radix.c revision 1.13 1 1.13 wiz /* $NetBSD: radix.c,v 1.13 2006/02/25 00:58:35 wiz Exp $ */
2 1.2 thorpej
3 1.1 thorpej /*
4 1.1 thorpej * Copyright (c) 1988, 1989, 1993
5 1.1 thorpej * The Regents of the University of California. All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * Redistribution and use in source and binary forms, with or without
8 1.1 thorpej * modification, are permitted provided that the following conditions
9 1.1 thorpej * are met:
10 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
11 1.1 thorpej * notice, this list of conditions and the following disclaimer.
12 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
14 1.1 thorpej * documentation and/or other materials provided with the distribution.
15 1.1 thorpej * 3. All advertising materials mentioning features or use of this software
16 1.7 christos * must display the following acknowledgment:
17 1.1 thorpej * This product includes software developed by the University of
18 1.1 thorpej * California, Berkeley and its contributors.
19 1.1 thorpej * 4. Neither the name of the University nor the names of its contributors
20 1.1 thorpej * may be used to endorse or promote products derived from this software
21 1.1 thorpej * without specific prior written permission.
22 1.1 thorpej *
23 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 thorpej * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 thorpej * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 thorpej * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 thorpej * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 thorpej * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 thorpej * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 thorpej * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 thorpej * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 thorpej * SUCH DAMAGE.
34 1.1 thorpej *
35 1.1 thorpej * @(#)radix.c 8.4 (Berkeley) 11/2/94
36 1.1 thorpej */
37 1.1 thorpej
38 1.1 thorpej /*
39 1.1 thorpej * Routines to build and maintain radix trees for routing lookups.
40 1.1 thorpej */
41 1.2 thorpej
42 1.2 thorpej #include "defs.h"
43 1.11 christos
44 1.11 christos #ifdef __NetBSD__
45 1.13 wiz __RCSID("$NetBSD: radix.c,v 1.13 2006/02/25 00:58:35 wiz Exp $");
46 1.11 christos #elif defined(__FreeBSD__)
47 1.11 christos __RCSID("$FreeBSD$");
48 1.11 christos #else
49 1.11 christos __RCSID("Revision: 2.23 ");
50 1.11 christos #ident "Revision: 2.23 "
51 1.11 christos #endif
52 1.2 thorpej
53 1.1 thorpej #define log(x, msg) syslog(x, msg)
54 1.1 thorpej #define panic(s) {log(LOG_ERR,s); exit(1);}
55 1.3 christos #define min(a,b) (((a)<(b))?(a):(b))
56 1.1 thorpej
57 1.1 thorpej int max_keylen;
58 1.1 thorpej struct radix_mask *rn_mkfreelist;
59 1.1 thorpej struct radix_node_head *mask_rnhead;
60 1.1 thorpej static char *addmask_key;
61 1.1 thorpej static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
62 1.1 thorpej static char *rn_zeros, *rn_ones;
63 1.1 thorpej
64 1.1 thorpej #define rn_masktop (mask_rnhead->rnh_treetop)
65 1.1 thorpej #undef Bcmp
66 1.6 lukem #define Bcmp(a, b, l) (l == 0 ? 0 \
67 1.8 christos : memcmp((caddr_t)(a), (caddr_t)(b), (size_t)l))
68 1.1 thorpej
69 1.7 christos static int rn_satisfies_leaf(char *, struct radix_node *, int);
70 1.1 thorpej
71 1.1 thorpej /*
72 1.1 thorpej * The data structure for the keys is a radix tree with one way
73 1.1 thorpej * branching removed. The index rn_b at an internal node n represents a bit
74 1.1 thorpej * position to be tested. The tree is arranged so that all descendants
75 1.1 thorpej * of a node n have keys whose bits all agree up to position rn_b - 1.
76 1.1 thorpej * (We say the index of n is rn_b.)
77 1.1 thorpej *
78 1.1 thorpej * There is at least one descendant which has a one bit at position rn_b,
79 1.1 thorpej * and at least one with a zero there.
80 1.1 thorpej *
81 1.1 thorpej * A route is determined by a pair of key and mask. We require that the
82 1.1 thorpej * bit-wise logical and of the key and mask to be the key.
83 1.1 thorpej * We define the index of a route to associated with the mask to be
84 1.1 thorpej * the first bit number in the mask where 0 occurs (with bit number 0
85 1.1 thorpej * representing the highest order bit).
86 1.3 christos *
87 1.1 thorpej * We say a mask is normal if every bit is 0, past the index of the mask.
88 1.1 thorpej * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
89 1.1 thorpej * and m is a normal mask, then the route applies to every descendant of n.
90 1.1 thorpej * If the index(m) < rn_b, this implies the trailing last few bits of k
91 1.1 thorpej * before bit b are all 0, (and hence consequently true of every descendant
92 1.1 thorpej * of n), so the route applies to all descendants of the node as well.
93 1.3 christos *
94 1.1 thorpej * Similar logic shows that a non-normal mask m such that
95 1.1 thorpej * index(m) <= index(n) could potentially apply to many children of n.
96 1.1 thorpej * Thus, for each non-host route, we attach its mask to a list at an internal
97 1.3 christos * node as high in the tree as we can go.
98 1.1 thorpej *
99 1.1 thorpej * The present version of the code makes use of normal routes in short-
100 1.13 wiz * circuiting an explicit mask and compare operation when testing whether
101 1.1 thorpej * a key satisfies a normal route, and also in remembering the unique leaf
102 1.1 thorpej * that governs a subtree.
103 1.1 thorpej */
104 1.1 thorpej
105 1.1 thorpej struct radix_node *
106 1.3 christos rn_search(void *v_arg,
107 1.3 christos struct radix_node *head)
108 1.1 thorpej {
109 1.4 lukem struct radix_node *x;
110 1.4 lukem caddr_t v;
111 1.1 thorpej
112 1.1 thorpej for (x = head, v = v_arg; x->rn_b >= 0;) {
113 1.1 thorpej if (x->rn_bmask & v[x->rn_off])
114 1.1 thorpej x = x->rn_r;
115 1.1 thorpej else
116 1.1 thorpej x = x->rn_l;
117 1.1 thorpej }
118 1.1 thorpej return (x);
119 1.1 thorpej }
120 1.1 thorpej
121 1.1 thorpej struct radix_node *
122 1.3 christos rn_search_m(void *v_arg,
123 1.3 christos struct radix_node *head,
124 1.3 christos void *m_arg)
125 1.1 thorpej {
126 1.4 lukem struct radix_node *x;
127 1.4 lukem caddr_t v = v_arg, m = m_arg;
128 1.1 thorpej
129 1.1 thorpej for (x = head; x->rn_b >= 0;) {
130 1.1 thorpej if ((x->rn_bmask & m[x->rn_off]) &&
131 1.1 thorpej (x->rn_bmask & v[x->rn_off]))
132 1.1 thorpej x = x->rn_r;
133 1.1 thorpej else
134 1.1 thorpej x = x->rn_l;
135 1.1 thorpej }
136 1.1 thorpej return x;
137 1.1 thorpej }
138 1.1 thorpej
139 1.1 thorpej int
140 1.3 christos rn_refines(void* m_arg, void *n_arg)
141 1.1 thorpej {
142 1.4 lukem caddr_t m = m_arg, n = n_arg;
143 1.4 lukem caddr_t lim, lim2 = lim = n + *(u_char *)n;
144 1.1 thorpej int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
145 1.1 thorpej int masks_are_equal = 1;
146 1.1 thorpej
147 1.1 thorpej if (longer > 0)
148 1.1 thorpej lim -= longer;
149 1.1 thorpej while (n < lim) {
150 1.1 thorpej if (*n & ~(*m))
151 1.1 thorpej return 0;
152 1.1 thorpej if (*n++ != *m++)
153 1.1 thorpej masks_are_equal = 0;
154 1.1 thorpej }
155 1.1 thorpej while (n < lim2)
156 1.1 thorpej if (*n++)
157 1.1 thorpej return 0;
158 1.1 thorpej if (masks_are_equal && (longer < 0))
159 1.1 thorpej for (lim2 = m - longer; m < lim2; )
160 1.1 thorpej if (*m++)
161 1.1 thorpej return 1;
162 1.1 thorpej return (!masks_are_equal);
163 1.1 thorpej }
164 1.1 thorpej
165 1.1 thorpej struct radix_node *
166 1.4 lukem rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
167 1.1 thorpej {
168 1.4 lukem struct radix_node *x;
169 1.1 thorpej caddr_t netmask = 0;
170 1.1 thorpej
171 1.1 thorpej if (m_arg) {
172 1.1 thorpej if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
173 1.1 thorpej return (0);
174 1.1 thorpej netmask = x->rn_key;
175 1.1 thorpej }
176 1.1 thorpej x = rn_match(v_arg, head);
177 1.1 thorpej if (x && netmask) {
178 1.1 thorpej while (x && x->rn_mask != netmask)
179 1.1 thorpej x = x->rn_dupedkey;
180 1.1 thorpej }
181 1.1 thorpej return x;
182 1.1 thorpej }
183 1.1 thorpej
184 1.1 thorpej static int
185 1.7 christos rn_satisfies_leaf(char *trial,
186 1.4 lukem struct radix_node *leaf,
187 1.1 thorpej int skip)
188 1.1 thorpej {
189 1.4 lukem char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
190 1.1 thorpej char *cplim;
191 1.1 thorpej int length = min(*(u_char *)cp, *(u_char *)cp2);
192 1.1 thorpej
193 1.1 thorpej if (cp3 == 0)
194 1.1 thorpej cp3 = rn_ones;
195 1.1 thorpej else
196 1.1 thorpej length = min(length, *(u_char *)cp3);
197 1.1 thorpej cplim = cp + length; cp3 += skip; cp2 += skip;
198 1.1 thorpej for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
199 1.1 thorpej if ((*cp ^ *cp2) & *cp3)
200 1.1 thorpej return 0;
201 1.1 thorpej return 1;
202 1.1 thorpej }
203 1.1 thorpej
204 1.1 thorpej struct radix_node *
205 1.3 christos rn_match(void *v_arg,
206 1.3 christos struct radix_node_head *head)
207 1.1 thorpej {
208 1.1 thorpej caddr_t v = v_arg;
209 1.4 lukem struct radix_node *t = head->rnh_treetop, *x;
210 1.4 lukem caddr_t cp = v, cp2;
211 1.1 thorpej caddr_t cplim;
212 1.1 thorpej struct radix_node *saved_t, *top = t;
213 1.1 thorpej int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
214 1.4 lukem int test, b, rn_b;
215 1.1 thorpej
216 1.1 thorpej /*
217 1.1 thorpej * Open code rn_search(v, top) to avoid overhead of extra
218 1.1 thorpej * subroutine call.
219 1.1 thorpej */
220 1.1 thorpej for (; t->rn_b >= 0; ) {
221 1.1 thorpej if (t->rn_bmask & cp[t->rn_off])
222 1.1 thorpej t = t->rn_r;
223 1.1 thorpej else
224 1.1 thorpej t = t->rn_l;
225 1.1 thorpej }
226 1.1 thorpej /*
227 1.1 thorpej * See if we match exactly as a host destination
228 1.1 thorpej * or at least learn how many bits match, for normal mask finesse.
229 1.1 thorpej *
230 1.1 thorpej * It doesn't hurt us to limit how many bytes to check
231 1.1 thorpej * to the length of the mask, since if it matches we had a genuine
232 1.1 thorpej * match and the leaf we have is the most specific one anyway;
233 1.1 thorpej * if it didn't match with a shorter length it would fail
234 1.1 thorpej * with a long one. This wins big for class B&C netmasks which
235 1.1 thorpej * are probably the most common case...
236 1.1 thorpej */
237 1.1 thorpej if (t->rn_mask)
238 1.1 thorpej vlen = *(u_char *)t->rn_mask;
239 1.1 thorpej cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
240 1.1 thorpej for (; cp < cplim; cp++, cp2++)
241 1.1 thorpej if (*cp != *cp2)
242 1.1 thorpej goto on1;
243 1.1 thorpej /*
244 1.1 thorpej * This extra grot is in case we are explicitly asked
245 1.1 thorpej * to look up the default. Ugh!
246 1.3 christos * Or 255.255.255.255
247 1.3 christos *
248 1.3 christos * In this case, we have a complete match of the key. Unless
249 1.3 christos * the node is one of the roots, we are finished.
250 1.3 christos * If it is the zeros root, then take what we have, prefering
251 1.3 christos * any real data.
252 1.3 christos * If it is the ones root, then pretend the target key was followed
253 1.3 christos * by a byte of zeros.
254 1.3 christos */
255 1.3 christos if (!(t->rn_flags & RNF_ROOT))
256 1.3 christos return t; /* not a root */
257 1.3 christos if (t->rn_dupedkey) {
258 1.1 thorpej t = t->rn_dupedkey;
259 1.3 christos return t; /* have some real data */
260 1.3 christos }
261 1.3 christos if (*(cp-1) == 0)
262 1.3 christos return t; /* not the ones root */
263 1.3 christos b = 0; /* fake a zero after 255.255.255.255 */
264 1.3 christos goto on2;
265 1.1 thorpej on1:
266 1.1 thorpej test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
267 1.1 thorpej for (b = 7; (test >>= 1) > 0;)
268 1.1 thorpej b--;
269 1.3 christos on2:
270 1.1 thorpej matched_off = cp - v;
271 1.1 thorpej b += matched_off << 3;
272 1.1 thorpej rn_b = -1 - b;
273 1.1 thorpej /*
274 1.1 thorpej * If there is a host route in a duped-key chain, it will be first.
275 1.1 thorpej */
276 1.1 thorpej if ((saved_t = t)->rn_mask == 0)
277 1.1 thorpej t = t->rn_dupedkey;
278 1.7 christos for (; t; t = t->rn_dupedkey) {
279 1.1 thorpej /*
280 1.1 thorpej * Even if we don't match exactly as a host,
281 1.1 thorpej * we may match if the leaf we wound up at is
282 1.1 thorpej * a route to a net.
283 1.1 thorpej */
284 1.1 thorpej if (t->rn_flags & RNF_NORMAL) {
285 1.1 thorpej if (rn_b <= t->rn_b)
286 1.1 thorpej return t;
287 1.7 christos } else if (rn_satisfies_leaf(v, t, matched_off)) {
288 1.8 christos return t;
289 1.7 christos }
290 1.7 christos }
291 1.1 thorpej t = saved_t;
292 1.1 thorpej /* start searching up the tree */
293 1.1 thorpej do {
294 1.4 lukem struct radix_mask *m;
295 1.1 thorpej t = t->rn_p;
296 1.2 thorpej if ((m = t->rn_mklist)) {
297 1.1 thorpej /*
298 1.1 thorpej * If non-contiguous masks ever become important
299 1.1 thorpej * we can restore the masking and open coding of
300 1.1 thorpej * the search and satisfaction test and put the
301 1.1 thorpej * calculation of "off" back before the "do".
302 1.1 thorpej */
303 1.1 thorpej do {
304 1.1 thorpej if (m->rm_flags & RNF_NORMAL) {
305 1.1 thorpej if (rn_b <= m->rm_b)
306 1.1 thorpej return (m->rm_leaf);
307 1.1 thorpej } else {
308 1.1 thorpej off = min(t->rn_off, matched_off);
309 1.1 thorpej x = rn_search_m(v, t, m->rm_mask);
310 1.1 thorpej while (x && x->rn_mask != m->rm_mask)
311 1.1 thorpej x = x->rn_dupedkey;
312 1.7 christos if (x && rn_satisfies_leaf(v, x, off))
313 1.1 thorpej return x;
314 1.1 thorpej }
315 1.2 thorpej } while ((m = m->rm_mklist));
316 1.1 thorpej }
317 1.1 thorpej } while (t != top);
318 1.1 thorpej return 0;
319 1.1 thorpej }
320 1.3 christos
321 1.1 thorpej #ifdef RN_DEBUG
322 1.1 thorpej int rn_nodenum;
323 1.1 thorpej struct radix_node *rn_clist;
324 1.1 thorpej int rn_saveinfo;
325 1.1 thorpej int rn_debug = 1;
326 1.1 thorpej #endif
327 1.1 thorpej
328 1.1 thorpej struct radix_node *
329 1.3 christos rn_newpair(void *v, int b, struct radix_node nodes[2])
330 1.1 thorpej {
331 1.4 lukem struct radix_node *tt = nodes, *t = tt + 1;
332 1.1 thorpej t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
333 1.1 thorpej t->rn_l = tt; t->rn_off = b >> 3;
334 1.1 thorpej tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
335 1.1 thorpej tt->rn_flags = t->rn_flags = RNF_ACTIVE;
336 1.1 thorpej #ifdef RN_DEBUG
337 1.1 thorpej tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
338 1.1 thorpej tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
339 1.1 thorpej #endif
340 1.1 thorpej return t;
341 1.1 thorpej }
342 1.1 thorpej
343 1.1 thorpej struct radix_node *
344 1.3 christos rn_insert(void* v_arg,
345 1.3 christos struct radix_node_head *head,
346 1.3 christos int *dupentry,
347 1.3 christos struct radix_node nodes[2])
348 1.1 thorpej {
349 1.1 thorpej caddr_t v = v_arg;
350 1.1 thorpej struct radix_node *top = head->rnh_treetop;
351 1.1 thorpej int head_off = top->rn_off, vlen = (int)*((u_char *)v);
352 1.4 lukem struct radix_node *t = rn_search(v_arg, top);
353 1.4 lukem caddr_t cp = v + head_off;
354 1.4 lukem int b;
355 1.1 thorpej struct radix_node *tt;
356 1.3 christos
357 1.3 christos /*
358 1.1 thorpej * Find first bit at which v and t->rn_key differ
359 1.1 thorpej */
360 1.1 thorpej {
361 1.8 christos caddr_t cp2 = t->rn_key + head_off;
362 1.8 christos int cmp_res;
363 1.1 thorpej caddr_t cplim = v + vlen;
364 1.1 thorpej
365 1.1 thorpej while (cp < cplim)
366 1.1 thorpej if (*cp2++ != *cp++)
367 1.1 thorpej goto on1;
368 1.3 christos /* handle adding 255.255.255.255 */
369 1.3 christos if (!(t->rn_flags & RNF_ROOT) || *(cp2-1) == 0) {
370 1.3 christos *dupentry = 1;
371 1.3 christos return t;
372 1.3 christos }
373 1.1 thorpej on1:
374 1.1 thorpej *dupentry = 0;
375 1.1 thorpej cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
376 1.1 thorpej for (b = (cp - v) << 3; cmp_res; b--)
377 1.1 thorpej cmp_res >>= 1;
378 1.1 thorpej }
379 1.1 thorpej {
380 1.8 christos struct radix_node *p, *x = top;
381 1.1 thorpej cp = v;
382 1.1 thorpej do {
383 1.1 thorpej p = x;
384 1.3 christos if (cp[x->rn_off] & x->rn_bmask)
385 1.1 thorpej x = x->rn_r;
386 1.1 thorpej else x = x->rn_l;
387 1.10 christos } while ((unsigned)b > (unsigned)x->rn_b);
388 1.1 thorpej #ifdef RN_DEBUG
389 1.1 thorpej if (rn_debug)
390 1.1 thorpej log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
391 1.1 thorpej #endif
392 1.1 thorpej t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
393 1.1 thorpej if ((cp[p->rn_off] & p->rn_bmask) == 0)
394 1.1 thorpej p->rn_l = t;
395 1.1 thorpej else
396 1.1 thorpej p->rn_r = t;
397 1.1 thorpej x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
398 1.1 thorpej if ((cp[t->rn_off] & t->rn_bmask) == 0) {
399 1.1 thorpej t->rn_r = x;
400 1.1 thorpej } else {
401 1.1 thorpej t->rn_r = tt; t->rn_l = x;
402 1.1 thorpej }
403 1.1 thorpej #ifdef RN_DEBUG
404 1.1 thorpej if (rn_debug)
405 1.1 thorpej log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
406 1.1 thorpej #endif
407 1.1 thorpej }
408 1.1 thorpej return (tt);
409 1.1 thorpej }
410 1.1 thorpej
411 1.1 thorpej struct radix_node *
412 1.3 christos rn_addmask(void *n_arg, int search, int skip)
413 1.1 thorpej {
414 1.1 thorpej caddr_t netmask = (caddr_t)n_arg;
415 1.4 lukem struct radix_node *x;
416 1.4 lukem caddr_t cp, cplim;
417 1.4 lukem int b = 0, mlen, j;
418 1.1 thorpej int maskduplicated, m0, isnormal;
419 1.1 thorpej struct radix_node *saved_x;
420 1.1 thorpej static int last_zeroed = 0;
421 1.1 thorpej
422 1.1 thorpej if ((mlen = *(u_char *)netmask) > max_keylen)
423 1.1 thorpej mlen = max_keylen;
424 1.1 thorpej if (skip == 0)
425 1.1 thorpej skip = 1;
426 1.1 thorpej if (mlen <= skip)
427 1.1 thorpej return (mask_rnhead->rnh_nodes);
428 1.1 thorpej if (skip > 1)
429 1.1 thorpej Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
430 1.1 thorpej if ((m0 = mlen) > skip)
431 1.1 thorpej Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
432 1.1 thorpej /*
433 1.1 thorpej * Trim trailing zeroes.
434 1.1 thorpej */
435 1.1 thorpej for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
436 1.1 thorpej cp--;
437 1.1 thorpej mlen = cp - addmask_key;
438 1.1 thorpej if (mlen <= skip) {
439 1.1 thorpej if (m0 >= last_zeroed)
440 1.1 thorpej last_zeroed = mlen;
441 1.1 thorpej return (mask_rnhead->rnh_nodes);
442 1.1 thorpej }
443 1.1 thorpej if (m0 < last_zeroed)
444 1.1 thorpej Bzero(addmask_key + m0, last_zeroed - m0);
445 1.1 thorpej *addmask_key = last_zeroed = mlen;
446 1.1 thorpej x = rn_search(addmask_key, rn_masktop);
447 1.1 thorpej if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
448 1.1 thorpej x = 0;
449 1.1 thorpej if (x || search)
450 1.1 thorpej return (x);
451 1.7 christos x = (struct radix_node *)rtmalloc(max_keylen + 2*sizeof(*x),
452 1.7 christos "rn_addmask");
453 1.7 christos saved_x = x;
454 1.1 thorpej Bzero(x, max_keylen + 2 * sizeof (*x));
455 1.1 thorpej netmask = cp = (caddr_t)(x + 2);
456 1.1 thorpej Bcopy(addmask_key, cp, mlen);
457 1.1 thorpej x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
458 1.1 thorpej if (maskduplicated) {
459 1.1 thorpej log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
460 1.1 thorpej Free(saved_x);
461 1.1 thorpej return (x);
462 1.1 thorpej }
463 1.1 thorpej /*
464 1.1 thorpej * Calculate index of mask, and check for normalcy.
465 1.1 thorpej */
466 1.1 thorpej cplim = netmask + mlen; isnormal = 1;
467 1.1 thorpej for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
468 1.1 thorpej cp++;
469 1.1 thorpej if (cp != cplim) {
470 1.3 christos for (j = 0x80; (j & *cp) != 0; j >>= 1)
471 1.1 thorpej b++;
472 1.1 thorpej if (*cp != normal_chars[b] || cp != (cplim - 1))
473 1.1 thorpej isnormal = 0;
474 1.1 thorpej }
475 1.1 thorpej b += (cp - netmask) << 3;
476 1.1 thorpej x->rn_b = -1 - b;
477 1.1 thorpej if (isnormal)
478 1.1 thorpej x->rn_flags |= RNF_NORMAL;
479 1.1 thorpej return (x);
480 1.1 thorpej }
481 1.1 thorpej
482 1.1 thorpej static int /* XXX: arbitrary ordering for non-contiguous masks */
483 1.1 thorpej rn_lexobetter(void *m_arg, void *n_arg)
484 1.1 thorpej {
485 1.4 lukem u_char *mp = m_arg, *np = n_arg, *lim;
486 1.1 thorpej
487 1.1 thorpej if (*mp > *np)
488 1.1 thorpej return 1; /* not really, but need to check longer one first */
489 1.3 christos if (*mp == *np)
490 1.1 thorpej for (lim = mp + *mp; mp < lim;)
491 1.1 thorpej if (*mp++ > *np++)
492 1.1 thorpej return 1;
493 1.1 thorpej return 0;
494 1.1 thorpej }
495 1.1 thorpej
496 1.1 thorpej static struct radix_mask *
497 1.4 lukem rn_new_radix_mask(struct radix_node *tt,
498 1.4 lukem struct radix_mask *next)
499 1.1 thorpej {
500 1.4 lukem struct radix_mask *m;
501 1.1 thorpej
502 1.1 thorpej MKGet(m);
503 1.1 thorpej if (m == 0) {
504 1.1 thorpej log(LOG_ERR, "Mask for route not entered\n");
505 1.1 thorpej return (0);
506 1.1 thorpej }
507 1.1 thorpej Bzero(m, sizeof *m);
508 1.1 thorpej m->rm_b = tt->rn_b;
509 1.1 thorpej m->rm_flags = tt->rn_flags;
510 1.1 thorpej if (tt->rn_flags & RNF_NORMAL)
511 1.1 thorpej m->rm_leaf = tt;
512 1.1 thorpej else
513 1.1 thorpej m->rm_mask = tt->rn_mask;
514 1.1 thorpej m->rm_mklist = next;
515 1.1 thorpej tt->rn_mklist = m;
516 1.1 thorpej return m;
517 1.1 thorpej }
518 1.1 thorpej
519 1.1 thorpej struct radix_node *
520 1.3 christos rn_addroute(void *v_arg,
521 1.3 christos void *n_arg,
522 1.3 christos struct radix_node_head *head,
523 1.3 christos struct radix_node treenodes[2])
524 1.1 thorpej {
525 1.1 thorpej caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
526 1.4 lukem struct radix_node *t, *x = 0, *tt;
527 1.1 thorpej struct radix_node *saved_tt, *top = head->rnh_treetop;
528 1.3 christos short b = 0, b_leaf = 0;
529 1.1 thorpej int keyduplicated;
530 1.1 thorpej caddr_t mmask;
531 1.1 thorpej struct radix_mask *m, **mp;
532 1.1 thorpej
533 1.1 thorpej /*
534 1.1 thorpej * In dealing with non-contiguous masks, there may be
535 1.1 thorpej * many different routes which have the same mask.
536 1.1 thorpej * We will find it useful to have a unique pointer to
537 1.1 thorpej * the mask to speed avoiding duplicate references at
538 1.1 thorpej * nodes and possibly save time in calculating indices.
539 1.1 thorpej */
540 1.1 thorpej if (netmask) {
541 1.1 thorpej if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
542 1.1 thorpej return (0);
543 1.1 thorpej b_leaf = x->rn_b;
544 1.1 thorpej b = -1 - x->rn_b;
545 1.1 thorpej netmask = x->rn_key;
546 1.1 thorpej }
547 1.1 thorpej /*
548 1.1 thorpej * Deal with duplicated keys: attach node to previous instance
549 1.1 thorpej */
550 1.1 thorpej saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
551 1.1 thorpej if (keyduplicated) {
552 1.1 thorpej for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
553 1.1 thorpej if (tt->rn_mask == netmask)
554 1.1 thorpej return (0);
555 1.1 thorpej if (netmask == 0 ||
556 1.1 thorpej (tt->rn_mask &&
557 1.1 thorpej ((b_leaf < tt->rn_b) || /* index(netmask) > node */
558 1.1 thorpej rn_refines(netmask, tt->rn_mask) ||
559 1.1 thorpej rn_lexobetter(netmask, tt->rn_mask))))
560 1.1 thorpej break;
561 1.1 thorpej }
562 1.1 thorpej /*
563 1.1 thorpej * If the mask is not duplicated, we wouldn't
564 1.1 thorpej * find it among possible duplicate key entries
565 1.1 thorpej * anyway, so the above test doesn't hurt.
566 1.1 thorpej *
567 1.1 thorpej * We sort the masks for a duplicated key the same way as
568 1.1 thorpej * in a masklist -- most specific to least specific.
569 1.1 thorpej * This may require the unfortunate nuisance of relocating
570 1.1 thorpej * the head of the list.
571 1.1 thorpej */
572 1.1 thorpej if (tt == saved_tt) {
573 1.1 thorpej struct radix_node *xx = x;
574 1.1 thorpej /* link in at head of list */
575 1.1 thorpej (tt = treenodes)->rn_dupedkey = t;
576 1.1 thorpej tt->rn_flags = t->rn_flags;
577 1.1 thorpej tt->rn_p = x = t->rn_p;
578 1.1 thorpej if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
579 1.1 thorpej saved_tt = tt; x = xx;
580 1.1 thorpej } else {
581 1.1 thorpej (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
582 1.1 thorpej t->rn_dupedkey = tt;
583 1.1 thorpej }
584 1.1 thorpej #ifdef RN_DEBUG
585 1.1 thorpej t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
586 1.1 thorpej tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
587 1.1 thorpej #endif
588 1.1 thorpej tt->rn_key = (caddr_t) v;
589 1.1 thorpej tt->rn_b = -1;
590 1.1 thorpej tt->rn_flags = RNF_ACTIVE;
591 1.1 thorpej }
592 1.1 thorpej /*
593 1.1 thorpej * Put mask in tree.
594 1.1 thorpej */
595 1.1 thorpej if (netmask) {
596 1.1 thorpej tt->rn_mask = netmask;
597 1.1 thorpej tt->rn_b = x->rn_b;
598 1.1 thorpej tt->rn_flags |= x->rn_flags & RNF_NORMAL;
599 1.1 thorpej }
600 1.1 thorpej t = saved_tt->rn_p;
601 1.1 thorpej if (keyduplicated)
602 1.1 thorpej goto on2;
603 1.1 thorpej b_leaf = -1 - t->rn_b;
604 1.1 thorpej if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
605 1.1 thorpej /* Promote general routes from below */
606 1.3 christos if (x->rn_b < 0) {
607 1.1 thorpej for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
608 1.1 thorpej if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
609 1.2 thorpej if ((*mp = m = rn_new_radix_mask(x, 0)))
610 1.1 thorpej mp = &m->rm_mklist;
611 1.1 thorpej }
612 1.1 thorpej } else if (x->rn_mklist) {
613 1.1 thorpej /*
614 1.1 thorpej * Skip over masks whose index is > that of new node
615 1.1 thorpej */
616 1.2 thorpej for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
617 1.1 thorpej if (m->rm_b >= b_leaf)
618 1.1 thorpej break;
619 1.1 thorpej t->rn_mklist = m; *mp = 0;
620 1.1 thorpej }
621 1.1 thorpej on2:
622 1.1 thorpej /* Add new route to highest possible ancestor's list */
623 1.1 thorpej if ((netmask == 0) || (b > t->rn_b ))
624 1.1 thorpej return tt; /* can't lift at all */
625 1.1 thorpej b_leaf = tt->rn_b;
626 1.1 thorpej do {
627 1.1 thorpej x = t;
628 1.1 thorpej t = t->rn_p;
629 1.1 thorpej } while (b <= t->rn_b && x != top);
630 1.1 thorpej /*
631 1.1 thorpej * Search through routes associated with node to
632 1.1 thorpej * insert new route according to index.
633 1.1 thorpej * Need same criteria as when sorting dupedkeys to avoid
634 1.1 thorpej * double loop on deletion.
635 1.1 thorpej */
636 1.2 thorpej for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
637 1.1 thorpej if (m->rm_b < b_leaf)
638 1.1 thorpej continue;
639 1.1 thorpej if (m->rm_b > b_leaf)
640 1.1 thorpej break;
641 1.1 thorpej if (m->rm_flags & RNF_NORMAL) {
642 1.1 thorpej mmask = m->rm_leaf->rn_mask;
643 1.1 thorpej if (tt->rn_flags & RNF_NORMAL) {
644 1.1 thorpej log(LOG_ERR,
645 1.1 thorpej "Non-unique normal route, mask not entered");
646 1.1 thorpej return tt;
647 1.1 thorpej }
648 1.1 thorpej } else
649 1.1 thorpej mmask = m->rm_mask;
650 1.1 thorpej if (mmask == netmask) {
651 1.1 thorpej m->rm_refs++;
652 1.1 thorpej tt->rn_mklist = m;
653 1.1 thorpej return tt;
654 1.1 thorpej }
655 1.1 thorpej if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
656 1.1 thorpej break;
657 1.1 thorpej }
658 1.1 thorpej *mp = rn_new_radix_mask(tt, *mp);
659 1.1 thorpej return tt;
660 1.1 thorpej }
661 1.1 thorpej
662 1.1 thorpej struct radix_node *
663 1.3 christos rn_delete(void *v_arg,
664 1.3 christos void *netmask_arg,
665 1.3 christos struct radix_node_head *head)
666 1.1 thorpej {
667 1.4 lukem struct radix_node *t, *p, *x, *tt;
668 1.1 thorpej struct radix_mask *m, *saved_m, **mp;
669 1.1 thorpej struct radix_node *dupedkey, *saved_tt, *top;
670 1.1 thorpej caddr_t v, netmask;
671 1.1 thorpej int b, head_off, vlen;
672 1.1 thorpej
673 1.1 thorpej v = v_arg;
674 1.1 thorpej netmask = netmask_arg;
675 1.1 thorpej x = head->rnh_treetop;
676 1.1 thorpej tt = rn_search(v, x);
677 1.1 thorpej head_off = x->rn_off;
678 1.1 thorpej vlen = *(u_char *)v;
679 1.1 thorpej saved_tt = tt;
680 1.1 thorpej top = x;
681 1.1 thorpej if (tt == 0 ||
682 1.1 thorpej Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
683 1.1 thorpej return (0);
684 1.1 thorpej /*
685 1.1 thorpej * Delete our route from mask lists.
686 1.1 thorpej */
687 1.1 thorpej if (netmask) {
688 1.1 thorpej if ((x = rn_addmask(netmask, 1, head_off)) == 0)
689 1.1 thorpej return (0);
690 1.1 thorpej netmask = x->rn_key;
691 1.1 thorpej while (tt->rn_mask != netmask)
692 1.1 thorpej if ((tt = tt->rn_dupedkey) == 0)
693 1.1 thorpej return (0);
694 1.1 thorpej }
695 1.1 thorpej if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
696 1.1 thorpej goto on1;
697 1.1 thorpej if (tt->rn_flags & RNF_NORMAL) {
698 1.1 thorpej if (m->rm_leaf != tt || m->rm_refs > 0) {
699 1.1 thorpej log(LOG_ERR, "rn_delete: inconsistent annotation\n");
700 1.1 thorpej return 0; /* dangling ref could cause disaster */
701 1.1 thorpej }
702 1.3 christos } else {
703 1.1 thorpej if (m->rm_mask != tt->rn_mask) {
704 1.1 thorpej log(LOG_ERR, "rn_delete: inconsistent annotation\n");
705 1.1 thorpej goto on1;
706 1.1 thorpej }
707 1.1 thorpej if (--m->rm_refs >= 0)
708 1.1 thorpej goto on1;
709 1.1 thorpej }
710 1.1 thorpej b = -1 - tt->rn_b;
711 1.1 thorpej t = saved_tt->rn_p;
712 1.1 thorpej if (b > t->rn_b)
713 1.1 thorpej goto on1; /* Wasn't lifted at all */
714 1.1 thorpej do {
715 1.1 thorpej x = t;
716 1.1 thorpej t = t->rn_p;
717 1.1 thorpej } while (b <= t->rn_b && x != top);
718 1.2 thorpej for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
719 1.1 thorpej if (m == saved_m) {
720 1.1 thorpej *mp = m->rm_mklist;
721 1.1 thorpej MKFree(m);
722 1.1 thorpej break;
723 1.1 thorpej }
724 1.1 thorpej if (m == 0) {
725 1.1 thorpej log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
726 1.1 thorpej if (tt->rn_flags & RNF_NORMAL)
727 1.1 thorpej return (0); /* Dangling ref to us */
728 1.1 thorpej }
729 1.1 thorpej on1:
730 1.1 thorpej /*
731 1.1 thorpej * Eliminate us from tree
732 1.1 thorpej */
733 1.1 thorpej if (tt->rn_flags & RNF_ROOT)
734 1.1 thorpej return (0);
735 1.1 thorpej #ifdef RN_DEBUG
736 1.1 thorpej /* Get us out of the creation list */
737 1.1 thorpej for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
738 1.1 thorpej if (t) t->rn_ybro = tt->rn_ybro;
739 1.1 thorpej #endif
740 1.1 thorpej t = tt->rn_p;
741 1.2 thorpej if ((dupedkey = saved_tt->rn_dupedkey)) {
742 1.1 thorpej if (tt == saved_tt) {
743 1.1 thorpej x = dupedkey; x->rn_p = t;
744 1.1 thorpej if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
745 1.1 thorpej } else {
746 1.1 thorpej for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
747 1.1 thorpej p = p->rn_dupedkey;
748 1.1 thorpej if (p) p->rn_dupedkey = tt->rn_dupedkey;
749 1.1 thorpej else log(LOG_ERR, "rn_delete: couldn't find us\n");
750 1.1 thorpej }
751 1.1 thorpej t = tt + 1;
752 1.1 thorpej if (t->rn_flags & RNF_ACTIVE) {
753 1.1 thorpej #ifndef RN_DEBUG
754 1.1 thorpej *++x = *t; p = t->rn_p;
755 1.1 thorpej #else
756 1.1 thorpej b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
757 1.1 thorpej #endif
758 1.1 thorpej if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
759 1.1 thorpej x->rn_l->rn_p = x; x->rn_r->rn_p = x;
760 1.1 thorpej }
761 1.1 thorpej goto out;
762 1.1 thorpej }
763 1.1 thorpej if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
764 1.1 thorpej p = t->rn_p;
765 1.1 thorpej if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
766 1.1 thorpej x->rn_p = p;
767 1.1 thorpej /*
768 1.1 thorpej * Demote routes attached to us.
769 1.1 thorpej */
770 1.1 thorpej if (t->rn_mklist) {
771 1.1 thorpej if (x->rn_b >= 0) {
772 1.2 thorpej for (mp = &x->rn_mklist; (m = *mp);)
773 1.1 thorpej mp = &m->rm_mklist;
774 1.1 thorpej *mp = t->rn_mklist;
775 1.1 thorpej } else {
776 1.1 thorpej /* If there are any key,mask pairs in a sibling
777 1.1 thorpej duped-key chain, some subset will appear sorted
778 1.1 thorpej in the same order attached to our mklist */
779 1.1 thorpej for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
780 1.1 thorpej if (m == x->rn_mklist) {
781 1.1 thorpej struct radix_mask *mm = m->rm_mklist;
782 1.1 thorpej x->rn_mklist = 0;
783 1.1 thorpej if (--(m->rm_refs) < 0)
784 1.1 thorpej MKFree(m);
785 1.1 thorpej m = mm;
786 1.1 thorpej }
787 1.1 thorpej if (m)
788 1.4 lukem syslog(LOG_ERR, "%s 0x%lx at 0x%lx\n",
789 1.3 christos "rn_delete: Orphaned Mask",
790 1.3 christos (unsigned long)m,
791 1.3 christos (unsigned long)x);
792 1.1 thorpej }
793 1.1 thorpej }
794 1.1 thorpej /*
795 1.1 thorpej * We may be holding an active internal node in the tree.
796 1.1 thorpej */
797 1.1 thorpej x = tt + 1;
798 1.1 thorpej if (t != x) {
799 1.1 thorpej #ifndef RN_DEBUG
800 1.1 thorpej *t = *x;
801 1.1 thorpej #else
802 1.1 thorpej b = t->rn_info; *t = *x; t->rn_info = b;
803 1.1 thorpej #endif
804 1.1 thorpej t->rn_l->rn_p = t; t->rn_r->rn_p = t;
805 1.1 thorpej p = x->rn_p;
806 1.1 thorpej if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
807 1.1 thorpej }
808 1.1 thorpej out:
809 1.1 thorpej tt->rn_flags &= ~RNF_ACTIVE;
810 1.1 thorpej tt[1].rn_flags &= ~RNF_ACTIVE;
811 1.1 thorpej return (tt);
812 1.1 thorpej }
813 1.1 thorpej
814 1.1 thorpej int
815 1.3 christos rn_walktree(struct radix_node_head *h,
816 1.4 lukem int (*f)(struct radix_node *, struct walkarg *),
817 1.3 christos struct walkarg *w)
818 1.1 thorpej {
819 1.1 thorpej int error;
820 1.1 thorpej struct radix_node *base, *next;
821 1.4 lukem struct radix_node *rn = h->rnh_treetop;
822 1.1 thorpej /*
823 1.1 thorpej * This gets complicated because we may delete the node
824 1.1 thorpej * while applying the function f to it, so we need to calculate
825 1.1 thorpej * the successor node in advance.
826 1.1 thorpej */
827 1.1 thorpej /* First time through node, go left */
828 1.1 thorpej while (rn->rn_b >= 0)
829 1.1 thorpej rn = rn->rn_l;
830 1.1 thorpej for (;;) {
831 1.1 thorpej base = rn;
832 1.1 thorpej /* If at right child go back up, otherwise, go right */
833 1.1 thorpej while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
834 1.1 thorpej rn = rn->rn_p;
835 1.1 thorpej /* Find the next *leaf* since next node might vanish, too */
836 1.1 thorpej for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
837 1.1 thorpej rn = rn->rn_l;
838 1.1 thorpej next = rn;
839 1.1 thorpej /* Process leaves */
840 1.2 thorpej while ((rn = base)) {
841 1.1 thorpej base = rn->rn_dupedkey;
842 1.1 thorpej if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
843 1.1 thorpej return (error);
844 1.1 thorpej }
845 1.1 thorpej rn = next;
846 1.1 thorpej if (rn->rn_flags & RNF_ROOT)
847 1.1 thorpej return (0);
848 1.1 thorpej }
849 1.1 thorpej /* NOTREACHED */
850 1.1 thorpej }
851 1.1 thorpej
852 1.1 thorpej int
853 1.3 christos rn_inithead(void **head, int off)
854 1.1 thorpej {
855 1.4 lukem struct radix_node_head *rnh;
856 1.4 lukem struct radix_node *t, *tt, *ttt;
857 1.1 thorpej if (*head)
858 1.1 thorpej return (1);
859 1.7 christos rnh = (struct radix_node_head *)rtmalloc(sizeof(*rnh), "rn_inithead");
860 1.1 thorpej Bzero(rnh, sizeof (*rnh));
861 1.1 thorpej *head = rnh;
862 1.1 thorpej t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
863 1.1 thorpej ttt = rnh->rnh_nodes + 2;
864 1.1 thorpej t->rn_r = ttt;
865 1.1 thorpej t->rn_p = t;
866 1.1 thorpej tt = t->rn_l;
867 1.1 thorpej tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
868 1.1 thorpej tt->rn_b = -1 - off;
869 1.1 thorpej *ttt = *tt;
870 1.1 thorpej ttt->rn_key = rn_ones;
871 1.1 thorpej rnh->rnh_addaddr = rn_addroute;
872 1.1 thorpej rnh->rnh_deladdr = rn_delete;
873 1.1 thorpej rnh->rnh_matchaddr = rn_match;
874 1.1 thorpej rnh->rnh_lookup = rn_lookup;
875 1.1 thorpej rnh->rnh_walktree = rn_walktree;
876 1.1 thorpej rnh->rnh_treetop = t;
877 1.1 thorpej return (1);
878 1.1 thorpej }
879 1.1 thorpej
880 1.1 thorpej void
881 1.3 christos rn_init(void)
882 1.1 thorpej {
883 1.1 thorpej char *cp, *cplim;
884 1.1 thorpej if (max_keylen == 0) {
885 1.1 thorpej printf("rn_init: radix functions require max_keylen be set\n");
886 1.1 thorpej return;
887 1.1 thorpej }
888 1.7 christos rn_zeros = (char *)rtmalloc(3 * max_keylen, "rn_init");
889 1.1 thorpej Bzero(rn_zeros, 3 * max_keylen);
890 1.1 thorpej rn_ones = cp = rn_zeros + max_keylen;
891 1.1 thorpej addmask_key = cplim = rn_ones + max_keylen;
892 1.1 thorpej while (cp < cplim)
893 1.1 thorpej *cp++ = -1;
894 1.12 thorpej if (rn_inithead((void *)&mask_rnhead, 0) == 0)
895 1.1 thorpej panic("rn_init 2");
896 1.1 thorpej }
897 1.3 christos
898