1 1.14 msaitoh /* $NetBSD: radix.c,v 1.14 2021/12/05 07:15:03 msaitoh Exp $ */ 2 1.2 thorpej 3 1.1 thorpej /* 4 1.1 thorpej * Copyright (c) 1988, 1989, 1993 5 1.1 thorpej * The Regents of the University of California. All rights reserved. 6 1.1 thorpej * 7 1.1 thorpej * Redistribution and use in source and binary forms, with or without 8 1.1 thorpej * modification, are permitted provided that the following conditions 9 1.1 thorpej * are met: 10 1.1 thorpej * 1. Redistributions of source code must retain the above copyright 11 1.1 thorpej * notice, this list of conditions and the following disclaimer. 12 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright 13 1.1 thorpej * notice, this list of conditions and the following disclaimer in the 14 1.1 thorpej * documentation and/or other materials provided with the distribution. 15 1.1 thorpej * 3. All advertising materials mentioning features or use of this software 16 1.7 christos * must display the following acknowledgment: 17 1.1 thorpej * This product includes software developed by the University of 18 1.1 thorpej * California, Berkeley and its contributors. 19 1.1 thorpej * 4. Neither the name of the University nor the names of its contributors 20 1.1 thorpej * may be used to endorse or promote products derived from this software 21 1.1 thorpej * without specific prior written permission. 22 1.1 thorpej * 23 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 1.1 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 1.1 thorpej * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 1.1 thorpej * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 1.1 thorpej * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 1.1 thorpej * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 1.1 thorpej * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 1.1 thorpej * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 1.1 thorpej * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 1.1 thorpej * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 1.1 thorpej * SUCH DAMAGE. 34 1.1 thorpej * 35 1.1 thorpej * @(#)radix.c 8.4 (Berkeley) 11/2/94 36 1.1 thorpej */ 37 1.1 thorpej 38 1.1 thorpej /* 39 1.1 thorpej * Routines to build and maintain radix trees for routing lookups. 40 1.1 thorpej */ 41 1.2 thorpej 42 1.2 thorpej #include "defs.h" 43 1.11 christos 44 1.11 christos #ifdef __NetBSD__ 45 1.14 msaitoh __RCSID("$NetBSD: radix.c,v 1.14 2021/12/05 07:15:03 msaitoh Exp $"); 46 1.11 christos #elif defined(__FreeBSD__) 47 1.11 christos __RCSID("$FreeBSD$"); 48 1.11 christos #else 49 1.11 christos __RCSID("Revision: 2.23 "); 50 1.11 christos #ident "Revision: 2.23 " 51 1.11 christos #endif 52 1.2 thorpej 53 1.1 thorpej #define log(x, msg) syslog(x, msg) 54 1.1 thorpej #define panic(s) {log(LOG_ERR,s); exit(1);} 55 1.3 christos #define min(a,b) (((a)<(b))?(a):(b)) 56 1.1 thorpej 57 1.1 thorpej int max_keylen; 58 1.1 thorpej struct radix_mask *rn_mkfreelist; 59 1.1 thorpej struct radix_node_head *mask_rnhead; 60 1.1 thorpej static char *addmask_key; 61 1.1 thorpej static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1}; 62 1.1 thorpej static char *rn_zeros, *rn_ones; 63 1.1 thorpej 64 1.1 thorpej #define rn_masktop (mask_rnhead->rnh_treetop) 65 1.1 thorpej #undef Bcmp 66 1.6 lukem #define Bcmp(a, b, l) (l == 0 ? 0 \ 67 1.8 christos : memcmp((caddr_t)(a), (caddr_t)(b), (size_t)l)) 68 1.1 thorpej 69 1.7 christos static int rn_satisfies_leaf(char *, struct radix_node *, int); 70 1.1 thorpej 71 1.1 thorpej /* 72 1.1 thorpej * The data structure for the keys is a radix tree with one way 73 1.1 thorpej * branching removed. The index rn_b at an internal node n represents a bit 74 1.1 thorpej * position to be tested. The tree is arranged so that all descendants 75 1.1 thorpej * of a node n have keys whose bits all agree up to position rn_b - 1. 76 1.1 thorpej * (We say the index of n is rn_b.) 77 1.1 thorpej * 78 1.1 thorpej * There is at least one descendant which has a one bit at position rn_b, 79 1.1 thorpej * and at least one with a zero there. 80 1.1 thorpej * 81 1.1 thorpej * A route is determined by a pair of key and mask. We require that the 82 1.1 thorpej * bit-wise logical and of the key and mask to be the key. 83 1.1 thorpej * We define the index of a route to associated with the mask to be 84 1.1 thorpej * the first bit number in the mask where 0 occurs (with bit number 0 85 1.1 thorpej * representing the highest order bit). 86 1.3 christos * 87 1.1 thorpej * We say a mask is normal if every bit is 0, past the index of the mask. 88 1.1 thorpej * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b, 89 1.1 thorpej * and m is a normal mask, then the route applies to every descendant of n. 90 1.1 thorpej * If the index(m) < rn_b, this implies the trailing last few bits of k 91 1.1 thorpej * before bit b are all 0, (and hence consequently true of every descendant 92 1.1 thorpej * of n), so the route applies to all descendants of the node as well. 93 1.3 christos * 94 1.1 thorpej * Similar logic shows that a non-normal mask m such that 95 1.1 thorpej * index(m) <= index(n) could potentially apply to many children of n. 96 1.1 thorpej * Thus, for each non-host route, we attach its mask to a list at an internal 97 1.3 christos * node as high in the tree as we can go. 98 1.1 thorpej * 99 1.1 thorpej * The present version of the code makes use of normal routes in short- 100 1.13 wiz * circuiting an explicit mask and compare operation when testing whether 101 1.1 thorpej * a key satisfies a normal route, and also in remembering the unique leaf 102 1.1 thorpej * that governs a subtree. 103 1.1 thorpej */ 104 1.1 thorpej 105 1.1 thorpej struct radix_node * 106 1.3 christos rn_search(void *v_arg, 107 1.3 christos struct radix_node *head) 108 1.1 thorpej { 109 1.4 lukem struct radix_node *x; 110 1.4 lukem caddr_t v; 111 1.1 thorpej 112 1.1 thorpej for (x = head, v = v_arg; x->rn_b >= 0;) { 113 1.1 thorpej if (x->rn_bmask & v[x->rn_off]) 114 1.1 thorpej x = x->rn_r; 115 1.1 thorpej else 116 1.1 thorpej x = x->rn_l; 117 1.1 thorpej } 118 1.1 thorpej return (x); 119 1.1 thorpej } 120 1.1 thorpej 121 1.1 thorpej struct radix_node * 122 1.3 christos rn_search_m(void *v_arg, 123 1.3 christos struct radix_node *head, 124 1.3 christos void *m_arg) 125 1.1 thorpej { 126 1.4 lukem struct radix_node *x; 127 1.4 lukem caddr_t v = v_arg, m = m_arg; 128 1.1 thorpej 129 1.1 thorpej for (x = head; x->rn_b >= 0;) { 130 1.1 thorpej if ((x->rn_bmask & m[x->rn_off]) && 131 1.1 thorpej (x->rn_bmask & v[x->rn_off])) 132 1.1 thorpej x = x->rn_r; 133 1.1 thorpej else 134 1.1 thorpej x = x->rn_l; 135 1.1 thorpej } 136 1.1 thorpej return x; 137 1.1 thorpej } 138 1.1 thorpej 139 1.1 thorpej int 140 1.3 christos rn_refines(void* m_arg, void *n_arg) 141 1.1 thorpej { 142 1.4 lukem caddr_t m = m_arg, n = n_arg; 143 1.4 lukem caddr_t lim, lim2 = lim = n + *(u_char *)n; 144 1.1 thorpej int longer = (*(u_char *)n++) - (int)(*(u_char *)m++); 145 1.1 thorpej int masks_are_equal = 1; 146 1.1 thorpej 147 1.1 thorpej if (longer > 0) 148 1.1 thorpej lim -= longer; 149 1.1 thorpej while (n < lim) { 150 1.1 thorpej if (*n & ~(*m)) 151 1.1 thorpej return 0; 152 1.1 thorpej if (*n++ != *m++) 153 1.1 thorpej masks_are_equal = 0; 154 1.1 thorpej } 155 1.1 thorpej while (n < lim2) 156 1.1 thorpej if (*n++) 157 1.1 thorpej return 0; 158 1.1 thorpej if (masks_are_equal && (longer < 0)) 159 1.1 thorpej for (lim2 = m - longer; m < lim2; ) 160 1.1 thorpej if (*m++) 161 1.1 thorpej return 1; 162 1.1 thorpej return (!masks_are_equal); 163 1.1 thorpej } 164 1.1 thorpej 165 1.1 thorpej struct radix_node * 166 1.4 lukem rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head) 167 1.1 thorpej { 168 1.4 lukem struct radix_node *x; 169 1.1 thorpej caddr_t netmask = 0; 170 1.1 thorpej 171 1.1 thorpej if (m_arg) { 172 1.1 thorpej if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0) 173 1.1 thorpej return (0); 174 1.1 thorpej netmask = x->rn_key; 175 1.1 thorpej } 176 1.1 thorpej x = rn_match(v_arg, head); 177 1.1 thorpej if (x && netmask) { 178 1.1 thorpej while (x && x->rn_mask != netmask) 179 1.1 thorpej x = x->rn_dupedkey; 180 1.1 thorpej } 181 1.1 thorpej return x; 182 1.1 thorpej } 183 1.1 thorpej 184 1.1 thorpej static int 185 1.7 christos rn_satisfies_leaf(char *trial, 186 1.4 lukem struct radix_node *leaf, 187 1.1 thorpej int skip) 188 1.1 thorpej { 189 1.4 lukem char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; 190 1.1 thorpej char *cplim; 191 1.1 thorpej int length = min(*(u_char *)cp, *(u_char *)cp2); 192 1.1 thorpej 193 1.1 thorpej if (cp3 == 0) 194 1.1 thorpej cp3 = rn_ones; 195 1.1 thorpej else 196 1.1 thorpej length = min(length, *(u_char *)cp3); 197 1.1 thorpej cplim = cp + length; cp3 += skip; cp2 += skip; 198 1.1 thorpej for (cp += skip; cp < cplim; cp++, cp2++, cp3++) 199 1.1 thorpej if ((*cp ^ *cp2) & *cp3) 200 1.1 thorpej return 0; 201 1.1 thorpej return 1; 202 1.1 thorpej } 203 1.1 thorpej 204 1.1 thorpej struct radix_node * 205 1.3 christos rn_match(void *v_arg, 206 1.3 christos struct radix_node_head *head) 207 1.1 thorpej { 208 1.1 thorpej caddr_t v = v_arg; 209 1.4 lukem struct radix_node *t = head->rnh_treetop, *x; 210 1.4 lukem caddr_t cp = v, cp2; 211 1.1 thorpej caddr_t cplim; 212 1.1 thorpej struct radix_node *saved_t, *top = t; 213 1.1 thorpej int off = t->rn_off, vlen = *(u_char *)cp, matched_off; 214 1.4 lukem int test, b, rn_b; 215 1.1 thorpej 216 1.1 thorpej /* 217 1.1 thorpej * Open code rn_search(v, top) to avoid overhead of extra 218 1.1 thorpej * subroutine call. 219 1.1 thorpej */ 220 1.1 thorpej for (; t->rn_b >= 0; ) { 221 1.1 thorpej if (t->rn_bmask & cp[t->rn_off]) 222 1.1 thorpej t = t->rn_r; 223 1.1 thorpej else 224 1.1 thorpej t = t->rn_l; 225 1.1 thorpej } 226 1.1 thorpej /* 227 1.1 thorpej * See if we match exactly as a host destination 228 1.1 thorpej * or at least learn how many bits match, for normal mask finesse. 229 1.1 thorpej * 230 1.1 thorpej * It doesn't hurt us to limit how many bytes to check 231 1.1 thorpej * to the length of the mask, since if it matches we had a genuine 232 1.1 thorpej * match and the leaf we have is the most specific one anyway; 233 1.1 thorpej * if it didn't match with a shorter length it would fail 234 1.1 thorpej * with a long one. This wins big for class B&C netmasks which 235 1.1 thorpej * are probably the most common case... 236 1.1 thorpej */ 237 1.1 thorpej if (t->rn_mask) 238 1.1 thorpej vlen = *(u_char *)t->rn_mask; 239 1.1 thorpej cp += off; cp2 = t->rn_key + off; cplim = v + vlen; 240 1.1 thorpej for (; cp < cplim; cp++, cp2++) 241 1.1 thorpej if (*cp != *cp2) 242 1.1 thorpej goto on1; 243 1.1 thorpej /* 244 1.1 thorpej * This extra grot is in case we are explicitly asked 245 1.1 thorpej * to look up the default. Ugh! 246 1.3 christos * Or 255.255.255.255 247 1.3 christos * 248 1.3 christos * In this case, we have a complete match of the key. Unless 249 1.3 christos * the node is one of the roots, we are finished. 250 1.14 msaitoh * If it is the zeros root, then take what we have, preferring 251 1.3 christos * any real data. 252 1.3 christos * If it is the ones root, then pretend the target key was followed 253 1.3 christos * by a byte of zeros. 254 1.3 christos */ 255 1.3 christos if (!(t->rn_flags & RNF_ROOT)) 256 1.3 christos return t; /* not a root */ 257 1.3 christos if (t->rn_dupedkey) { 258 1.1 thorpej t = t->rn_dupedkey; 259 1.3 christos return t; /* have some real data */ 260 1.3 christos } 261 1.3 christos if (*(cp-1) == 0) 262 1.3 christos return t; /* not the ones root */ 263 1.3 christos b = 0; /* fake a zero after 255.255.255.255 */ 264 1.3 christos goto on2; 265 1.1 thorpej on1: 266 1.1 thorpej test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ 267 1.1 thorpej for (b = 7; (test >>= 1) > 0;) 268 1.1 thorpej b--; 269 1.3 christos on2: 270 1.1 thorpej matched_off = cp - v; 271 1.1 thorpej b += matched_off << 3; 272 1.1 thorpej rn_b = -1 - b; 273 1.1 thorpej /* 274 1.1 thorpej * If there is a host route in a duped-key chain, it will be first. 275 1.1 thorpej */ 276 1.1 thorpej if ((saved_t = t)->rn_mask == 0) 277 1.1 thorpej t = t->rn_dupedkey; 278 1.7 christos for (; t; t = t->rn_dupedkey) { 279 1.1 thorpej /* 280 1.1 thorpej * Even if we don't match exactly as a host, 281 1.1 thorpej * we may match if the leaf we wound up at is 282 1.1 thorpej * a route to a net. 283 1.1 thorpej */ 284 1.1 thorpej if (t->rn_flags & RNF_NORMAL) { 285 1.1 thorpej if (rn_b <= t->rn_b) 286 1.1 thorpej return t; 287 1.7 christos } else if (rn_satisfies_leaf(v, t, matched_off)) { 288 1.8 christos return t; 289 1.7 christos } 290 1.7 christos } 291 1.1 thorpej t = saved_t; 292 1.1 thorpej /* start searching up the tree */ 293 1.1 thorpej do { 294 1.4 lukem struct radix_mask *m; 295 1.1 thorpej t = t->rn_p; 296 1.2 thorpej if ((m = t->rn_mklist)) { 297 1.1 thorpej /* 298 1.1 thorpej * If non-contiguous masks ever become important 299 1.1 thorpej * we can restore the masking and open coding of 300 1.1 thorpej * the search and satisfaction test and put the 301 1.1 thorpej * calculation of "off" back before the "do". 302 1.1 thorpej */ 303 1.1 thorpej do { 304 1.1 thorpej if (m->rm_flags & RNF_NORMAL) { 305 1.1 thorpej if (rn_b <= m->rm_b) 306 1.1 thorpej return (m->rm_leaf); 307 1.1 thorpej } else { 308 1.1 thorpej off = min(t->rn_off, matched_off); 309 1.1 thorpej x = rn_search_m(v, t, m->rm_mask); 310 1.1 thorpej while (x && x->rn_mask != m->rm_mask) 311 1.1 thorpej x = x->rn_dupedkey; 312 1.7 christos if (x && rn_satisfies_leaf(v, x, off)) 313 1.1 thorpej return x; 314 1.1 thorpej } 315 1.2 thorpej } while ((m = m->rm_mklist)); 316 1.1 thorpej } 317 1.1 thorpej } while (t != top); 318 1.1 thorpej return 0; 319 1.1 thorpej } 320 1.3 christos 321 1.1 thorpej #ifdef RN_DEBUG 322 1.1 thorpej int rn_nodenum; 323 1.1 thorpej struct radix_node *rn_clist; 324 1.1 thorpej int rn_saveinfo; 325 1.1 thorpej int rn_debug = 1; 326 1.1 thorpej #endif 327 1.1 thorpej 328 1.1 thorpej struct radix_node * 329 1.3 christos rn_newpair(void *v, int b, struct radix_node nodes[2]) 330 1.1 thorpej { 331 1.4 lukem struct radix_node *tt = nodes, *t = tt + 1; 332 1.1 thorpej t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7); 333 1.1 thorpej t->rn_l = tt; t->rn_off = b >> 3; 334 1.1 thorpej tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t; 335 1.1 thorpej tt->rn_flags = t->rn_flags = RNF_ACTIVE; 336 1.1 thorpej #ifdef RN_DEBUG 337 1.1 thorpej tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 338 1.1 thorpej tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; 339 1.1 thorpej #endif 340 1.1 thorpej return t; 341 1.1 thorpej } 342 1.1 thorpej 343 1.1 thorpej struct radix_node * 344 1.3 christos rn_insert(void* v_arg, 345 1.3 christos struct radix_node_head *head, 346 1.3 christos int *dupentry, 347 1.3 christos struct radix_node nodes[2]) 348 1.1 thorpej { 349 1.1 thorpej caddr_t v = v_arg; 350 1.1 thorpej struct radix_node *top = head->rnh_treetop; 351 1.1 thorpej int head_off = top->rn_off, vlen = (int)*((u_char *)v); 352 1.4 lukem struct radix_node *t = rn_search(v_arg, top); 353 1.4 lukem caddr_t cp = v + head_off; 354 1.4 lukem int b; 355 1.1 thorpej struct radix_node *tt; 356 1.3 christos 357 1.3 christos /* 358 1.1 thorpej * Find first bit at which v and t->rn_key differ 359 1.1 thorpej */ 360 1.1 thorpej { 361 1.8 christos caddr_t cp2 = t->rn_key + head_off; 362 1.8 christos int cmp_res; 363 1.1 thorpej caddr_t cplim = v + vlen; 364 1.1 thorpej 365 1.1 thorpej while (cp < cplim) 366 1.1 thorpej if (*cp2++ != *cp++) 367 1.1 thorpej goto on1; 368 1.3 christos /* handle adding 255.255.255.255 */ 369 1.3 christos if (!(t->rn_flags & RNF_ROOT) || *(cp2-1) == 0) { 370 1.3 christos *dupentry = 1; 371 1.3 christos return t; 372 1.3 christos } 373 1.1 thorpej on1: 374 1.1 thorpej *dupentry = 0; 375 1.1 thorpej cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; 376 1.1 thorpej for (b = (cp - v) << 3; cmp_res; b--) 377 1.1 thorpej cmp_res >>= 1; 378 1.1 thorpej } 379 1.1 thorpej { 380 1.8 christos struct radix_node *p, *x = top; 381 1.1 thorpej cp = v; 382 1.1 thorpej do { 383 1.1 thorpej p = x; 384 1.3 christos if (cp[x->rn_off] & x->rn_bmask) 385 1.1 thorpej x = x->rn_r; 386 1.1 thorpej else x = x->rn_l; 387 1.10 christos } while ((unsigned)b > (unsigned)x->rn_b); 388 1.1 thorpej #ifdef RN_DEBUG 389 1.1 thorpej if (rn_debug) 390 1.1 thorpej log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p); 391 1.1 thorpej #endif 392 1.1 thorpej t = rn_newpair(v_arg, b, nodes); tt = t->rn_l; 393 1.1 thorpej if ((cp[p->rn_off] & p->rn_bmask) == 0) 394 1.1 thorpej p->rn_l = t; 395 1.1 thorpej else 396 1.1 thorpej p->rn_r = t; 397 1.1 thorpej x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */ 398 1.1 thorpej if ((cp[t->rn_off] & t->rn_bmask) == 0) { 399 1.1 thorpej t->rn_r = x; 400 1.1 thorpej } else { 401 1.1 thorpej t->rn_r = tt; t->rn_l = x; 402 1.1 thorpej } 403 1.1 thorpej #ifdef RN_DEBUG 404 1.1 thorpej if (rn_debug) 405 1.1 thorpej log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p); 406 1.1 thorpej #endif 407 1.1 thorpej } 408 1.1 thorpej return (tt); 409 1.1 thorpej } 410 1.1 thorpej 411 1.1 thorpej struct radix_node * 412 1.3 christos rn_addmask(void *n_arg, int search, int skip) 413 1.1 thorpej { 414 1.1 thorpej caddr_t netmask = (caddr_t)n_arg; 415 1.4 lukem struct radix_node *x; 416 1.4 lukem caddr_t cp, cplim; 417 1.4 lukem int b = 0, mlen, j; 418 1.1 thorpej int maskduplicated, m0, isnormal; 419 1.1 thorpej struct radix_node *saved_x; 420 1.1 thorpej static int last_zeroed = 0; 421 1.1 thorpej 422 1.1 thorpej if ((mlen = *(u_char *)netmask) > max_keylen) 423 1.1 thorpej mlen = max_keylen; 424 1.1 thorpej if (skip == 0) 425 1.1 thorpej skip = 1; 426 1.1 thorpej if (mlen <= skip) 427 1.1 thorpej return (mask_rnhead->rnh_nodes); 428 1.1 thorpej if (skip > 1) 429 1.1 thorpej Bcopy(rn_ones + 1, addmask_key + 1, skip - 1); 430 1.1 thorpej if ((m0 = mlen) > skip) 431 1.1 thorpej Bcopy(netmask + skip, addmask_key + skip, mlen - skip); 432 1.1 thorpej /* 433 1.1 thorpej * Trim trailing zeroes. 434 1.1 thorpej */ 435 1.1 thorpej for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) 436 1.1 thorpej cp--; 437 1.1 thorpej mlen = cp - addmask_key; 438 1.1 thorpej if (mlen <= skip) { 439 1.1 thorpej if (m0 >= last_zeroed) 440 1.1 thorpej last_zeroed = mlen; 441 1.1 thorpej return (mask_rnhead->rnh_nodes); 442 1.1 thorpej } 443 1.1 thorpej if (m0 < last_zeroed) 444 1.1 thorpej Bzero(addmask_key + m0, last_zeroed - m0); 445 1.1 thorpej *addmask_key = last_zeroed = mlen; 446 1.1 thorpej x = rn_search(addmask_key, rn_masktop); 447 1.1 thorpej if (Bcmp(addmask_key, x->rn_key, mlen) != 0) 448 1.1 thorpej x = 0; 449 1.1 thorpej if (x || search) 450 1.1 thorpej return (x); 451 1.7 christos x = (struct radix_node *)rtmalloc(max_keylen + 2*sizeof(*x), 452 1.7 christos "rn_addmask"); 453 1.7 christos saved_x = x; 454 1.1 thorpej Bzero(x, max_keylen + 2 * sizeof (*x)); 455 1.1 thorpej netmask = cp = (caddr_t)(x + 2); 456 1.1 thorpej Bcopy(addmask_key, cp, mlen); 457 1.1 thorpej x = rn_insert(cp, mask_rnhead, &maskduplicated, x); 458 1.1 thorpej if (maskduplicated) { 459 1.1 thorpej log(LOG_ERR, "rn_addmask: mask impossibly already in tree"); 460 1.1 thorpej Free(saved_x); 461 1.1 thorpej return (x); 462 1.1 thorpej } 463 1.1 thorpej /* 464 1.1 thorpej * Calculate index of mask, and check for normalcy. 465 1.1 thorpej */ 466 1.1 thorpej cplim = netmask + mlen; isnormal = 1; 467 1.1 thorpej for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) 468 1.1 thorpej cp++; 469 1.1 thorpej if (cp != cplim) { 470 1.3 christos for (j = 0x80; (j & *cp) != 0; j >>= 1) 471 1.1 thorpej b++; 472 1.1 thorpej if (*cp != normal_chars[b] || cp != (cplim - 1)) 473 1.1 thorpej isnormal = 0; 474 1.1 thorpej } 475 1.1 thorpej b += (cp - netmask) << 3; 476 1.1 thorpej x->rn_b = -1 - b; 477 1.1 thorpej if (isnormal) 478 1.1 thorpej x->rn_flags |= RNF_NORMAL; 479 1.1 thorpej return (x); 480 1.1 thorpej } 481 1.1 thorpej 482 1.1 thorpej static int /* XXX: arbitrary ordering for non-contiguous masks */ 483 1.1 thorpej rn_lexobetter(void *m_arg, void *n_arg) 484 1.1 thorpej { 485 1.4 lukem u_char *mp = m_arg, *np = n_arg, *lim; 486 1.1 thorpej 487 1.1 thorpej if (*mp > *np) 488 1.1 thorpej return 1; /* not really, but need to check longer one first */ 489 1.3 christos if (*mp == *np) 490 1.1 thorpej for (lim = mp + *mp; mp < lim;) 491 1.1 thorpej if (*mp++ > *np++) 492 1.1 thorpej return 1; 493 1.1 thorpej return 0; 494 1.1 thorpej } 495 1.1 thorpej 496 1.1 thorpej static struct radix_mask * 497 1.4 lukem rn_new_radix_mask(struct radix_node *tt, 498 1.4 lukem struct radix_mask *next) 499 1.1 thorpej { 500 1.4 lukem struct radix_mask *m; 501 1.1 thorpej 502 1.1 thorpej MKGet(m); 503 1.1 thorpej if (m == 0) { 504 1.1 thorpej log(LOG_ERR, "Mask for route not entered\n"); 505 1.1 thorpej return (0); 506 1.1 thorpej } 507 1.1 thorpej Bzero(m, sizeof *m); 508 1.1 thorpej m->rm_b = tt->rn_b; 509 1.1 thorpej m->rm_flags = tt->rn_flags; 510 1.1 thorpej if (tt->rn_flags & RNF_NORMAL) 511 1.1 thorpej m->rm_leaf = tt; 512 1.1 thorpej else 513 1.1 thorpej m->rm_mask = tt->rn_mask; 514 1.1 thorpej m->rm_mklist = next; 515 1.1 thorpej tt->rn_mklist = m; 516 1.1 thorpej return m; 517 1.1 thorpej } 518 1.1 thorpej 519 1.1 thorpej struct radix_node * 520 1.3 christos rn_addroute(void *v_arg, 521 1.3 christos void *n_arg, 522 1.3 christos struct radix_node_head *head, 523 1.3 christos struct radix_node treenodes[2]) 524 1.1 thorpej { 525 1.1 thorpej caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg; 526 1.4 lukem struct radix_node *t, *x = 0, *tt; 527 1.1 thorpej struct radix_node *saved_tt, *top = head->rnh_treetop; 528 1.3 christos short b = 0, b_leaf = 0; 529 1.1 thorpej int keyduplicated; 530 1.1 thorpej caddr_t mmask; 531 1.1 thorpej struct radix_mask *m, **mp; 532 1.1 thorpej 533 1.1 thorpej /* 534 1.1 thorpej * In dealing with non-contiguous masks, there may be 535 1.1 thorpej * many different routes which have the same mask. 536 1.1 thorpej * We will find it useful to have a unique pointer to 537 1.1 thorpej * the mask to speed avoiding duplicate references at 538 1.1 thorpej * nodes and possibly save time in calculating indices. 539 1.1 thorpej */ 540 1.1 thorpej if (netmask) { 541 1.1 thorpej if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0) 542 1.1 thorpej return (0); 543 1.1 thorpej b_leaf = x->rn_b; 544 1.1 thorpej b = -1 - x->rn_b; 545 1.1 thorpej netmask = x->rn_key; 546 1.1 thorpej } 547 1.1 thorpej /* 548 1.1 thorpej * Deal with duplicated keys: attach node to previous instance 549 1.1 thorpej */ 550 1.1 thorpej saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); 551 1.1 thorpej if (keyduplicated) { 552 1.1 thorpej for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { 553 1.1 thorpej if (tt->rn_mask == netmask) 554 1.1 thorpej return (0); 555 1.1 thorpej if (netmask == 0 || 556 1.1 thorpej (tt->rn_mask && 557 1.1 thorpej ((b_leaf < tt->rn_b) || /* index(netmask) > node */ 558 1.1 thorpej rn_refines(netmask, tt->rn_mask) || 559 1.1 thorpej rn_lexobetter(netmask, tt->rn_mask)))) 560 1.1 thorpej break; 561 1.1 thorpej } 562 1.1 thorpej /* 563 1.1 thorpej * If the mask is not duplicated, we wouldn't 564 1.1 thorpej * find it among possible duplicate key entries 565 1.1 thorpej * anyway, so the above test doesn't hurt. 566 1.1 thorpej * 567 1.1 thorpej * We sort the masks for a duplicated key the same way as 568 1.1 thorpej * in a masklist -- most specific to least specific. 569 1.1 thorpej * This may require the unfortunate nuisance of relocating 570 1.1 thorpej * the head of the list. 571 1.1 thorpej */ 572 1.1 thorpej if (tt == saved_tt) { 573 1.1 thorpej struct radix_node *xx = x; 574 1.1 thorpej /* link in at head of list */ 575 1.1 thorpej (tt = treenodes)->rn_dupedkey = t; 576 1.1 thorpej tt->rn_flags = t->rn_flags; 577 1.1 thorpej tt->rn_p = x = t->rn_p; 578 1.1 thorpej if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt; 579 1.1 thorpej saved_tt = tt; x = xx; 580 1.1 thorpej } else { 581 1.1 thorpej (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; 582 1.1 thorpej t->rn_dupedkey = tt; 583 1.1 thorpej } 584 1.1 thorpej #ifdef RN_DEBUG 585 1.1 thorpej t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 586 1.1 thorpej tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; 587 1.1 thorpej #endif 588 1.1 thorpej tt->rn_key = (caddr_t) v; 589 1.1 thorpej tt->rn_b = -1; 590 1.1 thorpej tt->rn_flags = RNF_ACTIVE; 591 1.1 thorpej } 592 1.1 thorpej /* 593 1.1 thorpej * Put mask in tree. 594 1.1 thorpej */ 595 1.1 thorpej if (netmask) { 596 1.1 thorpej tt->rn_mask = netmask; 597 1.1 thorpej tt->rn_b = x->rn_b; 598 1.1 thorpej tt->rn_flags |= x->rn_flags & RNF_NORMAL; 599 1.1 thorpej } 600 1.1 thorpej t = saved_tt->rn_p; 601 1.1 thorpej if (keyduplicated) 602 1.1 thorpej goto on2; 603 1.1 thorpej b_leaf = -1 - t->rn_b; 604 1.1 thorpej if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r; 605 1.1 thorpej /* Promote general routes from below */ 606 1.3 christos if (x->rn_b < 0) { 607 1.1 thorpej for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) 608 1.1 thorpej if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) { 609 1.2 thorpej if ((*mp = m = rn_new_radix_mask(x, 0))) 610 1.1 thorpej mp = &m->rm_mklist; 611 1.1 thorpej } 612 1.1 thorpej } else if (x->rn_mklist) { 613 1.1 thorpej /* 614 1.1 thorpej * Skip over masks whose index is > that of new node 615 1.1 thorpej */ 616 1.2 thorpej for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 617 1.1 thorpej if (m->rm_b >= b_leaf) 618 1.1 thorpej break; 619 1.1 thorpej t->rn_mklist = m; *mp = 0; 620 1.1 thorpej } 621 1.1 thorpej on2: 622 1.1 thorpej /* Add new route to highest possible ancestor's list */ 623 1.1 thorpej if ((netmask == 0) || (b > t->rn_b )) 624 1.1 thorpej return tt; /* can't lift at all */ 625 1.1 thorpej b_leaf = tt->rn_b; 626 1.1 thorpej do { 627 1.1 thorpej x = t; 628 1.1 thorpej t = t->rn_p; 629 1.1 thorpej } while (b <= t->rn_b && x != top); 630 1.1 thorpej /* 631 1.1 thorpej * Search through routes associated with node to 632 1.1 thorpej * insert new route according to index. 633 1.1 thorpej * Need same criteria as when sorting dupedkeys to avoid 634 1.1 thorpej * double loop on deletion. 635 1.1 thorpej */ 636 1.2 thorpej for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { 637 1.1 thorpej if (m->rm_b < b_leaf) 638 1.1 thorpej continue; 639 1.1 thorpej if (m->rm_b > b_leaf) 640 1.1 thorpej break; 641 1.1 thorpej if (m->rm_flags & RNF_NORMAL) { 642 1.1 thorpej mmask = m->rm_leaf->rn_mask; 643 1.1 thorpej if (tt->rn_flags & RNF_NORMAL) { 644 1.1 thorpej log(LOG_ERR, 645 1.1 thorpej "Non-unique normal route, mask not entered"); 646 1.1 thorpej return tt; 647 1.1 thorpej } 648 1.1 thorpej } else 649 1.1 thorpej mmask = m->rm_mask; 650 1.1 thorpej if (mmask == netmask) { 651 1.1 thorpej m->rm_refs++; 652 1.1 thorpej tt->rn_mklist = m; 653 1.1 thorpej return tt; 654 1.1 thorpej } 655 1.1 thorpej if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask)) 656 1.1 thorpej break; 657 1.1 thorpej } 658 1.1 thorpej *mp = rn_new_radix_mask(tt, *mp); 659 1.1 thorpej return tt; 660 1.1 thorpej } 661 1.1 thorpej 662 1.1 thorpej struct radix_node * 663 1.3 christos rn_delete(void *v_arg, 664 1.3 christos void *netmask_arg, 665 1.3 christos struct radix_node_head *head) 666 1.1 thorpej { 667 1.4 lukem struct radix_node *t, *p, *x, *tt; 668 1.1 thorpej struct radix_mask *m, *saved_m, **mp; 669 1.1 thorpej struct radix_node *dupedkey, *saved_tt, *top; 670 1.1 thorpej caddr_t v, netmask; 671 1.1 thorpej int b, head_off, vlen; 672 1.1 thorpej 673 1.1 thorpej v = v_arg; 674 1.1 thorpej netmask = netmask_arg; 675 1.1 thorpej x = head->rnh_treetop; 676 1.1 thorpej tt = rn_search(v, x); 677 1.1 thorpej head_off = x->rn_off; 678 1.1 thorpej vlen = *(u_char *)v; 679 1.1 thorpej saved_tt = tt; 680 1.1 thorpej top = x; 681 1.1 thorpej if (tt == 0 || 682 1.1 thorpej Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) 683 1.1 thorpej return (0); 684 1.1 thorpej /* 685 1.1 thorpej * Delete our route from mask lists. 686 1.1 thorpej */ 687 1.1 thorpej if (netmask) { 688 1.1 thorpej if ((x = rn_addmask(netmask, 1, head_off)) == 0) 689 1.1 thorpej return (0); 690 1.1 thorpej netmask = x->rn_key; 691 1.1 thorpej while (tt->rn_mask != netmask) 692 1.1 thorpej if ((tt = tt->rn_dupedkey) == 0) 693 1.1 thorpej return (0); 694 1.1 thorpej } 695 1.1 thorpej if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0) 696 1.1 thorpej goto on1; 697 1.1 thorpej if (tt->rn_flags & RNF_NORMAL) { 698 1.1 thorpej if (m->rm_leaf != tt || m->rm_refs > 0) { 699 1.1 thorpej log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 700 1.1 thorpej return 0; /* dangling ref could cause disaster */ 701 1.1 thorpej } 702 1.3 christos } else { 703 1.1 thorpej if (m->rm_mask != tt->rn_mask) { 704 1.1 thorpej log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 705 1.1 thorpej goto on1; 706 1.1 thorpej } 707 1.1 thorpej if (--m->rm_refs >= 0) 708 1.1 thorpej goto on1; 709 1.1 thorpej } 710 1.1 thorpej b = -1 - tt->rn_b; 711 1.1 thorpej t = saved_tt->rn_p; 712 1.1 thorpej if (b > t->rn_b) 713 1.1 thorpej goto on1; /* Wasn't lifted at all */ 714 1.1 thorpej do { 715 1.1 thorpej x = t; 716 1.1 thorpej t = t->rn_p; 717 1.1 thorpej } while (b <= t->rn_b && x != top); 718 1.2 thorpej for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 719 1.1 thorpej if (m == saved_m) { 720 1.1 thorpej *mp = m->rm_mklist; 721 1.1 thorpej MKFree(m); 722 1.1 thorpej break; 723 1.1 thorpej } 724 1.1 thorpej if (m == 0) { 725 1.1 thorpej log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); 726 1.1 thorpej if (tt->rn_flags & RNF_NORMAL) 727 1.1 thorpej return (0); /* Dangling ref to us */ 728 1.1 thorpej } 729 1.1 thorpej on1: 730 1.1 thorpej /* 731 1.1 thorpej * Eliminate us from tree 732 1.1 thorpej */ 733 1.1 thorpej if (tt->rn_flags & RNF_ROOT) 734 1.1 thorpej return (0); 735 1.1 thorpej #ifdef RN_DEBUG 736 1.1 thorpej /* Get us out of the creation list */ 737 1.1 thorpej for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {} 738 1.1 thorpej if (t) t->rn_ybro = tt->rn_ybro; 739 1.1 thorpej #endif 740 1.1 thorpej t = tt->rn_p; 741 1.2 thorpej if ((dupedkey = saved_tt->rn_dupedkey)) { 742 1.1 thorpej if (tt == saved_tt) { 743 1.1 thorpej x = dupedkey; x->rn_p = t; 744 1.1 thorpej if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x; 745 1.1 thorpej } else { 746 1.1 thorpej for (x = p = saved_tt; p && p->rn_dupedkey != tt;) 747 1.1 thorpej p = p->rn_dupedkey; 748 1.1 thorpej if (p) p->rn_dupedkey = tt->rn_dupedkey; 749 1.1 thorpej else log(LOG_ERR, "rn_delete: couldn't find us\n"); 750 1.1 thorpej } 751 1.1 thorpej t = tt + 1; 752 1.1 thorpej if (t->rn_flags & RNF_ACTIVE) { 753 1.1 thorpej #ifndef RN_DEBUG 754 1.1 thorpej *++x = *t; p = t->rn_p; 755 1.1 thorpej #else 756 1.1 thorpej b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p; 757 1.1 thorpej #endif 758 1.1 thorpej if (p->rn_l == t) p->rn_l = x; else p->rn_r = x; 759 1.1 thorpej x->rn_l->rn_p = x; x->rn_r->rn_p = x; 760 1.1 thorpej } 761 1.1 thorpej goto out; 762 1.1 thorpej } 763 1.1 thorpej if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l; 764 1.1 thorpej p = t->rn_p; 765 1.1 thorpej if (p->rn_r == t) p->rn_r = x; else p->rn_l = x; 766 1.1 thorpej x->rn_p = p; 767 1.1 thorpej /* 768 1.1 thorpej * Demote routes attached to us. 769 1.1 thorpej */ 770 1.1 thorpej if (t->rn_mklist) { 771 1.1 thorpej if (x->rn_b >= 0) { 772 1.2 thorpej for (mp = &x->rn_mklist; (m = *mp);) 773 1.1 thorpej mp = &m->rm_mklist; 774 1.1 thorpej *mp = t->rn_mklist; 775 1.1 thorpej } else { 776 1.1 thorpej /* If there are any key,mask pairs in a sibling 777 1.1 thorpej duped-key chain, some subset will appear sorted 778 1.1 thorpej in the same order attached to our mklist */ 779 1.1 thorpej for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) 780 1.1 thorpej if (m == x->rn_mklist) { 781 1.1 thorpej struct radix_mask *mm = m->rm_mklist; 782 1.1 thorpej x->rn_mklist = 0; 783 1.1 thorpej if (--(m->rm_refs) < 0) 784 1.1 thorpej MKFree(m); 785 1.1 thorpej m = mm; 786 1.1 thorpej } 787 1.1 thorpej if (m) 788 1.4 lukem syslog(LOG_ERR, "%s 0x%lx at 0x%lx\n", 789 1.3 christos "rn_delete: Orphaned Mask", 790 1.3 christos (unsigned long)m, 791 1.3 christos (unsigned long)x); 792 1.1 thorpej } 793 1.1 thorpej } 794 1.1 thorpej /* 795 1.1 thorpej * We may be holding an active internal node in the tree. 796 1.1 thorpej */ 797 1.1 thorpej x = tt + 1; 798 1.1 thorpej if (t != x) { 799 1.1 thorpej #ifndef RN_DEBUG 800 1.1 thorpej *t = *x; 801 1.1 thorpej #else 802 1.1 thorpej b = t->rn_info; *t = *x; t->rn_info = b; 803 1.1 thorpej #endif 804 1.1 thorpej t->rn_l->rn_p = t; t->rn_r->rn_p = t; 805 1.1 thorpej p = x->rn_p; 806 1.1 thorpej if (p->rn_l == x) p->rn_l = t; else p->rn_r = t; 807 1.1 thorpej } 808 1.1 thorpej out: 809 1.1 thorpej tt->rn_flags &= ~RNF_ACTIVE; 810 1.1 thorpej tt[1].rn_flags &= ~RNF_ACTIVE; 811 1.1 thorpej return (tt); 812 1.1 thorpej } 813 1.1 thorpej 814 1.1 thorpej int 815 1.3 christos rn_walktree(struct radix_node_head *h, 816 1.4 lukem int (*f)(struct radix_node *, struct walkarg *), 817 1.3 christos struct walkarg *w) 818 1.1 thorpej { 819 1.1 thorpej int error; 820 1.1 thorpej struct radix_node *base, *next; 821 1.4 lukem struct radix_node *rn = h->rnh_treetop; 822 1.1 thorpej /* 823 1.1 thorpej * This gets complicated because we may delete the node 824 1.1 thorpej * while applying the function f to it, so we need to calculate 825 1.1 thorpej * the successor node in advance. 826 1.1 thorpej */ 827 1.1 thorpej /* First time through node, go left */ 828 1.1 thorpej while (rn->rn_b >= 0) 829 1.1 thorpej rn = rn->rn_l; 830 1.1 thorpej for (;;) { 831 1.1 thorpej base = rn; 832 1.1 thorpej /* If at right child go back up, otherwise, go right */ 833 1.1 thorpej while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) 834 1.1 thorpej rn = rn->rn_p; 835 1.1 thorpej /* Find the next *leaf* since next node might vanish, too */ 836 1.1 thorpej for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) 837 1.1 thorpej rn = rn->rn_l; 838 1.1 thorpej next = rn; 839 1.1 thorpej /* Process leaves */ 840 1.2 thorpej while ((rn = base)) { 841 1.1 thorpej base = rn->rn_dupedkey; 842 1.1 thorpej if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w))) 843 1.1 thorpej return (error); 844 1.1 thorpej } 845 1.1 thorpej rn = next; 846 1.1 thorpej if (rn->rn_flags & RNF_ROOT) 847 1.1 thorpej return (0); 848 1.1 thorpej } 849 1.1 thorpej /* NOTREACHED */ 850 1.1 thorpej } 851 1.1 thorpej 852 1.1 thorpej int 853 1.3 christos rn_inithead(void **head, int off) 854 1.1 thorpej { 855 1.4 lukem struct radix_node_head *rnh; 856 1.4 lukem struct radix_node *t, *tt, *ttt; 857 1.1 thorpej if (*head) 858 1.1 thorpej return (1); 859 1.7 christos rnh = (struct radix_node_head *)rtmalloc(sizeof(*rnh), "rn_inithead"); 860 1.1 thorpej Bzero(rnh, sizeof (*rnh)); 861 1.1 thorpej *head = rnh; 862 1.1 thorpej t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); 863 1.1 thorpej ttt = rnh->rnh_nodes + 2; 864 1.1 thorpej t->rn_r = ttt; 865 1.1 thorpej t->rn_p = t; 866 1.1 thorpej tt = t->rn_l; 867 1.1 thorpej tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; 868 1.1 thorpej tt->rn_b = -1 - off; 869 1.1 thorpej *ttt = *tt; 870 1.1 thorpej ttt->rn_key = rn_ones; 871 1.1 thorpej rnh->rnh_addaddr = rn_addroute; 872 1.1 thorpej rnh->rnh_deladdr = rn_delete; 873 1.1 thorpej rnh->rnh_matchaddr = rn_match; 874 1.1 thorpej rnh->rnh_lookup = rn_lookup; 875 1.1 thorpej rnh->rnh_walktree = rn_walktree; 876 1.1 thorpej rnh->rnh_treetop = t; 877 1.1 thorpej return (1); 878 1.1 thorpej } 879 1.1 thorpej 880 1.1 thorpej void 881 1.3 christos rn_init(void) 882 1.1 thorpej { 883 1.1 thorpej char *cp, *cplim; 884 1.1 thorpej if (max_keylen == 0) { 885 1.1 thorpej printf("rn_init: radix functions require max_keylen be set\n"); 886 1.1 thorpej return; 887 1.1 thorpej } 888 1.7 christos rn_zeros = (char *)rtmalloc(3 * max_keylen, "rn_init"); 889 1.1 thorpej Bzero(rn_zeros, 3 * max_keylen); 890 1.1 thorpej rn_ones = cp = rn_zeros + max_keylen; 891 1.1 thorpej addmask_key = cplim = rn_ones + max_keylen; 892 1.1 thorpej while (cp < cplim) 893 1.1 thorpej *cp++ = -1; 894 1.12 thorpej if (rn_inithead((void *)&mask_rnhead, 0) == 0) 895 1.1 thorpej panic("rn_init 2"); 896 1.1 thorpej } 897 1.3 christos 898