radix.c revision 1.4 1 1.4 lukem /* $NetBSD: radix.c,v 1.4 1997/09/15 10:38:18 lukem Exp $ */
2 1.2 thorpej
3 1.1 thorpej /*
4 1.1 thorpej * Copyright (c) 1988, 1989, 1993
5 1.1 thorpej * The Regents of the University of California. All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * Redistribution and use in source and binary forms, with or without
8 1.1 thorpej * modification, are permitted provided that the following conditions
9 1.1 thorpej * are met:
10 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
11 1.1 thorpej * notice, this list of conditions and the following disclaimer.
12 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
14 1.1 thorpej * documentation and/or other materials provided with the distribution.
15 1.1 thorpej * 3. All advertising materials mentioning features or use of this software
16 1.1 thorpej * must display the following acknowledgement:
17 1.1 thorpej * This product includes software developed by the University of
18 1.1 thorpej * California, Berkeley and its contributors.
19 1.1 thorpej * 4. Neither the name of the University nor the names of its contributors
20 1.1 thorpej * may be used to endorse or promote products derived from this software
21 1.1 thorpej * without specific prior written permission.
22 1.1 thorpej *
23 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 thorpej * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 thorpej * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 thorpej * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 thorpej * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 thorpej * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 thorpej * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 thorpej * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 thorpej * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 thorpej * SUCH DAMAGE.
34 1.1 thorpej *
35 1.1 thorpej * @(#)radix.c 8.4 (Berkeley) 11/2/94
36 1.1 thorpej */
37 1.1 thorpej
38 1.1 thorpej /*
39 1.1 thorpej * Routines to build and maintain radix trees for routing lookups.
40 1.1 thorpej */
41 1.3 christos #if !defined(lint) && !defined(sgi) && !defined(__NetBSD__)
42 1.3 christos static char sccsid[] = "@(#)rdisc.c 8.1 (Berkeley) x/y/95";
43 1.3 christos #elif defined(__NetBSD__)
44 1.4 lukem #include <sys/cdefs.h>
45 1.4 lukem __RCSID("$NetBSD: radix.c,v 1.4 1997/09/15 10:38:18 lukem Exp $");
46 1.3 christos #endif
47 1.2 thorpej
48 1.2 thorpej #include "defs.h"
49 1.2 thorpej
50 1.1 thorpej #define log(x, msg) syslog(x, msg)
51 1.1 thorpej #define panic(s) {log(LOG_ERR,s); exit(1);}
52 1.3 christos #define min(a,b) (((a)<(b))?(a):(b))
53 1.1 thorpej
54 1.1 thorpej int max_keylen;
55 1.1 thorpej struct radix_mask *rn_mkfreelist;
56 1.1 thorpej struct radix_node_head *mask_rnhead;
57 1.1 thorpej static char *addmask_key;
58 1.1 thorpej static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
59 1.1 thorpej static char *rn_zeros, *rn_ones;
60 1.1 thorpej
61 1.1 thorpej #define rn_masktop (mask_rnhead->rnh_treetop)
62 1.1 thorpej #undef Bcmp
63 1.1 thorpej #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
64 1.1 thorpej
65 1.1 thorpej static int rn_satsifies_leaf(char *, struct radix_node *, int);
66 1.1 thorpej
67 1.1 thorpej /*
68 1.1 thorpej * The data structure for the keys is a radix tree with one way
69 1.1 thorpej * branching removed. The index rn_b at an internal node n represents a bit
70 1.1 thorpej * position to be tested. The tree is arranged so that all descendants
71 1.1 thorpej * of a node n have keys whose bits all agree up to position rn_b - 1.
72 1.1 thorpej * (We say the index of n is rn_b.)
73 1.1 thorpej *
74 1.1 thorpej * There is at least one descendant which has a one bit at position rn_b,
75 1.1 thorpej * and at least one with a zero there.
76 1.1 thorpej *
77 1.1 thorpej * A route is determined by a pair of key and mask. We require that the
78 1.1 thorpej * bit-wise logical and of the key and mask to be the key.
79 1.1 thorpej * We define the index of a route to associated with the mask to be
80 1.1 thorpej * the first bit number in the mask where 0 occurs (with bit number 0
81 1.1 thorpej * representing the highest order bit).
82 1.3 christos *
83 1.1 thorpej * We say a mask is normal if every bit is 0, past the index of the mask.
84 1.1 thorpej * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
85 1.1 thorpej * and m is a normal mask, then the route applies to every descendant of n.
86 1.1 thorpej * If the index(m) < rn_b, this implies the trailing last few bits of k
87 1.1 thorpej * before bit b are all 0, (and hence consequently true of every descendant
88 1.1 thorpej * of n), so the route applies to all descendants of the node as well.
89 1.3 christos *
90 1.1 thorpej * Similar logic shows that a non-normal mask m such that
91 1.1 thorpej * index(m) <= index(n) could potentially apply to many children of n.
92 1.1 thorpej * Thus, for each non-host route, we attach its mask to a list at an internal
93 1.3 christos * node as high in the tree as we can go.
94 1.1 thorpej *
95 1.1 thorpej * The present version of the code makes use of normal routes in short-
96 1.1 thorpej * circuiting an explict mask and compare operation when testing whether
97 1.1 thorpej * a key satisfies a normal route, and also in remembering the unique leaf
98 1.1 thorpej * that governs a subtree.
99 1.1 thorpej */
100 1.1 thorpej
101 1.1 thorpej struct radix_node *
102 1.3 christos rn_search(void *v_arg,
103 1.3 christos struct radix_node *head)
104 1.1 thorpej {
105 1.4 lukem struct radix_node *x;
106 1.4 lukem caddr_t v;
107 1.1 thorpej
108 1.1 thorpej for (x = head, v = v_arg; x->rn_b >= 0;) {
109 1.1 thorpej if (x->rn_bmask & v[x->rn_off])
110 1.1 thorpej x = x->rn_r;
111 1.1 thorpej else
112 1.1 thorpej x = x->rn_l;
113 1.1 thorpej }
114 1.1 thorpej return (x);
115 1.1 thorpej }
116 1.1 thorpej
117 1.1 thorpej struct radix_node *
118 1.3 christos rn_search_m(void *v_arg,
119 1.3 christos struct radix_node *head,
120 1.3 christos void *m_arg)
121 1.1 thorpej {
122 1.4 lukem struct radix_node *x;
123 1.4 lukem caddr_t v = v_arg, m = m_arg;
124 1.1 thorpej
125 1.1 thorpej for (x = head; x->rn_b >= 0;) {
126 1.1 thorpej if ((x->rn_bmask & m[x->rn_off]) &&
127 1.1 thorpej (x->rn_bmask & v[x->rn_off]))
128 1.1 thorpej x = x->rn_r;
129 1.1 thorpej else
130 1.1 thorpej x = x->rn_l;
131 1.1 thorpej }
132 1.1 thorpej return x;
133 1.1 thorpej }
134 1.1 thorpej
135 1.1 thorpej int
136 1.3 christos rn_refines(void* m_arg, void *n_arg)
137 1.1 thorpej {
138 1.4 lukem caddr_t m = m_arg, n = n_arg;
139 1.4 lukem caddr_t lim, lim2 = lim = n + *(u_char *)n;
140 1.1 thorpej int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
141 1.1 thorpej int masks_are_equal = 1;
142 1.1 thorpej
143 1.1 thorpej if (longer > 0)
144 1.1 thorpej lim -= longer;
145 1.1 thorpej while (n < lim) {
146 1.1 thorpej if (*n & ~(*m))
147 1.1 thorpej return 0;
148 1.1 thorpej if (*n++ != *m++)
149 1.1 thorpej masks_are_equal = 0;
150 1.1 thorpej }
151 1.1 thorpej while (n < lim2)
152 1.1 thorpej if (*n++)
153 1.1 thorpej return 0;
154 1.1 thorpej if (masks_are_equal && (longer < 0))
155 1.1 thorpej for (lim2 = m - longer; m < lim2; )
156 1.1 thorpej if (*m++)
157 1.1 thorpej return 1;
158 1.1 thorpej return (!masks_are_equal);
159 1.1 thorpej }
160 1.1 thorpej
161 1.1 thorpej struct radix_node *
162 1.4 lukem rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
163 1.1 thorpej {
164 1.4 lukem struct radix_node *x;
165 1.1 thorpej caddr_t netmask = 0;
166 1.1 thorpej
167 1.1 thorpej if (m_arg) {
168 1.1 thorpej if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
169 1.1 thorpej return (0);
170 1.1 thorpej netmask = x->rn_key;
171 1.1 thorpej }
172 1.1 thorpej x = rn_match(v_arg, head);
173 1.1 thorpej if (x && netmask) {
174 1.1 thorpej while (x && x->rn_mask != netmask)
175 1.1 thorpej x = x->rn_dupedkey;
176 1.1 thorpej }
177 1.1 thorpej return x;
178 1.1 thorpej }
179 1.1 thorpej
180 1.1 thorpej static int
181 1.1 thorpej rn_satsifies_leaf(char *trial,
182 1.4 lukem struct radix_node *leaf,
183 1.1 thorpej int skip)
184 1.1 thorpej {
185 1.4 lukem char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
186 1.1 thorpej char *cplim;
187 1.1 thorpej int length = min(*(u_char *)cp, *(u_char *)cp2);
188 1.1 thorpej
189 1.1 thorpej if (cp3 == 0)
190 1.1 thorpej cp3 = rn_ones;
191 1.1 thorpej else
192 1.1 thorpej length = min(length, *(u_char *)cp3);
193 1.1 thorpej cplim = cp + length; cp3 += skip; cp2 += skip;
194 1.1 thorpej for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
195 1.1 thorpej if ((*cp ^ *cp2) & *cp3)
196 1.1 thorpej return 0;
197 1.1 thorpej return 1;
198 1.1 thorpej }
199 1.1 thorpej
200 1.1 thorpej struct radix_node *
201 1.3 christos rn_match(void *v_arg,
202 1.3 christos struct radix_node_head *head)
203 1.1 thorpej {
204 1.1 thorpej caddr_t v = v_arg;
205 1.4 lukem struct radix_node *t = head->rnh_treetop, *x;
206 1.4 lukem caddr_t cp = v, cp2;
207 1.1 thorpej caddr_t cplim;
208 1.1 thorpej struct radix_node *saved_t, *top = t;
209 1.1 thorpej int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
210 1.4 lukem int test, b, rn_b;
211 1.1 thorpej
212 1.1 thorpej /*
213 1.1 thorpej * Open code rn_search(v, top) to avoid overhead of extra
214 1.1 thorpej * subroutine call.
215 1.1 thorpej */
216 1.1 thorpej for (; t->rn_b >= 0; ) {
217 1.1 thorpej if (t->rn_bmask & cp[t->rn_off])
218 1.1 thorpej t = t->rn_r;
219 1.1 thorpej else
220 1.1 thorpej t = t->rn_l;
221 1.1 thorpej }
222 1.1 thorpej /*
223 1.1 thorpej * See if we match exactly as a host destination
224 1.1 thorpej * or at least learn how many bits match, for normal mask finesse.
225 1.1 thorpej *
226 1.1 thorpej * It doesn't hurt us to limit how many bytes to check
227 1.1 thorpej * to the length of the mask, since if it matches we had a genuine
228 1.1 thorpej * match and the leaf we have is the most specific one anyway;
229 1.1 thorpej * if it didn't match with a shorter length it would fail
230 1.1 thorpej * with a long one. This wins big for class B&C netmasks which
231 1.1 thorpej * are probably the most common case...
232 1.1 thorpej */
233 1.1 thorpej if (t->rn_mask)
234 1.1 thorpej vlen = *(u_char *)t->rn_mask;
235 1.1 thorpej cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
236 1.1 thorpej for (; cp < cplim; cp++, cp2++)
237 1.1 thorpej if (*cp != *cp2)
238 1.1 thorpej goto on1;
239 1.1 thorpej /*
240 1.1 thorpej * This extra grot is in case we are explicitly asked
241 1.1 thorpej * to look up the default. Ugh!
242 1.3 christos * Or 255.255.255.255
243 1.3 christos *
244 1.3 christos * In this case, we have a complete match of the key. Unless
245 1.3 christos * the node is one of the roots, we are finished.
246 1.3 christos * If it is the zeros root, then take what we have, prefering
247 1.3 christos * any real data.
248 1.3 christos * If it is the ones root, then pretend the target key was followed
249 1.3 christos * by a byte of zeros.
250 1.3 christos */
251 1.3 christos if (!(t->rn_flags & RNF_ROOT))
252 1.3 christos return t; /* not a root */
253 1.3 christos if (t->rn_dupedkey) {
254 1.1 thorpej t = t->rn_dupedkey;
255 1.3 christos return t; /* have some real data */
256 1.3 christos }
257 1.3 christos if (*(cp-1) == 0)
258 1.3 christos return t; /* not the ones root */
259 1.3 christos b = 0; /* fake a zero after 255.255.255.255 */
260 1.3 christos goto on2;
261 1.1 thorpej on1:
262 1.1 thorpej test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
263 1.1 thorpej for (b = 7; (test >>= 1) > 0;)
264 1.1 thorpej b--;
265 1.3 christos on2:
266 1.1 thorpej matched_off = cp - v;
267 1.1 thorpej b += matched_off << 3;
268 1.1 thorpej rn_b = -1 - b;
269 1.1 thorpej /*
270 1.1 thorpej * If there is a host route in a duped-key chain, it will be first.
271 1.1 thorpej */
272 1.1 thorpej if ((saved_t = t)->rn_mask == 0)
273 1.1 thorpej t = t->rn_dupedkey;
274 1.1 thorpej for (; t; t = t->rn_dupedkey)
275 1.1 thorpej /*
276 1.1 thorpej * Even if we don't match exactly as a host,
277 1.1 thorpej * we may match if the leaf we wound up at is
278 1.1 thorpej * a route to a net.
279 1.1 thorpej */
280 1.1 thorpej if (t->rn_flags & RNF_NORMAL) {
281 1.1 thorpej if (rn_b <= t->rn_b)
282 1.1 thorpej return t;
283 1.1 thorpej } else if (rn_satsifies_leaf(v, t, matched_off))
284 1.1 thorpej return t;
285 1.1 thorpej t = saved_t;
286 1.1 thorpej /* start searching up the tree */
287 1.1 thorpej do {
288 1.4 lukem struct radix_mask *m;
289 1.1 thorpej t = t->rn_p;
290 1.2 thorpej if ((m = t->rn_mklist)) {
291 1.1 thorpej /*
292 1.1 thorpej * If non-contiguous masks ever become important
293 1.1 thorpej * we can restore the masking and open coding of
294 1.1 thorpej * the search and satisfaction test and put the
295 1.1 thorpej * calculation of "off" back before the "do".
296 1.1 thorpej */
297 1.1 thorpej do {
298 1.1 thorpej if (m->rm_flags & RNF_NORMAL) {
299 1.1 thorpej if (rn_b <= m->rm_b)
300 1.1 thorpej return (m->rm_leaf);
301 1.1 thorpej } else {
302 1.1 thorpej off = min(t->rn_off, matched_off);
303 1.1 thorpej x = rn_search_m(v, t, m->rm_mask);
304 1.1 thorpej while (x && x->rn_mask != m->rm_mask)
305 1.1 thorpej x = x->rn_dupedkey;
306 1.1 thorpej if (x && rn_satsifies_leaf(v, x, off))
307 1.1 thorpej return x;
308 1.1 thorpej }
309 1.2 thorpej } while ((m = m->rm_mklist));
310 1.1 thorpej }
311 1.1 thorpej } while (t != top);
312 1.1 thorpej return 0;
313 1.1 thorpej }
314 1.3 christos
315 1.1 thorpej #ifdef RN_DEBUG
316 1.1 thorpej int rn_nodenum;
317 1.1 thorpej struct radix_node *rn_clist;
318 1.1 thorpej int rn_saveinfo;
319 1.1 thorpej int rn_debug = 1;
320 1.1 thorpej #endif
321 1.1 thorpej
322 1.1 thorpej struct radix_node *
323 1.3 christos rn_newpair(void *v, int b, struct radix_node nodes[2])
324 1.1 thorpej {
325 1.4 lukem struct radix_node *tt = nodes, *t = tt + 1;
326 1.1 thorpej t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
327 1.1 thorpej t->rn_l = tt; t->rn_off = b >> 3;
328 1.1 thorpej tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
329 1.1 thorpej tt->rn_flags = t->rn_flags = RNF_ACTIVE;
330 1.1 thorpej #ifdef RN_DEBUG
331 1.1 thorpej tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
332 1.1 thorpej tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
333 1.1 thorpej #endif
334 1.1 thorpej return t;
335 1.1 thorpej }
336 1.1 thorpej
337 1.1 thorpej struct radix_node *
338 1.3 christos rn_insert(void* v_arg,
339 1.3 christos struct radix_node_head *head,
340 1.3 christos int *dupentry,
341 1.3 christos struct radix_node nodes[2])
342 1.1 thorpej {
343 1.1 thorpej caddr_t v = v_arg;
344 1.1 thorpej struct radix_node *top = head->rnh_treetop;
345 1.1 thorpej int head_off = top->rn_off, vlen = (int)*((u_char *)v);
346 1.4 lukem struct radix_node *t = rn_search(v_arg, top);
347 1.4 lukem caddr_t cp = v + head_off;
348 1.4 lukem int b;
349 1.1 thorpej struct radix_node *tt;
350 1.3 christos
351 1.3 christos /*
352 1.1 thorpej * Find first bit at which v and t->rn_key differ
353 1.1 thorpej */
354 1.1 thorpej {
355 1.4 lukem caddr_t cp2 = t->rn_key + head_off;
356 1.4 lukem int cmp_res;
357 1.1 thorpej caddr_t cplim = v + vlen;
358 1.1 thorpej
359 1.1 thorpej while (cp < cplim)
360 1.1 thorpej if (*cp2++ != *cp++)
361 1.1 thorpej goto on1;
362 1.3 christos /* handle adding 255.255.255.255 */
363 1.3 christos if (!(t->rn_flags & RNF_ROOT) || *(cp2-1) == 0) {
364 1.3 christos *dupentry = 1;
365 1.3 christos return t;
366 1.3 christos }
367 1.1 thorpej on1:
368 1.1 thorpej *dupentry = 0;
369 1.1 thorpej cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
370 1.1 thorpej for (b = (cp - v) << 3; cmp_res; b--)
371 1.1 thorpej cmp_res >>= 1;
372 1.1 thorpej }
373 1.1 thorpej {
374 1.4 lukem struct radix_node *p, *x = top;
375 1.1 thorpej cp = v;
376 1.1 thorpej do {
377 1.1 thorpej p = x;
378 1.3 christos if (cp[x->rn_off] & x->rn_bmask)
379 1.1 thorpej x = x->rn_r;
380 1.1 thorpej else x = x->rn_l;
381 1.1 thorpej } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
382 1.1 thorpej #ifdef RN_DEBUG
383 1.1 thorpej if (rn_debug)
384 1.1 thorpej log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
385 1.1 thorpej #endif
386 1.1 thorpej t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
387 1.1 thorpej if ((cp[p->rn_off] & p->rn_bmask) == 0)
388 1.1 thorpej p->rn_l = t;
389 1.1 thorpej else
390 1.1 thorpej p->rn_r = t;
391 1.1 thorpej x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
392 1.1 thorpej if ((cp[t->rn_off] & t->rn_bmask) == 0) {
393 1.1 thorpej t->rn_r = x;
394 1.1 thorpej } else {
395 1.1 thorpej t->rn_r = tt; t->rn_l = x;
396 1.1 thorpej }
397 1.1 thorpej #ifdef RN_DEBUG
398 1.1 thorpej if (rn_debug)
399 1.1 thorpej log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
400 1.1 thorpej #endif
401 1.1 thorpej }
402 1.1 thorpej return (tt);
403 1.1 thorpej }
404 1.1 thorpej
405 1.1 thorpej struct radix_node *
406 1.3 christos rn_addmask(void *n_arg, int search, int skip)
407 1.1 thorpej {
408 1.1 thorpej caddr_t netmask = (caddr_t)n_arg;
409 1.4 lukem struct radix_node *x;
410 1.4 lukem caddr_t cp, cplim;
411 1.4 lukem int b = 0, mlen, j;
412 1.1 thorpej int maskduplicated, m0, isnormal;
413 1.1 thorpej struct radix_node *saved_x;
414 1.1 thorpej static int last_zeroed = 0;
415 1.1 thorpej
416 1.1 thorpej if ((mlen = *(u_char *)netmask) > max_keylen)
417 1.1 thorpej mlen = max_keylen;
418 1.1 thorpej if (skip == 0)
419 1.1 thorpej skip = 1;
420 1.1 thorpej if (mlen <= skip)
421 1.1 thorpej return (mask_rnhead->rnh_nodes);
422 1.1 thorpej if (skip > 1)
423 1.1 thorpej Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
424 1.1 thorpej if ((m0 = mlen) > skip)
425 1.1 thorpej Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
426 1.1 thorpej /*
427 1.1 thorpej * Trim trailing zeroes.
428 1.1 thorpej */
429 1.1 thorpej for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
430 1.1 thorpej cp--;
431 1.1 thorpej mlen = cp - addmask_key;
432 1.1 thorpej if (mlen <= skip) {
433 1.1 thorpej if (m0 >= last_zeroed)
434 1.1 thorpej last_zeroed = mlen;
435 1.1 thorpej return (mask_rnhead->rnh_nodes);
436 1.1 thorpej }
437 1.1 thorpej if (m0 < last_zeroed)
438 1.1 thorpej Bzero(addmask_key + m0, last_zeroed - m0);
439 1.1 thorpej *addmask_key = last_zeroed = mlen;
440 1.1 thorpej x = rn_search(addmask_key, rn_masktop);
441 1.1 thorpej if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
442 1.1 thorpej x = 0;
443 1.1 thorpej if (x || search)
444 1.1 thorpej return (x);
445 1.1 thorpej R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
446 1.1 thorpej if ((saved_x = x) == 0)
447 1.1 thorpej return (0);
448 1.1 thorpej Bzero(x, max_keylen + 2 * sizeof (*x));
449 1.1 thorpej netmask = cp = (caddr_t)(x + 2);
450 1.1 thorpej Bcopy(addmask_key, cp, mlen);
451 1.1 thorpej x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
452 1.1 thorpej if (maskduplicated) {
453 1.1 thorpej log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
454 1.1 thorpej Free(saved_x);
455 1.1 thorpej return (x);
456 1.1 thorpej }
457 1.1 thorpej /*
458 1.1 thorpej * Calculate index of mask, and check for normalcy.
459 1.1 thorpej */
460 1.1 thorpej cplim = netmask + mlen; isnormal = 1;
461 1.1 thorpej for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
462 1.1 thorpej cp++;
463 1.1 thorpej if (cp != cplim) {
464 1.3 christos for (j = 0x80; (j & *cp) != 0; j >>= 1)
465 1.1 thorpej b++;
466 1.1 thorpej if (*cp != normal_chars[b] || cp != (cplim - 1))
467 1.1 thorpej isnormal = 0;
468 1.1 thorpej }
469 1.1 thorpej b += (cp - netmask) << 3;
470 1.1 thorpej x->rn_b = -1 - b;
471 1.1 thorpej if (isnormal)
472 1.1 thorpej x->rn_flags |= RNF_NORMAL;
473 1.1 thorpej return (x);
474 1.1 thorpej }
475 1.1 thorpej
476 1.1 thorpej static int /* XXX: arbitrary ordering for non-contiguous masks */
477 1.1 thorpej rn_lexobetter(void *m_arg, void *n_arg)
478 1.1 thorpej {
479 1.4 lukem u_char *mp = m_arg, *np = n_arg, *lim;
480 1.1 thorpej
481 1.1 thorpej if (*mp > *np)
482 1.1 thorpej return 1; /* not really, but need to check longer one first */
483 1.3 christos if (*mp == *np)
484 1.1 thorpej for (lim = mp + *mp; mp < lim;)
485 1.1 thorpej if (*mp++ > *np++)
486 1.1 thorpej return 1;
487 1.1 thorpej return 0;
488 1.1 thorpej }
489 1.1 thorpej
490 1.1 thorpej static struct radix_mask *
491 1.4 lukem rn_new_radix_mask(struct radix_node *tt,
492 1.4 lukem struct radix_mask *next)
493 1.1 thorpej {
494 1.4 lukem struct radix_mask *m;
495 1.1 thorpej
496 1.1 thorpej MKGet(m);
497 1.1 thorpej if (m == 0) {
498 1.1 thorpej log(LOG_ERR, "Mask for route not entered\n");
499 1.1 thorpej return (0);
500 1.1 thorpej }
501 1.1 thorpej Bzero(m, sizeof *m);
502 1.1 thorpej m->rm_b = tt->rn_b;
503 1.1 thorpej m->rm_flags = tt->rn_flags;
504 1.1 thorpej if (tt->rn_flags & RNF_NORMAL)
505 1.1 thorpej m->rm_leaf = tt;
506 1.1 thorpej else
507 1.1 thorpej m->rm_mask = tt->rn_mask;
508 1.1 thorpej m->rm_mklist = next;
509 1.1 thorpej tt->rn_mklist = m;
510 1.1 thorpej return m;
511 1.1 thorpej }
512 1.1 thorpej
513 1.1 thorpej struct radix_node *
514 1.3 christos rn_addroute(void *v_arg,
515 1.3 christos void *n_arg,
516 1.3 christos struct radix_node_head *head,
517 1.3 christos struct radix_node treenodes[2])
518 1.1 thorpej {
519 1.1 thorpej caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
520 1.4 lukem struct radix_node *t, *x = 0, *tt;
521 1.1 thorpej struct radix_node *saved_tt, *top = head->rnh_treetop;
522 1.3 christos short b = 0, b_leaf = 0;
523 1.1 thorpej int keyduplicated;
524 1.1 thorpej caddr_t mmask;
525 1.1 thorpej struct radix_mask *m, **mp;
526 1.1 thorpej
527 1.1 thorpej /*
528 1.1 thorpej * In dealing with non-contiguous masks, there may be
529 1.1 thorpej * many different routes which have the same mask.
530 1.1 thorpej * We will find it useful to have a unique pointer to
531 1.1 thorpej * the mask to speed avoiding duplicate references at
532 1.1 thorpej * nodes and possibly save time in calculating indices.
533 1.1 thorpej */
534 1.1 thorpej if (netmask) {
535 1.1 thorpej if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
536 1.1 thorpej return (0);
537 1.1 thorpej b_leaf = x->rn_b;
538 1.1 thorpej b = -1 - x->rn_b;
539 1.1 thorpej netmask = x->rn_key;
540 1.1 thorpej }
541 1.1 thorpej /*
542 1.1 thorpej * Deal with duplicated keys: attach node to previous instance
543 1.1 thorpej */
544 1.1 thorpej saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
545 1.1 thorpej if (keyduplicated) {
546 1.1 thorpej for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
547 1.1 thorpej if (tt->rn_mask == netmask)
548 1.1 thorpej return (0);
549 1.1 thorpej if (netmask == 0 ||
550 1.1 thorpej (tt->rn_mask &&
551 1.1 thorpej ((b_leaf < tt->rn_b) || /* index(netmask) > node */
552 1.1 thorpej rn_refines(netmask, tt->rn_mask) ||
553 1.1 thorpej rn_lexobetter(netmask, tt->rn_mask))))
554 1.1 thorpej break;
555 1.1 thorpej }
556 1.1 thorpej /*
557 1.1 thorpej * If the mask is not duplicated, we wouldn't
558 1.1 thorpej * find it among possible duplicate key entries
559 1.1 thorpej * anyway, so the above test doesn't hurt.
560 1.1 thorpej *
561 1.1 thorpej * We sort the masks for a duplicated key the same way as
562 1.1 thorpej * in a masklist -- most specific to least specific.
563 1.1 thorpej * This may require the unfortunate nuisance of relocating
564 1.1 thorpej * the head of the list.
565 1.1 thorpej */
566 1.1 thorpej if (tt == saved_tt) {
567 1.1 thorpej struct radix_node *xx = x;
568 1.1 thorpej /* link in at head of list */
569 1.1 thorpej (tt = treenodes)->rn_dupedkey = t;
570 1.1 thorpej tt->rn_flags = t->rn_flags;
571 1.1 thorpej tt->rn_p = x = t->rn_p;
572 1.1 thorpej if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
573 1.1 thorpej saved_tt = tt; x = xx;
574 1.1 thorpej } else {
575 1.1 thorpej (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
576 1.1 thorpej t->rn_dupedkey = tt;
577 1.1 thorpej }
578 1.1 thorpej #ifdef RN_DEBUG
579 1.1 thorpej t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
580 1.1 thorpej tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
581 1.1 thorpej #endif
582 1.1 thorpej tt->rn_key = (caddr_t) v;
583 1.1 thorpej tt->rn_b = -1;
584 1.1 thorpej tt->rn_flags = RNF_ACTIVE;
585 1.1 thorpej }
586 1.1 thorpej /*
587 1.1 thorpej * Put mask in tree.
588 1.1 thorpej */
589 1.1 thorpej if (netmask) {
590 1.1 thorpej tt->rn_mask = netmask;
591 1.1 thorpej tt->rn_b = x->rn_b;
592 1.1 thorpej tt->rn_flags |= x->rn_flags & RNF_NORMAL;
593 1.1 thorpej }
594 1.1 thorpej t = saved_tt->rn_p;
595 1.1 thorpej if (keyduplicated)
596 1.1 thorpej goto on2;
597 1.1 thorpej b_leaf = -1 - t->rn_b;
598 1.1 thorpej if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
599 1.1 thorpej /* Promote general routes from below */
600 1.3 christos if (x->rn_b < 0) {
601 1.1 thorpej for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
602 1.1 thorpej if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
603 1.2 thorpej if ((*mp = m = rn_new_radix_mask(x, 0)))
604 1.1 thorpej mp = &m->rm_mklist;
605 1.1 thorpej }
606 1.1 thorpej } else if (x->rn_mklist) {
607 1.1 thorpej /*
608 1.1 thorpej * Skip over masks whose index is > that of new node
609 1.1 thorpej */
610 1.2 thorpej for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
611 1.1 thorpej if (m->rm_b >= b_leaf)
612 1.1 thorpej break;
613 1.1 thorpej t->rn_mklist = m; *mp = 0;
614 1.1 thorpej }
615 1.1 thorpej on2:
616 1.1 thorpej /* Add new route to highest possible ancestor's list */
617 1.1 thorpej if ((netmask == 0) || (b > t->rn_b ))
618 1.1 thorpej return tt; /* can't lift at all */
619 1.1 thorpej b_leaf = tt->rn_b;
620 1.1 thorpej do {
621 1.1 thorpej x = t;
622 1.1 thorpej t = t->rn_p;
623 1.1 thorpej } while (b <= t->rn_b && x != top);
624 1.1 thorpej /*
625 1.1 thorpej * Search through routes associated with node to
626 1.1 thorpej * insert new route according to index.
627 1.1 thorpej * Need same criteria as when sorting dupedkeys to avoid
628 1.1 thorpej * double loop on deletion.
629 1.1 thorpej */
630 1.2 thorpej for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
631 1.1 thorpej if (m->rm_b < b_leaf)
632 1.1 thorpej continue;
633 1.1 thorpej if (m->rm_b > b_leaf)
634 1.1 thorpej break;
635 1.1 thorpej if (m->rm_flags & RNF_NORMAL) {
636 1.1 thorpej mmask = m->rm_leaf->rn_mask;
637 1.1 thorpej if (tt->rn_flags & RNF_NORMAL) {
638 1.1 thorpej log(LOG_ERR,
639 1.1 thorpej "Non-unique normal route, mask not entered");
640 1.1 thorpej return tt;
641 1.1 thorpej }
642 1.1 thorpej } else
643 1.1 thorpej mmask = m->rm_mask;
644 1.1 thorpej if (mmask == netmask) {
645 1.1 thorpej m->rm_refs++;
646 1.1 thorpej tt->rn_mklist = m;
647 1.1 thorpej return tt;
648 1.1 thorpej }
649 1.1 thorpej if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
650 1.1 thorpej break;
651 1.1 thorpej }
652 1.1 thorpej *mp = rn_new_radix_mask(tt, *mp);
653 1.1 thorpej return tt;
654 1.1 thorpej }
655 1.1 thorpej
656 1.1 thorpej struct radix_node *
657 1.3 christos rn_delete(void *v_arg,
658 1.3 christos void *netmask_arg,
659 1.3 christos struct radix_node_head *head)
660 1.1 thorpej {
661 1.4 lukem struct radix_node *t, *p, *x, *tt;
662 1.1 thorpej struct radix_mask *m, *saved_m, **mp;
663 1.1 thorpej struct radix_node *dupedkey, *saved_tt, *top;
664 1.1 thorpej caddr_t v, netmask;
665 1.1 thorpej int b, head_off, vlen;
666 1.1 thorpej
667 1.1 thorpej v = v_arg;
668 1.1 thorpej netmask = netmask_arg;
669 1.1 thorpej x = head->rnh_treetop;
670 1.1 thorpej tt = rn_search(v, x);
671 1.1 thorpej head_off = x->rn_off;
672 1.1 thorpej vlen = *(u_char *)v;
673 1.1 thorpej saved_tt = tt;
674 1.1 thorpej top = x;
675 1.1 thorpej if (tt == 0 ||
676 1.1 thorpej Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
677 1.1 thorpej return (0);
678 1.1 thorpej /*
679 1.1 thorpej * Delete our route from mask lists.
680 1.1 thorpej */
681 1.1 thorpej if (netmask) {
682 1.1 thorpej if ((x = rn_addmask(netmask, 1, head_off)) == 0)
683 1.1 thorpej return (0);
684 1.1 thorpej netmask = x->rn_key;
685 1.1 thorpej while (tt->rn_mask != netmask)
686 1.1 thorpej if ((tt = tt->rn_dupedkey) == 0)
687 1.1 thorpej return (0);
688 1.1 thorpej }
689 1.1 thorpej if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
690 1.1 thorpej goto on1;
691 1.1 thorpej if (tt->rn_flags & RNF_NORMAL) {
692 1.1 thorpej if (m->rm_leaf != tt || m->rm_refs > 0) {
693 1.1 thorpej log(LOG_ERR, "rn_delete: inconsistent annotation\n");
694 1.1 thorpej return 0; /* dangling ref could cause disaster */
695 1.1 thorpej }
696 1.3 christos } else {
697 1.1 thorpej if (m->rm_mask != tt->rn_mask) {
698 1.1 thorpej log(LOG_ERR, "rn_delete: inconsistent annotation\n");
699 1.1 thorpej goto on1;
700 1.1 thorpej }
701 1.1 thorpej if (--m->rm_refs >= 0)
702 1.1 thorpej goto on1;
703 1.1 thorpej }
704 1.1 thorpej b = -1 - tt->rn_b;
705 1.1 thorpej t = saved_tt->rn_p;
706 1.1 thorpej if (b > t->rn_b)
707 1.1 thorpej goto on1; /* Wasn't lifted at all */
708 1.1 thorpej do {
709 1.1 thorpej x = t;
710 1.1 thorpej t = t->rn_p;
711 1.1 thorpej } while (b <= t->rn_b && x != top);
712 1.2 thorpej for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
713 1.1 thorpej if (m == saved_m) {
714 1.1 thorpej *mp = m->rm_mklist;
715 1.1 thorpej MKFree(m);
716 1.1 thorpej break;
717 1.1 thorpej }
718 1.1 thorpej if (m == 0) {
719 1.1 thorpej log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
720 1.1 thorpej if (tt->rn_flags & RNF_NORMAL)
721 1.1 thorpej return (0); /* Dangling ref to us */
722 1.1 thorpej }
723 1.1 thorpej on1:
724 1.1 thorpej /*
725 1.1 thorpej * Eliminate us from tree
726 1.1 thorpej */
727 1.1 thorpej if (tt->rn_flags & RNF_ROOT)
728 1.1 thorpej return (0);
729 1.1 thorpej #ifdef RN_DEBUG
730 1.1 thorpej /* Get us out of the creation list */
731 1.1 thorpej for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
732 1.1 thorpej if (t) t->rn_ybro = tt->rn_ybro;
733 1.1 thorpej #endif
734 1.1 thorpej t = tt->rn_p;
735 1.2 thorpej if ((dupedkey = saved_tt->rn_dupedkey)) {
736 1.1 thorpej if (tt == saved_tt) {
737 1.1 thorpej x = dupedkey; x->rn_p = t;
738 1.1 thorpej if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
739 1.1 thorpej } else {
740 1.1 thorpej for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
741 1.1 thorpej p = p->rn_dupedkey;
742 1.1 thorpej if (p) p->rn_dupedkey = tt->rn_dupedkey;
743 1.1 thorpej else log(LOG_ERR, "rn_delete: couldn't find us\n");
744 1.1 thorpej }
745 1.1 thorpej t = tt + 1;
746 1.1 thorpej if (t->rn_flags & RNF_ACTIVE) {
747 1.1 thorpej #ifndef RN_DEBUG
748 1.1 thorpej *++x = *t; p = t->rn_p;
749 1.1 thorpej #else
750 1.1 thorpej b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
751 1.1 thorpej #endif
752 1.1 thorpej if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
753 1.1 thorpej x->rn_l->rn_p = x; x->rn_r->rn_p = x;
754 1.1 thorpej }
755 1.1 thorpej goto out;
756 1.1 thorpej }
757 1.1 thorpej if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
758 1.1 thorpej p = t->rn_p;
759 1.1 thorpej if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
760 1.1 thorpej x->rn_p = p;
761 1.1 thorpej /*
762 1.1 thorpej * Demote routes attached to us.
763 1.1 thorpej */
764 1.1 thorpej if (t->rn_mklist) {
765 1.1 thorpej if (x->rn_b >= 0) {
766 1.2 thorpej for (mp = &x->rn_mklist; (m = *mp);)
767 1.1 thorpej mp = &m->rm_mklist;
768 1.1 thorpej *mp = t->rn_mklist;
769 1.1 thorpej } else {
770 1.1 thorpej /* If there are any key,mask pairs in a sibling
771 1.1 thorpej duped-key chain, some subset will appear sorted
772 1.1 thorpej in the same order attached to our mklist */
773 1.1 thorpej for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
774 1.1 thorpej if (m == x->rn_mklist) {
775 1.1 thorpej struct radix_mask *mm = m->rm_mklist;
776 1.1 thorpej x->rn_mklist = 0;
777 1.1 thorpej if (--(m->rm_refs) < 0)
778 1.1 thorpej MKFree(m);
779 1.1 thorpej m = mm;
780 1.1 thorpej }
781 1.1 thorpej if (m)
782 1.4 lukem syslog(LOG_ERR, "%s 0x%lx at 0x%lx\n",
783 1.3 christos "rn_delete: Orphaned Mask",
784 1.3 christos (unsigned long)m,
785 1.3 christos (unsigned long)x);
786 1.1 thorpej }
787 1.1 thorpej }
788 1.1 thorpej /*
789 1.1 thorpej * We may be holding an active internal node in the tree.
790 1.1 thorpej */
791 1.1 thorpej x = tt + 1;
792 1.1 thorpej if (t != x) {
793 1.1 thorpej #ifndef RN_DEBUG
794 1.1 thorpej *t = *x;
795 1.1 thorpej #else
796 1.1 thorpej b = t->rn_info; *t = *x; t->rn_info = b;
797 1.1 thorpej #endif
798 1.1 thorpej t->rn_l->rn_p = t; t->rn_r->rn_p = t;
799 1.1 thorpej p = x->rn_p;
800 1.1 thorpej if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
801 1.1 thorpej }
802 1.1 thorpej out:
803 1.1 thorpej tt->rn_flags &= ~RNF_ACTIVE;
804 1.1 thorpej tt[1].rn_flags &= ~RNF_ACTIVE;
805 1.1 thorpej return (tt);
806 1.1 thorpej }
807 1.1 thorpej
808 1.1 thorpej int
809 1.3 christos rn_walktree(struct radix_node_head *h,
810 1.4 lukem int (*f)(struct radix_node *, struct walkarg *),
811 1.3 christos struct walkarg *w)
812 1.1 thorpej {
813 1.1 thorpej int error;
814 1.1 thorpej struct radix_node *base, *next;
815 1.4 lukem struct radix_node *rn = h->rnh_treetop;
816 1.1 thorpej /*
817 1.1 thorpej * This gets complicated because we may delete the node
818 1.1 thorpej * while applying the function f to it, so we need to calculate
819 1.1 thorpej * the successor node in advance.
820 1.1 thorpej */
821 1.1 thorpej /* First time through node, go left */
822 1.1 thorpej while (rn->rn_b >= 0)
823 1.1 thorpej rn = rn->rn_l;
824 1.1 thorpej for (;;) {
825 1.1 thorpej base = rn;
826 1.1 thorpej /* If at right child go back up, otherwise, go right */
827 1.1 thorpej while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
828 1.1 thorpej rn = rn->rn_p;
829 1.1 thorpej /* Find the next *leaf* since next node might vanish, too */
830 1.1 thorpej for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
831 1.1 thorpej rn = rn->rn_l;
832 1.1 thorpej next = rn;
833 1.1 thorpej /* Process leaves */
834 1.2 thorpej while ((rn = base)) {
835 1.1 thorpej base = rn->rn_dupedkey;
836 1.1 thorpej if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
837 1.1 thorpej return (error);
838 1.1 thorpej }
839 1.1 thorpej rn = next;
840 1.1 thorpej if (rn->rn_flags & RNF_ROOT)
841 1.1 thorpej return (0);
842 1.1 thorpej }
843 1.1 thorpej /* NOTREACHED */
844 1.1 thorpej }
845 1.1 thorpej
846 1.1 thorpej int
847 1.3 christos rn_inithead(void **head, int off)
848 1.1 thorpej {
849 1.4 lukem struct radix_node_head *rnh;
850 1.4 lukem struct radix_node *t, *tt, *ttt;
851 1.1 thorpej if (*head)
852 1.1 thorpej return (1);
853 1.1 thorpej R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
854 1.1 thorpej if (rnh == 0)
855 1.1 thorpej return (0);
856 1.1 thorpej Bzero(rnh, sizeof (*rnh));
857 1.1 thorpej *head = rnh;
858 1.1 thorpej t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
859 1.1 thorpej ttt = rnh->rnh_nodes + 2;
860 1.1 thorpej t->rn_r = ttt;
861 1.1 thorpej t->rn_p = t;
862 1.1 thorpej tt = t->rn_l;
863 1.1 thorpej tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
864 1.1 thorpej tt->rn_b = -1 - off;
865 1.1 thorpej *ttt = *tt;
866 1.1 thorpej ttt->rn_key = rn_ones;
867 1.1 thorpej rnh->rnh_addaddr = rn_addroute;
868 1.1 thorpej rnh->rnh_deladdr = rn_delete;
869 1.1 thorpej rnh->rnh_matchaddr = rn_match;
870 1.1 thorpej rnh->rnh_lookup = rn_lookup;
871 1.1 thorpej rnh->rnh_walktree = rn_walktree;
872 1.1 thorpej rnh->rnh_treetop = t;
873 1.1 thorpej return (1);
874 1.1 thorpej }
875 1.1 thorpej
876 1.1 thorpej void
877 1.3 christos rn_init(void)
878 1.1 thorpej {
879 1.1 thorpej char *cp, *cplim;
880 1.1 thorpej if (max_keylen == 0) {
881 1.1 thorpej printf("rn_init: radix functions require max_keylen be set\n");
882 1.1 thorpej return;
883 1.1 thorpej }
884 1.1 thorpej R_Malloc(rn_zeros, char *, 3 * max_keylen);
885 1.1 thorpej if (rn_zeros == NULL)
886 1.1 thorpej panic("rn_init");
887 1.1 thorpej Bzero(rn_zeros, 3 * max_keylen);
888 1.1 thorpej rn_ones = cp = rn_zeros + max_keylen;
889 1.1 thorpej addmask_key = cplim = rn_ones + max_keylen;
890 1.1 thorpej while (cp < cplim)
891 1.1 thorpej *cp++ = -1;
892 1.1 thorpej if (rn_inithead((void **)&mask_rnhead, 0) == 0)
893 1.1 thorpej panic("rn_init 2");
894 1.1 thorpej }
895 1.3 christos
896