Home | History | Annotate | Line # | Download | only in resize_ffs
resize_ffs.c revision 1.47
      1 /*	$NetBSD: resize_ffs.c,v 1.47 2016/08/24 07:44:05 dholland Exp $	*/
      2 /* From sources sent on February 17, 2003 */
      3 /*-
      4  * As its sole author, I explicitly place this code in the public
      5  *  domain.  Anyone may use it for any purpose (though I would
      6  *  appreciate credit where it is due).
      7  *
      8  *					der Mouse
      9  *
     10  *			       mouse (at) rodents.montreal.qc.ca
     11  *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
     12  */
     13 /*
     14  * resize_ffs:
     15  *
     16  * Resize a file system.  Is capable of both growing and shrinking.
     17  *
     18  * Usage: resize_ffs [-s newsize] [-y] file_system
     19  *
     20  * Example: resize_ffs -s 29574 /dev/rsd1e
     21  *
     22  * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
     23  *  each).
     24  *
     25  * Note: this currently requires gcc to build, since it is written
     26  *  depending on gcc-specific features, notably nested function
     27  *  definitions (which in at least a few cases depend on the lexical
     28  *  scoping gcc provides, so they can't be trivially moved outside).
     29  *
     30  * Many thanks go to John Kohl <jtk (at) NetBSD.org> for finding bugs: the
     31  *  one responsible for the "realloccgblk: can't find blk in cyl"
     32  *  problem and a more minor one which left fs_dsize wrong when
     33  *  shrinking.  (These actually indicate bugs in fsck too - it should
     34  *  have caught and fixed them.)
     35  *
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __RCSID("$NetBSD: resize_ffs.c,v 1.47 2016/08/24 07:44:05 dholland Exp $");
     40 
     41 #include <sys/disk.h>
     42 #include <sys/disklabel.h>
     43 #include <sys/dkio.h>
     44 #include <sys/ioctl.h>
     45 #include <sys/stat.h>
     46 #include <sys/mman.h>
     47 #include <sys/param.h>		/* MAXFRAG */
     48 #include <ufs/ffs/fs.h>
     49 #include <ufs/ffs/ffs_extern.h>
     50 #include <ufs/ufs/dir.h>
     51 #include <ufs/ufs/dinode.h>
     52 #include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */
     53 
     54 #include <err.h>
     55 #include <errno.h>
     56 #include <fcntl.h>
     57 #include <stdio.h>
     58 #include <stdlib.h>
     59 #include <strings.h>
     60 #include <unistd.h>
     61 
     62 #include "progress.h"
     63 
     64 /* new size of file system, in sectors */
     65 static int64_t newsize;
     66 
     67 /* fd open onto disk device or file */
     68 static int fd;
     69 
     70 /* disk device or file path */
     71 char *special;
     72 
     73 /* must we break up big I/O operations - see checksmallio() */
     74 static int smallio;
     75 
     76 /* size of a cg, in bytes, rounded up to a frag boundary */
     77 static int cgblksz;
     78 
     79 /* possible superblock localtions */
     80 static int search[] = SBLOCKSEARCH;
     81 /* location of the superblock */
     82 static off_t where;
     83 
     84 /* Superblocks. */
     85 static struct fs *oldsb;	/* before we started */
     86 static struct fs *newsb;	/* copy to work with */
     87 /* Buffer to hold the above.  Make sure it's aligned correctly. */
     88 static char sbbuf[2 * SBLOCKSIZE]
     89 	__attribute__((__aligned__(__alignof__(struct fs))));
     90 
     91 union dinode {
     92 	struct ufs1_dinode dp1;
     93 	struct ufs2_dinode dp2;
     94 };
     95 #define DIP(dp, field)							      \
     96 	((is_ufs2) ?							      \
     97 	    (dp)->dp2.field : (dp)->dp1.field)
     98 
     99 #define DIP_ASSIGN(dp, field, value)					      \
    100 	do {								      \
    101 		if (is_ufs2)						      \
    102 			(dp)->dp2.field = (value);			      \
    103 		else							      \
    104 			(dp)->dp1.field = (value);			      \
    105 	} while (0)
    106 
    107 /* a cg's worth of brand new squeaky-clean inodes */
    108 static struct ufs1_dinode *zinodes1;
    109 static struct ufs2_dinode *zinodes2;
    110 
    111 /* pointers to the in-core cgs, read off disk and possibly modified */
    112 static struct cg **cgs;
    113 
    114 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
    115 static struct csum *csums;
    116 
    117 /* per-cg flags, indexed by cg number */
    118 static unsigned char *cgflags;
    119 #define CGF_DIRTY   0x01	/* needs to be written to disk */
    120 #define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
    121 #define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */
    122 
    123 /* when shrinking, these two arrays record how we want blocks to move.	 */
    124 /*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
    125 /*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
    126 /*  started out as inode i should end up as inode j.			 */
    127 static unsigned int *blkmove;
    128 static unsigned int *inomove;
    129 
    130 /* in-core copies of all inodes in the fs, indexed by inumber */
    131 union dinode *inodes;
    132 
    133 void *ibuf;	/* ptr to fs block-sized buffer for reading/writing inodes */
    134 
    135 /* byteswapped inodes */
    136 union dinode *sinodes;
    137 
    138 /* per-inode flags, indexed by inumber */
    139 static unsigned char *iflags;
    140 #define IF_DIRTY  0x01		/* needs to be written to disk */
    141 #define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
    142 				 * block of inodes, and applies to the whole
    143 				 * block. */
    144 
    145 /* resize_ffs works directly on dinodes, adapt blksize() */
    146 #define dblksize(fs, dip, lbn, filesize) \
    147 	(((lbn) >= UFS_NDADDR || (uint64_t)(filesize) >= ffs_lblktosize(fs, (lbn) + 1)) \
    148 	    ? (fs)->fs_bsize						       \
    149 	    : (ffs_fragroundup(fs, ffs_blkoff(fs, (filesize)))))
    150 
    151 
    152 /*
    153  * Number of disk sectors per block/fragment
    154  */
    155 #define NSPB(fs)	(FFS_FSBTODB((fs),1) << (fs)->fs_fragshift)
    156 #define NSPF(fs)	(FFS_FSBTODB((fs),1))
    157 
    158 /* global flags */
    159 int is_ufs2 = 0;
    160 int needswap = 0;
    161 int verbose = 0;
    162 int progress = 0;
    163 
    164 static void usage(void) __dead;
    165 
    166 /*
    167  * See if we need to break up large I/O operations.  This should never
    168  *  be needed, but under at least one <version,platform> combination,
    169  *  large enough disk transfers to the raw device hang.  So if we're
    170  *  talking to a character special device, play it safe; in this case,
    171  *  readat() and writeat() break everything up into pieces no larger
    172  *  than 8K, doing multiple syscalls for larger operations.
    173  */
    174 static void
    175 checksmallio(void)
    176 {
    177 	struct stat stb;
    178 
    179 	fstat(fd, &stb);
    180 	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
    181 }
    182 
    183 static int
    184 isplainfile(void)
    185 {
    186 	struct stat stb;
    187 
    188 	fstat(fd, &stb);
    189 	return S_ISREG(stb.st_mode);
    190 }
    191 /*
    192  * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
    193  *  units, ie, after FFS_FSBTODB(); size is in bytes.
    194  */
    195 static void
    196 readat(off_t blkno, void *buf, int size)
    197 {
    198 	/* Seek to the correct place. */
    199 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    200 		err(EXIT_FAILURE, "lseek failed");
    201 
    202 	/* See if we have to break up the transfer... */
    203 	if (smallio) {
    204 		char *bp;	/* pointer into buf */
    205 		int left;	/* bytes left to go */
    206 		int n;		/* number to do this time around */
    207 		int rv;		/* syscall return value */
    208 		bp = buf;
    209 		left = size;
    210 		while (left > 0) {
    211 			n = (left > 8192) ? 8192 : left;
    212 			rv = read(fd, bp, n);
    213 			if (rv < 0)
    214 				err(EXIT_FAILURE, "read failed");
    215 			if (rv != n)
    216 				errx(EXIT_FAILURE,
    217 				    "read: wanted %d, got %d", n, rv);
    218 			bp += n;
    219 			left -= n;
    220 		}
    221 	} else {
    222 		int rv;
    223 		rv = read(fd, buf, size);
    224 		if (rv < 0)
    225 			err(EXIT_FAILURE, "read failed");
    226 		if (rv != size)
    227 			errx(EXIT_FAILURE, "read: wanted %d, got %d",
    228 			    size, rv);
    229 	}
    230 }
    231 /*
    232  * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
    233  *  units, ie, after FFS_FSBTODB(); size is in bytes.
    234  */
    235 static void
    236 writeat(off_t blkno, const void *buf, int size)
    237 {
    238 	/* Seek to the correct place. */
    239 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
    240 		err(EXIT_FAILURE, "lseek failed");
    241 	/* See if we have to break up the transfer... */
    242 	if (smallio) {
    243 		const char *bp;	/* pointer into buf */
    244 		int left;	/* bytes left to go */
    245 		int n;		/* number to do this time around */
    246 		int rv;		/* syscall return value */
    247 		bp = buf;
    248 		left = size;
    249 		while (left > 0) {
    250 			n = (left > 8192) ? 8192 : left;
    251 			rv = write(fd, bp, n);
    252 			if (rv < 0)
    253 				err(EXIT_FAILURE, "write failed");
    254 			if (rv != n)
    255 				errx(EXIT_FAILURE,
    256 				    "write: wanted %d, got %d", n, rv);
    257 			bp += n;
    258 			left -= n;
    259 		}
    260 	} else {
    261 		int rv;
    262 		rv = write(fd, buf, size);
    263 		if (rv < 0)
    264 			err(EXIT_FAILURE, "write failed");
    265 		if (rv != size)
    266 			errx(EXIT_FAILURE,
    267 			    "write: wanted %d, got %d", size, rv);
    268 	}
    269 }
    270 /*
    271  * Never-fail versions of malloc() and realloc(), and an allocation
    272  *  routine (which also never fails) for allocating memory that will
    273  *  never be freed until exit.
    274  */
    275 
    276 /*
    277  * Never-fail malloc.
    278  */
    279 static void *
    280 nfmalloc(size_t nb, const char *tag)
    281 {
    282 	void *rv;
    283 
    284 	rv = malloc(nb);
    285 	if (rv)
    286 		return (rv);
    287 	err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
    288 	    (unsigned long int) nb, tag);
    289 }
    290 /*
    291  * Never-fail realloc.
    292  */
    293 static void *
    294 nfrealloc(void *blk, size_t nb, const char *tag)
    295 {
    296 	void *rv;
    297 
    298 	rv = realloc(blk, nb);
    299 	if (rv)
    300 		return (rv);
    301 	err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
    302 	    (unsigned long int) nb, tag);
    303 }
    304 /*
    305  * Allocate memory that will never be freed or reallocated.  Arguably
    306  *  this routine should handle small allocations by chopping up pages,
    307  *  but that's not worth the bother; it's not called more than a
    308  *  handful of times per run, and if the allocations are that small the
    309  *  waste in giving each one its own page is ignorable.
    310  */
    311 static void *
    312 alloconce(size_t nb, const char *tag)
    313 {
    314 	void *rv;
    315 
    316 	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
    317 	if (rv != MAP_FAILED)
    318 		return (rv);
    319 	err(EXIT_FAILURE, "Can't map %lu bytes for %s",
    320 	    (unsigned long int) nb, tag);
    321 }
    322 /*
    323  * Load the cgs and csums off disk.  Also allocates the space to load
    324  *  them into and initializes the per-cg flags.
    325  */
    326 static void
    327 loadcgs(void)
    328 {
    329 	int cg;
    330 	char *cgp;
    331 
    332 	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
    333 	cgs = nfmalloc(oldsb->fs_ncg * sizeof(*cgs), "cg pointers");
    334 	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
    335 	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
    336 	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
    337 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
    338 		cgs[cg] = (struct cg *) cgp;
    339 		readat(FFS_FSBTODB(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
    340 		if (needswap)
    341 			ffs_cg_swap(cgs[cg],cgs[cg],oldsb);
    342 		cgflags[cg] = 0;
    343 		cgp += cgblksz;
    344 	}
    345 	readat(FFS_FSBTODB(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
    346 	if (needswap)
    347 		ffs_csum_swap(csums,csums,oldsb->fs_cssize);
    348 }
    349 /*
    350  * Set n bits, starting with bit #base, in the bitmap pointed to by
    351  *  bitvec (which is assumed to be large enough to include bits base
    352  *  through base+n-1).
    353  */
    354 static void
    355 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
    356 {
    357 	if (n < 1)
    358 		return;		/* nothing to do */
    359 	if (base & 7) {		/* partial byte at beginning */
    360 		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
    361 			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
    362 			return;
    363 		}
    364 		bitvec[base >> 3] |= (~0U) << (base & 7);
    365 		n -= 8 - (base & 7);
    366 		base = (base & ~7) + 8;
    367 	}
    368 	if (n >= 8) {		/* do full bytes */
    369 		memset(bitvec + (base >> 3), 0xff, n >> 3);
    370 		base += n & ~7;
    371 		n &= 7;
    372 	}
    373 	if (n) {		/* partial byte at end */
    374 		bitvec[base >> 3] |= ~((~0U) << n);
    375 	}
    376 }
    377 /*
    378  * Clear n bits, starting with bit #base, in the bitmap pointed to by
    379  *  bitvec (which is assumed to be large enough to include bits base
    380  *  through base+n-1).  Code parallels set_bits().
    381  */
    382 static void
    383 clr_bits(unsigned char *bitvec, int base, int n)
    384 {
    385 	if (n < 1)
    386 		return;
    387 	if (base & 7) {
    388 		if (n <= 8 - (base & 7)) {
    389 			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
    390 			return;
    391 		}
    392 		bitvec[base >> 3] &= ~((~0U) << (base & 7));
    393 		n -= 8 - (base & 7);
    394 		base = (base & ~7) + 8;
    395 	}
    396 	if (n >= 8) {
    397 		memset(bitvec + (base >> 3), 0, n >> 3);
    398 		base += n & ~7;
    399 		n &= 7;
    400 	}
    401 	if (n) {
    402 		bitvec[base >> 3] &= (~0U) << n;
    403 	}
    404 }
    405 /*
    406  * Test whether bit #bit is set in the bitmap pointed to by bitvec.
    407  */
    408 static int
    409 bit_is_set(unsigned char *bitvec, int bit)
    410 {
    411 	return (bitvec[bit >> 3] & (1 << (bit & 7)));
    412 }
    413 /*
    414  * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
    415  */
    416 static int
    417 bit_is_clr(unsigned char *bitvec, int bit)
    418 {
    419 	return (!bit_is_set(bitvec, bit));
    420 }
    421 /*
    422  * Test whether a whole block of bits is set in a bitmap.  This is
    423  *  designed for testing (aligned) disk blocks in a bit-per-frag
    424  *  bitmap; it has assumptions wired into it based on that, essentially
    425  *  that the entire block fits into a single byte.  This returns true
    426  *  iff _all_ the bits are set; it is not just the complement of
    427  *  blk_is_clr on the same arguments (unless blkfrags==1).
    428  */
    429 static int
    430 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
    431 {
    432 	unsigned int mask;
    433 
    434 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    435 	return ((bitvec[blkbase >> 3] & mask) == mask);
    436 }
    437 /*
    438  * Test whether a whole block of bits is clear in a bitmap.  See
    439  *  blk_is_set (above) for assumptions.  This returns true iff _all_
    440  *  the bits are clear; it is not just the complement of blk_is_set on
    441  *  the same arguments (unless blkfrags==1).
    442  */
    443 static int
    444 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
    445 {
    446 	unsigned int mask;
    447 
    448 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
    449 	return ((bitvec[blkbase >> 3] & mask) == 0);
    450 }
    451 /*
    452  * Initialize a new cg.  Called when growing.  Assumes memory has been
    453  *  allocated but not otherwise set up.  This code sets the fields of
    454  *  the cg, initializes the bitmaps (and cluster summaries, if
    455  *  applicable), updates both per-cylinder summary info and the global
    456  *  summary info in newsb; it also writes out new inodes for the cg.
    457  *
    458  * This code knows it can never be called for cg 0, which makes it a
    459  *  bit simpler than it would otherwise be.
    460  */
    461 static void
    462 initcg(int cgn)
    463 {
    464 	struct cg *cg;		/* The in-core cg, of course */
    465 	int base;		/* Disk address of cg base */
    466 	int dlow;		/* Size of pre-cg data area */
    467 	int dhigh;		/* Offset of post-inode data area, from base */
    468 	int dmax;		/* Offset of end of post-inode data area */
    469 	int i;			/* Generic loop index */
    470 	int n;			/* Generic count */
    471 	int start;		/* start of cg maps */
    472 
    473 	cg = cgs[cgn];
    474 	/* Place the data areas */
    475 	base = cgbase(newsb, cgn);
    476 	dlow = cgsblock(newsb, cgn) - base;
    477 	dhigh = cgdmin(newsb, cgn) - base;
    478 	dmax = newsb->fs_size - base;
    479 	if (dmax > newsb->fs_fpg)
    480 		dmax = newsb->fs_fpg;
    481 	start = &cg->cg_space[0] - (unsigned char *) cg;
    482 	/*
    483          * Clear out the cg - assumes all-0-bytes is the correct way
    484          * to initialize fields we don't otherwise touch, which is
    485          * perhaps not the right thing to do, but it's what fsck and
    486          * mkfs do.
    487          */
    488 	memset(cg, 0, newsb->fs_cgsize);
    489 	if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
    490 		cg->cg_time = newsb->fs_time;
    491 	cg->cg_magic = CG_MAGIC;
    492 	cg->cg_cgx = cgn;
    493 	cg->cg_niblk = newsb->fs_ipg;
    494 	cg->cg_ndblk = dmax;
    495 
    496 	if (is_ufs2) {
    497 		cg->cg_time = newsb->fs_time;
    498 		cg->cg_initediblk = newsb->fs_ipg < 2 * FFS_INOPB(newsb) ?
    499 		    newsb->fs_ipg : 2 * FFS_INOPB(newsb);
    500 		cg->cg_iusedoff = start;
    501 	} else {
    502 		cg->cg_old_time = newsb->fs_time;
    503 		cg->cg_old_niblk = cg->cg_niblk;
    504 		cg->cg_niblk = 0;
    505 		cg->cg_initediblk = 0;
    506 
    507 
    508 		cg->cg_old_ncyl = newsb->fs_old_cpg;
    509 		/* Update the cg_old_ncyl value for the last cylinder. */
    510 		if (cgn == newsb->fs_ncg - 1) {
    511 			if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
    512 				cg->cg_old_ncyl = newsb->fs_old_ncyl %
    513 				    newsb->fs_old_cpg;
    514 		}
    515 
    516 		/* Set up the bitmap pointers.  We have to be careful
    517 		 * to lay out the cg _exactly_ the way mkfs and fsck
    518 		 * do it, since fsck compares the _entire_ cg against
    519 		 * a recomputed cg, and whines if there is any
    520 		 * mismatch, including the bitmap offsets. */
    521 		/* XXX update this comment when fsck is fixed */
    522 		cg->cg_old_btotoff = start;
    523 		cg->cg_old_boff = cg->cg_old_btotoff
    524 		    + (newsb->fs_old_cpg * sizeof(int32_t));
    525 		cg->cg_iusedoff = cg->cg_old_boff +
    526 		    (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
    527 	}
    528 	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
    529 	if (newsb->fs_contigsumsize > 0) {
    530 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
    531 		cg->cg_clustersumoff = cg->cg_freeoff +
    532 		    howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t);
    533 		cg->cg_clustersumoff =
    534 		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
    535 		cg->cg_clusteroff = cg->cg_clustersumoff +
    536 		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
    537 		cg->cg_nextfreeoff = cg->cg_clusteroff +
    538 		    howmany(ffs_fragstoblks(newsb,newsb->fs_fpg), NBBY);
    539 		n = dlow / newsb->fs_frag;
    540 		if (n > 0) {
    541 			set_bits(cg_clustersfree(cg, 0), 0, n);
    542 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    543 			    newsb->fs_contigsumsize : n]++;
    544 		}
    545 	} else {
    546 		cg->cg_nextfreeoff = cg->cg_freeoff +
    547 		    howmany(newsb->fs_fpg, NBBY);
    548 	}
    549 	/* Mark the data areas as free; everything else is marked busy by the
    550 	 * memset() up at the top. */
    551 	set_bits(cg_blksfree(cg, 0), 0, dlow);
    552 	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
    553 	/* Initialize summary info */
    554 	cg->cg_cs.cs_ndir = 0;
    555 	cg->cg_cs.cs_nifree = newsb->fs_ipg;
    556 	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
    557 	cg->cg_cs.cs_nffree = 0;
    558 
    559 	/* This is the simplest way of doing this; we perhaps could
    560 	 * compute the correct cg_blktot()[] and cg_blks()[] values
    561 	 * other ways, but it would be complicated and hardly seems
    562 	 * worth the effort.  (The reason there isn't
    563 	 * frag-at-beginning and frag-at-end code here, like the code
    564 	 * below for the post-inode data area, is that the pre-sb data
    565 	 * area always starts at 0, and thus is block-aligned, and
    566 	 * always ends at the sb, which is block-aligned.) */
    567 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
    568 		for (i = 0; i < dlow; i += newsb->fs_frag) {
    569 			old_cg_blktot(cg, 0)[old_cbtocylno(newsb, i)]++;
    570 			old_cg_blks(newsb, cg,
    571 			    old_cbtocylno(newsb, i),
    572 			    0)[old_cbtorpos(newsb, i)]++;
    573 		}
    574 
    575 	/* Deal with a partial block at the beginning of the post-inode area.
    576 	 * I'm not convinced this can happen - I think the inodes are always
    577 	 * block-aligned and always an integral number of blocks - but it's
    578 	 * cheap to do the right thing just in case. */
    579 	if (dhigh % newsb->fs_frag) {
    580 		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
    581 		cg->cg_frsum[n]++;
    582 		cg->cg_cs.cs_nffree += n;
    583 		dhigh += n;
    584 	}
    585 	n = (dmax - dhigh) / newsb->fs_frag;
    586 	/* We have n full-size blocks in the post-inode data area. */
    587 	if (n > 0) {
    588 		cg->cg_cs.cs_nbfree += n;
    589 		if (newsb->fs_contigsumsize > 0) {
    590 			i = dhigh / newsb->fs_frag;
    591 			set_bits(cg_clustersfree(cg, 0), i, n);
    592 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
    593 			    newsb->fs_contigsumsize : n]++;
    594 		}
    595 		if (is_ufs2 == 0)
    596 			for (i = n; i > 0; i--) {
    597 				old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
    598 					    dhigh)]++;
    599 				old_cg_blks(newsb, cg,
    600 				    old_cbtocylno(newsb, dhigh),
    601 				    0)[old_cbtorpos(newsb,
    602 					    dhigh)]++;
    603 				dhigh += newsb->fs_frag;
    604 			}
    605 	}
    606 	if (is_ufs2 == 0) {
    607 		/* Deal with any leftover frag at the end of the cg. */
    608 		i = dmax - dhigh;
    609 		if (i) {
    610 			cg->cg_frsum[i]++;
    611 			cg->cg_cs.cs_nffree += i;
    612 		}
    613 	}
    614 	/* Update the csum info. */
    615 	csums[cgn] = cg->cg_cs;
    616 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
    617 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
    618 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
    619 	if (is_ufs2) {
    620 		/* Write out the cleared inodes. */
    621 		writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes2,
    622 		    cg->cg_initediblk * sizeof(*zinodes2));
    623 	} else {
    624 		/* Write out the cleared inodes. */
    625 		writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes1,
    626 		    newsb->fs_ipg * sizeof(*zinodes1));
    627 	}
    628 	/* Dirty the cg. */
    629 	cgflags[cgn] |= CGF_DIRTY;
    630 }
    631 /*
    632  * Find free space, at least nfrags consecutive frags of it.  Pays no
    633  *  attention to block boundaries, but refuses to straddle cg
    634  *  boundaries, even if the disk blocks involved are in fact
    635  *  consecutive.  Return value is the frag number of the first frag of
    636  *  the block, or -1 if no space was found.  Uses newsb for sb values,
    637  *  and assumes the cgs[] structures correctly describe the area to be
    638  *  searched.
    639  *
    640  * XXX is there a bug lurking in the ignoring of block boundaries by
    641  *  the routine used by fragmove() in evict_data()?  Can an end-of-file
    642  *  frag legally straddle a block boundary?  If not, this should be
    643  *  cloned and fixed to stop at block boundaries for that use.  The
    644  *  current one may still be needed for csum info motion, in case that
    645  *  takes up more than a whole block (is the csum info allowed to begin
    646  *  partway through a block and continue into the following block?).
    647  *
    648  * If we wrap off the end of the file system back to the beginning, we
    649  *  can end up searching the end of the file system twice.  I ignore
    650  *  this inefficiency, since if that happens we're going to croak with
    651  *  a no-space error anyway, so it happens at most once.
    652  */
    653 static int
    654 find_freespace(unsigned int nfrags)
    655 {
    656 	static int hand = 0;	/* hand rotates through all frags in the fs */
    657 	int cgsize;		/* size of the cg hand currently points into */
    658 	int cgn;		/* number of cg hand currently points into */
    659 	int fwc;		/* frag-within-cg number of frag hand points
    660 				 * to */
    661 	unsigned int run;	/* length of run of free frags seen so far */
    662 	int secondpass;		/* have we wrapped from end of fs to
    663 				 * beginning? */
    664 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    665 
    666 	cgn = dtog(newsb, hand);
    667 	fwc = dtogd(newsb, hand);
    668 	secondpass = (hand == 0);
    669 	run = 0;
    670 	bits = cg_blksfree(cgs[cgn], 0);
    671 	cgsize = cgs[cgn]->cg_ndblk;
    672 	while (1) {
    673 		if (bit_is_set(bits, fwc)) {
    674 			run++;
    675 			if (run >= nfrags)
    676 				return (hand + 1 - run);
    677 		} else {
    678 			run = 0;
    679 		}
    680 		hand++;
    681 		fwc++;
    682 		if (fwc >= cgsize) {
    683 			fwc = 0;
    684 			cgn++;
    685 			if (cgn >= newsb->fs_ncg) {
    686 				hand = 0;
    687 				if (secondpass)
    688 					return (-1);
    689 				secondpass = 1;
    690 				cgn = 0;
    691 			}
    692 			bits = cg_blksfree(cgs[cgn], 0);
    693 			cgsize = cgs[cgn]->cg_ndblk;
    694 			run = 0;
    695 		}
    696 	}
    697 }
    698 /*
    699  * Find a free block of disk space.  Finds an entire block of frags,
    700  *  all of which are free.  Return value is the frag number of the
    701  *  first frag of the block, or -1 if no space was found.  Uses newsb
    702  *  for sb values, and assumes the cgs[] structures correctly describe
    703  *  the area to be searched.
    704  *
    705  * See find_freespace(), above, for remarks about hand wrapping around.
    706  */
    707 static int
    708 find_freeblock(void)
    709 {
    710 	static int hand = 0;	/* hand rotates through all frags in fs */
    711 	int cgn;		/* cg number of cg hand points into */
    712 	int fwc;		/* frag-within-cg number of frag hand points
    713 				 * to */
    714 	int cgsize;		/* size of cg hand points into */
    715 	int secondpass;		/* have we wrapped from end to beginning? */
    716 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
    717 
    718 	cgn = dtog(newsb, hand);
    719 	fwc = dtogd(newsb, hand);
    720 	secondpass = (hand == 0);
    721 	bits = cg_blksfree(cgs[cgn], 0);
    722 	cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
    723 	while (1) {
    724 		if (blk_is_set(bits, fwc, newsb->fs_frag))
    725 			return (hand);
    726 		fwc += newsb->fs_frag;
    727 		hand += newsb->fs_frag;
    728 		if (fwc >= cgsize) {
    729 			fwc = 0;
    730 			cgn++;
    731 			if (cgn >= newsb->fs_ncg) {
    732 				hand = 0;
    733 				if (secondpass)
    734 					return (-1);
    735 				secondpass = 1;
    736 				cgn = 0;
    737 			}
    738 			bits = cg_blksfree(cgs[cgn], 0);
    739 			cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
    740 		}
    741 	}
    742 }
    743 /*
    744  * Find a free inode, returning its inumber or -1 if none was found.
    745  *  Uses newsb for sb values, and assumes the cgs[] structures
    746  *  correctly describe the area to be searched.
    747  *
    748  * See find_freespace(), above, for remarks about hand wrapping around.
    749  */
    750 static int
    751 find_freeinode(void)
    752 {
    753 	static int hand = 0;	/* hand rotates through all inodes in fs */
    754 	int cgn;		/* cg number of cg hand points into */
    755 	int iwc;		/* inode-within-cg number of inode hand points
    756 				 * to */
    757 	int secondpass;		/* have we wrapped from end to beginning? */
    758 	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */
    759 
    760 	cgn = hand / newsb->fs_ipg;
    761 	iwc = hand % newsb->fs_ipg;
    762 	secondpass = (hand == 0);
    763 	bits = cg_inosused(cgs[cgn], 0);
    764 	while (1) {
    765 		if (bit_is_clr(bits, iwc))
    766 			return (hand);
    767 		hand++;
    768 		iwc++;
    769 		if (iwc >= newsb->fs_ipg) {
    770 			iwc = 0;
    771 			cgn++;
    772 			if (cgn >= newsb->fs_ncg) {
    773 				hand = 0;
    774 				if (secondpass)
    775 					return (-1);
    776 				secondpass = 1;
    777 				cgn = 0;
    778 			}
    779 			bits = cg_inosused(cgs[cgn], 0);
    780 		}
    781 	}
    782 }
    783 /*
    784  * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
    785  *  for the appropriate cg, and marks the cg as dirty.
    786  */
    787 static void
    788 free_frag(int fno)
    789 {
    790 	int cgn;
    791 
    792 	cgn = dtog(newsb, fno);
    793 	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    794 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    795 }
    796 /*
    797  * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
    798  *  for the appropriate cg, and marks the cg as dirty.
    799  */
    800 static void
    801 alloc_frag(int fno)
    802 {
    803 	int cgn;
    804 
    805 	cgn = dtog(newsb, fno);
    806 	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
    807 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
    808 }
    809 /*
    810  * Fix up the csum array.  If shrinking, this involves freeing zero or
    811  *  more frags; if growing, it involves allocating them, or if the
    812  *  frags being grown into aren't free, finding space elsewhere for the
    813  *  csum info.  (If the number of occupied frags doesn't change,
    814  *  nothing happens here.)
    815  */
    816 static void
    817 csum_fixup(void)
    818 {
    819 	int nold;		/* # frags in old csum info */
    820 	int ntot;		/* # frags in new csum info */
    821 	int nnew;		/* ntot-nold */
    822 	int newloc;		/* new location for csum info, if necessary */
    823 	int i;			/* generic loop index */
    824 	int j;			/* generic loop index */
    825 	int f;			/* "from" frag number, if moving */
    826 	int t;			/* "to" frag number, if moving */
    827 	int cgn;		/* cg number, used when shrinking */
    828 
    829 	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
    830 	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
    831 	nnew = ntot - nold;
    832 	/* First, if there's no change in frag counts, it's easy. */
    833 	if (nnew == 0)
    834 		return;
    835 	/* Next, if we're shrinking, it's almost as easy.  Just free up any
    836 	 * frags in the old area we no longer need. */
    837 	if (nnew < 0) {
    838 		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
    839 		    j < 0;
    840 		    i--, j++) {
    841 			free_frag(i);
    842 		}
    843 		return;
    844 	}
    845 	/* We must be growing.  Check to see that the new csum area fits
    846 	 * within the file system.  I think this can never happen, since for
    847 	 * the csum area to grow, we must be adding at least one cg, so the
    848 	 * old csum area can't be this close to the end of the new file system.
    849 	 * But it's a cheap check. */
    850 	/* XXX what if csum info is at end of cg and grows into next cg, what
    851 	 * if it spills over onto the next cg's backup superblock?  Can this
    852 	 * happen? */
    853 	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
    854 		/* Okay, it fits - now,  see if the space we want is free. */
    855 		for ((i = newsb->fs_csaddr + nold), (j = nnew);
    856 		    j > 0;
    857 		    i++, j--) {
    858 			cgn = dtog(newsb, i);
    859 			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
    860 				dtogd(newsb, i)))
    861 				break;
    862 		}
    863 		if (j <= 0) {
    864 			/* Win win - all the frags we want are free. Allocate
    865 			 * 'em and we're all done.  */
    866 			for ((i = newsb->fs_csaddr + ntot - nnew),
    867 				 (j = nnew); j > 0; i++, j--) {
    868 				alloc_frag(i);
    869 			}
    870 			return;
    871 		}
    872 	}
    873 	/* We have to move the csum info, sigh.  Look for new space, free old
    874 	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
    875 	 * on disk at this point; the csum info will be written to the
    876 	 * then-current fs_csaddr as part of the final flush. */
    877 	newloc = find_freespace(ntot);
    878 	if (newloc < 0)
    879 		errx(EXIT_FAILURE, "Sorry, no space available for new csums");
    880 	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
    881 		if (i < nold) {
    882 			free_frag(f);
    883 		}
    884 		alloc_frag(t);
    885 	}
    886 	newsb->fs_csaddr = newloc;
    887 }
    888 /*
    889  * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
    890  *  data blocks in that cg to the total.
    891  */
    892 static void
    893 recompute_fs_dsize(void)
    894 {
    895 	int i;
    896 
    897 	newsb->fs_dsize = 0;
    898 	for (i = 0; i < newsb->fs_ncg; i++) {
    899 		int dlow;	/* size of before-sb data area */
    900 		int dhigh;	/* offset of post-inode data area */
    901 		int dmax;	/* total size of cg */
    902 		int base;	/* base of cg, since cgsblock() etc add it in */
    903 		base = cgbase(newsb, i);
    904 		dlow = cgsblock(newsb, i) - base;
    905 		dhigh = cgdmin(newsb, i) - base;
    906 		dmax = newsb->fs_size - base;
    907 		if (dmax > newsb->fs_fpg)
    908 			dmax = newsb->fs_fpg;
    909 		newsb->fs_dsize += dlow + dmax - dhigh;
    910 	}
    911 	/* Space in cg 0 before cgsblock is boot area, not free space! */
    912 	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
    913 	/* And of course the csum info takes up space. */
    914 	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
    915 }
    916 /*
    917  * Return the current time.  We call this and assign, rather than
    918  *  calling time() directly, as insulation against OSes where fs_time
    919  *  is not a time_t.
    920  */
    921 static time_t
    922 timestamp(void)
    923 {
    924 	time_t t;
    925 
    926 	time(&t);
    927 	return (t);
    928 }
    929 
    930 /*
    931  * Calculate new filesystem geometry
    932  *  return 0 if geometry actually changed
    933  */
    934 static int
    935 makegeometry(int chatter)
    936 {
    937 
    938 	/* Update the size. */
    939 	newsb->fs_size = FFS_DBTOFSB(newsb, newsize);
    940 	if (is_ufs2)
    941 		newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
    942 	else {
    943 		/* Update fs_old_ncyl and fs_ncg. */
    944 		newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
    945 		    newsb->fs_old_spc);
    946 		newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
    947 	}
    948 
    949 	/* Does the last cg end before the end of its inode area? There is no
    950 	 * reason why this couldn't be handled, but it would complicate a lot
    951 	 * of code (in all file system code - fsck, kernel, etc) because of the
    952 	 * potential partial inode area, and the gain in space would be
    953 	 * minimal, at most the pre-sb data area. */
    954 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
    955 		newsb->fs_ncg--;
    956 		if (is_ufs2)
    957 			newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg;
    958 		else {
    959 			newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
    960 			newsb->fs_size = (newsb->fs_old_ncyl *
    961 				newsb->fs_old_spc) / NSPF(newsb);
    962 		}
    963 		if (chatter || verbose) {
    964 			printf("Warning: last cylinder group is too small;\n");
    965 			printf("    dropping it.  New size = %lu.\n",
    966 			(unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size));
    967 		}
    968 	}
    969 
    970 	/* Did we actually not grow?  (This can happen if newsize is less than
    971 	 * a frag larger than the old size - unlikely, but no excuse to
    972 	 * misbehave if it happens.) */
    973 	if (newsb->fs_size == oldsb->fs_size)
    974 		return 1;
    975 
    976 	return 0;
    977 }
    978 
    979 
    980 /*
    981  * Grow the file system.
    982  */
    983 static void
    984 grow(void)
    985 {
    986 	int i;
    987 
    988 	if (makegeometry(1)) {
    989 		printf("New fs size %"PRIu64" = old fs size %"PRIu64
    990 		    ", not growing.\n", newsb->fs_size, oldsb->fs_size);
    991 		return;
    992 	}
    993 
    994 	if (verbose) {
    995 		printf("Growing fs from %"PRIu64" blocks to %"PRIu64
    996 		    " blocks.\n", oldsb->fs_size, newsb->fs_size);
    997 	}
    998 
    999 	/* Update the timestamp. */
   1000 	newsb->fs_time = timestamp();
   1001 	/* Allocate and clear the new-inode area, in case we add any cgs. */
   1002 	if (is_ufs2) {
   1003 		zinodes2 = alloconce(newsb->fs_ipg * sizeof(*zinodes2),
   1004 			"zeroed inodes");
   1005 		memset(zinodes2, 0, newsb->fs_ipg * sizeof(*zinodes2));
   1006 	} else {
   1007 		zinodes1 = alloconce(newsb->fs_ipg * sizeof(*zinodes1),
   1008 			"zeroed inodes");
   1009 		memset(zinodes1, 0, newsb->fs_ipg * sizeof(*zinodes1));
   1010 	}
   1011 
   1012 	/* Check that the new last sector (frag, actually) is writable.  Since
   1013 	 * it's at least one frag larger than it used to be, we know we aren't
   1014 	 * overwriting anything important by this.  (The choice of sbbuf as
   1015 	 * what to write is irrelevant; it's just something handy that's known
   1016 	 * to be at least one frag in size.) */
   1017 	writeat(FFS_FSBTODB(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
   1018 
   1019 	/* Find out how big the csum area is, and realloc csums if bigger. */
   1020 	newsb->fs_cssize = ffs_fragroundup(newsb,
   1021 	    newsb->fs_ncg * sizeof(struct csum));
   1022 	if (newsb->fs_cssize > oldsb->fs_cssize)
   1023 		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
   1024 	/* If we're adding any cgs, realloc structures and set up the new
   1025 	   cgs. */
   1026 	if (newsb->fs_ncg > oldsb->fs_ncg) {
   1027 		char *cgp;
   1028 		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(*cgs),
   1029                                 "cg pointers");
   1030 		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
   1031 		memset(cgflags + oldsb->fs_ncg, 0,
   1032 		    newsb->fs_ncg - oldsb->fs_ncg);
   1033 		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
   1034                                 "cgs");
   1035 		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
   1036 			cgs[i] = (struct cg *) cgp;
   1037 			progress_bar(special, "grow cg",
   1038 			    i - oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
   1039 			initcg(i);
   1040 			cgp += cgblksz;
   1041 		}
   1042 		cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
   1043 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
   1044 	}
   1045 	/* If the old fs ended partway through a cg, we have to update the old
   1046 	 * last cg (though possibly not to a full cg!). */
   1047 	if (oldsb->fs_size % oldsb->fs_fpg) {
   1048 		struct cg *cg;
   1049 		int newcgsize;
   1050 		int prevcgtop;
   1051 		int oldcgsize;
   1052 		cg = cgs[oldsb->fs_ncg - 1];
   1053 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
   1054 		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
   1055 		newcgsize = newsb->fs_size - prevcgtop;
   1056 		if (newcgsize > newsb->fs_fpg)
   1057 			newcgsize = newsb->fs_fpg;
   1058 		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
   1059 		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
   1060 		cg->cg_old_ncyl = oldsb->fs_old_cpg;
   1061 		cg->cg_ndblk = newcgsize;
   1062 	}
   1063 	/* Fix up the csum info, if necessary. */
   1064 	csum_fixup();
   1065 	/* Make fs_dsize match the new reality. */
   1066 	recompute_fs_dsize();
   1067 
   1068 	progress_done();
   1069 }
   1070 /*
   1071  * Call (*fn)() for each inode, passing the inode and its inumber.  The
   1072  *  number of cylinder groups is pased in, so this can be used to map
   1073  *  over either the old or the new file system's set of inodes.
   1074  */
   1075 static void
   1076 map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg),
   1077 	   int ncg, void *cbarg) {
   1078 	int i;
   1079 	int ni;
   1080 
   1081 	ni = oldsb->fs_ipg * ncg;
   1082 	for (i = 0; i < ni; i++)
   1083 		(*fn) (inodes + i, i, cbarg);
   1084 }
   1085 /* Values for the third argument to the map function for
   1086  * map_inode_data_blocks.  MDB_DATA indicates the block is contains
   1087  * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
   1088  * indirect block.  The MDB_INDIR_PRE call is made before the indirect
   1089  * block pointers are followed and the pointed-to blocks scanned,
   1090  * MDB_INDIR_POST after.
   1091  */
   1092 #define MDB_DATA       1
   1093 #define MDB_INDIR_PRE  2
   1094 #define MDB_INDIR_POST 3
   1095 
   1096 typedef void (*mark_callback_t) (off_t blocknum, unsigned int nfrags,
   1097 				 unsigned int blksize, int opcode);
   1098 
   1099 /* Helper function - handles a data block.  Calls the callback
   1100  * function and returns number of bytes occupied in file (actually,
   1101  * rounded up to a frag boundary).  The name is historical.  */
   1102 static int
   1103 markblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o)
   1104 {
   1105 	int sz;
   1106 	int nb;
   1107 	off_t filesize;
   1108 
   1109 	filesize = DIP(di,di_size);
   1110 	if (o >= filesize)
   1111 		return (0);
   1112 	sz = dblksize(newsb, di, ffs_lblkno(newsb, o), filesize);
   1113 	nb = (sz > filesize - o) ? filesize - o : sz;
   1114 	if (bn)
   1115 		(*fn) (bn, ffs_numfrags(newsb, sz), nb, MDB_DATA);
   1116 	return (sz);
   1117 }
   1118 /* Helper function - handles an indirect block.  Makes the
   1119  * MDB_INDIR_PRE callback for the indirect block, loops over the
   1120  * pointers and recurses, and makes the MDB_INDIR_POST callback.
   1121  * Returns the number of bytes occupied in file, as does markblk().
   1122  * For the sake of update_for_data_move(), we read the indirect block
   1123  * _after_ making the _PRE callback.  The name is historical.  */
   1124 static int
   1125 markiblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o, int lev)
   1126 {
   1127 	int i;
   1128 	int j;
   1129 	unsigned k;
   1130 	int tot;
   1131 	static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
   1132 	static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
   1133 	static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
   1134 	static int32_t *indirblks[3] = {
   1135 		&indirblk1[0], &indirblk2[0], &indirblk3[0]
   1136 	};
   1137 
   1138 	if (lev < 0)
   1139 		return (markblk(fn, di, bn, o));
   1140 	if (bn == 0) {
   1141 		for (i = newsb->fs_bsize;
   1142 		    lev >= 0;
   1143 		    i *= FFS_NINDIR(newsb), lev--);
   1144 		return (i);
   1145 	}
   1146 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
   1147 	readat(FFS_FSBTODB(newsb, bn), indirblks[lev], newsb->fs_bsize);
   1148 	if (needswap)
   1149 		for (k = 0; k < howmany(MAXBSIZE, sizeof(int32_t)); k++)
   1150 			indirblks[lev][k] = bswap32(indirblks[lev][k]);
   1151 	tot = 0;
   1152 	for (i = 0; i < FFS_NINDIR(newsb); i++) {
   1153 		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
   1154 		if (j == 0)
   1155 			break;
   1156 		o += j;
   1157 		tot += j;
   1158 	}
   1159 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
   1160 	return (tot);
   1161 }
   1162 
   1163 
   1164 /*
   1165  * Call (*fn)() for each data block for an inode.  This routine assumes
   1166  *  the inode is known to be of a type that has data blocks (file,
   1167  *  directory, or non-fast symlink).  The called function is:
   1168  *
   1169  * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
   1170  *
   1171  *  where blkno is the frag number, nf is the number of frags starting
   1172  *  at blkno (always <= fs_frag), nb is the number of bytes that belong
   1173  *  to the file (usually nf*fs_frag, often less for the last block/frag
   1174  *  of a file).
   1175  */
   1176 static void
   1177 map_inode_data_blocks(union dinode * di, mark_callback_t fn)
   1178 {
   1179 	off_t o;		/* offset within  inode */
   1180 	int inc;		/* increment for o - maybe should be off_t? */
   1181 	int b;			/* index within di_db[] and di_ib[] arrays */
   1182 
   1183 	/* Scan the direct blocks... */
   1184 	o = 0;
   1185 	for (b = 0; b < UFS_NDADDR; b++) {
   1186 		inc = markblk(fn, di, DIP(di,di_db[b]), o);
   1187 		if (inc == 0)
   1188 			break;
   1189 		o += inc;
   1190 	}
   1191 	/* ...and the indirect blocks. */
   1192 	if (inc) {
   1193 		for (b = 0; b < UFS_NIADDR; b++) {
   1194 			inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b);
   1195 			if (inc == 0)
   1196 				return;
   1197 			o += inc;
   1198 		}
   1199 	}
   1200 }
   1201 
   1202 static void
   1203 dblk_callback(union dinode * di, unsigned int inum, void *arg)
   1204 {
   1205 	mark_callback_t fn;
   1206 	off_t filesize;
   1207 
   1208 	filesize = DIP(di,di_size);
   1209 	fn = (mark_callback_t) arg;
   1210 	switch (DIP(di,di_mode) & IFMT) {
   1211 	case IFLNK:
   1212 		if (filesize <= newsb->fs_maxsymlinklen) {
   1213 			break;
   1214 		}
   1215 		/* FALLTHROUGH */
   1216 	case IFDIR:
   1217 	case IFREG:
   1218 		map_inode_data_blocks(di, fn);
   1219 		break;
   1220 	}
   1221 }
   1222 /*
   1223  * Make a callback call, a la map_inode_data_blocks, for all data
   1224  *  blocks in the entire fs.  This is used only once, in
   1225  *  update_for_data_move, but it's out at top level because the complex
   1226  *  downward-funarg nesting that would otherwise result seems to give
   1227  *  gcc gastric distress.
   1228  */
   1229 static void
   1230 map_data_blocks(mark_callback_t fn, int ncg)
   1231 {
   1232 	map_inodes(&dblk_callback, ncg, (void *) fn);
   1233 }
   1234 /*
   1235  * Initialize the blkmove array.
   1236  */
   1237 static void
   1238 blkmove_init(void)
   1239 {
   1240 	int i;
   1241 
   1242 	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
   1243 	for (i = 0; i < oldsb->fs_size; i++)
   1244 		blkmove[i] = i;
   1245 }
   1246 /*
   1247  * Load the inodes off disk.  Allocates the structures and initializes
   1248  *  them - the inodes from disk, the flags to zero.
   1249  */
   1250 static void
   1251 loadinodes(void)
   1252 {
   1253 	int imax, ino, i, j;
   1254 	struct ufs1_dinode *dp1 = NULL;
   1255 	struct ufs2_dinode *dp2 = NULL;
   1256 
   1257 	/* read inodes one fs block at a time and copy them */
   1258 
   1259 	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
   1260 	    sizeof(union dinode), "inodes");
   1261 	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
   1262 	memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg);
   1263 
   1264 	ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf");
   1265 	if (is_ufs2)
   1266 		dp2 = (struct ufs2_dinode *)ibuf;
   1267 	else
   1268 		dp1 = (struct ufs1_dinode *)ibuf;
   1269 
   1270 	for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) {
   1271 		readat(FFS_FSBTODB(oldsb, ino_to_fsba(oldsb, ino)), ibuf,
   1272 		    oldsb->fs_bsize);
   1273 
   1274 		for (i = 0; i < oldsb->fs_inopb; i++) {
   1275 			if (is_ufs2) {
   1276 				if (needswap) {
   1277 					ffs_dinode2_swap(&(dp2[i]), &(dp2[i]));
   1278 					for (j = 0; j < UFS_NDADDR; j++)
   1279 						dp2[i].di_db[j] =
   1280 						    bswap32(dp2[i].di_db[j]);
   1281 					for (j = 0; j < UFS_NIADDR; j++)
   1282 						dp2[i].di_ib[j] =
   1283 						    bswap32(dp2[i].di_ib[j]);
   1284 				}
   1285 				memcpy(&inodes[ino].dp2, &dp2[i],
   1286 				    sizeof(inodes[ino].dp2));
   1287 			} else {
   1288 				if (needswap) {
   1289 					ffs_dinode1_swap(&(dp1[i]), &(dp1[i]));
   1290 					for (j = 0; j < UFS_NDADDR; j++)
   1291 						dp1[i].di_db[j] =
   1292 						    bswap32(dp1[i].di_db[j]);
   1293 					for (j = 0; j < UFS_NIADDR; j++)
   1294 						dp1[i].di_ib[j] =
   1295 						    bswap32(dp1[i].di_ib[j]);
   1296 				}
   1297 				memcpy(&inodes[ino].dp1, &dp1[i],
   1298 				    sizeof(inodes[ino].dp1));
   1299 			}
   1300 			    if (++ino > imax)
   1301 				    errx(EXIT_FAILURE,
   1302 					"Exceeded number of inodes");
   1303 		}
   1304 
   1305 	}
   1306 }
   1307 /*
   1308  * Report a file-system-too-full problem.
   1309  */
   1310 __dead static void
   1311 toofull(void)
   1312 {
   1313 	errx(EXIT_FAILURE, "Sorry, would run out of data blocks");
   1314 }
   1315 /*
   1316  * Record a desire to move "n" frags from "from" to "to".
   1317  */
   1318 static void
   1319 mark_move(unsigned int from, unsigned int to, unsigned int n)
   1320 {
   1321 	for (; n > 0; n--)
   1322 		blkmove[from++] = to++;
   1323 }
   1324 /* Helper function - evict n frags, starting with start (cg-relative).
   1325  * The free bitmap is scanned, unallocated frags are ignored, and
   1326  * each block of consecutive allocated frags is moved as a unit.
   1327  */
   1328 static void
   1329 fragmove(struct cg * cg, int base, unsigned int start, unsigned int n)
   1330 {
   1331 	unsigned int i;
   1332 	int run;
   1333 
   1334 	run = 0;
   1335 	for (i = 0; i <= n; i++) {
   1336 		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
   1337 			run++;
   1338 		} else {
   1339 			if (run > 0) {
   1340 				int off;
   1341 				off = find_freespace(run);
   1342 				if (off < 0)
   1343 					toofull();
   1344 				mark_move(base + start + i - run, off, run);
   1345 				set_bits(cg_blksfree(cg, 0), start + i - run,
   1346 				    run);
   1347 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1348 				    dtogd(oldsb, off), run);
   1349 			}
   1350 			run = 0;
   1351 		}
   1352 	}
   1353 }
   1354 /*
   1355  * Evict all data blocks from the given cg, starting at minfrag (based
   1356  *  at the beginning of the cg), for length nfrag.  The eviction is
   1357  *  assumed to be entirely data-area; this should not be called with a
   1358  *  range overlapping the metadata structures in the cg.  It also
   1359  *  assumes minfrag points into the given cg; it will misbehave if this
   1360  *  is not true.
   1361  *
   1362  * See the comment header on find_freespace() for one possible bug
   1363  *  lurking here.
   1364  */
   1365 static void
   1366 evict_data(struct cg * cg, unsigned int minfrag, int nfrag)
   1367 {
   1368 	int base;	/* base of cg (in frags from beginning of fs) */
   1369 
   1370 	base = cgbase(oldsb, cg->cg_cgx);
   1371 	/* Does the boundary fall in the middle of a block?  To avoid
   1372 	 * breaking between frags allocated as consecutive, we always
   1373 	 * evict the whole block in this case, though one could argue
   1374 	 * we should check to see if the frag before or after the
   1375 	 * break is unallocated. */
   1376 	if (minfrag % oldsb->fs_frag) {
   1377 		int n;
   1378 		n = minfrag % oldsb->fs_frag;
   1379 		minfrag -= n;
   1380 		nfrag += n;
   1381 	}
   1382 	/* Do whole blocks.  If a block is wholly free, skip it; if
   1383 	 * wholly allocated, move it in toto.  If neither, call
   1384 	 * fragmove() to move the frags to new locations. */
   1385 	while (nfrag >= oldsb->fs_frag) {
   1386 		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
   1387 			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
   1388 				oldsb->fs_frag)) {
   1389 				int off;
   1390 				off = find_freeblock();
   1391 				if (off < 0)
   1392 					toofull();
   1393 				mark_move(base + minfrag, off, oldsb->fs_frag);
   1394 				set_bits(cg_blksfree(cg, 0), minfrag,
   1395 				    oldsb->fs_frag);
   1396 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
   1397 				    dtogd(oldsb, off), oldsb->fs_frag);
   1398 			} else {
   1399 				fragmove(cg, base, minfrag, oldsb->fs_frag);
   1400 			}
   1401 		}
   1402 		minfrag += oldsb->fs_frag;
   1403 		nfrag -= oldsb->fs_frag;
   1404 	}
   1405 	/* Clean up any sub-block amount left over. */
   1406 	if (nfrag) {
   1407 		fragmove(cg, base, minfrag, nfrag);
   1408 	}
   1409 }
   1410 /*
   1411  * Move all data blocks according to blkmove.  We have to be careful,
   1412  *  because we may be updating indirect blocks that will themselves be
   1413  *  getting moved, or inode int32_t arrays that point to indirect
   1414  *  blocks that will be moved.  We call this before
   1415  *  update_for_data_move, and update_for_data_move does inodes first,
   1416  *  then indirect blocks in preorder, so as to make sure that the
   1417  *  file system is self-consistent at all points, for better crash
   1418  *  tolerance.  (We can get away with this only because all the writes
   1419  *  done by perform_data_move() are writing into space that's not used
   1420  *  by the old file system.)  If we crash, some things may point to the
   1421  *  old data and some to the new, but both copies are the same.  The
   1422  *  only wrong things should be csum info and free bitmaps, which fsck
   1423  *  is entirely capable of cleaning up.
   1424  *
   1425  * Since blkmove_init() initializes all blocks to move to their current
   1426  *  locations, we can have two blocks marked as wanting to move to the
   1427  *  same location, but only two and only when one of them is the one
   1428  *  that was already there.  So if blkmove[i]==i, we ignore that entry
   1429  *  entirely - for unallocated blocks, we don't want it (and may be
   1430  *  putting something else there), and for allocated blocks, we don't
   1431  *  want to copy it anywhere.
   1432  */
   1433 static void
   1434 perform_data_move(void)
   1435 {
   1436 	int i;
   1437 	int run;
   1438 	int maxrun;
   1439 	char buf[65536];
   1440 
   1441 	maxrun = sizeof(buf) / newsb->fs_fsize;
   1442 	run = 0;
   1443 	for (i = 0; i < oldsb->fs_size; i++) {
   1444 		if ((blkmove[i] == (unsigned)i /*XXX cast*/) ||
   1445 		    (run >= maxrun) ||
   1446 		    ((run > 0) &&
   1447 			(blkmove[i] != blkmove[i - 1] + 1))) {
   1448 			if (run > 0) {
   1449 				readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
   1450 				    run << oldsb->fs_fshift);
   1451 				writeat(FFS_FSBTODB(oldsb, blkmove[i - run]),
   1452 				    &buf[0], run << oldsb->fs_fshift);
   1453 			}
   1454 			run = 0;
   1455 		}
   1456 		if (blkmove[i] != (unsigned)i /*XXX cast*/)
   1457 			run++;
   1458 	}
   1459 	if (run > 0) {
   1460 		readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
   1461 		    run << oldsb->fs_fshift);
   1462 		writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), &buf[0],
   1463 		    run << oldsb->fs_fshift);
   1464 	}
   1465 }
   1466 /*
   1467  * This modifies an array of int32_t, according to blkmove.  This is
   1468  *  used to update inode block arrays and indirect blocks to point to
   1469  *  the new locations of data blocks.
   1470  *
   1471  * Return value is the number of int32_ts that needed updating; in
   1472  *  particular, the return value is zero iff nothing was modified.
   1473  */
   1474 static int
   1475 movemap_blocks(int32_t * vec, int n)
   1476 {
   1477 	int rv;
   1478 
   1479 	rv = 0;
   1480 	for (; n > 0; n--, vec++) {
   1481 		if (blkmove[*vec] != (unsigned)*vec /*XXX cast*/) {
   1482 			*vec = blkmove[*vec];
   1483 			rv++;
   1484 		}
   1485 	}
   1486 	return (rv);
   1487 }
   1488 static void
   1489 moveblocks_callback(union dinode * di, unsigned int inum, void *arg)
   1490 {
   1491 	int32_t *dblkptr, *iblkptr;
   1492 
   1493 	switch (DIP(di,di_mode) & IFMT) {
   1494 	case IFLNK:
   1495 		if ((off_t)DIP(di,di_size) <= oldsb->fs_maxsymlinklen) {
   1496 			break;
   1497 		}
   1498 		/* FALLTHROUGH */
   1499 	case IFDIR:
   1500 	case IFREG:
   1501 		if (is_ufs2) {
   1502 			/* XXX these are not int32_t and this is WRONG! */
   1503 			dblkptr = (void *) &(di->dp2.di_db[0]);
   1504 			iblkptr = (void *) &(di->dp2.di_ib[0]);
   1505 		} else {
   1506 			dblkptr = &(di->dp1.di_db[0]);
   1507 			iblkptr = &(di->dp1.di_ib[0]);
   1508 		}
   1509 		/*
   1510 		 * Don't || these two calls; we need their
   1511 		 * side-effects.
   1512 		 */
   1513 		if (movemap_blocks(dblkptr, UFS_NDADDR)) {
   1514 			iflags[inum] |= IF_DIRTY;
   1515 		}
   1516 		if (movemap_blocks(iblkptr, UFS_NIADDR)) {
   1517 			iflags[inum] |= IF_DIRTY;
   1518 		}
   1519 		break;
   1520 	}
   1521 }
   1522 
   1523 static void
   1524 moveindir_callback(off_t off, unsigned int nfrag, unsigned int nbytes,
   1525 		   int kind)
   1526 {
   1527 	unsigned int i;
   1528 
   1529 	if (kind == MDB_INDIR_PRE) {
   1530 		int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
   1531 		readat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
   1532 		if (needswap)
   1533 			for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
   1534 				blk[i] = bswap32(blk[i]);
   1535 		if (movemap_blocks(&blk[0], FFS_NINDIR(oldsb))) {
   1536 			if (needswap)
   1537 				for (i = 0; i < howmany(MAXBSIZE,
   1538 					sizeof(int32_t)); i++)
   1539 					blk[i] = bswap32(blk[i]);
   1540 			writeat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
   1541 		}
   1542 	}
   1543 }
   1544 /*
   1545  * Update all inode data arrays and indirect blocks to point to the new
   1546  *  locations of data blocks.  See the comment header on
   1547  *  perform_data_move for some ordering considerations.
   1548  */
   1549 static void
   1550 update_for_data_move(void)
   1551 {
   1552 	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
   1553 	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
   1554 }
   1555 /*
   1556  * Initialize the inomove array.
   1557  */
   1558 static void
   1559 inomove_init(void)
   1560 {
   1561 	int i;
   1562 
   1563 	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
   1564                             "inomove");
   1565 	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
   1566 		inomove[i] = i;
   1567 }
   1568 /*
   1569  * Flush all dirtied inodes to disk.  Scans the inode flags array; for
   1570  *  each dirty inode, it sets the BDIRTY bit on the first inode in the
   1571  *  block containing the dirty inode.  Then it scans by blocks, and for
   1572  *  each marked block, writes it.
   1573  */
   1574 static void
   1575 flush_inodes(void)
   1576 {
   1577 	int i, j, k, ni, m;
   1578 	struct ufs1_dinode *dp1 = NULL;
   1579 	struct ufs2_dinode *dp2 = NULL;
   1580 
   1581 	ni = newsb->fs_ipg * newsb->fs_ncg;
   1582 	m = FFS_INOPB(newsb) - 1;
   1583 	for (i = 0; i < ni; i++) {
   1584 		if (iflags[i] & IF_DIRTY) {
   1585 			iflags[i & ~m] |= IF_BDIRTY;
   1586 		}
   1587 	}
   1588 	m++;
   1589 
   1590 	if (is_ufs2)
   1591 		dp2 = (struct ufs2_dinode *)ibuf;
   1592 	else
   1593 		dp1 = (struct ufs1_dinode *)ibuf;
   1594 
   1595 	for (i = 0; i < ni; i += m) {
   1596 		if ((iflags[i] & IF_BDIRTY) == 0)
   1597 			continue;
   1598 		if (is_ufs2)
   1599 			for (j = 0; j < m; j++) {
   1600 				dp2[j] = inodes[i + j].dp2;
   1601 				if (needswap) {
   1602 					for (k = 0; k < UFS_NDADDR; k++)
   1603 						dp2[j].di_db[k] =
   1604 						    bswap32(dp2[j].di_db[k]);
   1605 					for (k = 0; k < UFS_NIADDR; k++)
   1606 						dp2[j].di_ib[k] =
   1607 						    bswap32(dp2[j].di_ib[k]);
   1608 					ffs_dinode2_swap(&dp2[j],
   1609 					    &dp2[j]);
   1610 				}
   1611 			}
   1612 		else
   1613 			for (j = 0; j < m; j++) {
   1614 				dp1[j] = inodes[i + j].dp1;
   1615 				if (needswap) {
   1616 					for (k = 0; k < UFS_NDADDR; k++)
   1617 						dp1[j].di_db[k]=
   1618 						    bswap32(dp1[j].di_db[k]);
   1619 					for (k = 0; k < UFS_NIADDR; k++)
   1620 						dp1[j].di_ib[k]=
   1621 						    bswap32(dp1[j].di_ib[k]);
   1622 					ffs_dinode1_swap(&dp1[j],
   1623 					    &dp1[j]);
   1624 				}
   1625 			}
   1626 
   1627 		writeat(FFS_FSBTODB(newsb, ino_to_fsba(newsb, i)),
   1628 		    ibuf, newsb->fs_bsize);
   1629 	}
   1630 }
   1631 /*
   1632  * Evict all inodes from the specified cg.  shrink() already checked
   1633  *  that there were enough free inodes, so the no-free-inodes check is
   1634  *  a can't-happen.  If it does trip, the file system should be in good
   1635  *  enough shape for fsck to fix; see the comment on perform_data_move
   1636  *  for the considerations in question.
   1637  */
   1638 static void
   1639 evict_inodes(struct cg * cg)
   1640 {
   1641 	int inum;
   1642 	int i;
   1643 	int fi;
   1644 
   1645 	inum = newsb->fs_ipg * cg->cg_cgx;
   1646 	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
   1647 		if (DIP(inodes + inum,di_mode) != 0) {
   1648 			fi = find_freeinode();
   1649 			if (fi < 0)
   1650 				errx(EXIT_FAILURE, "Sorry, inodes evaporated - "
   1651 				    "file system probably needs fsck");
   1652 			inomove[inum] = fi;
   1653 			clr_bits(cg_inosused(cg, 0), i, 1);
   1654 			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
   1655 			    fi % newsb->fs_ipg, 1);
   1656 		}
   1657 	}
   1658 }
   1659 /*
   1660  * Move inodes from old locations to new.  Does not actually write
   1661  *  anything to disk; just copies in-core and sets dirty bits.
   1662  *
   1663  * We have to be careful here for reasons similar to those mentioned in
   1664  *  the comment header on perform_data_move, above: for the sake of
   1665  *  crash tolerance, we want to make sure everything is present at both
   1666  *  old and new locations before we update pointers.  So we call this
   1667  *  first, then flush_inodes() to get them out on disk, then update
   1668  *  directories to match.
   1669  */
   1670 static void
   1671 perform_inode_move(void)
   1672 {
   1673 	unsigned int i;
   1674 	unsigned int ni;
   1675 
   1676 	ni = oldsb->fs_ipg * oldsb->fs_ncg;
   1677 	for (i = 0; i < ni; i++) {
   1678 		if (inomove[i] != i) {
   1679 			inodes[inomove[i]] = inodes[i];
   1680 			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
   1681 		}
   1682 	}
   1683 }
   1684 /*
   1685  * Update the directory contained in the nb bytes at buf, to point to
   1686  *  inodes' new locations.
   1687  */
   1688 static int
   1689 update_dirents(char *buf, int nb)
   1690 {
   1691 	int rv;
   1692 #define d ((struct direct *)buf)
   1693 #define s32(x) (needswap?bswap32((x)):(x))
   1694 #define s16(x) (needswap?bswap16((x)):(x))
   1695 
   1696 	rv = 0;
   1697 	while (nb > 0) {
   1698 		if (inomove[s32(d->d_ino)] != s32(d->d_ino)) {
   1699 			rv++;
   1700 			d->d_ino = s32(inomove[s32(d->d_ino)]);
   1701 		}
   1702 		nb -= s16(d->d_reclen);
   1703 		buf += s16(d->d_reclen);
   1704 	}
   1705 	return (rv);
   1706 #undef d
   1707 #undef s32
   1708 #undef s16
   1709 }
   1710 /*
   1711  * Callback function for map_inode_data_blocks, for updating a
   1712  *  directory to point to new inode locations.
   1713  */
   1714 static void
   1715 update_dir_data(off_t bn, unsigned int size, unsigned int nb, int kind)
   1716 {
   1717 	if (kind == MDB_DATA) {
   1718 		union {
   1719 			struct direct d;
   1720 			char ch[MAXBSIZE];
   1721 		}     buf;
   1722 		readat(FFS_FSBTODB(oldsb, bn), &buf, size << oldsb->fs_fshift);
   1723 		if (update_dirents((char *) &buf, nb)) {
   1724 			writeat(FFS_FSBTODB(oldsb, bn), &buf,
   1725 			    size << oldsb->fs_fshift);
   1726 		}
   1727 	}
   1728 }
   1729 static void
   1730 dirmove_callback(union dinode * di, unsigned int inum, void *arg)
   1731 {
   1732 	switch (DIP(di,di_mode) & IFMT) {
   1733 	case IFDIR:
   1734 		map_inode_data_blocks(di, &update_dir_data);
   1735 		break;
   1736 	}
   1737 }
   1738 /*
   1739  * Update directory entries to point to new inode locations.
   1740  */
   1741 static void
   1742 update_for_inode_move(void)
   1743 {
   1744 	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
   1745 }
   1746 /*
   1747  * Shrink the file system.
   1748  */
   1749 static void
   1750 shrink(void)
   1751 {
   1752 	int i;
   1753 
   1754 	if (makegeometry(1)) {
   1755 		printf("New fs size %"PRIu64" = old fs size %"PRIu64
   1756 		    ", not shrinking.\n", newsb->fs_size, oldsb->fs_size);
   1757 		return;
   1758 	}
   1759 
   1760 	/* Let's make sure we're not being shrunk into oblivion. */
   1761 	if (newsb->fs_ncg < 1)
   1762 		errx(EXIT_FAILURE, "Size too small - file system would "
   1763 		    "have no cylinders");
   1764 
   1765 	if (verbose) {
   1766 		printf("Shrinking fs from %"PRIu64" blocks to %"PRIu64
   1767 		    " blocks.\n", oldsb->fs_size, newsb->fs_size);
   1768 	}
   1769 
   1770 	/* Load the inodes off disk - we'll need 'em. */
   1771 	loadinodes();
   1772 
   1773 	/* Update the timestamp. */
   1774 	newsb->fs_time = timestamp();
   1775 
   1776 	/* Initialize for block motion. */
   1777 	blkmove_init();
   1778 	/* Update csum size, then fix up for the new size */
   1779 	newsb->fs_cssize = ffs_fragroundup(newsb,
   1780 	    newsb->fs_ncg * sizeof(struct csum));
   1781 	csum_fixup();
   1782 	/* Evict data from any cgs being wholly eliminated */
   1783 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
   1784 		int base;
   1785 		int dlow;
   1786 		int dhigh;
   1787 		int dmax;
   1788 		base = cgbase(oldsb, i);
   1789 		dlow = cgsblock(oldsb, i) - base;
   1790 		dhigh = cgdmin(oldsb, i) - base;
   1791 		dmax = oldsb->fs_size - base;
   1792 		if (dmax > cgs[i]->cg_ndblk)
   1793 			dmax = cgs[i]->cg_ndblk;
   1794 		evict_data(cgs[i], 0, dlow);
   1795 		evict_data(cgs[i], dhigh, dmax - dhigh);
   1796 		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
   1797 		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
   1798 		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
   1799 		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
   1800 	}
   1801 	/* Update the new last cg. */
   1802 	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
   1803 	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
   1804 	/* Is the new last cg partial?  If so, evict any data from the part
   1805 	 * being shrunken away. */
   1806 	if (newsb->fs_size % newsb->fs_fpg) {
   1807 		struct cg *cg;
   1808 		int oldcgsize;
   1809 		int newcgsize;
   1810 		cg = cgs[newsb->fs_ncg - 1];
   1811 		newcgsize = newsb->fs_size % newsb->fs_fpg;
   1812 		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
   1813 		    oldsb->fs_fpg);
   1814 		if (oldcgsize > oldsb->fs_fpg)
   1815 			oldcgsize = oldsb->fs_fpg;
   1816 		evict_data(cg, newcgsize, oldcgsize - newcgsize);
   1817 		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
   1818 	}
   1819 	/* Find out whether we would run out of inodes.  (Note we
   1820 	 * haven't actually done anything to the file system yet; all
   1821 	 * those evict_data calls just update blkmove.) */
   1822 	{
   1823 		int slop;
   1824 		slop = 0;
   1825 		for (i = 0; i < newsb->fs_ncg; i++)
   1826 			slop += cgs[i]->cg_cs.cs_nifree;
   1827 		for (; i < oldsb->fs_ncg; i++)
   1828 			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
   1829 		if (slop < 0)
   1830 			errx(EXIT_FAILURE, "Sorry, would run out of inodes");
   1831 	}
   1832 	/* Copy data, then update pointers to data.  See the comment
   1833 	 * header on perform_data_move for ordering considerations. */
   1834 	perform_data_move();
   1835 	update_for_data_move();
   1836 	/* Now do inodes.  Initialize, evict, move, update - see the
   1837 	 * comment header on perform_inode_move. */
   1838 	inomove_init();
   1839 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
   1840 		evict_inodes(cgs[i]);
   1841 	perform_inode_move();
   1842 	flush_inodes();
   1843 	update_for_inode_move();
   1844 	/* Recompute all the bitmaps; most of them probably need it anyway,
   1845 	 * the rest are just paranoia and not wanting to have to bother
   1846 	 * keeping track of exactly which ones require it. */
   1847 	for (i = 0; i < newsb->fs_ncg; i++)
   1848 		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
   1849 	/* Update the cg_old_ncyl value for the last cylinder. */
   1850 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
   1851 		cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
   1852 		    newsb->fs_old_ncyl % newsb->fs_old_cpg;
   1853 	/* Make fs_dsize match the new reality. */
   1854 	recompute_fs_dsize();
   1855 }
   1856 /*
   1857  * Recompute the block totals, block cluster summaries, and rotational
   1858  *  position summaries, for a given cg (specified by number), based on
   1859  *  its free-frag bitmap (cg_blksfree()[]).
   1860  */
   1861 static void
   1862 rescan_blkmaps(int cgn)
   1863 {
   1864 	struct cg *cg;
   1865 	int f;
   1866 	int b;
   1867 	int blkfree;
   1868 	int blkrun;
   1869 	int fragrun;
   1870 	int fwb;
   1871 
   1872 	cg = cgs[cgn];
   1873 	/* Subtract off the current totals from the sb's summary info */
   1874 	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
   1875 	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
   1876 	/* Clear counters and bitmaps. */
   1877 	cg->cg_cs.cs_nffree = 0;
   1878 	cg->cg_cs.cs_nbfree = 0;
   1879 	memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0]));
   1880 	memset(&old_cg_blktot(cg, 0)[0], 0,
   1881 	    newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
   1882 	memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0,
   1883 	    newsb->fs_old_cpg * newsb->fs_old_nrpos *
   1884 	    sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
   1885 	if (newsb->fs_contigsumsize > 0) {
   1886 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
   1887 		memset(&cg_clustersum(cg, 0)[1], 0,
   1888 		    newsb->fs_contigsumsize *
   1889 		    sizeof(cg_clustersum(cg, 0)[1]));
   1890 		if (is_ufs2)
   1891 			memset(&cg_clustersfree(cg, 0)[0], 0,
   1892 			    howmany(newsb->fs_fpg / NSPB(newsb), NBBY));
   1893 		else
   1894 			memset(&cg_clustersfree(cg, 0)[0], 0,
   1895 			    howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
   1896 				NSPB(newsb), NBBY));
   1897 	}
   1898 	/* Scan the free-frag bitmap.  Runs of free frags are kept
   1899 	 * track of with fragrun, and recorded into cg_frsum[] and
   1900 	 * cg_cs.cs_nffree; on each block boundary, entire free blocks
   1901 	 * are recorded as well. */
   1902 	blkfree = 1;
   1903 	blkrun = 0;
   1904 	fragrun = 0;
   1905 	f = 0;
   1906 	b = 0;
   1907 	fwb = 0;
   1908 	while (f < cg->cg_ndblk) {
   1909 		if (bit_is_set(cg_blksfree(cg, 0), f)) {
   1910 			fragrun++;
   1911 		} else {
   1912 			blkfree = 0;
   1913 			if (fragrun > 0) {
   1914 				cg->cg_frsum[fragrun]++;
   1915 				cg->cg_cs.cs_nffree += fragrun;
   1916 			}
   1917 			fragrun = 0;
   1918 		}
   1919 		f++;
   1920 		fwb++;
   1921 		if (fwb >= newsb->fs_frag) {
   1922 			if (blkfree) {
   1923 				cg->cg_cs.cs_nbfree++;
   1924 				if (newsb->fs_contigsumsize > 0)
   1925 					set_bits(cg_clustersfree(cg, 0), b, 1);
   1926 				if (is_ufs2 == 0) {
   1927 					old_cg_blktot(cg, 0)[
   1928 						old_cbtocylno(newsb,
   1929 						    f - newsb->fs_frag)]++;
   1930 					old_cg_blks(newsb, cg,
   1931 					    old_cbtocylno(newsb,
   1932 						f - newsb->fs_frag),
   1933 					    0)[old_cbtorpos(newsb,
   1934 						    f - newsb->fs_frag)]++;
   1935 				}
   1936 				blkrun++;
   1937 			} else {
   1938 				if (fragrun > 0) {
   1939 					cg->cg_frsum[fragrun]++;
   1940 					cg->cg_cs.cs_nffree += fragrun;
   1941 				}
   1942 				if (newsb->fs_contigsumsize > 0) {
   1943 					if (blkrun > 0) {
   1944 						cg_clustersum(cg, 0)[(blkrun
   1945 						    > newsb->fs_contigsumsize)
   1946 						    ? newsb->fs_contigsumsize
   1947 						    : blkrun]++;
   1948 					}
   1949 				}
   1950 				blkrun = 0;
   1951 			}
   1952 			fwb = 0;
   1953 			b++;
   1954 			blkfree = 1;
   1955 			fragrun = 0;
   1956 		}
   1957 	}
   1958 	if (fragrun > 0) {
   1959 		cg->cg_frsum[fragrun]++;
   1960 		cg->cg_cs.cs_nffree += fragrun;
   1961 	}
   1962 	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
   1963 		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
   1964 		    newsb->fs_contigsumsize : blkrun]++;
   1965 	}
   1966 	/*
   1967          * Put the updated summary info back into csums, and add it
   1968          * back into the sb's summary info.  Then mark the cg dirty.
   1969          */
   1970 	csums[cgn] = cg->cg_cs;
   1971 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
   1972 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
   1973 	cgflags[cgn] |= CGF_DIRTY;
   1974 }
   1975 /*
   1976  * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
   1977  *  values, for a cg, based on the in-core inodes for that cg.
   1978  */
   1979 static void
   1980 rescan_inomaps(int cgn)
   1981 {
   1982 	struct cg *cg;
   1983 	int inum;
   1984 	int iwc;
   1985 
   1986 	cg = cgs[cgn];
   1987 	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
   1988 	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
   1989 	cg->cg_cs.cs_ndir = 0;
   1990 	cg->cg_cs.cs_nifree = 0;
   1991 	memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY));
   1992 	inum = cgn * newsb->fs_ipg;
   1993 	if (cgn == 0) {
   1994 		set_bits(cg_inosused(cg, 0), 0, 2);
   1995 		iwc = 2;
   1996 		inum += 2;
   1997 	} else {
   1998 		iwc = 0;
   1999 	}
   2000 	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
   2001 		switch (DIP(inodes + inum, di_mode) & IFMT) {
   2002 		case 0:
   2003 			cg->cg_cs.cs_nifree++;
   2004 			break;
   2005 		case IFDIR:
   2006 			cg->cg_cs.cs_ndir++;
   2007 			/* FALLTHROUGH */
   2008 		default:
   2009 			set_bits(cg_inosused(cg, 0), iwc, 1);
   2010 			break;
   2011 		}
   2012 	}
   2013 	csums[cgn] = cg->cg_cs;
   2014 	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
   2015 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
   2016 	cgflags[cgn] |= CGF_DIRTY;
   2017 }
   2018 /*
   2019  * Flush cgs to disk, recomputing anything they're marked as needing.
   2020  */
   2021 static void
   2022 flush_cgs(void)
   2023 {
   2024 	int i;
   2025 
   2026 	for (i = 0; i < newsb->fs_ncg; i++) {
   2027 		progress_bar(special, "flush cg",
   2028 		    i, newsb->fs_ncg - 1);
   2029 		if (cgflags[i] & CGF_BLKMAPS) {
   2030 			rescan_blkmaps(i);
   2031 		}
   2032 		if (cgflags[i] & CGF_INOMAPS) {
   2033 			rescan_inomaps(i);
   2034 		}
   2035 		if (cgflags[i] & CGF_DIRTY) {
   2036 			cgs[i]->cg_rotor = 0;
   2037 			cgs[i]->cg_frotor = 0;
   2038 			cgs[i]->cg_irotor = 0;
   2039 			if (needswap)
   2040 				ffs_cg_swap(cgs[i],cgs[i],newsb);
   2041 			writeat(FFS_FSBTODB(newsb, cgtod(newsb, i)), cgs[i],
   2042 			    cgblksz);
   2043 		}
   2044 	}
   2045 	if (needswap)
   2046 		ffs_csum_swap(csums,csums,newsb->fs_cssize);
   2047 	writeat(FFS_FSBTODB(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
   2048 
   2049 	progress_done();
   2050 }
   2051 /*
   2052  * Write the superblock, both to the main superblock and to each cg's
   2053  *  alternative superblock.
   2054  */
   2055 static void
   2056 write_sbs(void)
   2057 {
   2058 	int i;
   2059 
   2060 	if (newsb->fs_magic == FS_UFS1_MAGIC &&
   2061 	    (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
   2062 		newsb->fs_old_time = newsb->fs_time;
   2063 	    	newsb->fs_old_size = newsb->fs_size;
   2064 	    	/* we don't update fs_csaddr */
   2065 	    	newsb->fs_old_dsize = newsb->fs_dsize;
   2066 		newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
   2067 		newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
   2068 		newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
   2069 		newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
   2070 		/* fill fs_old_postbl_start with 256 bytes of 0xff? */
   2071 	}
   2072 	/* copy newsb back to oldsb, so we can use it for offsets if
   2073 	   newsb has been swapped for writing to disk */
   2074 	memcpy(oldsb, newsb, SBLOCKSIZE);
   2075 	if (needswap)
   2076 		ffs_sb_swap(newsb,newsb);
   2077 	writeat(where /  DEV_BSIZE, newsb, SBLOCKSIZE);
   2078 	for (i = 0; i < oldsb->fs_ncg; i++) {
   2079 		progress_bar(special, "write sb",
   2080 		    i, oldsb->fs_ncg - 1);
   2081 		writeat(FFS_FSBTODB(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE);
   2082 	}
   2083 
   2084 	progress_done();
   2085 }
   2086 
   2087 /*
   2088  * Check to see wether new size changes the filesystem
   2089  *  return exit code
   2090  */
   2091 static int
   2092 checkonly(void)
   2093 {
   2094 	if (makegeometry(0)) {
   2095 		if (verbose) {
   2096 			printf("Wouldn't change: already %" PRId64
   2097 			    " blocks\n", (int64_t)oldsb->fs_size);
   2098 		}
   2099 		return 1;
   2100 	}
   2101 
   2102 	if (verbose) {
   2103 		printf("Would change: newsize: %" PRId64 " oldsize: %"
   2104 		    PRId64 " fsdb: %" PRId64 "\n", FFS_DBTOFSB(oldsb, newsize),
   2105 		    (int64_t)oldsb->fs_size,
   2106 		    (int64_t)oldsb->fs_fsbtodb);
   2107 	}
   2108 	return 0;
   2109 }
   2110 
   2111 static off_t
   2112 get_dev_size(char *dev_name)
   2113 {
   2114 	struct dkwedge_info dkw;
   2115 	struct partition *pp;
   2116 	struct disklabel lp;
   2117 	struct stat st;
   2118 	size_t ptn;
   2119 
   2120 	/* Get info about partition/wedge */
   2121 	if (ioctl(fd, DIOCGWEDGEINFO, &dkw) != -1)
   2122 		return dkw.dkw_size;
   2123 	if (ioctl(fd, DIOCGDINFO, &lp) != -1) {
   2124 		ptn = strchr(dev_name, '\0')[-1] - 'a';
   2125 		if (ptn >= lp.d_npartitions)
   2126 			return 0;
   2127 		pp = &lp.d_partitions[ptn];
   2128 		return pp->p_size;
   2129 	}
   2130 	if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
   2131 		return st.st_size / DEV_BSIZE;
   2132 
   2133 	return 0;
   2134 }
   2135 
   2136 /*
   2137  * main().
   2138  */
   2139 int
   2140 main(int argc, char **argv)
   2141 {
   2142 	int ch;
   2143 	int CheckOnlyFlag;
   2144 	int ExpertFlag;
   2145 	int SFlag;
   2146 	size_t i;
   2147 
   2148 	char reply[5];
   2149 
   2150 	newsize = 0;
   2151 	ExpertFlag = 0;
   2152 	SFlag = 0;
   2153         CheckOnlyFlag = 0;
   2154 
   2155 	while ((ch = getopt(argc, argv, "cps:vy")) != -1) {
   2156 		switch (ch) {
   2157                 case 'c':
   2158 			CheckOnlyFlag = 1;
   2159 			break;
   2160 		case 'p':
   2161 			progress = 1;
   2162 			break;
   2163 		case 's':
   2164 			SFlag = 1;
   2165 			newsize = strtoll(optarg, NULL, 10);
   2166 			if(newsize < 1) {
   2167 				usage();
   2168 			}
   2169 			break;
   2170 		case 'v':
   2171 			verbose = 1;
   2172 			break;
   2173 		case 'y':
   2174 			ExpertFlag = 1;
   2175 			break;
   2176 		case '?':
   2177 			/* FALLTHROUGH */
   2178 		default:
   2179 			usage();
   2180 		}
   2181 	}
   2182 	argc -= optind;
   2183 	argv += optind;
   2184 
   2185 	if (argc != 1) {
   2186 		usage();
   2187 	}
   2188 
   2189 	special = *argv;
   2190 
   2191 	if (ExpertFlag == 0 && CheckOnlyFlag == 0) {
   2192 		printf("It's required to manually run fsck on file system "
   2193 		    "before you can resize it\n\n"
   2194 		    " Did you run fsck on your disk (Yes/No) ? ");
   2195 		fgets(reply, (int)sizeof(reply), stdin);
   2196 		if (strcasecmp(reply, "Yes\n")) {
   2197 			printf("\n Nothing done \n");
   2198 			exit(EXIT_SUCCESS);
   2199 		}
   2200 	}
   2201 
   2202 	fd = open(special, O_RDWR, 0);
   2203 	if (fd < 0)
   2204 		err(EXIT_FAILURE, "Can't open `%s'", special);
   2205 	checksmallio();
   2206 
   2207 	if (SFlag == 0) {
   2208 		newsize = get_dev_size(special);
   2209 		if (newsize == 0)
   2210 			err(EXIT_FAILURE,
   2211 			    "Can't resize file system, newsize not known.");
   2212 	}
   2213 
   2214 	oldsb = (struct fs *) & sbbuf;
   2215 	newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
   2216 	for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
   2217 		readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
   2218 		switch (oldsb->fs_magic) {
   2219 		case FS_UFS2_MAGIC:
   2220 			is_ufs2 = 1;
   2221 			/* FALLTHROUGH */
   2222 		case FS_UFS1_MAGIC:
   2223 			needswap = 0;
   2224 			break;
   2225 		case FS_UFS2_MAGIC_SWAPPED:
   2226  			is_ufs2 = 1;
   2227 			/* FALLTHROUGH */
   2228 		case FS_UFS1_MAGIC_SWAPPED:
   2229 			needswap = 1;
   2230 			break;
   2231 		default:
   2232 			continue;
   2233 		}
   2234 		if (!is_ufs2 && where == SBLOCK_UFS2)
   2235 			continue;
   2236 		break;
   2237 	}
   2238 	if (where == (off_t)-1)
   2239 		errx(EXIT_FAILURE, "Bad magic number");
   2240 	if (needswap)
   2241 		ffs_sb_swap(oldsb,oldsb);
   2242 	if (oldsb->fs_magic == FS_UFS1_MAGIC &&
   2243 	    (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
   2244 		oldsb->fs_csaddr = oldsb->fs_old_csaddr;
   2245 		oldsb->fs_size = oldsb->fs_old_size;
   2246 		oldsb->fs_dsize = oldsb->fs_old_dsize;
   2247 		oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
   2248 		oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
   2249 		oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
   2250 		oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
   2251 		/* any others? */
   2252 		printf("Resizing with ffsv1 superblock\n");
   2253 	}
   2254 
   2255 	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
   2256 	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
   2257 	if (oldsb->fs_ipg % FFS_INOPB(oldsb))
   2258 		errx(EXIT_FAILURE, "ipg[%d] %% FFS_INOPB[%d] != 0",
   2259 		    (int) oldsb->fs_ipg, (int) FFS_INOPB(oldsb));
   2260 	/* The superblock is bigger than struct fs (there are trailing
   2261 	 * tables, of non-fixed size); make sure we copy the whole
   2262 	 * thing.  SBLOCKSIZE may be an over-estimate, but we do this
   2263 	 * just once, so being generous is cheap. */
   2264 	memcpy(newsb, oldsb, SBLOCKSIZE);
   2265 
   2266 	if (progress) {
   2267 		progress_ttywidth(0);
   2268 		signal(SIGWINCH, progress_ttywidth);
   2269 	}
   2270 
   2271 	loadcgs();
   2272 
   2273 	if (progress && !CheckOnlyFlag) {
   2274 		progress_switch(progress);
   2275 		progress_init();
   2276 	}
   2277 
   2278 	if (newsize > FFS_FSBTODB(oldsb, oldsb->fs_size)) {
   2279 		if (CheckOnlyFlag)
   2280 			exit(checkonly());
   2281 		grow();
   2282 	} else if (newsize < FFS_FSBTODB(oldsb, oldsb->fs_size)) {
   2283 		if (is_ufs2)
   2284 			errx(EXIT_FAILURE,"shrinking not supported for ufs2");
   2285 		if (CheckOnlyFlag)
   2286 			exit(checkonly());
   2287 		shrink();
   2288 	} else {
   2289 		if (CheckOnlyFlag)
   2290 			exit(checkonly());
   2291 		if (verbose)
   2292 			printf("No change requested: already %" PRId64
   2293 			    " blocks\n", (int64_t)oldsb->fs_size);
   2294 	}
   2295 
   2296 	flush_cgs();
   2297 	write_sbs();
   2298 	if (isplainfile())
   2299 		ftruncate(fd,newsize * DEV_BSIZE);
   2300 	return 0;
   2301 }
   2302 
   2303 static void
   2304 usage(void)
   2305 {
   2306 
   2307 	(void)fprintf(stderr, "usage: %s [-cvy] [-s size] special\n",
   2308 	    getprogname());
   2309 	exit(EXIT_FAILURE);
   2310 }
   2311