
1575 {
1576 int inum;
1577 int i;
1578 int fi;
1579
1580 inum = newsb->fs_ipg * cg->cg_cgx;
1581 for (i = 0; i < newsb->fs_ipg; i++, inum++) {
1582 if (DIP(inodes + inum,di_mode) != 0) {
1583 fi = find_freeinode();
1584 if (fi < 0)
1585 errx(EXIT_FAILURE, "Sorry, inodes evaporated - "
1586 "file system probably needs fsck");
1587 inomove[inum] = fi;
1588 clr_bits(cg_inosused(cg, 0), i, 1);
1589 set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
1590 fi % newsb->fs_ipg, 1);
1591 }
1592 }
1593 }
1594 /*
1595 * Move inodes from old locations to new. Does not actually write
1596 * anything to disk; just copies in-core and sets dirty bits.
1597 *
1598 * We have to be careful here for reasons similar to those mentioned in
1599 * the comment header on perform_data_move, above: for the sake of
1600 * crash tolerance, we want to make sure everything is present at both
1601 * old and new locations before we update pointers. So we call this
1602 * first, then flush_inodes() to get them out on disk, then update
1603 * directories to match.
1604 */
1605 static void
1606 perform_inode_move(void)
1607 {
1608 unsigned int i;
1609 unsigned int ni;
1610
1611 ni = oldsb->fs_ipg * oldsb->fs_ncg;
1612 for (i = 0; i < ni; i++) {
1613 if (inomove[i] != i) {
1614 inodes[inomove[i]] = inodes[i];
1615 iflags[inomove[i]] = iflags[i] | IF_DIRTY;
1616 }
1617 }
1618 }
1619 /*
1620 * Update the directory contained in the nb bytes at buf, to point to
1621 * inodes' new locations.
1622 */
1623 static int
1624 update_dirents(char *buf, int nb)
1625 {
1626 int rv;
1627 #define d ((struct direct *)buf)
1628 #define s32(x) (needswap?bswap32((x)):(x))
1629 #define s16(x) (needswap?bswap16((x)):(x))
1630
1631 rv = 0;
1632 while (nb > 0) {
1633 if (inomove[s32(d->d_ino)] != s32(d->d_ino)) {
1634 rv++;
1635 d->d_ino = s32(inomove[s32(d->d_ino)]);
1636 }
1637 nb -= s16(d->d_reclen);
1638 buf += s16(d->d_reclen);
1639 }
1640 return (rv);
1641 #undef d
1642 #undef s32
1643 #undef s16
1644 }
1645 /*
1646 * Callback function for map_inode_data_blocks, for updating a
1647 * directory to point to new inode locations.
1648 */
1649 static void
1650 update_dir_data(off_t bn, unsigned int size, unsigned int nb, int kind)
1651 {
1652 if (kind == MDB_DATA) {
1653 union {
1654 struct direct d;
1655 char ch[MAXBSIZE];
1656 } buf;
1657 readat(FFS_FSBTODB(oldsb, bn), &buf, size << oldsb->fs_fshift);
1658 if (update_dirents((char *) &buf, nb)) {
1659 writeat(FFS_FSBTODB(oldsb, bn), &buf,
1660 size << oldsb->fs_fshift);
1661 }
1662 }
1663 }
1664 static void
1665 dirmove_callback(union dinode * di, unsigned int inum, void *arg)
1666 {
1667 switch (DIP(di,di_mode) & IFMT) {
1668 case IFDIR:
1669 map_inode_data_blocks(di, &update_dir_data);
1670 break;
1671 }
1672 }
1673 /*
1674 * Update directory entries to point to new inode locations.
1675 */
1676 static void
1677 update_for_inode_move(void)
1678 {
1679 map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
1680 }
1681 /*
1682 * Shrink the file system.
1683 */
1684 static void
1685 shrink(void)
1686 {
1687 int i;
1688
1689 /* Load the inodes off disk - we'll need 'em. */
1690 loadinodes();
1691 /* Update the timestamp. */
1692 newsb->fs_time = timestamp();
1693 /* Update the size figures. */
1694 newsb->fs_size = FFS_DBTOFSB(newsb, newsize);
1695 if (is_ufs2)
1696 newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
1697 else {
1698 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
1699 newsb->fs_old_spc);
1700 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
1701 }
1702 /* Does the (new) last cg end before the end of its inode area? See
1703 * the similar code in grow() for more on this. */
1704 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
1705 newsb->fs_ncg--;
1706 if (is_ufs2 == 0) {
1707 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
1708 newsb->fs_size = (newsb->fs_old_ncyl *
1709 newsb->fs_old_spc) / NSPF(newsb);
1710 } else
1711 newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg;
1712
1713 printf("Warning: last cylinder group is too small;\n");
1714 printf(" dropping it. New size = %lu.\n",
1715 (unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size));
1716 }
1717 /* Let's make sure we're not being shrunk into oblivion. */
1718 if (newsb->fs_ncg < 1)
1719 errx(EXIT_FAILURE, "Size too small - file system would "
1720 "have no cylinders");
1721 /* Initialize for block motion. */
1722 blkmove_init();
1723 /* Update csum size, then fix up for the new size */
1724 newsb->fs_cssize = ffs_fragroundup(newsb,
1725 newsb->fs_ncg * sizeof(struct csum));
1726 csum_fixup();
1727 /* Evict data from any cgs being wholly eliminated */
1728 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
1729 int base;
1730 int dlow;
1731 int dhigh;
1732 int dmax;
1733 base = cgbase(oldsb, i);
1734 dlow = cgsblock(oldsb, i) - base;
1735 dhigh = cgdmin(oldsb, i) - base;
1736 dmax = oldsb->fs_size - base;
1737 if (dmax > cgs[i]->cg_ndblk)
1738 dmax = cgs[i]->cg_ndblk;
1739 evict_data(cgs[i], 0, dlow);
1740 evict_data(cgs[i], dhigh, dmax - dhigh);
1741 newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
1742 newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
1743 newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
1744 newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
1745 }
1746 /* Update the new last cg. */
1747 cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
1748 ((newsb->fs_ncg - 1) * newsb->fs_fpg);
1749 /* Is the new last cg partial? If so, evict any data from the part
1750 * being shrunken away. */
1751 if (newsb->fs_size % newsb->fs_fpg) {
1752 struct cg *cg;
1753 int oldcgsize;
1754 int newcgsize;
1755 cg = cgs[newsb->fs_ncg - 1];
1756 newcgsize = newsb->fs_size % newsb->fs_fpg;
1757 oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
1758 oldsb->fs_fpg);
1759 if (oldcgsize > oldsb->fs_fpg)
1760 oldcgsize = oldsb->fs_fpg;
1761 evict_data(cg, newcgsize, oldcgsize - newcgsize);
1762 clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
1763 }
1764 /* Find out whether we would run out of inodes. (Note we
1765 * haven't actually done anything to the file system yet; all
1766 * those evict_data calls just update blkmove.) */
1767 {
1768 int slop;
1769 slop = 0;
1770 for (i = 0; i < newsb->fs_ncg; i++)
1771 slop += cgs[i]->cg_cs.cs_nifree;
1772 for (; i < oldsb->fs_ncg; i++)
1773 slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
1774 if (slop < 0)
1775 errx(EXIT_FAILURE, "Sorry, would run out of inodes");
1776 }
1777 /* Copy data, then update pointers to data. See the comment
1778 * header on perform_data_move for ordering considerations. */
1779 perform_data_move();
1780 update_for_data_move();
1781 /* Now do inodes. Initialize, evict, move, update - see the
1782 * comment header on perform_inode_move. */
1783 inomove_init();
1784 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
1785 evict_inodes(cgs[i]);
1786 perform_inode_move();
1787 flush_inodes();
1788 update_for_inode_move();
1789 /* Recompute all the bitmaps; most of them probably need it anyway,
1790 * the rest are just paranoia and not wanting to have to bother
1791 * keeping track of exactly which ones require it. */
1792 for (i = 0; i < newsb->fs_ncg; i++)
1793 cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
1794 /* Update the cg_old_ncyl value for the last cylinder. */
1795 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
1796 cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
1797 newsb->fs_old_ncyl % newsb->fs_old_cpg;
1798 /* Make fs_dsize match the new reality. */
1799 recompute_fs_dsize();
1800 }
1801 /*
1802 * Recompute the block totals, block cluster summaries, and rotational
1803 * position summaries, for a given cg (specified by number), based on
1804 * its free-frag bitmap (cg_blksfree()[]).
1805 */
1806 static void
1807 rescan_blkmaps(int cgn)
1808 {
1809 struct cg *cg;
1810 int f;
1811 int b;
1812 int blkfree;
1813 int blkrun;
1814 int fragrun;
1815 int fwb;
1816
1817 cg = cgs[cgn];
1818 /* Subtract off the current totals from the sb's summary info */
1819 newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
1820 newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
1821 /* Clear counters and bitmaps. */
1822 cg->cg_cs.cs_nffree = 0;
1823 cg->cg_cs.cs_nbfree = 0;
1824 memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0]));
1825 memset(&old_cg_blktot(cg, 0)[0], 0,
1826 newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
1827 memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0,
1828 newsb->fs_old_cpg * newsb->fs_old_nrpos *
1829 sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
1830 if (newsb->fs_contigsumsize > 0) {
1831 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
1832 memset(&cg_clustersum(cg, 0)[1], 0,
1833 newsb->fs_contigsumsize *
1834 sizeof(cg_clustersum(cg, 0)[1]));
1835 if (is_ufs2)
1836 memset(&cg_clustersfree(cg, 0)[0], 0,
1837 howmany(newsb->fs_fpg / NSPB(newsb), NBBY));
1838 else
1839 memset(&cg_clustersfree(cg, 0)[0], 0,
1840 howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
1841 NSPB(newsb), NBBY));
1842 }
1843 /* Scan the free-frag bitmap. Runs of free frags are kept
1844 * track of with fragrun, and recorded into cg_frsum[] and
1845 * cg_cs.cs_nffree; on each block boundary, entire free blocks
1846 * are recorded as well. */
1847 blkfree = 1;
1848 blkrun = 0;
1849 fragrun = 0;
1850 f = 0;
1851 b = 0;
1852 fwb = 0;
1853 while (f < cg->cg_ndblk) {
1854 if (bit_is_set(cg_blksfree(cg, 0), f)) {
1855 fragrun++;
1856 } else {
1857 blkfree = 0;
1858 if (fragrun > 0) {
1859 cg->cg_frsum[fragrun]++;
1860 cg->cg_cs.cs_nffree += fragrun;
1861 }
1862 fragrun = 0;
1863 }
1864 f++;
1865 fwb++;
1866 if (fwb >= newsb->fs_frag) {
1867 if (blkfree) {
1868 cg->cg_cs.cs_nbfree++;
1869 if (newsb->fs_contigsumsize > 0)
1870 set_bits(cg_clustersfree(cg, 0), b, 1);
1871 if (is_ufs2 == 0) {
1872 old_cg_blktot(cg, 0)[
1873 old_cbtocylno(newsb,
1874 f - newsb->fs_frag)]++;
1875 old_cg_blks(newsb, cg,
1876 old_cbtocylno(newsb,
1877 f - newsb->fs_frag),
1878 0)[old_cbtorpos(newsb,
1879 f - newsb->fs_frag)]++;
1880 }
1881 blkrun++;
1882 } else {
1883 if (fragrun > 0) {
1884 cg->cg_frsum[fragrun]++;
1885 cg->cg_cs.cs_nffree += fragrun;
1886 }
1887 if (newsb->fs_contigsumsize > 0) {
1888 if (blkrun > 0) {
1889 cg_clustersum(cg, 0)[(blkrun
1890 > newsb->fs_contigsumsize)
1891 ? newsb->fs_contigsumsize
1892 : blkrun]++;
1893 }
1894 }
1895 blkrun = 0;
1896 }
1897 fwb = 0;
1898 b++;
1899 blkfree = 1;
1900 fragrun = 0;
1901 }
1902 }
1903 if (fragrun > 0) {
1904 cg->cg_frsum[fragrun]++;
1905 cg->cg_cs.cs_nffree += fragrun;
1906 }
1907 if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
1908 cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
1909 newsb->fs_contigsumsize : blkrun]++;
1910 }
1911 /*
1912 * Put the updated summary info back into csums, and add it
1913 * back into the sb's summary info. Then mark the cg dirty.
1914 */
1915 csums[cgn] = cg->cg_cs;
1916 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
1917 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
1918 cgflags[cgn] |= CGF_DIRTY;
1919 }
1920 /*
1921 * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
1922 * values, for a cg, based on the in-core inodes for that cg.
1923 */
1924 static void
1925 rescan_inomaps(int cgn)
1926 {
1927 struct cg *cg;
1928 int inum;
1929 int iwc;
1930
1931 cg = cgs[cgn];
1932 newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
1933 newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
1934 cg->cg_cs.cs_ndir = 0;
1935 cg->cg_cs.cs_nifree = 0;
1936 memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY));
1937 inum = cgn * newsb->fs_ipg;
1938 if (cgn == 0) {
1939 set_bits(cg_inosused(cg, 0), 0, 2);
1940 iwc = 2;
1941 inum += 2;
1942 } else {
1943 iwc = 0;
1944 }
1945 for (; iwc < newsb->fs_ipg; iwc++, inum++) {
1946 switch (DIP(inodes + inum, di_mode) & IFMT) {
1947 case 0:
1948 cg->cg_cs.cs_nifree++;
1949 break;
1950 case IFDIR:
1951 cg->cg_cs.cs_ndir++;
1952 /* FALLTHROUGH */
1953 default:
1954 set_bits(cg_inosused(cg, 0), iwc, 1);
1955 break;
1956 }
1957 }
1958 csums[cgn] = cg->cg_cs;
1959 newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
1960 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
1961 cgflags[cgn] |= CGF_DIRTY;
1962 }
1963 /*
1964 * Flush cgs to disk, recomputing anything they're marked as needing.
1965 */
1966 static void
1967 flush_cgs(void)
1968 {
1969 int i;
1970
1971 for (i = 0; i < newsb->fs_ncg; i++) {
1972 if (cgflags[i] & CGF_BLKMAPS) {
1973 rescan_blkmaps(i);
1974 }
1975 if (cgflags[i] & CGF_INOMAPS) {
1976 rescan_inomaps(i);
1977 }
1978 if (cgflags[i] & CGF_DIRTY) {
1979 cgs[i]->cg_rotor = 0;
1980 cgs[i]->cg_frotor = 0;
1981 cgs[i]->cg_irotor = 0;
1982 if (needswap)
1983 ffs_cg_swap(cgs[i],cgs[i],newsb);
1984 writeat(FFS_FSBTODB(newsb, cgtod(newsb, i)), cgs[i],
1985 cgblksz);
1986 }
1987 }
1988 if (needswap)
1989 ffs_csum_swap(csums,csums,newsb->fs_cssize);
1990 writeat(FFS_FSBTODB(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
1991 }
1992 /*
1993 * Write the superblock, both to the main superblock and to each cg's
1994 * alternative superblock.
1995 */
1996 static void
1997 write_sbs(void)
1998 {
1999 int i;
2000
2001 if (newsb->fs_magic == FS_UFS1_MAGIC &&
2002 (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2003 newsb->fs_old_time = newsb->fs_time;
2004 newsb->fs_old_size = newsb->fs_size;
2005 /* we don't update fs_csaddr */
2006 newsb->fs_old_dsize = newsb->fs_dsize;
2007 newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
2008 newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
2009 newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
2010 newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
2011 /* fill fs_old_postbl_start with 256 bytes of 0xff? */
2012 }
2013 /* copy newsb back to oldsb, so we can use it for offsets if
2014 newsb has been swapped for writing to disk */
2015 memcpy(oldsb, newsb, SBLOCKSIZE);
2016 if (needswap)
2017 ffs_sb_swap(newsb,newsb);
2018 writeat(where / DEV_BSIZE, newsb, SBLOCKSIZE);
2019 for (i = 0; i < oldsb->fs_ncg; i++) {
2020 writeat(FFS_FSBTODB(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE);
2021 }
2022 }
2023
2024 static off_t
2025 get_dev_size(char *dev_name)
2026 {
2027 struct dkwedge_info dkw;
2028 struct partition *pp;
2029 struct disklabel lp;
2030 struct stat st;
2031 size_t ptn;
2032
2033 /* Get info about partition/wedge */
2034 if (ioctl(fd, DIOCGWEDGEINFO, &dkw) != -1)
2035 return dkw.dkw_size;
2036 if (ioctl(fd, DIOCGDINFO, &lp) != -1) {
2037 ptn = strchr(dev_name, '\0')[-1] - 'a';
2038 if (ptn >= lp.d_npartitions)
2039 return 0;
2040 pp = &lp.d_partitions[ptn];
2041 return pp->p_size;
2042 }
2043 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
2044 return st.st_size / DEV_BSIZE;
2045
2046 return 0;
2047 }
2048
2049 /*
2050 * main().
2051 */
2052 int
2053 main(int argc, char **argv)
2054 {
2055 int ch;
2056 int CheckOnlyFlag;
2057 int ExpertFlag;
2058 int SFlag;
2059 size_t i;
2060
2061 char *special;
2062 char reply[5];
2063
2064 newsize = 0;
2065 ExpertFlag = 0;
2066 SFlag = 0;
2067 CheckOnlyFlag = 0;
2068
2069 while ((ch = getopt(argc, argv, "cs:vy")) != -1) {
2070 switch (ch) {
2071 case 'c':
2072 CheckOnlyFlag = 1;
2073 break;
2074 case 's':
2075 SFlag = 1;
2076 newsize = strtoll(optarg, NULL, 10);
2077 if(newsize < 1) {
2078 usage();
2079 }
2080 break;
2081 case 'v':
2082 verbose = 1;
2083 break;
2084 case 'y':
2085 ExpertFlag = 1;
2086 break;
2087 case '?':
2088 /* FALLTHROUGH */
2089 default:
2090 usage();
2091 }
2092 }
2093 argc -= optind;
2094 argv += optind;
2095
2096 if (argc != 1) {
2097 usage();
2098 }
2099
2100 special = *argv;
2101
2102 if (ExpertFlag == 0 && CheckOnlyFlag == 0) {
2103 printf("It's required to manually run fsck on file system "
2104 "before you can resize it\n\n"
2105 " Did you run fsck on your disk (Yes/No) ? ");
2106 fgets(reply, (int)sizeof(reply), stdin);
2107 if (strcasecmp(reply, "Yes\n")) {
2108 printf("\n Nothing done \n");
2109 exit(EXIT_SUCCESS);
2110 }
2111 }
2112
2113 fd = open(special, O_RDWR, 0);
2114 if (fd < 0)
2115 err(EXIT_FAILURE, "Can't open `%s'", special);
2116 checksmallio();
2117
2118 if (SFlag == 0) {
2119 newsize = get_dev_size(special);
2120 if (newsize == 0)
2121 err(EXIT_FAILURE,
2122 "Can't resize file system, newsize not known.");
2123 }
2124
2125 oldsb = (struct fs *) & sbbuf;
2126 newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
2127 for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
2128 readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
2129 switch (oldsb->fs_magic) {
2130 case FS_UFS2_MAGIC:
2131 is_ufs2 = 1;
2132 /* FALLTHROUGH */
2133 case FS_UFS1_MAGIC:
2134 needswap = 0;
2135 break;
2136 case FS_UFS2_MAGIC_SWAPPED:
2137 is_ufs2 = 1;
2138 /* FALLTHROUGH */
2139 case FS_UFS1_MAGIC_SWAPPED:
2140 needswap = 1;
2141 break;
2142 default:
2143 continue;
2144 }
2145 if (!is_ufs2 && where == SBLOCK_UFS2)
2146 continue;
2147 break;
2148 }
2149 if (where == (off_t)-1)
2150 errx(EXIT_FAILURE, "Bad magic number");
2151 if (needswap)
2152 ffs_sb_swap(oldsb,oldsb);
2153 if (oldsb->fs_magic == FS_UFS1_MAGIC &&
2154 (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2155 oldsb->fs_csaddr = oldsb->fs_old_csaddr;
2156 oldsb->fs_size = oldsb->fs_old_size;
2157 oldsb->fs_dsize = oldsb->fs_old_dsize;
2158 oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
2159 oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
2160 oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
2161 oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
2162 /* any others? */
2163 printf("Resizing with ffsv1 superblock\n");
2164 }
2165
2166 oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
2167 oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
2168 if (oldsb->fs_ipg % FFS_INOPB(oldsb))
2169 errx(EXIT_FAILURE, "ipg[%d] %% FFS_INOPB[%d] != 0",
2170 (int) oldsb->fs_ipg, (int) FFS_INOPB(oldsb));
2171 /* The superblock is bigger than struct fs (there are trailing
2172 * tables, of non-fixed size); make sure we copy the whole
2173 * thing. SBLOCKSIZE may be an over-estimate, but we do this
2174 * just once, so being generous is cheap. */
2175 memcpy(newsb, oldsb, SBLOCKSIZE);
2176 loadcgs();
2177
2178 if (CheckOnlyFlag) {
2179 /* Check to see if the newsize would change the file system. */
2180 if (FFS_DBTOFSB(oldsb, newsize) == oldsb->fs_size) {
2181 if (verbose) {
2182 printf("Wouldn't change: already %" PRId64
2183 " blocks\n", newsize);
2184 }
2185 exit(1);
2186 }
2187 if (verbose) {
2188 printf("Would change: newsize: %" PRId64 " oldsize: %"
2189 PRId64 " fsdb: %" PRId64 "\n", FFS_DBTOFSB(oldsb, newsize),
2190 (int64_t)oldsb->fs_size,
2191 (int64_t)oldsb->fs_fsbtodb);
2192 }
2193 exit(0);
2194 }
2195
2196 if (newsize > FFS_FSBTODB(oldsb, oldsb->fs_size)) {
2197 grow();
2198 } else if (newsize < FFS_FSBTODB(oldsb, oldsb->fs_size)) {
2199 if (is_ufs2)
2200 errx(EXIT_FAILURE,"shrinking not supported for ufs2");
2201 shrink();
2202 }
2203 flush_cgs();
2204 write_sbs();
2205 if (isplainfile())
2206 ftruncate(fd,newsize * DEV_BSIZE);
2207 return 0;
2208 }
2209
2210 static void
2211 usage(void)
2212 {
2213
2214 (void)fprintf(stderr, "usage: %s [-cvy] [-s size] special\n",
2215 getprogname());
2216 exit(EXIT_FAILURE);
2217 }
2218