Home | History | Annotate | Line # | Download | only in resize_ffs
resize_ffs.c revision 1.44
      1 /*	$NetBSD: resize_ffs.c,v 1.44 2015/04/06 22:44:04 jmcneill Exp $	*/
      2 /* From sources sent on February 17, 2003 */
      3 /*-
      4  * As its sole author, I explicitly place this code in the public
      5  *  domain.  Anyone may use it for any purpose (though I would
      6  *  appreciate credit where it is due).
      7  *
      8  *					der Mouse
      9  *
     10  *			       mouse (at) rodents.montreal.qc.ca
     11  *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
     12  */
     13 /*
     14  * resize_ffs:
     15  *
     16  * Resize a file system.  Is capable of both growing and shrinking.
     17  *
     18  * Usage: resize_ffs [-s newsize] [-y] file_system
     19  *
     20  * Example: resize_ffs -s 29574 /dev/rsd1e
     21  *
     22  * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
     23  *  each).
     24  *
     25  * Note: this currently requires gcc to build, since it is written
     26  *  depending on gcc-specific features, notably nested function
     27  *  definitions (which in at least a few cases depend on the lexical
     28  *  scoping gcc provides, so they can't be trivially moved outside).
     29  *
     30  * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
     31  *  one responsible for the "realloccgblk: can't find blk in cyl"
     32  *  problem and a more minor one which left fs_dsize wrong when
     33  *  shrinking.  (These actually indicate bugs in fsck too - it should
     34  *  have caught and fixed them.)
     35  *
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __RCSID("$NetBSD: resize_ffs.c,v 1.44 2015/04/06 22:44:04 jmcneill Exp $");
     40 
     41 #include <sys/disk.h>
     42 #include <sys/disklabel.h>
     43 #include <sys/dkio.h>
     44 #include <sys/ioctl.h>
     45 #include <sys/stat.h>
     46 #include <sys/mman.h>
     47 #include <sys/param.h>		/* MAXFRAG */
     48 #include <ufs/ffs/fs.h>
     49 #include <ufs/ffs/ffs_extern.h>
     50 #include <ufs/ufs/dir.h>
     51 #include <ufs/ufs/dinode.h>
     52 #include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */
     53 
     54 #include <err.h>
     55 #include <errno.h>
     56 #include <fcntl.h>
     57 #include <stdio.h>
     58 #include <stdlib.h>
     59 #include <strings.h>
     60 #include <unistd.h>
     61 
     62 #include "progress.h"
     63 
     64 /* new size of file system, in sectors */
     65 static int64_t newsize;
     66 
     67 /* fd open onto disk device or file */
     68 static int fd;
     69 
     70 /* disk device or file path */
     71 char *special;
     72 
     73 /* must we break up big I/O operations - see checksmallio() */
     74 static int smallio;
     75 
     76 /* size of a cg, in bytes, rounded up to a frag boundary */
     77 static int cgblksz;
     78 
     79 /* possible superblock localtions */
     80 static int search[] = SBLOCKSEARCH;
     81 /* location of the superblock */
     82 static off_t where;
     83 
     84 /* Superblocks. */
     85 static struct fs *oldsb;	/* before we started */
     86 static struct fs *newsb;	/* copy to work with */
     87 /* Buffer to hold the above.  Make sure it's aligned correctly. */
     88 static char sbbuf[2 * SBLOCKSIZE]
     89 	__attribute__((__aligned__(__alignof__(struct fs))));
     90 
     91 union dinode {
     92 	struct ufs1_dinode dp1;
     93 	struct ufs2_dinode dp2;
     94 };
     95 #define DIP(dp, field)							      \
     96 	((is_ufs2) ?							      \
     97 	    (dp)->dp2.field : (dp)->dp1.field)
     98 
     99 #define DIP_ASSIGN(dp, field, value)					      \
    100 	do {								      \
    101 		if (is_ufs2)						      \
    102 			(dp)->dp2.field = (value);			      \
    103 		else							      \
    104 			(dp)->dp1.field = (value);			      \
    105 	} while (0)
    106 
    107 /* a cg's worth of brand new squeaky-clean inodes */
    108 static struct ufs1_dinode *zinodes;
    109 
    110 /* pointers to the in-core cgs, read off disk and possibly modified */
    111 static struct cg **cgs;
    112 
    113 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
    114 static struct csum *csums;
    115 
    116 /* per-cg flags, indexed by cg number */
    117 static unsigned char *cgflags;
    118 #define CGF_DIRTY   0x01	/* needs to be written to disk */
    119 #define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
    120 #define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */
    121 
    122 /* when shrinking, these two arrays record how we want blocks to move.	 */
    123 /*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
    124 /*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
    125 /*  started out as inode i should end up as inode j.			 */
    126 static unsigned int *blkmove;
    127 static unsigned int *inomove;
    128 
    129 /* in-core copies of all inodes in the fs, indexed by inumber */
    130 union dinode *inodes;
    131 
    132 void *ibuf;	/* ptr to fs block-sized buffer for reading/writing inodes */
    133 
    134 /* byteswapped inodes */
    135 union dinode *sinodes;
    136 
    137 /* per-inode flags, indexed by inumber */
    138 static unsigned char *iflags;
    139 #define IF_DIRTY  0x01		/* needs to be written to disk */
    140 #define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
    141 				 * block of inodes, and applies to the whole
    142 				 * block. */
    143 
    144 /* resize_ffs works directly on dinodes, adapt blksize() */
    145 #define dblksize(fs, dip, lbn, filesize) \
    146 	(((lbn) >= UFS_NDADDR || (uint64_t)(filesize) >= ffs_lblktosize(fs, (lbn) + 1)) \
    147 	    ? (fs)->fs_bsize						       \
    148 	    : (ffs_fragroundup(fs, ffs_blkoff(fs, (filesize)))))
    149 
    150 
    151 /*
    152  * Number of disk sectors per block/fragment
    153  */
    154 #define NSPB(fs)	(FFS_FSBTODB((fs),1) << (fs)->fs_fragshift)
    155 #define NSPF(fs)	(FFS_FSBTODB((fs),1))
    156 
    157 /* global flags */
    158 int is_ufs2 = 0;
    159 int needswap = 0;
    160 int verbose = 0;
    161 int progress = 0;
    162 
    163 static void usage(void) __dead;
    164 
    165 /*
    166  * See if we need to break up large I/O operations.  This should never
    167  *  be needed, but under at least one <version,platform> combination,
    168  *  large enough disk transfers to the raw device hang.  So if we're
    169  *  talking to a character special device, play it safe; in this case,
    170  *  readat() and writeat() break everything up into pieces no larger
    171  *  than 8K, doing multiple syscalls for larger operations.
    172  */
    173 static void
    174 checksmallio(void)
    175 {
    176 	struct stat stb;
    177 
    178 	fstat(fd, &stb);
    179 	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
    180 }
    181 
    182 static int
    183 isplainfile(void)
    184 {
    185 	struct stat stb;
    186 
    187 	fstat(fd, &stb);
    188 	return S_ISREG(stb.st_mode);
    189 }
    190 /*
    191  * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
    192  *  units, ie, after FFS_FSBTODB(); size is in bytes.
    193  */
    194 static void
    195 readat(off_t blkno, void *buf, int size)
    196 {
    197 	/* Seek to the correct place. */
    198 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    199 		err(EXIT_FAILURE, "lseek failed");
    200 
    201 	/* See if we have to break up the transfer... */
    202 	if (smallio) {
    203 		char *bp;	/* pointer into buf */
    204 		int left;	/* bytes left to go */
    205 		int n;		/* number to do this time around */
    206 		int rv;		/* syscall return value */
    207 		bp = buf;
    208 		left = size;
    209 		while (left > 0) {
    210 			n = (left > 8192) ? 8192 : left;
    211 			rv = read(fd, bp, n);
    212 			if (rv < 0)
    213 				err(EXIT_FAILURE, "read failed");
    214 			if (rv != n)
    215 				errx(EXIT_FAILURE,
    216 				    "read: wanted %d, got %d", n, rv);
    217 			bp += n;
    218 			left -= n;
    219 		}
    220 	} else {
    221 		int rv;
    222 		rv = read(fd, buf, size);
    223 		if (rv < 0)
    224 			err(EXIT_FAILURE, "read failed");
    225 		if (rv != size)
    226 			errx(EXIT_FAILURE, "read: wanted %d, got %d",
    227 			    size, rv);
    228 	}
    229 }
    230 /*
    231  * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
    232  *  units, ie, after FFS_FSBTODB(); size is in bytes.
    233  */
    234 static void
    235 writeat(off_t blkno, const void *buf, int size)
    236 {
    237 	/* Seek to the correct place. */
    238 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    239 		err(EXIT_FAILURE, "lseek failed");
    240 	/* See if we have to break up the transfer... */
    241 	if (smallio) {
    242 		const char *bp;	/* pointer into buf */
    243 		int left;	/* bytes left to go */
    244 		int n;		/* number to do this time around */
    245 		int rv;		/* syscall return value */
    246 		bp = buf;
    247 		left = size;
    248 		while (left > 0) {
    249 			n = (left > 8192) ? 8192 : left;
    250 			rv = write(fd, bp, n);
    251 			if (rv < 0)
    252 				err(EXIT_FAILURE, "write failed");
    253 			if (rv != n)
    254 				errx(EXIT_FAILURE,
    255 				    "write: wanted %d, got %d", n, rv);
    256 			bp += n;
    257 			left -= n;
    258 		}
    259 	} else {
    260 		int rv;
    261 		rv = write(fd, buf, size);
    262 		if (rv < 0)
    263 			err(EXIT_FAILURE, "write failed");
    264 		if (rv != size)
    265 			errx(EXIT_FAILURE,
    266 			    "write: wanted %d, got %d", size, rv);
    267 	}
    268 }
    269 /*
    270  * Never-fail versions of malloc() and realloc(), and an allocation
    271  *  routine (which also never fails) for allocating memory that will
    272  *  never be freed until exit.
    273  */
    274 
    275 /*
    276  * Never-fail malloc.
    277  */
    278 static void *
    279 nfmalloc(size_t nb, const char *tag)
    280 {
    281 	void *rv;
    282 
    283 	rv = malloc(nb);
    284 	if (rv)
    285 		return (rv);
    286 	err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
    287 	    (unsigned long int) nb, tag);
    288 }
    289 /*
    290  * Never-fail realloc.
    291  */
    292 static void *
    293 nfrealloc(void *blk, size_t nb, const char *tag)
    294 {
    295 	void *rv;
    296 
    297 	rv = realloc(blk, nb);
    298 	if (rv)
    299 		return (rv);
    300 	err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
    301 	    (unsigned long int) nb, tag);
    302 }
    303 /*
    304  * Allocate memory that will never be freed or reallocated.  Arguably
    305  *  this routine should handle small allocations by chopping up pages,
    306  *  but that's not worth the bother; it's not called more than a
    307  *  handful of times per run, and if the allocations are that small the
    308  *  waste in giving each one its own page is ignorable.
    309  */
    310 static void *
    311 alloconce(size_t nb, const char *tag)
    312 {
    313 	void *rv;
    314 
    315 	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
    316 	if (rv != MAP_FAILED)
    317 		return (rv);
    318 	err(EXIT_FAILURE, "Can't map %lu bytes for %s",
    319 	    (unsigned long int) nb, tag);
    320 }
    321 /*
    322  * Load the cgs and csums off disk.  Also allocates the space to load
    323  *  them into and initializes the per-cg flags.
    324  */
    325 static void
    326 loadcgs(void)
    327 {
    328 	int cg;
    329 	char *cgp;
    330 
    331 	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
    332 	cgs = nfmalloc(oldsb->fs_ncg * sizeof(*cgs), "cg pointers");
    333 	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
    334 	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
    335 	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
    336 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
    337 		cgs[cg] = (struct cg *) cgp;
    338 		readat(FFS_FSBTODB(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
    339 		if (needswap)
    340 			ffs_cg_swap(cgs[cg],cgs[cg],oldsb);
    341 		cgflags[cg] = 0;
    342 		cgp += cgblksz;
    343 	}
    344 	readat(FFS_FSBTODB(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
    345 	if (needswap)
    346 		ffs_csum_swap(csums,csums,oldsb->fs_cssize);
    347 }
    348 /*
    349  * Set n bits, starting with bit #base, in the bitmap pointed to by
    350  *  bitvec (which is assumed to be large enough to include bits base
    351  *  through base+n-1).
    352  */
    353 static void
    354 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
    355 {
    356 	if (n < 1)
    357 		return;		/* nothing to do */
    358 	if (base & 7) {		/* partial byte at beginning */
    359 		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
    360 			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
    361 			return;
    362 		}
    363 		bitvec[base >> 3] |= (~0U) << (base & 7);
    364 		n -= 8 - (base & 7);
    365 		base = (base & ~7) + 8;
    366 	}
    367 	if (n >= 8) {		/* do full bytes */
    368 		memset(bitvec + (base >> 3), 0xff, n >> 3);
    369 		base += n & ~7;
    370 		n &= 7;
    371 	}
    372 	if (n) {		/* partial byte at end */
    373 		bitvec[base >> 3] |= ~((~0U) << n);
    374 	}
    375 }
    376 /*
    377  * Clear n bits, starting with bit #base, in the bitmap pointed to by
    378  *  bitvec (which is assumed to be large enough to include bits base
    379  *  through base+n-1).  Code parallels set_bits().
    380  */
    381 static void
    382 clr_bits(unsigned char *bitvec, int base, int n)
    383 {
    384 	if (n < 1)
    385 		return;
    386 	if (base & 7) {
    387 		if (n <= 8 - (base & 7)) {
    388 			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
    389 			return;
    390 		}
    391 		bitvec[base >> 3] &= ~((~0U) << (base & 7));
    392 		n -= 8 - (base & 7);
    393 		base = (base & ~7) + 8;
    394 	}
    395 	if (n >= 8) {
    396 		memset(bitvec + (base >> 3), 0, n >> 3);
    397 		base += n & ~7;
    398 		n &= 7;
    399 	}
    400 	if (n) {
    401 		bitvec[base >> 3] &= (~0U) << n;
    402 	}
    403 }
    404 /*
    405  * Test whether bit #bit is set in the bitmap pointed to by bitvec.
    406  */
    407 static int
    408 bit_is_set(unsigned char *bitvec, int bit)
    409 {
    410 	return (bitvec[bit >> 3] & (1 << (bit & 7)));
    411 }
    412 /*
    413  * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
    414  */
    415 static int
    416 bit_is_clr(unsigned char *bitvec, int bit)
    417 {
    418 	return (!bit_is_set(bitvec, bit));
    419 }
    420 /*
    421  * Test whether a whole block of bits is set in a bitmap.  This is
    422  *  designed for testing (aligned) disk blocks in a bit-per-frag
    423  *  bitmap; it has assumptions wired into it based on that, essentially
    424  *  that the entire block fits into a single byte.  This returns true
    425  *  iff _all_ the bits are set; it is not just the complement of
    426  *  blk_is_clr on the same arguments (unless blkfrags==1).
    427  */
    428 static int
    429 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
    430 {
    431 	unsigned int mask;
    432 
    433 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    434 	return ((bitvec[blkbase >> 3] & mask) == mask);
    435 }
    436 /*
    437  * Test whether a whole block of bits is clear in a bitmap.  See
    438  *  blk_is_set (above) for assumptions.  This returns true iff _all_
    439  *  the bits are clear; it is not just the complement of blk_is_set on
    440  *  the same arguments (unless blkfrags==1).
    441  */
    442 static int
    443 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
    444 {
    445 	unsigned int mask;
    446 
    447 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    448 	return ((bitvec[blkbase >> 3] & mask) == 0);
    449 }
    450 /*
    451  * Initialize a new cg.  Called when growing.  Assumes memory has been
    452  *  allocated but not otherwise set up.  This code sets the fields of
    453  *  the cg, initializes the bitmaps (and cluster summaries, if
    454  *  applicable), updates both per-cylinder summary info and the global
    455  *  summary info in newsb; it also writes out new inodes for the cg.
    456  *
    457  * This code knows it can never be called for cg 0, which makes it a
    458  *  bit simpler than it would otherwise be.
    459  */
    460 static void
    461 initcg(int cgn)
    462 {
    463 	struct cg *cg;		/* The in-core cg, of course */
    464 	int base;		/* Disk address of cg base */
    465 	int dlow;		/* Size of pre-cg data area */
    466 	int dhigh;		/* Offset of post-inode data area, from base */
    467 	int dmax;		/* Offset of end of post-inode data area */
    468 	int i;			/* Generic loop index */
    469 	int n;			/* Generic count */
    470 	int start;		/* start of cg maps */
    471 
    472 	cg = cgs[cgn];
    473 	/* Place the data areas */
    474 	base = cgbase(newsb, cgn);
    475 	dlow = cgsblock(newsb, cgn) - base;
    476 	dhigh = cgdmin(newsb, cgn) - base;
    477 	dmax = newsb->fs_size - base;
    478 	if (dmax > newsb->fs_fpg)
    479 		dmax = newsb->fs_fpg;
    480 	start = &cg->cg_space[0] - (unsigned char *) cg;
    481 	/*
    482          * Clear out the cg - assumes all-0-bytes is the correct way
    483          * to initialize fields we don't otherwise touch, which is
    484          * perhaps not the right thing to do, but it's what fsck and
    485          * mkfs do.
    486          */
    487 	memset(cg, 0, newsb->fs_cgsize);
    488 	if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
    489 		cg->cg_time = newsb->fs_time;
    490 	cg->cg_magic = CG_MAGIC;
    491 	cg->cg_cgx = cgn;
    492 	cg->cg_niblk = newsb->fs_ipg;
    493 	cg->cg_ndblk = dmax;
    494 
    495 	if (is_ufs2) {
    496 		cg->cg_time = newsb->fs_time;
    497 		cg->cg_initediblk = newsb->fs_ipg < 2 * FFS_INOPB(newsb) ?
    498 		    newsb->fs_ipg : 2 * FFS_INOPB(newsb);
    499 		cg->cg_iusedoff = start;
    500 	} else {
    501 		cg->cg_old_time = newsb->fs_time;
    502 		cg->cg_old_niblk = cg->cg_niblk;
    503 		cg->cg_niblk = 0;
    504 		cg->cg_initediblk = 0;
    505 
    506 
    507 		cg->cg_old_ncyl = newsb->fs_old_cpg;
    508 		/* Update the cg_old_ncyl value for the last cylinder. */
    509 		if (cgn == newsb->fs_ncg - 1) {
    510 			if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
    511 				cg->cg_old_ncyl = newsb->fs_old_ncyl %
    512 				    newsb->fs_old_cpg;
    513 		}
    514 
    515 		/* Set up the bitmap pointers.  We have to be careful
    516 		 * to lay out the cg _exactly_ the way mkfs and fsck
    517 		 * do it, since fsck compares the _entire_ cg against
    518 		 * a recomputed cg, and whines if there is any
    519 		 * mismatch, including the bitmap offsets. */
    520 		/* XXX update this comment when fsck is fixed */
    521 		cg->cg_old_btotoff = start;
    522 		cg->cg_old_boff = cg->cg_old_btotoff
    523 		    + (newsb->fs_old_cpg * sizeof(int32_t));
    524 		cg->cg_iusedoff = cg->cg_old_boff +
    525 		    (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
    526 	}
    527 	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
    528 	if (newsb->fs_contigsumsize > 0) {
    529 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
    530 		cg->cg_clustersumoff = cg->cg_freeoff +
    531 		    howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t);
    532 		cg->cg_clustersumoff =
    533 		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
    534 		cg->cg_clusteroff = cg->cg_clustersumoff +
    535 		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
    536 		cg->cg_nextfreeoff = cg->cg_clusteroff +
    537 		    howmany(ffs_fragstoblks(newsb,newsb->fs_fpg), NBBY);
    538 		n = dlow / newsb->fs_frag;
    539 		if (n > 0) {
    540 			set_bits(cg_clustersfree(cg, 0), 0, n);
    541 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    542 			    newsb->fs_contigsumsize : n]++;
    543 		}
    544 	} else {
    545 		cg->cg_nextfreeoff = cg->cg_freeoff +
    546 		    howmany(newsb->fs_fpg, NBBY);
    547 	}
    548 	/* Mark the data areas as free; everything else is marked busy by the
    549 	 * memset() up at the top. */
    550 	set_bits(cg_blksfree(cg, 0), 0, dlow);
    551 	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
    552 	/* Initialize summary info */
    553 	cg->cg_cs.cs_ndir = 0;
    554 	cg->cg_cs.cs_nifree = newsb->fs_ipg;
    555 	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
    556 	cg->cg_cs.cs_nffree = 0;
    557 
    558 	/* This is the simplest way of doing this; we perhaps could
    559 	 * compute the correct cg_blktot()[] and cg_blks()[] values
    560 	 * other ways, but it would be complicated and hardly seems
    561 	 * worth the effort.  (The reason there isn't
    562 	 * frag-at-beginning and frag-at-end code here, like the code
    563 	 * below for the post-inode data area, is that the pre-sb data
    564 	 * area always starts at 0, and thus is block-aligned, and
    565 	 * always ends at the sb, which is block-aligned.) */
    566 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
    567 		for (i = 0; i < dlow; i += newsb->fs_frag) {
    568 			old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++;
    569 			old_cg_blks(newsb, cg,
    570 			    old_cbtocylno(newsb, i),
    571 			    0)[old_cbtorpos(newsb, i)]++;
    572 		}
    573 
    574 	/* Deal with a partial block at the beginning of the post-inode area.
    575 	 * I'm not convinced this can happen - I think the inodes are always
    576 	 * block-aligned and always an integral number of blocks - but it's
    577 	 * cheap to do the right thing just in case. */
    578 	if (dhigh % newsb->fs_frag) {
    579 		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
    580 		cg->cg_frsum[n]++;
    581 		cg->cg_cs.cs_nffree += n;
    582 		dhigh += n;
    583 	}
    584 	n = (dmax - dhigh) / newsb->fs_frag;
    585 	/* We have n full-size blocks in the post-inode data area. */
    586 	if (n > 0) {
    587 		cg->cg_cs.cs_nbfree += n;
    588 		if (newsb->fs_contigsumsize > 0) {
    589 			i = dhigh / newsb->fs_frag;
    590 			set_bits(cg_clustersfree(cg, 0), i, n);
    591 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    592 			    newsb->fs_contigsumsize : n]++;
    593 		}
    594 		if (is_ufs2 == 0)
    595 			for (i = n; i > 0; i--) {
    596 				old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
    597 					    dhigh)]++;
    598 				old_cg_blks(newsb, cg,
    599 				    old_cbtocylno(newsb, dhigh),
    600 				    0)[old_cbtorpos(newsb,
    601 					    dhigh)]++;
    602 				dhigh += newsb->fs_frag;
    603 			}
    604 	}
    605 	if (is_ufs2 == 0) {
    606 		/* Deal with any leftover frag at the end of the cg. */
    607 		i = dmax - dhigh;
    608 		if (i) {
    609 			cg->cg_frsum[i]++;
    610 			cg->cg_cs.cs_nffree += i;
    611 		}
    612 	}
    613 	/* Update the csum info. */
    614 	csums[cgn] = cg->cg_cs;
    615 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
    616 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
    617 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
    618 	if (is_ufs2 == 0)
    619 		/* Write out the cleared inodes. */
    620 		writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes,
    621 		    newsb->fs_ipg * sizeof(*zinodes));
    622 	/* Dirty the cg. */
    623 	cgflags[cgn] |= CGF_DIRTY;
    624 }
    625 /*
    626  * Find free space, at least nfrags consecutive frags of it.  Pays no
    627  *  attention to block boundaries, but refuses to straddle cg
    628  *  boundaries, even if the disk blocks involved are in fact
    629  *  consecutive.  Return value is the frag number of the first frag of
    630  *  the block, or -1 if no space was found.  Uses newsb for sb values,
    631  *  and assumes the cgs[] structures correctly describe the area to be
    632  *  searched.
    633  *
    634  * XXX is there a bug lurking in the ignoring of block boundaries by
    635  *  the routine used by fragmove() in evict_data()?  Can an end-of-file
    636  *  frag legally straddle a block boundary?  If not, this should be
    637  *  cloned and fixed to stop at block boundaries for that use.  The
    638  *  current one may still be needed for csum info motion, in case that
    639  *  takes up more than a whole block (is the csum info allowed to begin
    640  *  partway through a block and continue into the following block?).
    641  *
    642  * If we wrap off the end of the file system back to the beginning, we
    643  *  can end up searching the end of the file system twice.  I ignore
    644  *  this inefficiency, since if that happens we're going to croak with
    645  *  a no-space error anyway, so it happens at most once.
    646  */
    647 static int
    648 find_freespace(unsigned int nfrags)
    649 {
    650 	static int hand = 0;	/* hand rotates through all frags in the fs */
    651 	int cgsize;		/* size of the cg hand currently points into */
    652 	int cgn;		/* number of cg hand currently points into */
    653 	int fwc;		/* frag-within-cg number of frag hand points
    654 				 * to */
    655 	unsigned int run;	/* length of run of free frags seen so far */
    656 	int secondpass;		/* have we wrapped from end of fs to
    657 				 * beginning? */
    658 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    659 
    660 	cgn = dtog(newsb, hand);
    661 	fwc = dtogd(newsb, hand);
    662 	secondpass = (hand == 0);
    663 	run = 0;
    664 	bits = cg_blksfree(cgs[cgn], 0);
    665 	cgsize = cgs[cgn]->cg_ndblk;
    666 	while (1) {
    667 		if (bit_is_set(bits, fwc)) {
    668 			run++;
    669 			if (run >= nfrags)
    670 				return (hand + 1 - run);
    671 		} else {
    672 			run = 0;
    673 		}
    674 		hand++;
    675 		fwc++;
    676 		if (fwc >= cgsize) {
    677 			fwc = 0;
    678 			cgn++;
    679 			if (cgn >= newsb->fs_ncg) {
    680 				hand = 0;
    681 				if (secondpass)
    682 					return (-1);
    683 				secondpass = 1;
    684 				cgn = 0;
    685 			}
    686 			bits = cg_blksfree(cgs[cgn], 0);
    687 			cgsize = cgs[cgn]->cg_ndblk;
    688 			run = 0;
    689 		}
    690 	}
    691 }
    692 /*
    693  * Find a free block of disk space.  Finds an entire block of frags,
    694  *  all of which are free.  Return value is the frag number of the
    695  *  first frag of the block, or -1 if no space was found.  Uses newsb
    696  *  for sb values, and assumes the cgs[] structures correctly describe
    697  *  the area to be searched.
    698  *
    699  * See find_freespace(), above, for remarks about hand wrapping around.
    700  */
    701 static int
    702 find_freeblock(void)
    703 {
    704 	static int hand = 0;	/* hand rotates through all frags in fs */
    705 	int cgn;		/* cg number of cg hand points into */
    706 	int fwc;		/* frag-within-cg number of frag hand points
    707 				 * to */
    708 	int cgsize;		/* size of cg hand points into */
    709 	int secondpass;		/* have we wrapped from end to beginning? */
    710 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    711 
    712 	cgn = dtog(newsb, hand);
    713 	fwc = dtogd(newsb, hand);
    714 	secondpass = (hand == 0);
    715 	bits = cg_blksfree(cgs[cgn], 0);
    716 	cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
    717 	while (1) {
    718 		if (blk_is_set(bits, fwc, newsb->fs_frag))
    719 			return (hand);
    720 		fwc += newsb->fs_frag;
    721 		hand += newsb->fs_frag;
    722 		if (fwc >= cgsize) {
    723 			fwc = 0;
    724 			cgn++;
    725 			if (cgn >= newsb->fs_ncg) {
    726 				hand = 0;
    727 				if (secondpass)
    728 					return (-1);
    729 				secondpass = 1;
    730 				cgn = 0;
    731 			}
    732 			bits = cg_blksfree(cgs[cgn], 0);
    733 			cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
    734 		}
    735 	}
    736 }
    737 /*
    738  * Find a free inode, returning its inumber or -1 if none was found.
    739  *  Uses newsb for sb values, and assumes the cgs[] structures
    740  *  correctly describe the area to be searched.
    741  *
    742  * See find_freespace(), above, for remarks about hand wrapping around.
    743  */
    744 static int
    745 find_freeinode(void)
    746 {
    747 	static int hand = 0;	/* hand rotates through all inodes in fs */
    748 	int cgn;		/* cg number of cg hand points into */
    749 	int iwc;		/* inode-within-cg number of inode hand points
    750 				 * to */
    751 	int secondpass;		/* have we wrapped from end to beginning? */
    752 	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */
    753 
    754 	cgn = hand / newsb->fs_ipg;
    755 	iwc = hand % newsb->fs_ipg;
    756 	secondpass = (hand == 0);
    757 	bits = cg_inosused(cgs[cgn], 0);
    758 	while (1) {
    759 		if (bit_is_clr(bits, iwc))
    760 			return (hand);
    761 		hand++;
    762 		iwc++;
    763 		if (iwc >= newsb->fs_ipg) {
    764 			iwc = 0;
    765 			cgn++;
    766 			if (cgn >= newsb->fs_ncg) {
    767 				hand = 0;
    768 				if (secondpass)
    769 					return (-1);
    770 				secondpass = 1;
    771 				cgn = 0;
    772 			}
    773 			bits = cg_inosused(cgs[cgn], 0);
    774 		}
    775 	}
    776 }
    777 /*
    778  * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
    779  *  for the appropriate cg, and marks the cg as dirty.
    780  */
    781 static void
    782 free_frag(int fno)
    783 {
    784 	int cgn;
    785 
    786 	cgn = dtog(newsb, fno);
    787 	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    788 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    789 }
    790 /*
    791  * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
    792  *  for the appropriate cg, and marks the cg as dirty.
    793  */
    794 static void
    795 alloc_frag(int fno)
    796 {
    797 	int cgn;
    798 
    799 	cgn = dtog(newsb, fno);
    800 	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    801 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    802 }
    803 /*
    804  * Fix up the csum array.  If shrinking, this involves freeing zero or
    805  *  more frags; if growing, it involves allocating them, or if the
    806  *  frags being grown into aren't free, finding space elsewhere for the
    807  *  csum info.  (If the number of occupied frags doesn't change,
    808  *  nothing happens here.)
    809  */
    810 static void
    811 csum_fixup(void)
    812 {
    813 	int nold;		/* # frags in old csum info */
    814 	int ntot;		/* # frags in new csum info */
    815 	int nnew;		/* ntot-nold */
    816 	int newloc;		/* new location for csum info, if necessary */
    817 	int i;			/* generic loop index */
    818 	int j;			/* generic loop index */
    819 	int f;			/* "from" frag number, if moving */
    820 	int t;			/* "to" frag number, if moving */
    821 	int cgn;		/* cg number, used when shrinking */
    822 
    823 	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
    824 	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
    825 	nnew = ntot - nold;
    826 	/* First, if there's no change in frag counts, it's easy. */
    827 	if (nnew == 0)
    828 		return;
    829 	/* Next, if we're shrinking, it's almost as easy.  Just free up any
    830 	 * frags in the old area we no longer need. */
    831 	if (nnew < 0) {
    832 		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
    833 		    j < 0;
    834 		    i--, j++) {
    835 			free_frag(i);
    836 		}
    837 		return;
    838 	}
    839 	/* We must be growing.  Check to see that the new csum area fits
    840 	 * within the file system.  I think this can never happen, since for
    841 	 * the csum area to grow, we must be adding at least one cg, so the
    842 	 * old csum area can't be this close to the end of the new file system.
    843 	 * But it's a cheap check. */
    844 	/* XXX what if csum info is at end of cg and grows into next cg, what
    845 	 * if it spills over onto the next cg's backup superblock?  Can this
    846 	 * happen? */
    847 	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
    848 		/* Okay, it fits - now,  see if the space we want is free. */
    849 		for ((i = newsb->fs_csaddr + nold), (j = nnew);
    850 		    j > 0;
    851 		    i++, j--) {
    852 			cgn = dtog(newsb, i);
    853 			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
    854 				dtogd(newsb, i)))
    855 				break;
    856 		}
    857 		if (j <= 0) {
    858 			/* Win win - all the frags we want are free. Allocate
    859 			 * 'em and we're all done.  */
    860 			for ((i = newsb->fs_csaddr + ntot - nnew),
    861 				 (j = nnew); j > 0; i++, j--) {
    862 				alloc_frag(i);
    863 			}
    864 			return;
    865 		}
    866 	}
    867 	/* We have to move the csum info, sigh.  Look for new space, free old
    868 	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
    869 	 * on disk at this point; the csum info will be written to the
    870 	 * then-current fs_csaddr as part of the final flush. */
    871 	newloc = find_freespace(ntot);
    872 	if (newloc < 0)
    873 		errx(EXIT_FAILURE, "Sorry, no space available for new csums");
    874 	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
    875 		if (i < nold) {
    876 			free_frag(f);
    877 		}
    878 		alloc_frag(t);
    879 	}
    880 	newsb->fs_csaddr = newloc;
    881 }
    882 /*
    883  * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
    884  *  data blocks in that cg to the total.
    885  */
    886 static void
    887 recompute_fs_dsize(void)
    888 {
    889 	int i;
    890 
    891 	newsb->fs_dsize = 0;
    892 	for (i = 0; i < newsb->fs_ncg; i++) {
    893 		int dlow;	/* size of before-sb data area */
    894 		int dhigh;	/* offset of post-inode data area */
    895 		int dmax;	/* total size of cg */
    896 		int base;	/* base of cg, since cgsblock() etc add it in */
    897 		base = cgbase(newsb, i);
    898 		dlow = cgsblock(newsb, i) - base;
    899 		dhigh = cgdmin(newsb, i) - base;
    900 		dmax = newsb->fs_size - base;
    901 		if (dmax > newsb->fs_fpg)
    902 			dmax = newsb->fs_fpg;
    903 		newsb->fs_dsize += dlow + dmax - dhigh;
    904 	}
    905 	/* Space in cg 0 before cgsblock is boot area, not free space! */
    906 	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
    907 	/* And of course the csum info takes up space. */
    908 	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
    909 }
    910 /*
    911  * Return the current time.  We call this and assign, rather than
    912  *  calling time() directly, as insulation against OSes where fs_time
    913  *  is not a time_t.
    914  */
    915 static time_t
    916 timestamp(void)
    917 {
    918 	time_t t;
    919 
    920 	time(&t);
    921 	return (t);
    922 }
    923 
    924 /*
    925  * Calculate new filesystem geometry
    926  *  return 0 if geometry actually changed
    927  */
    928 static int
    929 makegeometry(int chatter)
    930 {
    931 
    932 	/* Update the size. */
    933 	newsb->fs_size = FFS_DBTOFSB(newsb, newsize);
    934 	if (is_ufs2)
    935 		newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
    936 	else {
    937 		/* Update fs_old_ncyl and fs_ncg. */
    938 		newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
    939 		    newsb->fs_old_spc);
    940 		newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
    941 	}
    942 
    943 	/* Does the last cg end before the end of its inode area? There is no
    944 	 * reason why this couldn't be handled, but it would complicate a lot
    945 	 * of code (in all file system code - fsck, kernel, etc) because of the
    946 	 * potential partial inode area, and the gain in space would be
    947 	 * minimal, at most the pre-sb data area. */
    948 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
    949 		newsb->fs_ncg--;
    950 		if (is_ufs2)
    951 			newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg;
    952 		else {
    953 			newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
    954 			newsb->fs_size = (newsb->fs_old_ncyl *
    955 				newsb->fs_old_spc) / NSPF(newsb);
    956 		}
    957 		if (chatter || verbose) {
    958 			printf("Warning: last cylinder group is too small;\n");
    959 			printf("    dropping it.  New size = %lu.\n",
    960 			(unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size));
    961 		}
    962 	}
    963 
    964 	/* Did we actually not grow?  (This can happen if newsize is less than
    965 	 * a frag larger than the old size - unlikely, but no excuse to
    966 	 * misbehave if it happens.) */
    967 	if (newsb->fs_size == oldsb->fs_size)
    968 		return 1;
    969 
    970 	return 0;
    971 }
    972 
    973 
    974 /*
    975  * Grow the file system.
    976  */
    977 static void
    978 grow(void)
    979 {
    980 	int i;
    981 
    982 	if (makegeometry(1)) {
    983 		printf("New fs size %"PRIu64" = old fs size %"PRIu64
    984 		    ", not growing.\n", newsb->fs_size, oldsb->fs_size);
    985 		return;
    986 	}
    987 
    988 	if (verbose) {
    989 		printf("Growing fs from %"PRIu64" blocks to %"PRIu64
    990 		    " blocks.\n", oldsb->fs_size, newsb->fs_size);
    991 	}
    992 
    993 	/* Update the timestamp. */
    994 	newsb->fs_time = timestamp();
    995 	/* Allocate and clear the new-inode area, in case we add any cgs. */
    996 	zinodes = alloconce(newsb->fs_ipg * sizeof(*zinodes), "zeroed inodes");
    997 	memset(zinodes, 0, newsb->fs_ipg * sizeof(*zinodes));
    998 
    999 	/* Check that the new last sector (frag, actually) is writable.  Since
   1000 	 * it's at least one frag larger than it used to be, we know we aren't
   1001 	 * overwriting anything important by this.  (The choice of sbbuf as
   1002 	 * what to write is irrelevant; it's just something handy that's known
   1003 	 * to be at least one frag in size.) */
   1004 	writeat(FFS_FSBTODB(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
   1005 
   1006 	/* Find out how big the csum area is, and realloc csums if bigger. */
   1007 	newsb->fs_cssize = ffs_fragroundup(newsb,
   1008 	    newsb->fs_ncg * sizeof(struct csum));
   1009 	if (newsb->fs_cssize > oldsb->fs_cssize)
   1010 		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
   1011 	/* If we're adding any cgs, realloc structures and set up the new
   1012 	   cgs. */
   1013 	if (newsb->fs_ncg > oldsb->fs_ncg) {
   1014 		char *cgp;
   1015 		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(*cgs),
   1016                                 "cg pointers");
   1017 		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
   1018 		memset(cgflags + oldsb->fs_ncg, 0,
   1019 		    newsb->fs_ncg - oldsb->fs_ncg);
   1020 		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
   1021                                 "cgs");
   1022 		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
   1023 			cgs[i] = (struct cg *) cgp;
   1024 			progress_bar(special, "grow cg",
   1025 			    i - oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
   1026 			initcg(i);
   1027 			cgp += cgblksz;
   1028 		}
   1029 		cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
   1030 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
   1031 	}
   1032 	/* If the old fs ended partway through a cg, we have to update the old
   1033 	 * last cg (though possibly not to a full cg!). */
   1034 	if (oldsb->fs_size % oldsb->fs_fpg) {
   1035 		struct cg *cg;
   1036 		int newcgsize;
   1037 		int prevcgtop;
   1038 		int oldcgsize;
   1039 		cg = cgs[oldsb->fs_ncg - 1];
   1040 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
   1041 		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
   1042 		newcgsize = newsb->fs_size - prevcgtop;
   1043 		if (newcgsize > newsb->fs_fpg)
   1044 			newcgsize = newsb->fs_fpg;
   1045 		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
   1046 		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
   1047 		cg->cg_old_ncyl = oldsb->fs_old_cpg;
   1048 		cg->cg_ndblk = newcgsize;
   1049 	}
   1050 	/* Fix up the csum info, if necessary. */
   1051 	csum_fixup();
   1052 	/* Make fs_dsize match the new reality. */
   1053 	recompute_fs_dsize();
   1054 
   1055 	progress_done();
   1056 }
   1057 /*
   1058  * Call (*fn)() for each inode, passing the inode and its inumber.  The
   1059  *  number of cylinder groups is pased in, so this can be used to map
   1060  *  over either the old or the new file system's set of inodes.
   1061  */
   1062 static void
   1063 map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg),
   1064 	   int ncg, void *cbarg) {
   1065 	int i;
   1066 	int ni;
   1067 
   1068 	ni = oldsb->fs_ipg * ncg;
   1069 	for (i = 0; i < ni; i++)
   1070 		(*fn) (inodes + i, i, cbarg);
   1071 }
   1072 /* Values for the third argument to the map function for
   1073  * map_inode_data_blocks.  MDB_DATA indicates the block is contains
   1074  * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
   1075  * indirect block.  The MDB_INDIR_PRE call is made before the indirect
   1076  * block pointers are followed and the pointed-to blocks scanned,
   1077  * MDB_INDIR_POST after.
   1078  */
   1079 #define MDB_DATA       1
   1080 #define MDB_INDIR_PRE  2
   1081 #define MDB_INDIR_POST 3
   1082 
   1083 typedef void (*mark_callback_t) (off_t blocknum, unsigned int nfrags,
   1084 				 unsigned int blksize, int opcode);
   1085 
   1086 /* Helper function - handles a data block.  Calls the callback
   1087  * function and returns number of bytes occupied in file (actually,
   1088  * rounded up to a frag boundary).  The name is historical.  */
   1089 static int
   1090 markblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o)
   1091 {
   1092 	int sz;
   1093 	int nb;
   1094 	off_t filesize;
   1095 
   1096 	filesize = DIP(di,di_size);
   1097 	if (o >= filesize)
   1098 		return (0);
   1099 	sz = dblksize(newsb, di, ffs_lblkno(newsb, o), filesize);
   1100 	nb = (sz > filesize - o) ? filesize - o : sz;
   1101 	if (bn)
   1102 		(*fn) (bn, ffs_numfrags(newsb, sz), nb, MDB_DATA);
   1103 	return (sz);
   1104 }
   1105 /* Helper function - handles an indirect block.  Makes the
   1106  * MDB_INDIR_PRE callback for the indirect block, loops over the
   1107  * pointers and recurses, and makes the MDB_INDIR_POST callback.
   1108  * Returns the number of bytes occupied in file, as does markblk().
   1109  * For the sake of update_for_data_move(), we read the indirect block
   1110  * _after_ making the _PRE callback.  The name is historical.  */
   1111 static int
   1112 markiblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o, int lev)
   1113 {
   1114 	int i;
   1115 	int j;
   1116 	unsigned k;
   1117 	int tot;
   1118 	static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
   1119 	static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
   1120 	static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
   1121 	static int32_t *indirblks[3] = {
   1122 		&indirblk1[0], &indirblk2[0], &indirblk3[0]
   1123 	};
   1124 
   1125 	if (lev < 0)
   1126 		return (markblk(fn, di, bn, o));
   1127 	if (bn == 0) {
   1128 		for (i = newsb->fs_bsize;
   1129 		    lev >= 0;
   1130 		    i *= FFS_NINDIR(newsb), lev--);
   1131 		return (i);
   1132 	}
   1133 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
   1134 	readat(FFS_FSBTODB(newsb, bn), indirblks[lev], newsb->fs_bsize);
   1135 	if (needswap)
   1136 		for (k = 0; k < howmany(MAXBSIZE, sizeof(int32_t)); k++)
   1137 			indirblks[lev][k] = bswap32(indirblks[lev][k]);
   1138 	tot = 0;
   1139 	for (i = 0; i < FFS_NINDIR(newsb); i++) {
   1140 		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
   1141 		if (j == 0)
   1142 			break;
   1143 		o += j;
   1144 		tot += j;
   1145 	}
   1146 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
   1147 	return (tot);
   1148 }
   1149 
   1150 
   1151 /*
   1152  * Call (*fn)() for each data block for an inode.  This routine assumes
   1153  *  the inode is known to be of a type that has data blocks (file,
   1154  *  directory, or non-fast symlink).  The called function is:
   1155  *
   1156  * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
   1157  *
   1158  *  where blkno is the frag number, nf is the number of frags starting
   1159  *  at blkno (always <= fs_frag), nb is the number of bytes that belong
   1160  *  to the file (usually nf*fs_frag, often less for the last block/frag
   1161  *  of a file).
   1162  */
   1163 static void
   1164 map_inode_data_blocks(union dinode * di, mark_callback_t fn)
   1165 {
   1166 	off_t o;		/* offset within  inode */
   1167 	int inc;		/* increment for o - maybe should be off_t? */
   1168 	int b;			/* index within di_db[] and di_ib[] arrays */
   1169 
   1170 	/* Scan the direct blocks... */
   1171 	o = 0;
   1172 	for (b = 0; b < UFS_NDADDR; b++) {
   1173 		inc = markblk(fn, di, DIP(di,di_db[b]), o);
   1174 		if (inc == 0)
   1175 			break;
   1176 		o += inc;
   1177 	}
   1178 	/* ...and the indirect blocks. */
   1179 	if (inc) {
   1180 		for (b = 0; b < UFS_NIADDR; b++) {
   1181 			inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b);
   1182 			if (inc == 0)
   1183 				return;
   1184 			o += inc;
   1185 		}
   1186 	}
   1187 }
   1188 
   1189 static void
   1190 dblk_callback(union dinode * di, unsigned int inum, void *arg)
   1191 {
   1192 	mark_callback_t fn;
   1193 	off_t filesize;
   1194 
   1195 	filesize = DIP(di,di_size);
   1196 	fn = (mark_callback_t) arg;
   1197 	switch (DIP(di,di_mode) & IFMT) {
   1198 	case IFLNK:
   1199 		if (filesize <= newsb->fs_maxsymlinklen) {
   1200 			break;
   1201 		}
   1202 		/* FALLTHROUGH */
   1203 	case IFDIR:
   1204 	case IFREG:
   1205 		map_inode_data_blocks(di, fn);
   1206 		break;
   1207 	}
   1208 }
   1209 /*
   1210  * Make a callback call, a la map_inode_data_blocks, for all data
   1211  *  blocks in the entire fs.  This is used only once, in
   1212  *  update_for_data_move, but it's out at top level because the complex
   1213  *  downward-funarg nesting that would otherwise result seems to give
   1214  *  gcc gastric distress.
   1215  */
   1216 static void
   1217 map_data_blocks(mark_callback_t fn, int ncg)
   1218 {
   1219 	map_inodes(&dblk_callback, ncg, (void *) fn);
   1220 }
   1221 /*
   1222  * Initialize the blkmove array.
   1223  */
   1224 static void
   1225 blkmove_init(void)
   1226 {
   1227 	int i;
   1228 
   1229 	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
   1230 	for (i = 0; i < oldsb->fs_size; i++)
   1231 		blkmove[i] = i;
   1232 }
   1233 /*
   1234  * Load the inodes off disk.  Allocates the structures and initializes
   1235  *  them - the inodes from disk, the flags to zero.
   1236  */
   1237 static void
   1238 loadinodes(void)
   1239 {
   1240 	int imax, ino, i, j;
   1241 	struct ufs1_dinode *dp1 = NULL;
   1242 	struct ufs2_dinode *dp2 = NULL;
   1243 
   1244 	/* read inodes one fs block at a time and copy them */
   1245 
   1246 	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
   1247 	    sizeof(union dinode), "inodes");
   1248 	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
   1249 	memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg);
   1250 
   1251 	ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf");
   1252 	if (is_ufs2)
   1253 		dp2 = (struct ufs2_dinode *)ibuf;
   1254 	else
   1255 		dp1 = (struct ufs1_dinode *)ibuf;
   1256 
   1257 	for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) {
   1258 		readat(FFS_FSBTODB(oldsb, ino_to_fsba(oldsb, ino)), ibuf,
   1259 		    oldsb->fs_bsize);
   1260 
   1261 		for (i = 0; i < oldsb->fs_inopb; i++) {
   1262 			if (is_ufs2) {
   1263 				if (needswap) {
   1264 					ffs_dinode2_swap(&(dp2[i]), &(dp2[i]));
   1265 					for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++)
   1266 						dp2[i].di_db[j] =
   1267 						    bswap32(dp2[i].di_db[j]);
   1268 				}
   1269 				memcpy(&inodes[ino].dp2, &dp2[i],
   1270 				    sizeof(inodes[ino].dp2));
   1271 			} else {
   1272 				if (needswap) {
   1273 					ffs_dinode1_swap(&(dp1[i]), &(dp1[i]));
   1274 					for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++)
   1275 						dp1[i].di_db[j] =
   1276 						    bswap32(dp1[i].di_db[j]);
   1277 				}
   1278 				memcpy(&inodes[ino].dp1, &dp1[i],
   1279 				    sizeof(inodes[ino].dp1));
   1280 			}
   1281 			    if (++ino > imax)
   1282 				    errx(EXIT_FAILURE,
   1283 					"Exceeded number of inodes");
   1284 		}
   1285 
   1286 	}
   1287 }
   1288 /*
   1289  * Report a file-system-too-full problem.
   1290  */
   1291 __dead static void
   1292 toofull(void)
   1293 {
   1294 	errx(EXIT_FAILURE, "Sorry, would run out of data blocks");
   1295 }
   1296 /*
   1297  * Record a desire to move "n" frags from "from" to "to".
   1298  */
   1299 static void
   1300 mark_move(unsigned int from, unsigned int to, unsigned int n)
   1301 {
   1302 	for (; n > 0; n--)
   1303 		blkmove[from++] = to++;
   1304 }
   1305 /* Helper function - evict n frags, starting with start (cg-relative).
   1306  * The free bitmap is scanned, unallocated frags are ignored, and
   1307  * each block of consecutive allocated frags is moved as a unit.
   1308  */
   1309 static void
   1310 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
   1311 {
   1312 	unsigned int i;
   1313 	int run;
   1314 
   1315 	run = 0;
   1316 	for (i = 0; i <= n; i++) {
   1317 		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
   1318 			run++;
   1319 		} else {
   1320 			if (run > 0) {
   1321 				int off;
   1322 				off = find_freespace(run);
   1323 				if (off < 0)
   1324 					toofull();
   1325 				mark_move(base + start + i - run, off, run);
   1326 				set_bits(cg_blksfree(cg, 0), start + i - run,
   1327 				    run);
   1328 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1329 				    dtogd(oldsb, off), run);
   1330 			}
   1331 			run = 0;
   1332 		}
   1333 	}
   1334 }
   1335 /*
   1336  * Evict all data blocks from the given cg, starting at minfrag (based
   1337  *  at the beginning of the cg), for length nfrag.  The eviction is
   1338  *  assumed to be entirely data-area; this should not be called with a
   1339  *  range overlapping the metadata structures in the cg.  It also
   1340  *  assumes minfrag points into the given cg; it will misbehave if this
   1341  *  is not true.
   1342  *
   1343  * See the comment header on find_freespace() for one possible bug
   1344  *  lurking here.
   1345  */
   1346 static void
   1347 evict_data(struct cg * cg, unsigned int minfrag, int nfrag)
   1348 {
   1349 	int base;	/* base of cg (in frags from beginning of fs) */
   1350 
   1351 	base = cgbase(oldsb, cg->cg_cgx);
   1352 	/* Does the boundary fall in the middle of a block?  To avoid
   1353 	 * breaking between frags allocated as consecutive, we always
   1354 	 * evict the whole block in this case, though one could argue
   1355 	 * we should check to see if the frag before or after the
   1356 	 * break is unallocated. */
   1357 	if (minfrag % oldsb->fs_frag) {
   1358 		int n;
   1359 		n = minfrag % oldsb->fs_frag;
   1360 		minfrag -= n;
   1361 		nfrag += n;
   1362 	}
   1363 	/* Do whole blocks.  If a block is wholly free, skip it; if
   1364 	 * wholly allocated, move it in toto.  If neither, call
   1365 	 * fragmove() to move the frags to new locations. */
   1366 	while (nfrag >= oldsb->fs_frag) {
   1367 		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
   1368 			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
   1369 				oldsb->fs_frag)) {
   1370 				int off;
   1371 				off = find_freeblock();
   1372 				if (off < 0)
   1373 					toofull();
   1374 				mark_move(base + minfrag, off, oldsb->fs_frag);
   1375 				set_bits(cg_blksfree(cg, 0), minfrag,
   1376 				    oldsb->fs_frag);
   1377 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1378 				    dtogd(oldsb, off), oldsb->fs_frag);
   1379 			} else {
   1380 				fragmove(cg, base, minfrag, oldsb->fs_frag);
   1381 			}
   1382 		}
   1383 		minfrag += oldsb->fs_frag;
   1384 		nfrag -= oldsb->fs_frag;
   1385 	}
   1386 	/* Clean up any sub-block amount left over. */
   1387 	if (nfrag) {
   1388 		fragmove(cg, base, minfrag, nfrag);
   1389 	}
   1390 }
   1391 /*
   1392  * Move all data blocks according to blkmove.  We have to be careful,
   1393  *  because we may be updating indirect blocks that will themselves be
   1394  *  getting moved, or inode int32_t arrays that point to indirect
   1395  *  blocks that will be moved.  We call this before
   1396  *  update_for_data_move, and update_for_data_move does inodes first,
   1397  *  then indirect blocks in preorder, so as to make sure that the
   1398  *  file system is self-consistent at all points, for better crash
   1399  *  tolerance.  (We can get away with this only because all the writes
   1400  *  done by perform_data_move() are writing into space that's not used
   1401  *  by the old file system.)  If we crash, some things may point to the
   1402  *  old data and some to the new, but both copies are the same.  The
   1403  *  only wrong things should be csum info and free bitmaps, which fsck
   1404  *  is entirely capable of cleaning up.
   1405  *
   1406  * Since blkmove_init() initializes all blocks to move to their current
   1407  *  locations, we can have two blocks marked as wanting to move to the
   1408  *  same location, but only two and only when one of them is the one
   1409  *  that was already there.  So if blkmove[i]==i, we ignore that entry
   1410  *  entirely - for unallocated blocks, we don't want it (and may be
   1411  *  putting something else there), and for allocated blocks, we don't
   1412  *  want to copy it anywhere.
   1413  */
   1414 static void
   1415 perform_data_move(void)
   1416 {
   1417 	int i;
   1418 	int run;
   1419 	int maxrun;
   1420 	char buf[65536];
   1421 
   1422 	maxrun = sizeof(buf) / newsb->fs_fsize;
   1423 	run = 0;
   1424 	for (i = 0; i < oldsb->fs_size; i++) {
   1425 		if ((blkmove[i] == (unsigned)i /*XXX cast*/) ||
   1426 		    (run >= maxrun) ||
   1427 		    ((run > 0) &&
   1428 			(blkmove[i] != blkmove[i - 1] + 1))) {
   1429 			if (run > 0) {
   1430 				readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
   1431 				    run << oldsb->fs_fshift);
   1432 				writeat(FFS_FSBTODB(oldsb, blkmove[i - run]),
   1433 				    &buf[0], run << oldsb->fs_fshift);
   1434 			}
   1435 			run = 0;
   1436 		}
   1437 		if (blkmove[i] != (unsigned)i /*XXX cast*/)
   1438 			run++;
   1439 	}
   1440 	if (run > 0) {
   1441 		readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
   1442 		    run << oldsb->fs_fshift);
   1443 		writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), &buf[0],
   1444 		    run << oldsb->fs_fshift);
   1445 	}
   1446 }
   1447 /*
   1448  * This modifies an array of int32_t, according to blkmove.  This is
   1449  *  used to update inode block arrays and indirect blocks to point to
   1450  *  the new locations of data blocks.
   1451  *
   1452  * Return value is the number of int32_ts that needed updating; in
   1453  *  particular, the return value is zero iff nothing was modified.
   1454  */
   1455 static int
   1456 movemap_blocks(int32_t * vec, int n)
   1457 {
   1458 	int rv;
   1459 
   1460 	rv = 0;
   1461 	for (; n > 0; n--, vec++) {
   1462 		if (blkmove[*vec] != (unsigned)*vec /*XXX cast*/) {
   1463 			*vec = blkmove[*vec];
   1464 			rv++;
   1465 		}
   1466 	}
   1467 	return (rv);
   1468 }
   1469 static void
   1470 moveblocks_callback(union dinode * di, unsigned int inum, void *arg)
   1471 {
   1472 	int32_t *dblkptr, *iblkptr;
   1473 
   1474 	switch (DIP(di,di_mode) & IFMT) {
   1475 	case IFLNK:
   1476 		if ((off_t)DIP(di,di_size) <= oldsb->fs_maxsymlinklen) {
   1477 			break;
   1478 		}
   1479 		/* FALLTHROUGH */
   1480 	case IFDIR:
   1481 	case IFREG:
   1482 		if (is_ufs2) {
   1483 			/* XXX these are not int32_t and this is WRONG! */
   1484 			dblkptr = (void *) &(di->dp2.di_db[0]);
   1485 			iblkptr = (void *) &(di->dp2.di_ib[0]);
   1486 		} else {
   1487 			dblkptr = &(di->dp1.di_db[0]);
   1488 			iblkptr = &(di->dp1.di_ib[0]);
   1489 		}
   1490 		/*
   1491 		 * Don't || these two calls; we need their
   1492 		 * side-effects.
   1493 		 */
   1494 		if (movemap_blocks(dblkptr, UFS_NDADDR)) {
   1495 			iflags[inum] |= IF_DIRTY;
   1496 		}
   1497 		if (movemap_blocks(iblkptr, UFS_NIADDR)) {
   1498 			iflags[inum] |= IF_DIRTY;
   1499 		}
   1500 		break;
   1501 	}
   1502 }
   1503 
   1504 static void
   1505 moveindir_callback(off_t off, unsigned int nfrag, unsigned int nbytes,
   1506 		   int kind)
   1507 {
   1508 	unsigned int i;
   1509 
   1510 	if (kind == MDB_INDIR_PRE) {
   1511 		int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
   1512 		readat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
   1513 		if (needswap)
   1514 			for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
   1515 				blk[i] = bswap32(blk[i]);
   1516 		if (movemap_blocks(&blk[0], FFS_NINDIR(oldsb))) {
   1517 			if (needswap)
   1518 				for (i = 0; i < howmany(MAXBSIZE,
   1519 					sizeof(int32_t)); i++)
   1520 					blk[i] = bswap32(blk[i]);
   1521 			writeat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
   1522 		}
   1523 	}
   1524 }
   1525 /*
   1526  * Update all inode data arrays and indirect blocks to point to the new
   1527  *  locations of data blocks.  See the comment header on
   1528  *  perform_data_move for some ordering considerations.
   1529  */
   1530 static void
   1531 update_for_data_move(void)
   1532 {
   1533 	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
   1534 	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
   1535 }
   1536 /*
   1537  * Initialize the inomove array.
   1538  */
   1539 static void
   1540 inomove_init(void)
   1541 {
   1542 	int i;
   1543 
   1544 	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
   1545                             "inomove");
   1546 	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
   1547 		inomove[i] = i;
   1548 }
   1549 /*
   1550  * Flush all dirtied inodes to disk.  Scans the inode flags array; for
   1551  *  each dirty inode, it sets the BDIRTY bit on the first inode in the
   1552  *  block containing the dirty inode.  Then it scans by blocks, and for
   1553  *  each marked block, writes it.
   1554  */
   1555 static void
   1556 flush_inodes(void)
   1557 {
   1558 	int i, j, k, na, ni, m;
   1559 	struct ufs1_dinode *dp1 = NULL;
   1560 	struct ufs2_dinode *dp2 = NULL;
   1561 
   1562 	na = UFS_NDADDR + UFS_NIADDR;
   1563 	ni = newsb->fs_ipg * newsb->fs_ncg;
   1564 	m = FFS_INOPB(newsb) - 1;
   1565 	for (i = 0; i < ni; i++) {
   1566 		if (iflags[i] & IF_DIRTY) {
   1567 			iflags[i & ~m] |= IF_BDIRTY;
   1568 		}
   1569 	}
   1570 	m++;
   1571 
   1572 	if (is_ufs2)
   1573 		dp2 = (struct ufs2_dinode *)ibuf;
   1574 	else
   1575 		dp1 = (struct ufs1_dinode *)ibuf;
   1576 
   1577 	for (i = 0; i < ni; i += m) {
   1578 		if (iflags[i] & IF_BDIRTY) {
   1579 			if (is_ufs2)
   1580 				for (j = 0; j < m; j++) {
   1581 					dp2[j] = inodes[i + j].dp2;
   1582 					if (needswap) {
   1583 						for (k = 0; k < na; k++)
   1584 							dp2[j].di_db[k]=
   1585 							    bswap32(dp2[j].di_db[k]);
   1586 						ffs_dinode2_swap(&dp2[j],
   1587 						    &dp2[j]);
   1588 					}
   1589 				}
   1590 			else
   1591 				for (j = 0; j < m; j++) {
   1592 					dp1[j] = inodes[i + j].dp1;
   1593 					if (needswap) {
   1594 						for (k = 0; k < na; k++)
   1595 							dp1[j].di_db[k]=
   1596 							    bswap32(dp1[j].di_db[k]);
   1597 						ffs_dinode1_swap(&dp1[j],
   1598 						    &dp1[j]);
   1599 					}
   1600 				}
   1601 
   1602 			writeat(FFS_FSBTODB(newsb, ino_to_fsba(newsb, i)),
   1603 			    ibuf, newsb->fs_bsize);
   1604 		}
   1605 	}
   1606 }
   1607 /*
   1608  * Evict all inodes from the specified cg.  shrink() already checked
   1609  *  that there were enough free inodes, so the no-free-inodes check is
   1610  *  a can't-happen.  If it does trip, the file system should be in good
   1611  *  enough shape for fsck to fix; see the comment on perform_data_move
   1612  *  for the considerations in question.
   1613  */
   1614 static void
   1615 evict_inodes(struct cg * cg)
   1616 {
   1617 	int inum;
   1618 	int i;
   1619 	int fi;
   1620 
   1621 	inum = newsb->fs_ipg * cg->cg_cgx;
   1622 	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
   1623 		if (DIP(inodes + inum,di_mode) != 0) {
   1624 			fi = find_freeinode();
   1625 			if (fi < 0)
   1626 				errx(EXIT_FAILURE, "Sorry, inodes evaporated - "
   1627 				    "file system probably needs fsck");
   1628 			inomove[inum] = fi;
   1629 			clr_bits(cg_inosused(cg, 0), i, 1);
   1630 			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
   1631 			    fi % newsb->fs_ipg, 1);
   1632 		}
   1633 	}
   1634 }
   1635 /*
   1636  * Move inodes from old locations to new.  Does not actually write
   1637  *  anything to disk; just copies in-core and sets dirty bits.
   1638  *
   1639  * We have to be careful here for reasons similar to those mentioned in
   1640  *  the comment header on perform_data_move, above: for the sake of
   1641  *  crash tolerance, we want to make sure everything is present at both
   1642  *  old and new locations before we update pointers.  So we call this
   1643  *  first, then flush_inodes() to get them out on disk, then update
   1644  *  directories to match.
   1645  */
   1646 static void
   1647 perform_inode_move(void)
   1648 {
   1649 	unsigned int i;
   1650 	unsigned int ni;
   1651 
   1652 	ni = oldsb->fs_ipg * oldsb->fs_ncg;
   1653 	for (i = 0; i < ni; i++) {
   1654 		if (inomove[i] != i) {
   1655 			inodes[inomove[i]] = inodes[i];
   1656 			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
   1657 		}
   1658 	}
   1659 }
   1660 /*
   1661  * Update the directory contained in the nb bytes at buf, to point to
   1662  *  inodes' new locations.
   1663  */
   1664 static int
   1665 update_dirents(char *buf, int nb)
   1666 {
   1667 	int rv;
   1668 #define d ((struct direct *)buf)
   1669 #define s32(x) (needswap?bswap32((x)):(x))
   1670 #define s16(x) (needswap?bswap16((x)):(x))
   1671 
   1672 	rv = 0;
   1673 	while (nb > 0) {
   1674 		if (inomove[s32(d->d_ino)] != s32(d->d_ino)) {
   1675 			rv++;
   1676 			d->d_ino = s32(inomove[s32(d->d_ino)]);
   1677 		}
   1678 		nb -= s16(d->d_reclen);
   1679 		buf += s16(d->d_reclen);
   1680 	}
   1681 	return (rv);
   1682 #undef d
   1683 #undef s32
   1684 #undef s16
   1685 }
   1686 /*
   1687  * Callback function for map_inode_data_blocks, for updating a
   1688  *  directory to point to new inode locations.
   1689  */
   1690 static void
   1691 update_dir_data(off_t bn, unsigned int size, unsigned int nb, int kind)
   1692 {
   1693 	if (kind == MDB_DATA) {
   1694 		union {
   1695 			struct direct d;
   1696 			char ch[MAXBSIZE];
   1697 		}     buf;
   1698 		readat(FFS_FSBTODB(oldsb, bn), &buf, size << oldsb->fs_fshift);
   1699 		if (update_dirents((char *) &buf, nb)) {
   1700 			writeat(FFS_FSBTODB(oldsb, bn), &buf,
   1701 			    size << oldsb->fs_fshift);
   1702 		}
   1703 	}
   1704 }
   1705 static void
   1706 dirmove_callback(union dinode * di, unsigned int inum, void *arg)
   1707 {
   1708 	switch (DIP(di,di_mode) & IFMT) {
   1709 	case IFDIR:
   1710 		map_inode_data_blocks(di, &update_dir_data);
   1711 		break;
   1712 	}
   1713 }
   1714 /*
   1715  * Update directory entries to point to new inode locations.
   1716  */
   1717 static void
   1718 update_for_inode_move(void)
   1719 {
   1720 	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
   1721 }
   1722 /*
   1723  * Shrink the file system.
   1724  */
   1725 static void
   1726 shrink(void)
   1727 {
   1728 	int i;
   1729 
   1730 	if (makegeometry(1)) {
   1731 		printf("New fs size %"PRIu64" = old fs size %"PRIu64
   1732 		    ", not shrinking.\n", newsb->fs_size, oldsb->fs_size);
   1733 		return;
   1734 	}
   1735 
   1736 	/* Let's make sure we're not being shrunk into oblivion. */
   1737 	if (newsb->fs_ncg < 1)
   1738 		errx(EXIT_FAILURE, "Size too small - file system would "
   1739 		    "have no cylinders");
   1740 
   1741 	if (verbose) {
   1742 		printf("Shrinking fs from %"PRIu64" blocks to %"PRIu64
   1743 		    " blocks.\n", oldsb->fs_size, newsb->fs_size);
   1744 	}
   1745 
   1746 	/* Load the inodes off disk - we'll need 'em. */
   1747 	loadinodes();
   1748 
   1749 	/* Update the timestamp. */
   1750 	newsb->fs_time = timestamp();
   1751 
   1752 	/* Initialize for block motion. */
   1753 	blkmove_init();
   1754 	/* Update csum size, then fix up for the new size */
   1755 	newsb->fs_cssize = ffs_fragroundup(newsb,
   1756 	    newsb->fs_ncg * sizeof(struct csum));
   1757 	csum_fixup();
   1758 	/* Evict data from any cgs being wholly eliminated */
   1759 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
   1760 		int base;
   1761 		int dlow;
   1762 		int dhigh;
   1763 		int dmax;
   1764 		base = cgbase(oldsb, i);
   1765 		dlow = cgsblock(oldsb, i) - base;
   1766 		dhigh = cgdmin(oldsb, i) - base;
   1767 		dmax = oldsb->fs_size - base;
   1768 		if (dmax > cgs[i]->cg_ndblk)
   1769 			dmax = cgs[i]->cg_ndblk;
   1770 		evict_data(cgs[i], 0, dlow);
   1771 		evict_data(cgs[i], dhigh, dmax - dhigh);
   1772 		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
   1773 		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
   1774 		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
   1775 		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
   1776 	}
   1777 	/* Update the new last cg. */
   1778 	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
   1779 	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
   1780 	/* Is the new last cg partial?  If so, evict any data from the part
   1781 	 * being shrunken away. */
   1782 	if (newsb->fs_size % newsb->fs_fpg) {
   1783 		struct cg *cg;
   1784 		int oldcgsize;
   1785 		int newcgsize;
   1786 		cg = cgs[newsb->fs_ncg - 1];
   1787 		newcgsize = newsb->fs_size % newsb->fs_fpg;
   1788 		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
   1789 		    oldsb->fs_fpg);
   1790 		if (oldcgsize > oldsb->fs_fpg)
   1791 			oldcgsize = oldsb->fs_fpg;
   1792 		evict_data(cg, newcgsize, oldcgsize - newcgsize);
   1793 		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
   1794 	}
   1795 	/* Find out whether we would run out of inodes.  (Note we
   1796 	 * haven't actually done anything to the file system yet; all
   1797 	 * those evict_data calls just update blkmove.) */
   1798 	{
   1799 		int slop;
   1800 		slop = 0;
   1801 		for (i = 0; i < newsb->fs_ncg; i++)
   1802 			slop += cgs[i]->cg_cs.cs_nifree;
   1803 		for (; i < oldsb->fs_ncg; i++)
   1804 			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
   1805 		if (slop < 0)
   1806 			errx(EXIT_FAILURE, "Sorry, would run out of inodes");
   1807 	}
   1808 	/* Copy data, then update pointers to data.  See the comment
   1809 	 * header on perform_data_move for ordering considerations. */
   1810 	perform_data_move();
   1811 	update_for_data_move();
   1812 	/* Now do inodes.  Initialize, evict, move, update - see the
   1813 	 * comment header on perform_inode_move. */
   1814 	inomove_init();
   1815 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
   1816 		evict_inodes(cgs[i]);
   1817 	perform_inode_move();
   1818 	flush_inodes();
   1819 	update_for_inode_move();
   1820 	/* Recompute all the bitmaps; most of them probably need it anyway,
   1821 	 * the rest are just paranoia and not wanting to have to bother
   1822 	 * keeping track of exactly which ones require it. */
   1823 	for (i = 0; i < newsb->fs_ncg; i++)
   1824 		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
   1825 	/* Update the cg_old_ncyl value for the last cylinder. */
   1826 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
   1827 		cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
   1828 		    newsb->fs_old_ncyl % newsb->fs_old_cpg;
   1829 	/* Make fs_dsize match the new reality. */
   1830 	recompute_fs_dsize();
   1831 }
   1832 /*
   1833  * Recompute the block totals, block cluster summaries, and rotational
   1834  *  position summaries, for a given cg (specified by number), based on
   1835  *  its free-frag bitmap (cg_blksfree()[]).
   1836  */
   1837 static void
   1838 rescan_blkmaps(int cgn)
   1839 {
   1840 	struct cg *cg;
   1841 	int f;
   1842 	int b;
   1843 	int blkfree;
   1844 	int blkrun;
   1845 	int fragrun;
   1846 	int fwb;
   1847 
   1848 	cg = cgs[cgn];
   1849 	/* Subtract off the current totals from the sb's summary info */
   1850 	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
   1851 	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
   1852 	/* Clear counters and bitmaps. */
   1853 	cg->cg_cs.cs_nffree = 0;
   1854 	cg->cg_cs.cs_nbfree = 0;
   1855 	memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0]));
   1856 	memset(&old_cg_blktot(cg, 0)[0], 0,
   1857 	    newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
   1858 	memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0,
   1859 	    newsb->fs_old_cpg * newsb->fs_old_nrpos *
   1860 	    sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
   1861 	if (newsb->fs_contigsumsize > 0) {
   1862 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
   1863 		memset(&cg_clustersum(cg, 0)[1], 0,
   1864 		    newsb->fs_contigsumsize *
   1865 		    sizeof(cg_clustersum(cg, 0)[1]));
   1866 		if (is_ufs2)
   1867 			memset(&cg_clustersfree(cg, 0)[0], 0,
   1868 			    howmany(newsb->fs_fpg / NSPB(newsb), NBBY));
   1869 		else
   1870 			memset(&cg_clustersfree(cg, 0)[0], 0,
   1871 			    howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
   1872 				NSPB(newsb), NBBY));
   1873 	}
   1874 	/* Scan the free-frag bitmap.  Runs of free frags are kept
   1875 	 * track of with fragrun, and recorded into cg_frsum[] and
   1876 	 * cg_cs.cs_nffree; on each block boundary, entire free blocks
   1877 	 * are recorded as well. */
   1878 	blkfree = 1;
   1879 	blkrun = 0;
   1880 	fragrun = 0;
   1881 	f = 0;
   1882 	b = 0;
   1883 	fwb = 0;
   1884 	while (f < cg->cg_ndblk) {
   1885 		if (bit_is_set(cg_blksfree(cg, 0), f)) {
   1886 			fragrun++;
   1887 		} else {
   1888 			blkfree = 0;
   1889 			if (fragrun > 0) {
   1890 				cg->cg_frsum[fragrun]++;
   1891 				cg->cg_cs.cs_nffree += fragrun;
   1892 			}
   1893 			fragrun = 0;
   1894 		}
   1895 		f++;
   1896 		fwb++;
   1897 		if (fwb >= newsb->fs_frag) {
   1898 			if (blkfree) {
   1899 				cg->cg_cs.cs_nbfree++;
   1900 				if (newsb->fs_contigsumsize > 0)
   1901 					set_bits(cg_clustersfree(cg, 0), b, 1);
   1902 				if (is_ufs2 == 0) {
   1903 					old_cg_blktot(cg, 0)[
   1904 						old_cbtocylno(newsb,
   1905 						    f - newsb->fs_frag)]++;
   1906 					old_cg_blks(newsb, cg,
   1907 					    old_cbtocylno(newsb,
   1908 						f - newsb->fs_frag),
   1909 					    0)[old_cbtorpos(newsb,
   1910 						    f - newsb->fs_frag)]++;
   1911 				}
   1912 				blkrun++;
   1913 			} else {
   1914 				if (fragrun > 0) {
   1915 					cg->cg_frsum[fragrun]++;
   1916 					cg->cg_cs.cs_nffree += fragrun;
   1917 				}
   1918 				if (newsb->fs_contigsumsize > 0) {
   1919 					if (blkrun > 0) {
   1920 						cg_clustersum(cg, 0)[(blkrun
   1921 						    > newsb->fs_contigsumsize)
   1922 						    ? newsb->fs_contigsumsize
   1923 						    : blkrun]++;
   1924 					}
   1925 				}
   1926 				blkrun = 0;
   1927 			}
   1928 			fwb = 0;
   1929 			b++;
   1930 			blkfree = 1;
   1931 			fragrun = 0;
   1932 		}
   1933 	}
   1934 	if (fragrun > 0) {
   1935 		cg->cg_frsum[fragrun]++;
   1936 		cg->cg_cs.cs_nffree += fragrun;
   1937 	}
   1938 	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
   1939 		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
   1940 		    newsb->fs_contigsumsize : blkrun]++;
   1941 	}
   1942 	/*
   1943          * Put the updated summary info back into csums, and add it
   1944          * back into the sb's summary info.  Then mark the cg dirty.
   1945          */
   1946 	csums[cgn] = cg->cg_cs;
   1947 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
   1948 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
   1949 	cgflags[cgn] |= CGF_DIRTY;
   1950 }
   1951 /*
   1952  * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
   1953  *  values, for a cg, based on the in-core inodes for that cg.
   1954  */
   1955 static void
   1956 rescan_inomaps(int cgn)
   1957 {
   1958 	struct cg *cg;
   1959 	int inum;
   1960 	int iwc;
   1961 
   1962 	cg = cgs[cgn];
   1963 	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
   1964 	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
   1965 	cg->cg_cs.cs_ndir = 0;
   1966 	cg->cg_cs.cs_nifree = 0;
   1967 	memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY));
   1968 	inum = cgn * newsb->fs_ipg;
   1969 	if (cgn == 0) {
   1970 		set_bits(cg_inosused(cg, 0), 0, 2);
   1971 		iwc = 2;
   1972 		inum += 2;
   1973 	} else {
   1974 		iwc = 0;
   1975 	}
   1976 	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
   1977 		switch (DIP(inodes + inum, di_mode) & IFMT) {
   1978 		case 0:
   1979 			cg->cg_cs.cs_nifree++;
   1980 			break;
   1981 		case IFDIR:
   1982 			cg->cg_cs.cs_ndir++;
   1983 			/* FALLTHROUGH */
   1984 		default:
   1985 			set_bits(cg_inosused(cg, 0), iwc, 1);
   1986 			break;
   1987 		}
   1988 	}
   1989 	csums[cgn] = cg->cg_cs;
   1990 	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
   1991 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
   1992 	cgflags[cgn] |= CGF_DIRTY;
   1993 }
   1994 /*
   1995  * Flush cgs to disk, recomputing anything they're marked as needing.
   1996  */
   1997 static void
   1998 flush_cgs(void)
   1999 {
   2000 	int i;
   2001 
   2002 	for (i = 0; i < newsb->fs_ncg; i++) {
   2003 		progress_bar(special, "flush cg",
   2004 		    i, newsb->fs_ncg - 1);
   2005 		if (cgflags[i] & CGF_BLKMAPS) {
   2006 			rescan_blkmaps(i);
   2007 		}
   2008 		if (cgflags[i] & CGF_INOMAPS) {
   2009 			rescan_inomaps(i);
   2010 		}
   2011 		if (cgflags[i] & CGF_DIRTY) {
   2012 			cgs[i]->cg_rotor = 0;
   2013 			cgs[i]->cg_frotor = 0;
   2014 			cgs[i]->cg_irotor = 0;
   2015 			if (needswap)
   2016 				ffs_cg_swap(cgs[i],cgs[i],newsb);
   2017 			writeat(FFS_FSBTODB(newsb, cgtod(newsb, i)), cgs[i],
   2018 			    cgblksz);
   2019 		}
   2020 	}
   2021 	if (needswap)
   2022 		ffs_csum_swap(csums,csums,newsb->fs_cssize);
   2023 	writeat(FFS_FSBTODB(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
   2024 
   2025 	progress_done();
   2026 }
   2027 /*
   2028  * Write the superblock, both to the main superblock and to each cg's
   2029  *  alternative superblock.
   2030  */
   2031 static void
   2032 write_sbs(void)
   2033 {
   2034 	int i;
   2035 
   2036 	if (newsb->fs_magic == FS_UFS1_MAGIC &&
   2037 	    (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
   2038 		newsb->fs_old_time = newsb->fs_time;
   2039 	    	newsb->fs_old_size = newsb->fs_size;
   2040 	    	/* we don't update fs_csaddr */
   2041 	    	newsb->fs_old_dsize = newsb->fs_dsize;
   2042 		newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
   2043 		newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
   2044 		newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
   2045 		newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
   2046 		/* fill fs_old_postbl_start with 256 bytes of 0xff? */
   2047 	}
   2048 	/* copy newsb back to oldsb, so we can use it for offsets if
   2049 	   newsb has been swapped for writing to disk */
   2050 	memcpy(oldsb, newsb, SBLOCKSIZE);
   2051 	if (needswap)
   2052 		ffs_sb_swap(newsb,newsb);
   2053 	writeat(where /  DEV_BSIZE, newsb, SBLOCKSIZE);
   2054 	for (i = 0; i < oldsb->fs_ncg; i++) {
   2055 		progress_bar(special, "write sb",
   2056 		    i, oldsb->fs_ncg - 1);
   2057 		writeat(FFS_FSBTODB(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE);
   2058 	}
   2059 
   2060 	progress_done();
   2061 }
   2062 
   2063 /*
   2064  * Check to see wether new size changes the filesystem
   2065  *  return exit code
   2066  */
   2067 static int
   2068 checkonly(void)
   2069 {
   2070 	if (makegeometry(0)) {
   2071 		if (verbose) {
   2072 			printf("Wouldn't change: already %" PRId64
   2073 			    " blocks\n", (int64_t)oldsb->fs_size);
   2074 		}
   2075 		return 1;
   2076 	}
   2077 
   2078 	if (verbose) {
   2079 		printf("Would change: newsize: %" PRId64 " oldsize: %"
   2080 		    PRId64 " fsdb: %" PRId64 "\n", FFS_DBTOFSB(oldsb, newsize),
   2081 		    (int64_t)oldsb->fs_size,
   2082 		    (int64_t)oldsb->fs_fsbtodb);
   2083 	}
   2084 	return 0;
   2085 }
   2086 
   2087 static off_t
   2088 get_dev_size(char *dev_name)
   2089 {
   2090 	struct dkwedge_info dkw;
   2091 	struct partition *pp;
   2092 	struct disklabel lp;
   2093 	struct stat st;
   2094 	size_t ptn;
   2095 
   2096 	/* Get info about partition/wedge */
   2097 	if (ioctl(fd, DIOCGWEDGEINFO, &dkw) != -1)
   2098 		return dkw.dkw_size;
   2099 	if (ioctl(fd, DIOCGDINFO, &lp) != -1) {
   2100 		ptn = strchr(dev_name, '\0')[-1] - 'a';
   2101 		if (ptn >= lp.d_npartitions)
   2102 			return 0;
   2103 		pp = &lp.d_partitions[ptn];
   2104 		return pp->p_size;
   2105 	}
   2106 	if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
   2107 		return st.st_size / DEV_BSIZE;
   2108 
   2109 	return 0;
   2110 }
   2111 
   2112 /*
   2113  * main().
   2114  */
   2115 int
   2116 main(int argc, char **argv)
   2117 {
   2118 	int ch;
   2119 	int CheckOnlyFlag;
   2120 	int ExpertFlag;
   2121 	int SFlag;
   2122 	size_t i;
   2123 
   2124 	char reply[5];
   2125 
   2126 	newsize = 0;
   2127 	ExpertFlag = 0;
   2128 	SFlag = 0;
   2129         CheckOnlyFlag = 0;
   2130 
   2131 	while ((ch = getopt(argc, argv, "cps:vy")) != -1) {
   2132 		switch (ch) {
   2133                 case 'c':
   2134 			CheckOnlyFlag = 1;
   2135 			break;
   2136 		case 'p':
   2137 			progress = 1;
   2138 			break;
   2139 		case 's':
   2140 			SFlag = 1;
   2141 			newsize = strtoll(optarg, NULL, 10);
   2142 			if(newsize < 1) {
   2143 				usage();
   2144 			}
   2145 			break;
   2146 		case 'v':
   2147 			verbose = 1;
   2148 			break;
   2149 		case 'y':
   2150 			ExpertFlag = 1;
   2151 			break;
   2152 		case '?':
   2153 			/* FALLTHROUGH */
   2154 		default:
   2155 			usage();
   2156 		}
   2157 	}
   2158 	argc -= optind;
   2159 	argv += optind;
   2160 
   2161 	if (argc != 1) {
   2162 		usage();
   2163 	}
   2164 
   2165 	special = *argv;
   2166 
   2167 	if (ExpertFlag == 0 && CheckOnlyFlag == 0) {
   2168 		printf("It's required to manually run fsck on file system "
   2169 		    "before you can resize it\n\n"
   2170 		    " Did you run fsck on your disk (Yes/No) ? ");
   2171 		fgets(reply, (int)sizeof(reply), stdin);
   2172 		if (strcasecmp(reply, "Yes\n")) {
   2173 			printf("\n Nothing done \n");
   2174 			exit(EXIT_SUCCESS);
   2175 		}
   2176 	}
   2177 
   2178 	fd = open(special, O_RDWR, 0);
   2179 	if (fd < 0)
   2180 		err(EXIT_FAILURE, "Can't open `%s'", special);
   2181 	checksmallio();
   2182 
   2183 	if (SFlag == 0) {
   2184 		newsize = get_dev_size(special);
   2185 		if (newsize == 0)
   2186 			err(EXIT_FAILURE,
   2187 			    "Can't resize file system, newsize not known.");
   2188 	}
   2189 
   2190 	oldsb = (struct fs *) & sbbuf;
   2191 	newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
   2192 	for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
   2193 		readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
   2194 		switch (oldsb->fs_magic) {
   2195 		case FS_UFS2_MAGIC:
   2196 			is_ufs2 = 1;
   2197 			/* FALLTHROUGH */
   2198 		case FS_UFS1_MAGIC:
   2199 			needswap = 0;
   2200 			break;
   2201 		case FS_UFS2_MAGIC_SWAPPED:
   2202  			is_ufs2 = 1;
   2203 			/* FALLTHROUGH */
   2204 		case FS_UFS1_MAGIC_SWAPPED:
   2205 			needswap = 1;
   2206 			break;
   2207 		default:
   2208 			continue;
   2209 		}
   2210 		if (!is_ufs2 && where == SBLOCK_UFS2)
   2211 			continue;
   2212 		break;
   2213 	}
   2214 	if (where == (off_t)-1)
   2215 		errx(EXIT_FAILURE, "Bad magic number");
   2216 	if (needswap)
   2217 		ffs_sb_swap(oldsb,oldsb);
   2218 	if (oldsb->fs_magic == FS_UFS1_MAGIC &&
   2219 	    (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
   2220 		oldsb->fs_csaddr = oldsb->fs_old_csaddr;
   2221 		oldsb->fs_size = oldsb->fs_old_size;
   2222 		oldsb->fs_dsize = oldsb->fs_old_dsize;
   2223 		oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
   2224 		oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
   2225 		oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
   2226 		oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
   2227 		/* any others? */
   2228 		printf("Resizing with ffsv1 superblock\n");
   2229 	}
   2230 
   2231 	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
   2232 	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
   2233 	if (oldsb->fs_ipg % FFS_INOPB(oldsb))
   2234 		errx(EXIT_FAILURE, "ipg[%d] %% FFS_INOPB[%d] != 0",
   2235 		    (int) oldsb->fs_ipg, (int) FFS_INOPB(oldsb));
   2236 	/* The superblock is bigger than struct fs (there are trailing
   2237 	 * tables, of non-fixed size); make sure we copy the whole
   2238 	 * thing.  SBLOCKSIZE may be an over-estimate, but we do this
   2239 	 * just once, so being generous is cheap. */
   2240 	memcpy(newsb, oldsb, SBLOCKSIZE);
   2241 
   2242 	if (progress) {
   2243 		progress_ttywidth(0);
   2244 		signal(SIGWINCH, progress_ttywidth);
   2245 	}
   2246 
   2247 	loadcgs();
   2248 
   2249 	if (progress && !CheckOnlyFlag) {
   2250 		progress_switch(progress);
   2251 		progress_init();
   2252 	}
   2253 
   2254 	if (newsize > FFS_FSBTODB(oldsb, oldsb->fs_size)) {
   2255 		if (CheckOnlyFlag)
   2256 			exit(checkonly());
   2257 		grow();
   2258 	} else if (newsize < FFS_FSBTODB(oldsb, oldsb->fs_size)) {
   2259 		if (is_ufs2)
   2260 			errx(EXIT_FAILURE,"shrinking not supported for ufs2");
   2261 		if (CheckOnlyFlag)
   2262 			exit(checkonly());
   2263 		shrink();
   2264 	} else {
   2265 		if (CheckOnlyFlag)
   2266 			exit(checkonly());
   2267 		if (verbose)
   2268 			printf("No change requested: already %" PRId64
   2269 			    " blocks\n", (int64_t)oldsb->fs_size);
   2270 	}
   2271 
   2272 	flush_cgs();
   2273 	write_sbs();
   2274 	if (isplainfile())
   2275 		ftruncate(fd,newsize * DEV_BSIZE);
   2276 	return 0;
   2277 }
   2278 
   2279 static void
   2280 usage(void)
   2281 {
   2282 
   2283 	(void)fprintf(stderr, "usage: %s [-cvy] [-s size] special\n",
   2284 	    getprogname());
   2285 	exit(EXIT_FAILURE);
   2286 }
   2287