resize_ffs.c revision 1.44 1 /* $NetBSD: resize_ffs.c,v 1.44 2015/04/06 22:44:04 jmcneill Exp $ */
2 /* From sources sent on February 17, 2003 */
3 /*-
4 * As its sole author, I explicitly place this code in the public
5 * domain. Anyone may use it for any purpose (though I would
6 * appreciate credit where it is due).
7 *
8 * der Mouse
9 *
10 * mouse (at) rodents.montreal.qc.ca
11 * 7D C8 61 52 5D E7 2D 39 4E F1 31 3E E8 B3 27 4B
12 */
13 /*
14 * resize_ffs:
15 *
16 * Resize a file system. Is capable of both growing and shrinking.
17 *
18 * Usage: resize_ffs [-s newsize] [-y] file_system
19 *
20 * Example: resize_ffs -s 29574 /dev/rsd1e
21 *
22 * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
23 * each).
24 *
25 * Note: this currently requires gcc to build, since it is written
26 * depending on gcc-specific features, notably nested function
27 * definitions (which in at least a few cases depend on the lexical
28 * scoping gcc provides, so they can't be trivially moved outside).
29 *
30 * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
31 * one responsible for the "realloccgblk: can't find blk in cyl"
32 * problem and a more minor one which left fs_dsize wrong when
33 * shrinking. (These actually indicate bugs in fsck too - it should
34 * have caught and fixed them.)
35 *
36 */
37
38 #include <sys/cdefs.h>
39 __RCSID("$NetBSD: resize_ffs.c,v 1.44 2015/04/06 22:44:04 jmcneill Exp $");
40
41 #include <sys/disk.h>
42 #include <sys/disklabel.h>
43 #include <sys/dkio.h>
44 #include <sys/ioctl.h>
45 #include <sys/stat.h>
46 #include <sys/mman.h>
47 #include <sys/param.h> /* MAXFRAG */
48 #include <ufs/ffs/fs.h>
49 #include <ufs/ffs/ffs_extern.h>
50 #include <ufs/ufs/dir.h>
51 #include <ufs/ufs/dinode.h>
52 #include <ufs/ufs/ufs_bswap.h> /* ufs_rw32 */
53
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <strings.h>
60 #include <unistd.h>
61
62 #include "progress.h"
63
64 /* new size of file system, in sectors */
65 static int64_t newsize;
66
67 /* fd open onto disk device or file */
68 static int fd;
69
70 /* disk device or file path */
71 char *special;
72
73 /* must we break up big I/O operations - see checksmallio() */
74 static int smallio;
75
76 /* size of a cg, in bytes, rounded up to a frag boundary */
77 static int cgblksz;
78
79 /* possible superblock localtions */
80 static int search[] = SBLOCKSEARCH;
81 /* location of the superblock */
82 static off_t where;
83
84 /* Superblocks. */
85 static struct fs *oldsb; /* before we started */
86 static struct fs *newsb; /* copy to work with */
87 /* Buffer to hold the above. Make sure it's aligned correctly. */
88 static char sbbuf[2 * SBLOCKSIZE]
89 __attribute__((__aligned__(__alignof__(struct fs))));
90
91 union dinode {
92 struct ufs1_dinode dp1;
93 struct ufs2_dinode dp2;
94 };
95 #define DIP(dp, field) \
96 ((is_ufs2) ? \
97 (dp)->dp2.field : (dp)->dp1.field)
98
99 #define DIP_ASSIGN(dp, field, value) \
100 do { \
101 if (is_ufs2) \
102 (dp)->dp2.field = (value); \
103 else \
104 (dp)->dp1.field = (value); \
105 } while (0)
106
107 /* a cg's worth of brand new squeaky-clean inodes */
108 static struct ufs1_dinode *zinodes;
109
110 /* pointers to the in-core cgs, read off disk and possibly modified */
111 static struct cg **cgs;
112
113 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
114 static struct csum *csums;
115
116 /* per-cg flags, indexed by cg number */
117 static unsigned char *cgflags;
118 #define CGF_DIRTY 0x01 /* needs to be written to disk */
119 #define CGF_BLKMAPS 0x02 /* block bitmaps need rebuilding */
120 #define CGF_INOMAPS 0x04 /* inode bitmaps need rebuilding */
121
122 /* when shrinking, these two arrays record how we want blocks to move. */
123 /* if blkmove[i] is j, the frag that started out as frag #i should end */
124 /* up as frag #j. inomove[i]=j means, similarly, that the inode that */
125 /* started out as inode i should end up as inode j. */
126 static unsigned int *blkmove;
127 static unsigned int *inomove;
128
129 /* in-core copies of all inodes in the fs, indexed by inumber */
130 union dinode *inodes;
131
132 void *ibuf; /* ptr to fs block-sized buffer for reading/writing inodes */
133
134 /* byteswapped inodes */
135 union dinode *sinodes;
136
137 /* per-inode flags, indexed by inumber */
138 static unsigned char *iflags;
139 #define IF_DIRTY 0x01 /* needs to be written to disk */
140 #define IF_BDIRTY 0x02 /* like DIRTY, but is set on first inode in a
141 * block of inodes, and applies to the whole
142 * block. */
143
144 /* resize_ffs works directly on dinodes, adapt blksize() */
145 #define dblksize(fs, dip, lbn, filesize) \
146 (((lbn) >= UFS_NDADDR || (uint64_t)(filesize) >= ffs_lblktosize(fs, (lbn) + 1)) \
147 ? (fs)->fs_bsize \
148 : (ffs_fragroundup(fs, ffs_blkoff(fs, (filesize)))))
149
150
151 /*
152 * Number of disk sectors per block/fragment
153 */
154 #define NSPB(fs) (FFS_FSBTODB((fs),1) << (fs)->fs_fragshift)
155 #define NSPF(fs) (FFS_FSBTODB((fs),1))
156
157 /* global flags */
158 int is_ufs2 = 0;
159 int needswap = 0;
160 int verbose = 0;
161 int progress = 0;
162
163 static void usage(void) __dead;
164
165 /*
166 * See if we need to break up large I/O operations. This should never
167 * be needed, but under at least one <version,platform> combination,
168 * large enough disk transfers to the raw device hang. So if we're
169 * talking to a character special device, play it safe; in this case,
170 * readat() and writeat() break everything up into pieces no larger
171 * than 8K, doing multiple syscalls for larger operations.
172 */
173 static void
174 checksmallio(void)
175 {
176 struct stat stb;
177
178 fstat(fd, &stb);
179 smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
180 }
181
182 static int
183 isplainfile(void)
184 {
185 struct stat stb;
186
187 fstat(fd, &stb);
188 return S_ISREG(stb.st_mode);
189 }
190 /*
191 * Read size bytes starting at blkno into buf. blkno is in DEV_BSIZE
192 * units, ie, after FFS_FSBTODB(); size is in bytes.
193 */
194 static void
195 readat(off_t blkno, void *buf, int size)
196 {
197 /* Seek to the correct place. */
198 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
199 err(EXIT_FAILURE, "lseek failed");
200
201 /* See if we have to break up the transfer... */
202 if (smallio) {
203 char *bp; /* pointer into buf */
204 int left; /* bytes left to go */
205 int n; /* number to do this time around */
206 int rv; /* syscall return value */
207 bp = buf;
208 left = size;
209 while (left > 0) {
210 n = (left > 8192) ? 8192 : left;
211 rv = read(fd, bp, n);
212 if (rv < 0)
213 err(EXIT_FAILURE, "read failed");
214 if (rv != n)
215 errx(EXIT_FAILURE,
216 "read: wanted %d, got %d", n, rv);
217 bp += n;
218 left -= n;
219 }
220 } else {
221 int rv;
222 rv = read(fd, buf, size);
223 if (rv < 0)
224 err(EXIT_FAILURE, "read failed");
225 if (rv != size)
226 errx(EXIT_FAILURE, "read: wanted %d, got %d",
227 size, rv);
228 }
229 }
230 /*
231 * Write size bytes from buf starting at blkno. blkno is in DEV_BSIZE
232 * units, ie, after FFS_FSBTODB(); size is in bytes.
233 */
234 static void
235 writeat(off_t blkno, const void *buf, int size)
236 {
237 /* Seek to the correct place. */
238 if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
239 err(EXIT_FAILURE, "lseek failed");
240 /* See if we have to break up the transfer... */
241 if (smallio) {
242 const char *bp; /* pointer into buf */
243 int left; /* bytes left to go */
244 int n; /* number to do this time around */
245 int rv; /* syscall return value */
246 bp = buf;
247 left = size;
248 while (left > 0) {
249 n = (left > 8192) ? 8192 : left;
250 rv = write(fd, bp, n);
251 if (rv < 0)
252 err(EXIT_FAILURE, "write failed");
253 if (rv != n)
254 errx(EXIT_FAILURE,
255 "write: wanted %d, got %d", n, rv);
256 bp += n;
257 left -= n;
258 }
259 } else {
260 int rv;
261 rv = write(fd, buf, size);
262 if (rv < 0)
263 err(EXIT_FAILURE, "write failed");
264 if (rv != size)
265 errx(EXIT_FAILURE,
266 "write: wanted %d, got %d", size, rv);
267 }
268 }
269 /*
270 * Never-fail versions of malloc() and realloc(), and an allocation
271 * routine (which also never fails) for allocating memory that will
272 * never be freed until exit.
273 */
274
275 /*
276 * Never-fail malloc.
277 */
278 static void *
279 nfmalloc(size_t nb, const char *tag)
280 {
281 void *rv;
282
283 rv = malloc(nb);
284 if (rv)
285 return (rv);
286 err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
287 (unsigned long int) nb, tag);
288 }
289 /*
290 * Never-fail realloc.
291 */
292 static void *
293 nfrealloc(void *blk, size_t nb, const char *tag)
294 {
295 void *rv;
296
297 rv = realloc(blk, nb);
298 if (rv)
299 return (rv);
300 err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
301 (unsigned long int) nb, tag);
302 }
303 /*
304 * Allocate memory that will never be freed or reallocated. Arguably
305 * this routine should handle small allocations by chopping up pages,
306 * but that's not worth the bother; it's not called more than a
307 * handful of times per run, and if the allocations are that small the
308 * waste in giving each one its own page is ignorable.
309 */
310 static void *
311 alloconce(size_t nb, const char *tag)
312 {
313 void *rv;
314
315 rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
316 if (rv != MAP_FAILED)
317 return (rv);
318 err(EXIT_FAILURE, "Can't map %lu bytes for %s",
319 (unsigned long int) nb, tag);
320 }
321 /*
322 * Load the cgs and csums off disk. Also allocates the space to load
323 * them into and initializes the per-cg flags.
324 */
325 static void
326 loadcgs(void)
327 {
328 int cg;
329 char *cgp;
330
331 cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
332 cgs = nfmalloc(oldsb->fs_ncg * sizeof(*cgs), "cg pointers");
333 cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
334 cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
335 csums = nfmalloc(oldsb->fs_cssize, "cg summary");
336 for (cg = 0; cg < oldsb->fs_ncg; cg++) {
337 cgs[cg] = (struct cg *) cgp;
338 readat(FFS_FSBTODB(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
339 if (needswap)
340 ffs_cg_swap(cgs[cg],cgs[cg],oldsb);
341 cgflags[cg] = 0;
342 cgp += cgblksz;
343 }
344 readat(FFS_FSBTODB(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
345 if (needswap)
346 ffs_csum_swap(csums,csums,oldsb->fs_cssize);
347 }
348 /*
349 * Set n bits, starting with bit #base, in the bitmap pointed to by
350 * bitvec (which is assumed to be large enough to include bits base
351 * through base+n-1).
352 */
353 static void
354 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
355 {
356 if (n < 1)
357 return; /* nothing to do */
358 if (base & 7) { /* partial byte at beginning */
359 if (n <= 8 - (base & 7)) { /* entirely within one byte */
360 bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
361 return;
362 }
363 bitvec[base >> 3] |= (~0U) << (base & 7);
364 n -= 8 - (base & 7);
365 base = (base & ~7) + 8;
366 }
367 if (n >= 8) { /* do full bytes */
368 memset(bitvec + (base >> 3), 0xff, n >> 3);
369 base += n & ~7;
370 n &= 7;
371 }
372 if (n) { /* partial byte at end */
373 bitvec[base >> 3] |= ~((~0U) << n);
374 }
375 }
376 /*
377 * Clear n bits, starting with bit #base, in the bitmap pointed to by
378 * bitvec (which is assumed to be large enough to include bits base
379 * through base+n-1). Code parallels set_bits().
380 */
381 static void
382 clr_bits(unsigned char *bitvec, int base, int n)
383 {
384 if (n < 1)
385 return;
386 if (base & 7) {
387 if (n <= 8 - (base & 7)) {
388 bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
389 return;
390 }
391 bitvec[base >> 3] &= ~((~0U) << (base & 7));
392 n -= 8 - (base & 7);
393 base = (base & ~7) + 8;
394 }
395 if (n >= 8) {
396 memset(bitvec + (base >> 3), 0, n >> 3);
397 base += n & ~7;
398 n &= 7;
399 }
400 if (n) {
401 bitvec[base >> 3] &= (~0U) << n;
402 }
403 }
404 /*
405 * Test whether bit #bit is set in the bitmap pointed to by bitvec.
406 */
407 static int
408 bit_is_set(unsigned char *bitvec, int bit)
409 {
410 return (bitvec[bit >> 3] & (1 << (bit & 7)));
411 }
412 /*
413 * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
414 */
415 static int
416 bit_is_clr(unsigned char *bitvec, int bit)
417 {
418 return (!bit_is_set(bitvec, bit));
419 }
420 /*
421 * Test whether a whole block of bits is set in a bitmap. This is
422 * designed for testing (aligned) disk blocks in a bit-per-frag
423 * bitmap; it has assumptions wired into it based on that, essentially
424 * that the entire block fits into a single byte. This returns true
425 * iff _all_ the bits are set; it is not just the complement of
426 * blk_is_clr on the same arguments (unless blkfrags==1).
427 */
428 static int
429 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
430 {
431 unsigned int mask;
432
433 mask = (~((~0U) << blkfrags)) << (blkbase & 7);
434 return ((bitvec[blkbase >> 3] & mask) == mask);
435 }
436 /*
437 * Test whether a whole block of bits is clear in a bitmap. See
438 * blk_is_set (above) for assumptions. This returns true iff _all_
439 * the bits are clear; it is not just the complement of blk_is_set on
440 * the same arguments (unless blkfrags==1).
441 */
442 static int
443 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
444 {
445 unsigned int mask;
446
447 mask = (~((~0U) << blkfrags)) << (blkbase & 7);
448 return ((bitvec[blkbase >> 3] & mask) == 0);
449 }
450 /*
451 * Initialize a new cg. Called when growing. Assumes memory has been
452 * allocated but not otherwise set up. This code sets the fields of
453 * the cg, initializes the bitmaps (and cluster summaries, if
454 * applicable), updates both per-cylinder summary info and the global
455 * summary info in newsb; it also writes out new inodes for the cg.
456 *
457 * This code knows it can never be called for cg 0, which makes it a
458 * bit simpler than it would otherwise be.
459 */
460 static void
461 initcg(int cgn)
462 {
463 struct cg *cg; /* The in-core cg, of course */
464 int base; /* Disk address of cg base */
465 int dlow; /* Size of pre-cg data area */
466 int dhigh; /* Offset of post-inode data area, from base */
467 int dmax; /* Offset of end of post-inode data area */
468 int i; /* Generic loop index */
469 int n; /* Generic count */
470 int start; /* start of cg maps */
471
472 cg = cgs[cgn];
473 /* Place the data areas */
474 base = cgbase(newsb, cgn);
475 dlow = cgsblock(newsb, cgn) - base;
476 dhigh = cgdmin(newsb, cgn) - base;
477 dmax = newsb->fs_size - base;
478 if (dmax > newsb->fs_fpg)
479 dmax = newsb->fs_fpg;
480 start = &cg->cg_space[0] - (unsigned char *) cg;
481 /*
482 * Clear out the cg - assumes all-0-bytes is the correct way
483 * to initialize fields we don't otherwise touch, which is
484 * perhaps not the right thing to do, but it's what fsck and
485 * mkfs do.
486 */
487 memset(cg, 0, newsb->fs_cgsize);
488 if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
489 cg->cg_time = newsb->fs_time;
490 cg->cg_magic = CG_MAGIC;
491 cg->cg_cgx = cgn;
492 cg->cg_niblk = newsb->fs_ipg;
493 cg->cg_ndblk = dmax;
494
495 if (is_ufs2) {
496 cg->cg_time = newsb->fs_time;
497 cg->cg_initediblk = newsb->fs_ipg < 2 * FFS_INOPB(newsb) ?
498 newsb->fs_ipg : 2 * FFS_INOPB(newsb);
499 cg->cg_iusedoff = start;
500 } else {
501 cg->cg_old_time = newsb->fs_time;
502 cg->cg_old_niblk = cg->cg_niblk;
503 cg->cg_niblk = 0;
504 cg->cg_initediblk = 0;
505
506
507 cg->cg_old_ncyl = newsb->fs_old_cpg;
508 /* Update the cg_old_ncyl value for the last cylinder. */
509 if (cgn == newsb->fs_ncg - 1) {
510 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
511 cg->cg_old_ncyl = newsb->fs_old_ncyl %
512 newsb->fs_old_cpg;
513 }
514
515 /* Set up the bitmap pointers. We have to be careful
516 * to lay out the cg _exactly_ the way mkfs and fsck
517 * do it, since fsck compares the _entire_ cg against
518 * a recomputed cg, and whines if there is any
519 * mismatch, including the bitmap offsets. */
520 /* XXX update this comment when fsck is fixed */
521 cg->cg_old_btotoff = start;
522 cg->cg_old_boff = cg->cg_old_btotoff
523 + (newsb->fs_old_cpg * sizeof(int32_t));
524 cg->cg_iusedoff = cg->cg_old_boff +
525 (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
526 }
527 cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
528 if (newsb->fs_contigsumsize > 0) {
529 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
530 cg->cg_clustersumoff = cg->cg_freeoff +
531 howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t);
532 cg->cg_clustersumoff =
533 roundup(cg->cg_clustersumoff, sizeof(int32_t));
534 cg->cg_clusteroff = cg->cg_clustersumoff +
535 ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
536 cg->cg_nextfreeoff = cg->cg_clusteroff +
537 howmany(ffs_fragstoblks(newsb,newsb->fs_fpg), NBBY);
538 n = dlow / newsb->fs_frag;
539 if (n > 0) {
540 set_bits(cg_clustersfree(cg, 0), 0, n);
541 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
542 newsb->fs_contigsumsize : n]++;
543 }
544 } else {
545 cg->cg_nextfreeoff = cg->cg_freeoff +
546 howmany(newsb->fs_fpg, NBBY);
547 }
548 /* Mark the data areas as free; everything else is marked busy by the
549 * memset() up at the top. */
550 set_bits(cg_blksfree(cg, 0), 0, dlow);
551 set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
552 /* Initialize summary info */
553 cg->cg_cs.cs_ndir = 0;
554 cg->cg_cs.cs_nifree = newsb->fs_ipg;
555 cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
556 cg->cg_cs.cs_nffree = 0;
557
558 /* This is the simplest way of doing this; we perhaps could
559 * compute the correct cg_blktot()[] and cg_blks()[] values
560 * other ways, but it would be complicated and hardly seems
561 * worth the effort. (The reason there isn't
562 * frag-at-beginning and frag-at-end code here, like the code
563 * below for the post-inode data area, is that the pre-sb data
564 * area always starts at 0, and thus is block-aligned, and
565 * always ends at the sb, which is block-aligned.) */
566 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
567 for (i = 0; i < dlow; i += newsb->fs_frag) {
568 old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++;
569 old_cg_blks(newsb, cg,
570 old_cbtocylno(newsb, i),
571 0)[old_cbtorpos(newsb, i)]++;
572 }
573
574 /* Deal with a partial block at the beginning of the post-inode area.
575 * I'm not convinced this can happen - I think the inodes are always
576 * block-aligned and always an integral number of blocks - but it's
577 * cheap to do the right thing just in case. */
578 if (dhigh % newsb->fs_frag) {
579 n = newsb->fs_frag - (dhigh % newsb->fs_frag);
580 cg->cg_frsum[n]++;
581 cg->cg_cs.cs_nffree += n;
582 dhigh += n;
583 }
584 n = (dmax - dhigh) / newsb->fs_frag;
585 /* We have n full-size blocks in the post-inode data area. */
586 if (n > 0) {
587 cg->cg_cs.cs_nbfree += n;
588 if (newsb->fs_contigsumsize > 0) {
589 i = dhigh / newsb->fs_frag;
590 set_bits(cg_clustersfree(cg, 0), i, n);
591 cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
592 newsb->fs_contigsumsize : n]++;
593 }
594 if (is_ufs2 == 0)
595 for (i = n; i > 0; i--) {
596 old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
597 dhigh)]++;
598 old_cg_blks(newsb, cg,
599 old_cbtocylno(newsb, dhigh),
600 0)[old_cbtorpos(newsb,
601 dhigh)]++;
602 dhigh += newsb->fs_frag;
603 }
604 }
605 if (is_ufs2 == 0) {
606 /* Deal with any leftover frag at the end of the cg. */
607 i = dmax - dhigh;
608 if (i) {
609 cg->cg_frsum[i]++;
610 cg->cg_cs.cs_nffree += i;
611 }
612 }
613 /* Update the csum info. */
614 csums[cgn] = cg->cg_cs;
615 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
616 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
617 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
618 if (is_ufs2 == 0)
619 /* Write out the cleared inodes. */
620 writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes,
621 newsb->fs_ipg * sizeof(*zinodes));
622 /* Dirty the cg. */
623 cgflags[cgn] |= CGF_DIRTY;
624 }
625 /*
626 * Find free space, at least nfrags consecutive frags of it. Pays no
627 * attention to block boundaries, but refuses to straddle cg
628 * boundaries, even if the disk blocks involved are in fact
629 * consecutive. Return value is the frag number of the first frag of
630 * the block, or -1 if no space was found. Uses newsb for sb values,
631 * and assumes the cgs[] structures correctly describe the area to be
632 * searched.
633 *
634 * XXX is there a bug lurking in the ignoring of block boundaries by
635 * the routine used by fragmove() in evict_data()? Can an end-of-file
636 * frag legally straddle a block boundary? If not, this should be
637 * cloned and fixed to stop at block boundaries for that use. The
638 * current one may still be needed for csum info motion, in case that
639 * takes up more than a whole block (is the csum info allowed to begin
640 * partway through a block and continue into the following block?).
641 *
642 * If we wrap off the end of the file system back to the beginning, we
643 * can end up searching the end of the file system twice. I ignore
644 * this inefficiency, since if that happens we're going to croak with
645 * a no-space error anyway, so it happens at most once.
646 */
647 static int
648 find_freespace(unsigned int nfrags)
649 {
650 static int hand = 0; /* hand rotates through all frags in the fs */
651 int cgsize; /* size of the cg hand currently points into */
652 int cgn; /* number of cg hand currently points into */
653 int fwc; /* frag-within-cg number of frag hand points
654 * to */
655 unsigned int run; /* length of run of free frags seen so far */
656 int secondpass; /* have we wrapped from end of fs to
657 * beginning? */
658 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
659
660 cgn = dtog(newsb, hand);
661 fwc = dtogd(newsb, hand);
662 secondpass = (hand == 0);
663 run = 0;
664 bits = cg_blksfree(cgs[cgn], 0);
665 cgsize = cgs[cgn]->cg_ndblk;
666 while (1) {
667 if (bit_is_set(bits, fwc)) {
668 run++;
669 if (run >= nfrags)
670 return (hand + 1 - run);
671 } else {
672 run = 0;
673 }
674 hand++;
675 fwc++;
676 if (fwc >= cgsize) {
677 fwc = 0;
678 cgn++;
679 if (cgn >= newsb->fs_ncg) {
680 hand = 0;
681 if (secondpass)
682 return (-1);
683 secondpass = 1;
684 cgn = 0;
685 }
686 bits = cg_blksfree(cgs[cgn], 0);
687 cgsize = cgs[cgn]->cg_ndblk;
688 run = 0;
689 }
690 }
691 }
692 /*
693 * Find a free block of disk space. Finds an entire block of frags,
694 * all of which are free. Return value is the frag number of the
695 * first frag of the block, or -1 if no space was found. Uses newsb
696 * for sb values, and assumes the cgs[] structures correctly describe
697 * the area to be searched.
698 *
699 * See find_freespace(), above, for remarks about hand wrapping around.
700 */
701 static int
702 find_freeblock(void)
703 {
704 static int hand = 0; /* hand rotates through all frags in fs */
705 int cgn; /* cg number of cg hand points into */
706 int fwc; /* frag-within-cg number of frag hand points
707 * to */
708 int cgsize; /* size of cg hand points into */
709 int secondpass; /* have we wrapped from end to beginning? */
710 unsigned char *bits; /* cg_blksfree()[] for cg hand points into */
711
712 cgn = dtog(newsb, hand);
713 fwc = dtogd(newsb, hand);
714 secondpass = (hand == 0);
715 bits = cg_blksfree(cgs[cgn], 0);
716 cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
717 while (1) {
718 if (blk_is_set(bits, fwc, newsb->fs_frag))
719 return (hand);
720 fwc += newsb->fs_frag;
721 hand += newsb->fs_frag;
722 if (fwc >= cgsize) {
723 fwc = 0;
724 cgn++;
725 if (cgn >= newsb->fs_ncg) {
726 hand = 0;
727 if (secondpass)
728 return (-1);
729 secondpass = 1;
730 cgn = 0;
731 }
732 bits = cg_blksfree(cgs[cgn], 0);
733 cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
734 }
735 }
736 }
737 /*
738 * Find a free inode, returning its inumber or -1 if none was found.
739 * Uses newsb for sb values, and assumes the cgs[] structures
740 * correctly describe the area to be searched.
741 *
742 * See find_freespace(), above, for remarks about hand wrapping around.
743 */
744 static int
745 find_freeinode(void)
746 {
747 static int hand = 0; /* hand rotates through all inodes in fs */
748 int cgn; /* cg number of cg hand points into */
749 int iwc; /* inode-within-cg number of inode hand points
750 * to */
751 int secondpass; /* have we wrapped from end to beginning? */
752 unsigned char *bits; /* cg_inosused()[] for cg hand points into */
753
754 cgn = hand / newsb->fs_ipg;
755 iwc = hand % newsb->fs_ipg;
756 secondpass = (hand == 0);
757 bits = cg_inosused(cgs[cgn], 0);
758 while (1) {
759 if (bit_is_clr(bits, iwc))
760 return (hand);
761 hand++;
762 iwc++;
763 if (iwc >= newsb->fs_ipg) {
764 iwc = 0;
765 cgn++;
766 if (cgn >= newsb->fs_ncg) {
767 hand = 0;
768 if (secondpass)
769 return (-1);
770 secondpass = 1;
771 cgn = 0;
772 }
773 bits = cg_inosused(cgs[cgn], 0);
774 }
775 }
776 }
777 /*
778 * Mark a frag as free. Sets the frag's bit in the cg_blksfree bitmap
779 * for the appropriate cg, and marks the cg as dirty.
780 */
781 static void
782 free_frag(int fno)
783 {
784 int cgn;
785
786 cgn = dtog(newsb, fno);
787 set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
788 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
789 }
790 /*
791 * Allocate a frag. Clears the frag's bit in the cg_blksfree bitmap
792 * for the appropriate cg, and marks the cg as dirty.
793 */
794 static void
795 alloc_frag(int fno)
796 {
797 int cgn;
798
799 cgn = dtog(newsb, fno);
800 clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
801 cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
802 }
803 /*
804 * Fix up the csum array. If shrinking, this involves freeing zero or
805 * more frags; if growing, it involves allocating them, or if the
806 * frags being grown into aren't free, finding space elsewhere for the
807 * csum info. (If the number of occupied frags doesn't change,
808 * nothing happens here.)
809 */
810 static void
811 csum_fixup(void)
812 {
813 int nold; /* # frags in old csum info */
814 int ntot; /* # frags in new csum info */
815 int nnew; /* ntot-nold */
816 int newloc; /* new location for csum info, if necessary */
817 int i; /* generic loop index */
818 int j; /* generic loop index */
819 int f; /* "from" frag number, if moving */
820 int t; /* "to" frag number, if moving */
821 int cgn; /* cg number, used when shrinking */
822
823 ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
824 nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
825 nnew = ntot - nold;
826 /* First, if there's no change in frag counts, it's easy. */
827 if (nnew == 0)
828 return;
829 /* Next, if we're shrinking, it's almost as easy. Just free up any
830 * frags in the old area we no longer need. */
831 if (nnew < 0) {
832 for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
833 j < 0;
834 i--, j++) {
835 free_frag(i);
836 }
837 return;
838 }
839 /* We must be growing. Check to see that the new csum area fits
840 * within the file system. I think this can never happen, since for
841 * the csum area to grow, we must be adding at least one cg, so the
842 * old csum area can't be this close to the end of the new file system.
843 * But it's a cheap check. */
844 /* XXX what if csum info is at end of cg and grows into next cg, what
845 * if it spills over onto the next cg's backup superblock? Can this
846 * happen? */
847 if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
848 /* Okay, it fits - now, see if the space we want is free. */
849 for ((i = newsb->fs_csaddr + nold), (j = nnew);
850 j > 0;
851 i++, j--) {
852 cgn = dtog(newsb, i);
853 if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
854 dtogd(newsb, i)))
855 break;
856 }
857 if (j <= 0) {
858 /* Win win - all the frags we want are free. Allocate
859 * 'em and we're all done. */
860 for ((i = newsb->fs_csaddr + ntot - nnew),
861 (j = nnew); j > 0; i++, j--) {
862 alloc_frag(i);
863 }
864 return;
865 }
866 }
867 /* We have to move the csum info, sigh. Look for new space, free old
868 * space, and allocate new. Update fs_csaddr. We don't copy anything
869 * on disk at this point; the csum info will be written to the
870 * then-current fs_csaddr as part of the final flush. */
871 newloc = find_freespace(ntot);
872 if (newloc < 0)
873 errx(EXIT_FAILURE, "Sorry, no space available for new csums");
874 for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
875 if (i < nold) {
876 free_frag(f);
877 }
878 alloc_frag(t);
879 }
880 newsb->fs_csaddr = newloc;
881 }
882 /*
883 * Recompute newsb->fs_dsize. Just scans all cgs, adding the number of
884 * data blocks in that cg to the total.
885 */
886 static void
887 recompute_fs_dsize(void)
888 {
889 int i;
890
891 newsb->fs_dsize = 0;
892 for (i = 0; i < newsb->fs_ncg; i++) {
893 int dlow; /* size of before-sb data area */
894 int dhigh; /* offset of post-inode data area */
895 int dmax; /* total size of cg */
896 int base; /* base of cg, since cgsblock() etc add it in */
897 base = cgbase(newsb, i);
898 dlow = cgsblock(newsb, i) - base;
899 dhigh = cgdmin(newsb, i) - base;
900 dmax = newsb->fs_size - base;
901 if (dmax > newsb->fs_fpg)
902 dmax = newsb->fs_fpg;
903 newsb->fs_dsize += dlow + dmax - dhigh;
904 }
905 /* Space in cg 0 before cgsblock is boot area, not free space! */
906 newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
907 /* And of course the csum info takes up space. */
908 newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
909 }
910 /*
911 * Return the current time. We call this and assign, rather than
912 * calling time() directly, as insulation against OSes where fs_time
913 * is not a time_t.
914 */
915 static time_t
916 timestamp(void)
917 {
918 time_t t;
919
920 time(&t);
921 return (t);
922 }
923
924 /*
925 * Calculate new filesystem geometry
926 * return 0 if geometry actually changed
927 */
928 static int
929 makegeometry(int chatter)
930 {
931
932 /* Update the size. */
933 newsb->fs_size = FFS_DBTOFSB(newsb, newsize);
934 if (is_ufs2)
935 newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
936 else {
937 /* Update fs_old_ncyl and fs_ncg. */
938 newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
939 newsb->fs_old_spc);
940 newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
941 }
942
943 /* Does the last cg end before the end of its inode area? There is no
944 * reason why this couldn't be handled, but it would complicate a lot
945 * of code (in all file system code - fsck, kernel, etc) because of the
946 * potential partial inode area, and the gain in space would be
947 * minimal, at most the pre-sb data area. */
948 if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
949 newsb->fs_ncg--;
950 if (is_ufs2)
951 newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg;
952 else {
953 newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
954 newsb->fs_size = (newsb->fs_old_ncyl *
955 newsb->fs_old_spc) / NSPF(newsb);
956 }
957 if (chatter || verbose) {
958 printf("Warning: last cylinder group is too small;\n");
959 printf(" dropping it. New size = %lu.\n",
960 (unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size));
961 }
962 }
963
964 /* Did we actually not grow? (This can happen if newsize is less than
965 * a frag larger than the old size - unlikely, but no excuse to
966 * misbehave if it happens.) */
967 if (newsb->fs_size == oldsb->fs_size)
968 return 1;
969
970 return 0;
971 }
972
973
974 /*
975 * Grow the file system.
976 */
977 static void
978 grow(void)
979 {
980 int i;
981
982 if (makegeometry(1)) {
983 printf("New fs size %"PRIu64" = old fs size %"PRIu64
984 ", not growing.\n", newsb->fs_size, oldsb->fs_size);
985 return;
986 }
987
988 if (verbose) {
989 printf("Growing fs from %"PRIu64" blocks to %"PRIu64
990 " blocks.\n", oldsb->fs_size, newsb->fs_size);
991 }
992
993 /* Update the timestamp. */
994 newsb->fs_time = timestamp();
995 /* Allocate and clear the new-inode area, in case we add any cgs. */
996 zinodes = alloconce(newsb->fs_ipg * sizeof(*zinodes), "zeroed inodes");
997 memset(zinodes, 0, newsb->fs_ipg * sizeof(*zinodes));
998
999 /* Check that the new last sector (frag, actually) is writable. Since
1000 * it's at least one frag larger than it used to be, we know we aren't
1001 * overwriting anything important by this. (The choice of sbbuf as
1002 * what to write is irrelevant; it's just something handy that's known
1003 * to be at least one frag in size.) */
1004 writeat(FFS_FSBTODB(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
1005
1006 /* Find out how big the csum area is, and realloc csums if bigger. */
1007 newsb->fs_cssize = ffs_fragroundup(newsb,
1008 newsb->fs_ncg * sizeof(struct csum));
1009 if (newsb->fs_cssize > oldsb->fs_cssize)
1010 csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
1011 /* If we're adding any cgs, realloc structures and set up the new
1012 cgs. */
1013 if (newsb->fs_ncg > oldsb->fs_ncg) {
1014 char *cgp;
1015 cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(*cgs),
1016 "cg pointers");
1017 cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
1018 memset(cgflags + oldsb->fs_ncg, 0,
1019 newsb->fs_ncg - oldsb->fs_ncg);
1020 cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
1021 "cgs");
1022 for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
1023 cgs[i] = (struct cg *) cgp;
1024 progress_bar(special, "grow cg",
1025 i - oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
1026 initcg(i);
1027 cgp += cgblksz;
1028 }
1029 cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
1030 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
1031 }
1032 /* If the old fs ended partway through a cg, we have to update the old
1033 * last cg (though possibly not to a full cg!). */
1034 if (oldsb->fs_size % oldsb->fs_fpg) {
1035 struct cg *cg;
1036 int newcgsize;
1037 int prevcgtop;
1038 int oldcgsize;
1039 cg = cgs[oldsb->fs_ncg - 1];
1040 cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
1041 prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
1042 newcgsize = newsb->fs_size - prevcgtop;
1043 if (newcgsize > newsb->fs_fpg)
1044 newcgsize = newsb->fs_fpg;
1045 oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
1046 set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
1047 cg->cg_old_ncyl = oldsb->fs_old_cpg;
1048 cg->cg_ndblk = newcgsize;
1049 }
1050 /* Fix up the csum info, if necessary. */
1051 csum_fixup();
1052 /* Make fs_dsize match the new reality. */
1053 recompute_fs_dsize();
1054
1055 progress_done();
1056 }
1057 /*
1058 * Call (*fn)() for each inode, passing the inode and its inumber. The
1059 * number of cylinder groups is pased in, so this can be used to map
1060 * over either the old or the new file system's set of inodes.
1061 */
1062 static void
1063 map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg),
1064 int ncg, void *cbarg) {
1065 int i;
1066 int ni;
1067
1068 ni = oldsb->fs_ipg * ncg;
1069 for (i = 0; i < ni; i++)
1070 (*fn) (inodes + i, i, cbarg);
1071 }
1072 /* Values for the third argument to the map function for
1073 * map_inode_data_blocks. MDB_DATA indicates the block is contains
1074 * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
1075 * indirect block. The MDB_INDIR_PRE call is made before the indirect
1076 * block pointers are followed and the pointed-to blocks scanned,
1077 * MDB_INDIR_POST after.
1078 */
1079 #define MDB_DATA 1
1080 #define MDB_INDIR_PRE 2
1081 #define MDB_INDIR_POST 3
1082
1083 typedef void (*mark_callback_t) (off_t blocknum, unsigned int nfrags,
1084 unsigned int blksize, int opcode);
1085
1086 /* Helper function - handles a data block. Calls the callback
1087 * function and returns number of bytes occupied in file (actually,
1088 * rounded up to a frag boundary). The name is historical. */
1089 static int
1090 markblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o)
1091 {
1092 int sz;
1093 int nb;
1094 off_t filesize;
1095
1096 filesize = DIP(di,di_size);
1097 if (o >= filesize)
1098 return (0);
1099 sz = dblksize(newsb, di, ffs_lblkno(newsb, o), filesize);
1100 nb = (sz > filesize - o) ? filesize - o : sz;
1101 if (bn)
1102 (*fn) (bn, ffs_numfrags(newsb, sz), nb, MDB_DATA);
1103 return (sz);
1104 }
1105 /* Helper function - handles an indirect block. Makes the
1106 * MDB_INDIR_PRE callback for the indirect block, loops over the
1107 * pointers and recurses, and makes the MDB_INDIR_POST callback.
1108 * Returns the number of bytes occupied in file, as does markblk().
1109 * For the sake of update_for_data_move(), we read the indirect block
1110 * _after_ making the _PRE callback. The name is historical. */
1111 static int
1112 markiblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o, int lev)
1113 {
1114 int i;
1115 int j;
1116 unsigned k;
1117 int tot;
1118 static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
1119 static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
1120 static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
1121 static int32_t *indirblks[3] = {
1122 &indirblk1[0], &indirblk2[0], &indirblk3[0]
1123 };
1124
1125 if (lev < 0)
1126 return (markblk(fn, di, bn, o));
1127 if (bn == 0) {
1128 for (i = newsb->fs_bsize;
1129 lev >= 0;
1130 i *= FFS_NINDIR(newsb), lev--);
1131 return (i);
1132 }
1133 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
1134 readat(FFS_FSBTODB(newsb, bn), indirblks[lev], newsb->fs_bsize);
1135 if (needswap)
1136 for (k = 0; k < howmany(MAXBSIZE, sizeof(int32_t)); k++)
1137 indirblks[lev][k] = bswap32(indirblks[lev][k]);
1138 tot = 0;
1139 for (i = 0; i < FFS_NINDIR(newsb); i++) {
1140 j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
1141 if (j == 0)
1142 break;
1143 o += j;
1144 tot += j;
1145 }
1146 (*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
1147 return (tot);
1148 }
1149
1150
1151 /*
1152 * Call (*fn)() for each data block for an inode. This routine assumes
1153 * the inode is known to be of a type that has data blocks (file,
1154 * directory, or non-fast symlink). The called function is:
1155 *
1156 * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
1157 *
1158 * where blkno is the frag number, nf is the number of frags starting
1159 * at blkno (always <= fs_frag), nb is the number of bytes that belong
1160 * to the file (usually nf*fs_frag, often less for the last block/frag
1161 * of a file).
1162 */
1163 static void
1164 map_inode_data_blocks(union dinode * di, mark_callback_t fn)
1165 {
1166 off_t o; /* offset within inode */
1167 int inc; /* increment for o - maybe should be off_t? */
1168 int b; /* index within di_db[] and di_ib[] arrays */
1169
1170 /* Scan the direct blocks... */
1171 o = 0;
1172 for (b = 0; b < UFS_NDADDR; b++) {
1173 inc = markblk(fn, di, DIP(di,di_db[b]), o);
1174 if (inc == 0)
1175 break;
1176 o += inc;
1177 }
1178 /* ...and the indirect blocks. */
1179 if (inc) {
1180 for (b = 0; b < UFS_NIADDR; b++) {
1181 inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b);
1182 if (inc == 0)
1183 return;
1184 o += inc;
1185 }
1186 }
1187 }
1188
1189 static void
1190 dblk_callback(union dinode * di, unsigned int inum, void *arg)
1191 {
1192 mark_callback_t fn;
1193 off_t filesize;
1194
1195 filesize = DIP(di,di_size);
1196 fn = (mark_callback_t) arg;
1197 switch (DIP(di,di_mode) & IFMT) {
1198 case IFLNK:
1199 if (filesize <= newsb->fs_maxsymlinklen) {
1200 break;
1201 }
1202 /* FALLTHROUGH */
1203 case IFDIR:
1204 case IFREG:
1205 map_inode_data_blocks(di, fn);
1206 break;
1207 }
1208 }
1209 /*
1210 * Make a callback call, a la map_inode_data_blocks, for all data
1211 * blocks in the entire fs. This is used only once, in
1212 * update_for_data_move, but it's out at top level because the complex
1213 * downward-funarg nesting that would otherwise result seems to give
1214 * gcc gastric distress.
1215 */
1216 static void
1217 map_data_blocks(mark_callback_t fn, int ncg)
1218 {
1219 map_inodes(&dblk_callback, ncg, (void *) fn);
1220 }
1221 /*
1222 * Initialize the blkmove array.
1223 */
1224 static void
1225 blkmove_init(void)
1226 {
1227 int i;
1228
1229 blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
1230 for (i = 0; i < oldsb->fs_size; i++)
1231 blkmove[i] = i;
1232 }
1233 /*
1234 * Load the inodes off disk. Allocates the structures and initializes
1235 * them - the inodes from disk, the flags to zero.
1236 */
1237 static void
1238 loadinodes(void)
1239 {
1240 int imax, ino, i, j;
1241 struct ufs1_dinode *dp1 = NULL;
1242 struct ufs2_dinode *dp2 = NULL;
1243
1244 /* read inodes one fs block at a time and copy them */
1245
1246 inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
1247 sizeof(union dinode), "inodes");
1248 iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
1249 memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg);
1250
1251 ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf");
1252 if (is_ufs2)
1253 dp2 = (struct ufs2_dinode *)ibuf;
1254 else
1255 dp1 = (struct ufs1_dinode *)ibuf;
1256
1257 for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) {
1258 readat(FFS_FSBTODB(oldsb, ino_to_fsba(oldsb, ino)), ibuf,
1259 oldsb->fs_bsize);
1260
1261 for (i = 0; i < oldsb->fs_inopb; i++) {
1262 if (is_ufs2) {
1263 if (needswap) {
1264 ffs_dinode2_swap(&(dp2[i]), &(dp2[i]));
1265 for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++)
1266 dp2[i].di_db[j] =
1267 bswap32(dp2[i].di_db[j]);
1268 }
1269 memcpy(&inodes[ino].dp2, &dp2[i],
1270 sizeof(inodes[ino].dp2));
1271 } else {
1272 if (needswap) {
1273 ffs_dinode1_swap(&(dp1[i]), &(dp1[i]));
1274 for (j = 0; j < UFS_NDADDR + UFS_NIADDR; j++)
1275 dp1[i].di_db[j] =
1276 bswap32(dp1[i].di_db[j]);
1277 }
1278 memcpy(&inodes[ino].dp1, &dp1[i],
1279 sizeof(inodes[ino].dp1));
1280 }
1281 if (++ino > imax)
1282 errx(EXIT_FAILURE,
1283 "Exceeded number of inodes");
1284 }
1285
1286 }
1287 }
1288 /*
1289 * Report a file-system-too-full problem.
1290 */
1291 __dead static void
1292 toofull(void)
1293 {
1294 errx(EXIT_FAILURE, "Sorry, would run out of data blocks");
1295 }
1296 /*
1297 * Record a desire to move "n" frags from "from" to "to".
1298 */
1299 static void
1300 mark_move(unsigned int from, unsigned int to, unsigned int n)
1301 {
1302 for (; n > 0; n--)
1303 blkmove[from++] = to++;
1304 }
1305 /* Helper function - evict n frags, starting with start (cg-relative).
1306 * The free bitmap is scanned, unallocated frags are ignored, and
1307 * each block of consecutive allocated frags is moved as a unit.
1308 */
1309 static void
1310 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
1311 {
1312 unsigned int i;
1313 int run;
1314
1315 run = 0;
1316 for (i = 0; i <= n; i++) {
1317 if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
1318 run++;
1319 } else {
1320 if (run > 0) {
1321 int off;
1322 off = find_freespace(run);
1323 if (off < 0)
1324 toofull();
1325 mark_move(base + start + i - run, off, run);
1326 set_bits(cg_blksfree(cg, 0), start + i - run,
1327 run);
1328 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1329 dtogd(oldsb, off), run);
1330 }
1331 run = 0;
1332 }
1333 }
1334 }
1335 /*
1336 * Evict all data blocks from the given cg, starting at minfrag (based
1337 * at the beginning of the cg), for length nfrag. The eviction is
1338 * assumed to be entirely data-area; this should not be called with a
1339 * range overlapping the metadata structures in the cg. It also
1340 * assumes minfrag points into the given cg; it will misbehave if this
1341 * is not true.
1342 *
1343 * See the comment header on find_freespace() for one possible bug
1344 * lurking here.
1345 */
1346 static void
1347 evict_data(struct cg * cg, unsigned int minfrag, int nfrag)
1348 {
1349 int base; /* base of cg (in frags from beginning of fs) */
1350
1351 base = cgbase(oldsb, cg->cg_cgx);
1352 /* Does the boundary fall in the middle of a block? To avoid
1353 * breaking between frags allocated as consecutive, we always
1354 * evict the whole block in this case, though one could argue
1355 * we should check to see if the frag before or after the
1356 * break is unallocated. */
1357 if (minfrag % oldsb->fs_frag) {
1358 int n;
1359 n = minfrag % oldsb->fs_frag;
1360 minfrag -= n;
1361 nfrag += n;
1362 }
1363 /* Do whole blocks. If a block is wholly free, skip it; if
1364 * wholly allocated, move it in toto. If neither, call
1365 * fragmove() to move the frags to new locations. */
1366 while (nfrag >= oldsb->fs_frag) {
1367 if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
1368 if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
1369 oldsb->fs_frag)) {
1370 int off;
1371 off = find_freeblock();
1372 if (off < 0)
1373 toofull();
1374 mark_move(base + minfrag, off, oldsb->fs_frag);
1375 set_bits(cg_blksfree(cg, 0), minfrag,
1376 oldsb->fs_frag);
1377 clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1378 dtogd(oldsb, off), oldsb->fs_frag);
1379 } else {
1380 fragmove(cg, base, minfrag, oldsb->fs_frag);
1381 }
1382 }
1383 minfrag += oldsb->fs_frag;
1384 nfrag -= oldsb->fs_frag;
1385 }
1386 /* Clean up any sub-block amount left over. */
1387 if (nfrag) {
1388 fragmove(cg, base, minfrag, nfrag);
1389 }
1390 }
1391 /*
1392 * Move all data blocks according to blkmove. We have to be careful,
1393 * because we may be updating indirect blocks that will themselves be
1394 * getting moved, or inode int32_t arrays that point to indirect
1395 * blocks that will be moved. We call this before
1396 * update_for_data_move, and update_for_data_move does inodes first,
1397 * then indirect blocks in preorder, so as to make sure that the
1398 * file system is self-consistent at all points, for better crash
1399 * tolerance. (We can get away with this only because all the writes
1400 * done by perform_data_move() are writing into space that's not used
1401 * by the old file system.) If we crash, some things may point to the
1402 * old data and some to the new, but both copies are the same. The
1403 * only wrong things should be csum info and free bitmaps, which fsck
1404 * is entirely capable of cleaning up.
1405 *
1406 * Since blkmove_init() initializes all blocks to move to their current
1407 * locations, we can have two blocks marked as wanting to move to the
1408 * same location, but only two and only when one of them is the one
1409 * that was already there. So if blkmove[i]==i, we ignore that entry
1410 * entirely - for unallocated blocks, we don't want it (and may be
1411 * putting something else there), and for allocated blocks, we don't
1412 * want to copy it anywhere.
1413 */
1414 static void
1415 perform_data_move(void)
1416 {
1417 int i;
1418 int run;
1419 int maxrun;
1420 char buf[65536];
1421
1422 maxrun = sizeof(buf) / newsb->fs_fsize;
1423 run = 0;
1424 for (i = 0; i < oldsb->fs_size; i++) {
1425 if ((blkmove[i] == (unsigned)i /*XXX cast*/) ||
1426 (run >= maxrun) ||
1427 ((run > 0) &&
1428 (blkmove[i] != blkmove[i - 1] + 1))) {
1429 if (run > 0) {
1430 readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
1431 run << oldsb->fs_fshift);
1432 writeat(FFS_FSBTODB(oldsb, blkmove[i - run]),
1433 &buf[0], run << oldsb->fs_fshift);
1434 }
1435 run = 0;
1436 }
1437 if (blkmove[i] != (unsigned)i /*XXX cast*/)
1438 run++;
1439 }
1440 if (run > 0) {
1441 readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
1442 run << oldsb->fs_fshift);
1443 writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), &buf[0],
1444 run << oldsb->fs_fshift);
1445 }
1446 }
1447 /*
1448 * This modifies an array of int32_t, according to blkmove. This is
1449 * used to update inode block arrays and indirect blocks to point to
1450 * the new locations of data blocks.
1451 *
1452 * Return value is the number of int32_ts that needed updating; in
1453 * particular, the return value is zero iff nothing was modified.
1454 */
1455 static int
1456 movemap_blocks(int32_t * vec, int n)
1457 {
1458 int rv;
1459
1460 rv = 0;
1461 for (; n > 0; n--, vec++) {
1462 if (blkmove[*vec] != (unsigned)*vec /*XXX cast*/) {
1463 *vec = blkmove[*vec];
1464 rv++;
1465 }
1466 }
1467 return (rv);
1468 }
1469 static void
1470 moveblocks_callback(union dinode * di, unsigned int inum, void *arg)
1471 {
1472 int32_t *dblkptr, *iblkptr;
1473
1474 switch (DIP(di,di_mode) & IFMT) {
1475 case IFLNK:
1476 if ((off_t)DIP(di,di_size) <= oldsb->fs_maxsymlinklen) {
1477 break;
1478 }
1479 /* FALLTHROUGH */
1480 case IFDIR:
1481 case IFREG:
1482 if (is_ufs2) {
1483 /* XXX these are not int32_t and this is WRONG! */
1484 dblkptr = (void *) &(di->dp2.di_db[0]);
1485 iblkptr = (void *) &(di->dp2.di_ib[0]);
1486 } else {
1487 dblkptr = &(di->dp1.di_db[0]);
1488 iblkptr = &(di->dp1.di_ib[0]);
1489 }
1490 /*
1491 * Don't || these two calls; we need their
1492 * side-effects.
1493 */
1494 if (movemap_blocks(dblkptr, UFS_NDADDR)) {
1495 iflags[inum] |= IF_DIRTY;
1496 }
1497 if (movemap_blocks(iblkptr, UFS_NIADDR)) {
1498 iflags[inum] |= IF_DIRTY;
1499 }
1500 break;
1501 }
1502 }
1503
1504 static void
1505 moveindir_callback(off_t off, unsigned int nfrag, unsigned int nbytes,
1506 int kind)
1507 {
1508 unsigned int i;
1509
1510 if (kind == MDB_INDIR_PRE) {
1511 int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
1512 readat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
1513 if (needswap)
1514 for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
1515 blk[i] = bswap32(blk[i]);
1516 if (movemap_blocks(&blk[0], FFS_NINDIR(oldsb))) {
1517 if (needswap)
1518 for (i = 0; i < howmany(MAXBSIZE,
1519 sizeof(int32_t)); i++)
1520 blk[i] = bswap32(blk[i]);
1521 writeat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
1522 }
1523 }
1524 }
1525 /*
1526 * Update all inode data arrays and indirect blocks to point to the new
1527 * locations of data blocks. See the comment header on
1528 * perform_data_move for some ordering considerations.
1529 */
1530 static void
1531 update_for_data_move(void)
1532 {
1533 map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
1534 map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
1535 }
1536 /*
1537 * Initialize the inomove array.
1538 */
1539 static void
1540 inomove_init(void)
1541 {
1542 int i;
1543
1544 inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
1545 "inomove");
1546 for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
1547 inomove[i] = i;
1548 }
1549 /*
1550 * Flush all dirtied inodes to disk. Scans the inode flags array; for
1551 * each dirty inode, it sets the BDIRTY bit on the first inode in the
1552 * block containing the dirty inode. Then it scans by blocks, and for
1553 * each marked block, writes it.
1554 */
1555 static void
1556 flush_inodes(void)
1557 {
1558 int i, j, k, na, ni, m;
1559 struct ufs1_dinode *dp1 = NULL;
1560 struct ufs2_dinode *dp2 = NULL;
1561
1562 na = UFS_NDADDR + UFS_NIADDR;
1563 ni = newsb->fs_ipg * newsb->fs_ncg;
1564 m = FFS_INOPB(newsb) - 1;
1565 for (i = 0; i < ni; i++) {
1566 if (iflags[i] & IF_DIRTY) {
1567 iflags[i & ~m] |= IF_BDIRTY;
1568 }
1569 }
1570 m++;
1571
1572 if (is_ufs2)
1573 dp2 = (struct ufs2_dinode *)ibuf;
1574 else
1575 dp1 = (struct ufs1_dinode *)ibuf;
1576
1577 for (i = 0; i < ni; i += m) {
1578 if (iflags[i] & IF_BDIRTY) {
1579 if (is_ufs2)
1580 for (j = 0; j < m; j++) {
1581 dp2[j] = inodes[i + j].dp2;
1582 if (needswap) {
1583 for (k = 0; k < na; k++)
1584 dp2[j].di_db[k]=
1585 bswap32(dp2[j].di_db[k]);
1586 ffs_dinode2_swap(&dp2[j],
1587 &dp2[j]);
1588 }
1589 }
1590 else
1591 for (j = 0; j < m; j++) {
1592 dp1[j] = inodes[i + j].dp1;
1593 if (needswap) {
1594 for (k = 0; k < na; k++)
1595 dp1[j].di_db[k]=
1596 bswap32(dp1[j].di_db[k]);
1597 ffs_dinode1_swap(&dp1[j],
1598 &dp1[j]);
1599 }
1600 }
1601
1602 writeat(FFS_FSBTODB(newsb, ino_to_fsba(newsb, i)),
1603 ibuf, newsb->fs_bsize);
1604 }
1605 }
1606 }
1607 /*
1608 * Evict all inodes from the specified cg. shrink() already checked
1609 * that there were enough free inodes, so the no-free-inodes check is
1610 * a can't-happen. If it does trip, the file system should be in good
1611 * enough shape for fsck to fix; see the comment on perform_data_move
1612 * for the considerations in question.
1613 */
1614 static void
1615 evict_inodes(struct cg * cg)
1616 {
1617 int inum;
1618 int i;
1619 int fi;
1620
1621 inum = newsb->fs_ipg * cg->cg_cgx;
1622 for (i = 0; i < newsb->fs_ipg; i++, inum++) {
1623 if (DIP(inodes + inum,di_mode) != 0) {
1624 fi = find_freeinode();
1625 if (fi < 0)
1626 errx(EXIT_FAILURE, "Sorry, inodes evaporated - "
1627 "file system probably needs fsck");
1628 inomove[inum] = fi;
1629 clr_bits(cg_inosused(cg, 0), i, 1);
1630 set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
1631 fi % newsb->fs_ipg, 1);
1632 }
1633 }
1634 }
1635 /*
1636 * Move inodes from old locations to new. Does not actually write
1637 * anything to disk; just copies in-core and sets dirty bits.
1638 *
1639 * We have to be careful here for reasons similar to those mentioned in
1640 * the comment header on perform_data_move, above: for the sake of
1641 * crash tolerance, we want to make sure everything is present at both
1642 * old and new locations before we update pointers. So we call this
1643 * first, then flush_inodes() to get them out on disk, then update
1644 * directories to match.
1645 */
1646 static void
1647 perform_inode_move(void)
1648 {
1649 unsigned int i;
1650 unsigned int ni;
1651
1652 ni = oldsb->fs_ipg * oldsb->fs_ncg;
1653 for (i = 0; i < ni; i++) {
1654 if (inomove[i] != i) {
1655 inodes[inomove[i]] = inodes[i];
1656 iflags[inomove[i]] = iflags[i] | IF_DIRTY;
1657 }
1658 }
1659 }
1660 /*
1661 * Update the directory contained in the nb bytes at buf, to point to
1662 * inodes' new locations.
1663 */
1664 static int
1665 update_dirents(char *buf, int nb)
1666 {
1667 int rv;
1668 #define d ((struct direct *)buf)
1669 #define s32(x) (needswap?bswap32((x)):(x))
1670 #define s16(x) (needswap?bswap16((x)):(x))
1671
1672 rv = 0;
1673 while (nb > 0) {
1674 if (inomove[s32(d->d_ino)] != s32(d->d_ino)) {
1675 rv++;
1676 d->d_ino = s32(inomove[s32(d->d_ino)]);
1677 }
1678 nb -= s16(d->d_reclen);
1679 buf += s16(d->d_reclen);
1680 }
1681 return (rv);
1682 #undef d
1683 #undef s32
1684 #undef s16
1685 }
1686 /*
1687 * Callback function for map_inode_data_blocks, for updating a
1688 * directory to point to new inode locations.
1689 */
1690 static void
1691 update_dir_data(off_t bn, unsigned int size, unsigned int nb, int kind)
1692 {
1693 if (kind == MDB_DATA) {
1694 union {
1695 struct direct d;
1696 char ch[MAXBSIZE];
1697 } buf;
1698 readat(FFS_FSBTODB(oldsb, bn), &buf, size << oldsb->fs_fshift);
1699 if (update_dirents((char *) &buf, nb)) {
1700 writeat(FFS_FSBTODB(oldsb, bn), &buf,
1701 size << oldsb->fs_fshift);
1702 }
1703 }
1704 }
1705 static void
1706 dirmove_callback(union dinode * di, unsigned int inum, void *arg)
1707 {
1708 switch (DIP(di,di_mode) & IFMT) {
1709 case IFDIR:
1710 map_inode_data_blocks(di, &update_dir_data);
1711 break;
1712 }
1713 }
1714 /*
1715 * Update directory entries to point to new inode locations.
1716 */
1717 static void
1718 update_for_inode_move(void)
1719 {
1720 map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
1721 }
1722 /*
1723 * Shrink the file system.
1724 */
1725 static void
1726 shrink(void)
1727 {
1728 int i;
1729
1730 if (makegeometry(1)) {
1731 printf("New fs size %"PRIu64" = old fs size %"PRIu64
1732 ", not shrinking.\n", newsb->fs_size, oldsb->fs_size);
1733 return;
1734 }
1735
1736 /* Let's make sure we're not being shrunk into oblivion. */
1737 if (newsb->fs_ncg < 1)
1738 errx(EXIT_FAILURE, "Size too small - file system would "
1739 "have no cylinders");
1740
1741 if (verbose) {
1742 printf("Shrinking fs from %"PRIu64" blocks to %"PRIu64
1743 " blocks.\n", oldsb->fs_size, newsb->fs_size);
1744 }
1745
1746 /* Load the inodes off disk - we'll need 'em. */
1747 loadinodes();
1748
1749 /* Update the timestamp. */
1750 newsb->fs_time = timestamp();
1751
1752 /* Initialize for block motion. */
1753 blkmove_init();
1754 /* Update csum size, then fix up for the new size */
1755 newsb->fs_cssize = ffs_fragroundup(newsb,
1756 newsb->fs_ncg * sizeof(struct csum));
1757 csum_fixup();
1758 /* Evict data from any cgs being wholly eliminated */
1759 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
1760 int base;
1761 int dlow;
1762 int dhigh;
1763 int dmax;
1764 base = cgbase(oldsb, i);
1765 dlow = cgsblock(oldsb, i) - base;
1766 dhigh = cgdmin(oldsb, i) - base;
1767 dmax = oldsb->fs_size - base;
1768 if (dmax > cgs[i]->cg_ndblk)
1769 dmax = cgs[i]->cg_ndblk;
1770 evict_data(cgs[i], 0, dlow);
1771 evict_data(cgs[i], dhigh, dmax - dhigh);
1772 newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
1773 newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
1774 newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
1775 newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
1776 }
1777 /* Update the new last cg. */
1778 cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
1779 ((newsb->fs_ncg - 1) * newsb->fs_fpg);
1780 /* Is the new last cg partial? If so, evict any data from the part
1781 * being shrunken away. */
1782 if (newsb->fs_size % newsb->fs_fpg) {
1783 struct cg *cg;
1784 int oldcgsize;
1785 int newcgsize;
1786 cg = cgs[newsb->fs_ncg - 1];
1787 newcgsize = newsb->fs_size % newsb->fs_fpg;
1788 oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
1789 oldsb->fs_fpg);
1790 if (oldcgsize > oldsb->fs_fpg)
1791 oldcgsize = oldsb->fs_fpg;
1792 evict_data(cg, newcgsize, oldcgsize - newcgsize);
1793 clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
1794 }
1795 /* Find out whether we would run out of inodes. (Note we
1796 * haven't actually done anything to the file system yet; all
1797 * those evict_data calls just update blkmove.) */
1798 {
1799 int slop;
1800 slop = 0;
1801 for (i = 0; i < newsb->fs_ncg; i++)
1802 slop += cgs[i]->cg_cs.cs_nifree;
1803 for (; i < oldsb->fs_ncg; i++)
1804 slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
1805 if (slop < 0)
1806 errx(EXIT_FAILURE, "Sorry, would run out of inodes");
1807 }
1808 /* Copy data, then update pointers to data. See the comment
1809 * header on perform_data_move for ordering considerations. */
1810 perform_data_move();
1811 update_for_data_move();
1812 /* Now do inodes. Initialize, evict, move, update - see the
1813 * comment header on perform_inode_move. */
1814 inomove_init();
1815 for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
1816 evict_inodes(cgs[i]);
1817 perform_inode_move();
1818 flush_inodes();
1819 update_for_inode_move();
1820 /* Recompute all the bitmaps; most of them probably need it anyway,
1821 * the rest are just paranoia and not wanting to have to bother
1822 * keeping track of exactly which ones require it. */
1823 for (i = 0; i < newsb->fs_ncg; i++)
1824 cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
1825 /* Update the cg_old_ncyl value for the last cylinder. */
1826 if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
1827 cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
1828 newsb->fs_old_ncyl % newsb->fs_old_cpg;
1829 /* Make fs_dsize match the new reality. */
1830 recompute_fs_dsize();
1831 }
1832 /*
1833 * Recompute the block totals, block cluster summaries, and rotational
1834 * position summaries, for a given cg (specified by number), based on
1835 * its free-frag bitmap (cg_blksfree()[]).
1836 */
1837 static void
1838 rescan_blkmaps(int cgn)
1839 {
1840 struct cg *cg;
1841 int f;
1842 int b;
1843 int blkfree;
1844 int blkrun;
1845 int fragrun;
1846 int fwb;
1847
1848 cg = cgs[cgn];
1849 /* Subtract off the current totals from the sb's summary info */
1850 newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
1851 newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
1852 /* Clear counters and bitmaps. */
1853 cg->cg_cs.cs_nffree = 0;
1854 cg->cg_cs.cs_nbfree = 0;
1855 memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0]));
1856 memset(&old_cg_blktot(cg, 0)[0], 0,
1857 newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
1858 memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0,
1859 newsb->fs_old_cpg * newsb->fs_old_nrpos *
1860 sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
1861 if (newsb->fs_contigsumsize > 0) {
1862 cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
1863 memset(&cg_clustersum(cg, 0)[1], 0,
1864 newsb->fs_contigsumsize *
1865 sizeof(cg_clustersum(cg, 0)[1]));
1866 if (is_ufs2)
1867 memset(&cg_clustersfree(cg, 0)[0], 0,
1868 howmany(newsb->fs_fpg / NSPB(newsb), NBBY));
1869 else
1870 memset(&cg_clustersfree(cg, 0)[0], 0,
1871 howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
1872 NSPB(newsb), NBBY));
1873 }
1874 /* Scan the free-frag bitmap. Runs of free frags are kept
1875 * track of with fragrun, and recorded into cg_frsum[] and
1876 * cg_cs.cs_nffree; on each block boundary, entire free blocks
1877 * are recorded as well. */
1878 blkfree = 1;
1879 blkrun = 0;
1880 fragrun = 0;
1881 f = 0;
1882 b = 0;
1883 fwb = 0;
1884 while (f < cg->cg_ndblk) {
1885 if (bit_is_set(cg_blksfree(cg, 0), f)) {
1886 fragrun++;
1887 } else {
1888 blkfree = 0;
1889 if (fragrun > 0) {
1890 cg->cg_frsum[fragrun]++;
1891 cg->cg_cs.cs_nffree += fragrun;
1892 }
1893 fragrun = 0;
1894 }
1895 f++;
1896 fwb++;
1897 if (fwb >= newsb->fs_frag) {
1898 if (blkfree) {
1899 cg->cg_cs.cs_nbfree++;
1900 if (newsb->fs_contigsumsize > 0)
1901 set_bits(cg_clustersfree(cg, 0), b, 1);
1902 if (is_ufs2 == 0) {
1903 old_cg_blktot(cg, 0)[
1904 old_cbtocylno(newsb,
1905 f - newsb->fs_frag)]++;
1906 old_cg_blks(newsb, cg,
1907 old_cbtocylno(newsb,
1908 f - newsb->fs_frag),
1909 0)[old_cbtorpos(newsb,
1910 f - newsb->fs_frag)]++;
1911 }
1912 blkrun++;
1913 } else {
1914 if (fragrun > 0) {
1915 cg->cg_frsum[fragrun]++;
1916 cg->cg_cs.cs_nffree += fragrun;
1917 }
1918 if (newsb->fs_contigsumsize > 0) {
1919 if (blkrun > 0) {
1920 cg_clustersum(cg, 0)[(blkrun
1921 > newsb->fs_contigsumsize)
1922 ? newsb->fs_contigsumsize
1923 : blkrun]++;
1924 }
1925 }
1926 blkrun = 0;
1927 }
1928 fwb = 0;
1929 b++;
1930 blkfree = 1;
1931 fragrun = 0;
1932 }
1933 }
1934 if (fragrun > 0) {
1935 cg->cg_frsum[fragrun]++;
1936 cg->cg_cs.cs_nffree += fragrun;
1937 }
1938 if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
1939 cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
1940 newsb->fs_contigsumsize : blkrun]++;
1941 }
1942 /*
1943 * Put the updated summary info back into csums, and add it
1944 * back into the sb's summary info. Then mark the cg dirty.
1945 */
1946 csums[cgn] = cg->cg_cs;
1947 newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
1948 newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
1949 cgflags[cgn] |= CGF_DIRTY;
1950 }
1951 /*
1952 * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
1953 * values, for a cg, based on the in-core inodes for that cg.
1954 */
1955 static void
1956 rescan_inomaps(int cgn)
1957 {
1958 struct cg *cg;
1959 int inum;
1960 int iwc;
1961
1962 cg = cgs[cgn];
1963 newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
1964 newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
1965 cg->cg_cs.cs_ndir = 0;
1966 cg->cg_cs.cs_nifree = 0;
1967 memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY));
1968 inum = cgn * newsb->fs_ipg;
1969 if (cgn == 0) {
1970 set_bits(cg_inosused(cg, 0), 0, 2);
1971 iwc = 2;
1972 inum += 2;
1973 } else {
1974 iwc = 0;
1975 }
1976 for (; iwc < newsb->fs_ipg; iwc++, inum++) {
1977 switch (DIP(inodes + inum, di_mode) & IFMT) {
1978 case 0:
1979 cg->cg_cs.cs_nifree++;
1980 break;
1981 case IFDIR:
1982 cg->cg_cs.cs_ndir++;
1983 /* FALLTHROUGH */
1984 default:
1985 set_bits(cg_inosused(cg, 0), iwc, 1);
1986 break;
1987 }
1988 }
1989 csums[cgn] = cg->cg_cs;
1990 newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
1991 newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
1992 cgflags[cgn] |= CGF_DIRTY;
1993 }
1994 /*
1995 * Flush cgs to disk, recomputing anything they're marked as needing.
1996 */
1997 static void
1998 flush_cgs(void)
1999 {
2000 int i;
2001
2002 for (i = 0; i < newsb->fs_ncg; i++) {
2003 progress_bar(special, "flush cg",
2004 i, newsb->fs_ncg - 1);
2005 if (cgflags[i] & CGF_BLKMAPS) {
2006 rescan_blkmaps(i);
2007 }
2008 if (cgflags[i] & CGF_INOMAPS) {
2009 rescan_inomaps(i);
2010 }
2011 if (cgflags[i] & CGF_DIRTY) {
2012 cgs[i]->cg_rotor = 0;
2013 cgs[i]->cg_frotor = 0;
2014 cgs[i]->cg_irotor = 0;
2015 if (needswap)
2016 ffs_cg_swap(cgs[i],cgs[i],newsb);
2017 writeat(FFS_FSBTODB(newsb, cgtod(newsb, i)), cgs[i],
2018 cgblksz);
2019 }
2020 }
2021 if (needswap)
2022 ffs_csum_swap(csums,csums,newsb->fs_cssize);
2023 writeat(FFS_FSBTODB(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
2024
2025 progress_done();
2026 }
2027 /*
2028 * Write the superblock, both to the main superblock and to each cg's
2029 * alternative superblock.
2030 */
2031 static void
2032 write_sbs(void)
2033 {
2034 int i;
2035
2036 if (newsb->fs_magic == FS_UFS1_MAGIC &&
2037 (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2038 newsb->fs_old_time = newsb->fs_time;
2039 newsb->fs_old_size = newsb->fs_size;
2040 /* we don't update fs_csaddr */
2041 newsb->fs_old_dsize = newsb->fs_dsize;
2042 newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
2043 newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
2044 newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
2045 newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
2046 /* fill fs_old_postbl_start with 256 bytes of 0xff? */
2047 }
2048 /* copy newsb back to oldsb, so we can use it for offsets if
2049 newsb has been swapped for writing to disk */
2050 memcpy(oldsb, newsb, SBLOCKSIZE);
2051 if (needswap)
2052 ffs_sb_swap(newsb,newsb);
2053 writeat(where / DEV_BSIZE, newsb, SBLOCKSIZE);
2054 for (i = 0; i < oldsb->fs_ncg; i++) {
2055 progress_bar(special, "write sb",
2056 i, oldsb->fs_ncg - 1);
2057 writeat(FFS_FSBTODB(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE);
2058 }
2059
2060 progress_done();
2061 }
2062
2063 /*
2064 * Check to see wether new size changes the filesystem
2065 * return exit code
2066 */
2067 static int
2068 checkonly(void)
2069 {
2070 if (makegeometry(0)) {
2071 if (verbose) {
2072 printf("Wouldn't change: already %" PRId64
2073 " blocks\n", (int64_t)oldsb->fs_size);
2074 }
2075 return 1;
2076 }
2077
2078 if (verbose) {
2079 printf("Would change: newsize: %" PRId64 " oldsize: %"
2080 PRId64 " fsdb: %" PRId64 "\n", FFS_DBTOFSB(oldsb, newsize),
2081 (int64_t)oldsb->fs_size,
2082 (int64_t)oldsb->fs_fsbtodb);
2083 }
2084 return 0;
2085 }
2086
2087 static off_t
2088 get_dev_size(char *dev_name)
2089 {
2090 struct dkwedge_info dkw;
2091 struct partition *pp;
2092 struct disklabel lp;
2093 struct stat st;
2094 size_t ptn;
2095
2096 /* Get info about partition/wedge */
2097 if (ioctl(fd, DIOCGWEDGEINFO, &dkw) != -1)
2098 return dkw.dkw_size;
2099 if (ioctl(fd, DIOCGDINFO, &lp) != -1) {
2100 ptn = strchr(dev_name, '\0')[-1] - 'a';
2101 if (ptn >= lp.d_npartitions)
2102 return 0;
2103 pp = &lp.d_partitions[ptn];
2104 return pp->p_size;
2105 }
2106 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
2107 return st.st_size / DEV_BSIZE;
2108
2109 return 0;
2110 }
2111
2112 /*
2113 * main().
2114 */
2115 int
2116 main(int argc, char **argv)
2117 {
2118 int ch;
2119 int CheckOnlyFlag;
2120 int ExpertFlag;
2121 int SFlag;
2122 size_t i;
2123
2124 char reply[5];
2125
2126 newsize = 0;
2127 ExpertFlag = 0;
2128 SFlag = 0;
2129 CheckOnlyFlag = 0;
2130
2131 while ((ch = getopt(argc, argv, "cps:vy")) != -1) {
2132 switch (ch) {
2133 case 'c':
2134 CheckOnlyFlag = 1;
2135 break;
2136 case 'p':
2137 progress = 1;
2138 break;
2139 case 's':
2140 SFlag = 1;
2141 newsize = strtoll(optarg, NULL, 10);
2142 if(newsize < 1) {
2143 usage();
2144 }
2145 break;
2146 case 'v':
2147 verbose = 1;
2148 break;
2149 case 'y':
2150 ExpertFlag = 1;
2151 break;
2152 case '?':
2153 /* FALLTHROUGH */
2154 default:
2155 usage();
2156 }
2157 }
2158 argc -= optind;
2159 argv += optind;
2160
2161 if (argc != 1) {
2162 usage();
2163 }
2164
2165 special = *argv;
2166
2167 if (ExpertFlag == 0 && CheckOnlyFlag == 0) {
2168 printf("It's required to manually run fsck on file system "
2169 "before you can resize it\n\n"
2170 " Did you run fsck on your disk (Yes/No) ? ");
2171 fgets(reply, (int)sizeof(reply), stdin);
2172 if (strcasecmp(reply, "Yes\n")) {
2173 printf("\n Nothing done \n");
2174 exit(EXIT_SUCCESS);
2175 }
2176 }
2177
2178 fd = open(special, O_RDWR, 0);
2179 if (fd < 0)
2180 err(EXIT_FAILURE, "Can't open `%s'", special);
2181 checksmallio();
2182
2183 if (SFlag == 0) {
2184 newsize = get_dev_size(special);
2185 if (newsize == 0)
2186 err(EXIT_FAILURE,
2187 "Can't resize file system, newsize not known.");
2188 }
2189
2190 oldsb = (struct fs *) & sbbuf;
2191 newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
2192 for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
2193 readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
2194 switch (oldsb->fs_magic) {
2195 case FS_UFS2_MAGIC:
2196 is_ufs2 = 1;
2197 /* FALLTHROUGH */
2198 case FS_UFS1_MAGIC:
2199 needswap = 0;
2200 break;
2201 case FS_UFS2_MAGIC_SWAPPED:
2202 is_ufs2 = 1;
2203 /* FALLTHROUGH */
2204 case FS_UFS1_MAGIC_SWAPPED:
2205 needswap = 1;
2206 break;
2207 default:
2208 continue;
2209 }
2210 if (!is_ufs2 && where == SBLOCK_UFS2)
2211 continue;
2212 break;
2213 }
2214 if (where == (off_t)-1)
2215 errx(EXIT_FAILURE, "Bad magic number");
2216 if (needswap)
2217 ffs_sb_swap(oldsb,oldsb);
2218 if (oldsb->fs_magic == FS_UFS1_MAGIC &&
2219 (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2220 oldsb->fs_csaddr = oldsb->fs_old_csaddr;
2221 oldsb->fs_size = oldsb->fs_old_size;
2222 oldsb->fs_dsize = oldsb->fs_old_dsize;
2223 oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
2224 oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
2225 oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
2226 oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
2227 /* any others? */
2228 printf("Resizing with ffsv1 superblock\n");
2229 }
2230
2231 oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
2232 oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
2233 if (oldsb->fs_ipg % FFS_INOPB(oldsb))
2234 errx(EXIT_FAILURE, "ipg[%d] %% FFS_INOPB[%d] != 0",
2235 (int) oldsb->fs_ipg, (int) FFS_INOPB(oldsb));
2236 /* The superblock is bigger than struct fs (there are trailing
2237 * tables, of non-fixed size); make sure we copy the whole
2238 * thing. SBLOCKSIZE may be an over-estimate, but we do this
2239 * just once, so being generous is cheap. */
2240 memcpy(newsb, oldsb, SBLOCKSIZE);
2241
2242 if (progress) {
2243 progress_ttywidth(0);
2244 signal(SIGWINCH, progress_ttywidth);
2245 }
2246
2247 loadcgs();
2248
2249 if (progress && !CheckOnlyFlag) {
2250 progress_switch(progress);
2251 progress_init();
2252 }
2253
2254 if (newsize > FFS_FSBTODB(oldsb, oldsb->fs_size)) {
2255 if (CheckOnlyFlag)
2256 exit(checkonly());
2257 grow();
2258 } else if (newsize < FFS_FSBTODB(oldsb, oldsb->fs_size)) {
2259 if (is_ufs2)
2260 errx(EXIT_FAILURE,"shrinking not supported for ufs2");
2261 if (CheckOnlyFlag)
2262 exit(checkonly());
2263 shrink();
2264 } else {
2265 if (CheckOnlyFlag)
2266 exit(checkonly());
2267 if (verbose)
2268 printf("No change requested: already %" PRId64
2269 " blocks\n", (int64_t)oldsb->fs_size);
2270 }
2271
2272 flush_cgs();
2273 write_sbs();
2274 if (isplainfile())
2275 ftruncate(fd,newsize * DEV_BSIZE);
2276 return 0;
2277 }
2278
2279 static void
2280 usage(void)
2281 {
2282
2283 (void)fprintf(stderr, "usage: %s [-cvy] [-s size] special\n",
2284 getprogname());
2285 exit(EXIT_FAILURE);
2286 }
2287