radix.c revision 1.1 1 /*
2 * Copyright (c) 1988, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)radix.c 8.4 (Berkeley) 11/2/94
34 */
35
36 /*
37 * Routines to build and maintain radix trees for routing lookups.
38 */
39 #include <sys/param.h>
40 #include <sys/malloc.h>
41 #include <sys/domain.h>
42 #include <sys/syslog.h>
43 #include <net/radix.h>
44 #include <stdlib.h>
45 #define min(a,b) (((a)<(b))?(a):(b))
46 #define log(x, msg) syslog(x, msg)
47 #define panic(s) {log(LOG_ERR,s); exit(1);}
48
49
50 int max_keylen;
51 struct radix_mask *rn_mkfreelist;
52 struct radix_node_head *mask_rnhead;
53 static char *addmask_key;
54 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
55 static char *rn_zeros, *rn_ones;
56
57 #define rn_masktop (mask_rnhead->rnh_treetop)
58 #undef Bcmp
59 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
60
61 static int rn_satsifies_leaf(char *, struct radix_node *, int);
62
63 /*
64 * The data structure for the keys is a radix tree with one way
65 * branching removed. The index rn_b at an internal node n represents a bit
66 * position to be tested. The tree is arranged so that all descendants
67 * of a node n have keys whose bits all agree up to position rn_b - 1.
68 * (We say the index of n is rn_b.)
69 *
70 * There is at least one descendant which has a one bit at position rn_b,
71 * and at least one with a zero there.
72 *
73 * A route is determined by a pair of key and mask. We require that the
74 * bit-wise logical and of the key and mask to be the key.
75 * We define the index of a route to associated with the mask to be
76 * the first bit number in the mask where 0 occurs (with bit number 0
77 * representing the highest order bit).
78 *
79 * We say a mask is normal if every bit is 0, past the index of the mask.
80 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
81 * and m is a normal mask, then the route applies to every descendant of n.
82 * If the index(m) < rn_b, this implies the trailing last few bits of k
83 * before bit b are all 0, (and hence consequently true of every descendant
84 * of n), so the route applies to all descendants of the node as well.
85 *
86 * Similar logic shows that a non-normal mask m such that
87 * index(m) <= index(n) could potentially apply to many children of n.
88 * Thus, for each non-host route, we attach its mask to a list at an internal
89 * node as high in the tree as we can go.
90 *
91 * The present version of the code makes use of normal routes in short-
92 * circuiting an explict mask and compare operation when testing whether
93 * a key satisfies a normal route, and also in remembering the unique leaf
94 * that governs a subtree.
95 */
96
97 struct radix_node *
98 rn_search(v_arg, head)
99 void *v_arg;
100 struct radix_node *head;
101 {
102 register struct radix_node *x;
103 register caddr_t v;
104
105 for (x = head, v = v_arg; x->rn_b >= 0;) {
106 if (x->rn_bmask & v[x->rn_off])
107 x = x->rn_r;
108 else
109 x = x->rn_l;
110 }
111 return (x);
112 }
113
114 struct radix_node *
115 rn_search_m(v_arg, head, m_arg)
116 struct radix_node *head;
117 void *v_arg, *m_arg;
118 {
119 register struct radix_node *x;
120 register caddr_t v = v_arg, m = m_arg;
121
122 for (x = head; x->rn_b >= 0;) {
123 if ((x->rn_bmask & m[x->rn_off]) &&
124 (x->rn_bmask & v[x->rn_off]))
125 x = x->rn_r;
126 else
127 x = x->rn_l;
128 }
129 return x;
130 }
131
132 int
133 rn_refines(m_arg, n_arg)
134 void *m_arg, *n_arg;
135 {
136 register caddr_t m = m_arg, n = n_arg;
137 register caddr_t lim, lim2 = lim = n + *(u_char *)n;
138 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
139 int masks_are_equal = 1;
140
141 if (longer > 0)
142 lim -= longer;
143 while (n < lim) {
144 if (*n & ~(*m))
145 return 0;
146 if (*n++ != *m++)
147 masks_are_equal = 0;
148 }
149 while (n < lim2)
150 if (*n++)
151 return 0;
152 if (masks_are_equal && (longer < 0))
153 for (lim2 = m - longer; m < lim2; )
154 if (*m++)
155 return 1;
156 return (!masks_are_equal);
157 }
158
159 struct radix_node *
160 rn_lookup(v_arg, m_arg, head)
161 void *v_arg, *m_arg;
162 struct radix_node_head *head;
163 {
164 register struct radix_node *x;
165 caddr_t netmask = 0;
166
167 if (m_arg) {
168 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
169 return (0);
170 netmask = x->rn_key;
171 }
172 x = rn_match(v_arg, head);
173 if (x && netmask) {
174 while (x && x->rn_mask != netmask)
175 x = x->rn_dupedkey;
176 }
177 return x;
178 }
179
180 static int
181 rn_satsifies_leaf(char *trial,
182 register struct radix_node *leaf,
183 int skip)
184 {
185 register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
186 char *cplim;
187 int length = min(*(u_char *)cp, *(u_char *)cp2);
188
189 if (cp3 == 0)
190 cp3 = rn_ones;
191 else
192 length = min(length, *(u_char *)cp3);
193 cplim = cp + length; cp3 += skip; cp2 += skip;
194 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
195 if ((*cp ^ *cp2) & *cp3)
196 return 0;
197 return 1;
198 }
199
200 struct radix_node *
201 rn_match(v_arg, head)
202 void *v_arg;
203 struct radix_node_head *head;
204 {
205 caddr_t v = v_arg;
206 register struct radix_node *t = head->rnh_treetop, *x;
207 register caddr_t cp = v, cp2;
208 caddr_t cplim;
209 struct radix_node *saved_t, *top = t;
210 int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
211 register int test, b, rn_b;
212
213 /*
214 * Open code rn_search(v, top) to avoid overhead of extra
215 * subroutine call.
216 */
217 for (; t->rn_b >= 0; ) {
218 if (t->rn_bmask & cp[t->rn_off])
219 t = t->rn_r;
220 else
221 t = t->rn_l;
222 }
223 /*
224 * See if we match exactly as a host destination
225 * or at least learn how many bits match, for normal mask finesse.
226 *
227 * It doesn't hurt us to limit how many bytes to check
228 * to the length of the mask, since if it matches we had a genuine
229 * match and the leaf we have is the most specific one anyway;
230 * if it didn't match with a shorter length it would fail
231 * with a long one. This wins big for class B&C netmasks which
232 * are probably the most common case...
233 */
234 if (t->rn_mask)
235 vlen = *(u_char *)t->rn_mask;
236 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
237 for (; cp < cplim; cp++, cp2++)
238 if (*cp != *cp2)
239 goto on1;
240 /*
241 * This extra grot is in case we are explicitly asked
242 * to look up the default. Ugh!
243 */
244 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
245 t = t->rn_dupedkey;
246 return t;
247 on1:
248 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
249 for (b = 7; (test >>= 1) > 0;)
250 b--;
251 matched_off = cp - v;
252 b += matched_off << 3;
253 rn_b = -1 - b;
254 /*
255 * If there is a host route in a duped-key chain, it will be first.
256 */
257 if ((saved_t = t)->rn_mask == 0)
258 t = t->rn_dupedkey;
259 for (; t; t = t->rn_dupedkey)
260 /*
261 * Even if we don't match exactly as a host,
262 * we may match if the leaf we wound up at is
263 * a route to a net.
264 */
265 if (t->rn_flags & RNF_NORMAL) {
266 if (rn_b <= t->rn_b)
267 return t;
268 } else if (rn_satsifies_leaf(v, t, matched_off))
269 return t;
270 t = saved_t;
271 /* start searching up the tree */
272 do {
273 register struct radix_mask *m;
274 t = t->rn_p;
275 if (m = t->rn_mklist) {
276 /*
277 * If non-contiguous masks ever become important
278 * we can restore the masking and open coding of
279 * the search and satisfaction test and put the
280 * calculation of "off" back before the "do".
281 */
282 do {
283 if (m->rm_flags & RNF_NORMAL) {
284 if (rn_b <= m->rm_b)
285 return (m->rm_leaf);
286 } else {
287 off = min(t->rn_off, matched_off);
288 x = rn_search_m(v, t, m->rm_mask);
289 while (x && x->rn_mask != m->rm_mask)
290 x = x->rn_dupedkey;
291 if (x && rn_satsifies_leaf(v, x, off))
292 return x;
293 }
294 } while (m = m->rm_mklist);
295 }
296 } while (t != top);
297 return 0;
298 }
299
300 #ifdef RN_DEBUG
301 int rn_nodenum;
302 struct radix_node *rn_clist;
303 int rn_saveinfo;
304 int rn_debug = 1;
305 #endif
306
307 struct radix_node *
308 rn_newpair(v, b, nodes)
309 void *v;
310 int b;
311 struct radix_node nodes[2];
312 {
313 register struct radix_node *tt = nodes, *t = tt + 1;
314 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
315 t->rn_l = tt; t->rn_off = b >> 3;
316 tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
317 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
318 #ifdef RN_DEBUG
319 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
320 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
321 #endif
322 return t;
323 }
324
325 struct radix_node *
326 rn_insert(v_arg, head, dupentry, nodes)
327 void *v_arg;
328 struct radix_node_head *head;
329 int *dupentry;
330 struct radix_node nodes[2];
331 {
332 caddr_t v = v_arg;
333 struct radix_node *top = head->rnh_treetop;
334 int head_off = top->rn_off, vlen = (int)*((u_char *)v);
335 register struct radix_node *t = rn_search(v_arg, top);
336 register caddr_t cp = v + head_off;
337 register int b;
338 struct radix_node *tt;
339 /*
340 * Find first bit at which v and t->rn_key differ
341 */
342 {
343 register caddr_t cp2 = t->rn_key + head_off;
344 register int cmp_res;
345 caddr_t cplim = v + vlen;
346
347 while (cp < cplim)
348 if (*cp2++ != *cp++)
349 goto on1;
350 *dupentry = 1;
351 return t;
352 on1:
353 *dupentry = 0;
354 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
355 for (b = (cp - v) << 3; cmp_res; b--)
356 cmp_res >>= 1;
357 }
358 {
359 register struct radix_node *p, *x = top;
360 cp = v;
361 do {
362 p = x;
363 if (cp[x->rn_off] & x->rn_bmask)
364 x = x->rn_r;
365 else x = x->rn_l;
366 } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
367 #ifdef RN_DEBUG
368 if (rn_debug)
369 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
370 #endif
371 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
372 if ((cp[p->rn_off] & p->rn_bmask) == 0)
373 p->rn_l = t;
374 else
375 p->rn_r = t;
376 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
377 if ((cp[t->rn_off] & t->rn_bmask) == 0) {
378 t->rn_r = x;
379 } else {
380 t->rn_r = tt; t->rn_l = x;
381 }
382 #ifdef RN_DEBUG
383 if (rn_debug)
384 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
385 #endif
386 }
387 return (tt);
388 }
389
390 struct radix_node *
391 rn_addmask(n_arg, search, skip)
392 int search, skip;
393 void *n_arg;
394 {
395 caddr_t netmask = (caddr_t)n_arg;
396 register struct radix_node *x;
397 register caddr_t cp, cplim;
398 register int b = 0, mlen, j;
399 int maskduplicated, m0, isnormal;
400 struct radix_node *saved_x;
401 static int last_zeroed = 0;
402
403 if ((mlen = *(u_char *)netmask) > max_keylen)
404 mlen = max_keylen;
405 if (skip == 0)
406 skip = 1;
407 if (mlen <= skip)
408 return (mask_rnhead->rnh_nodes);
409 if (skip > 1)
410 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
411 if ((m0 = mlen) > skip)
412 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
413 /*
414 * Trim trailing zeroes.
415 */
416 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
417 cp--;
418 mlen = cp - addmask_key;
419 if (mlen <= skip) {
420 if (m0 >= last_zeroed)
421 last_zeroed = mlen;
422 return (mask_rnhead->rnh_nodes);
423 }
424 if (m0 < last_zeroed)
425 Bzero(addmask_key + m0, last_zeroed - m0);
426 *addmask_key = last_zeroed = mlen;
427 x = rn_search(addmask_key, rn_masktop);
428 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
429 x = 0;
430 if (x || search)
431 return (x);
432 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
433 if ((saved_x = x) == 0)
434 return (0);
435 Bzero(x, max_keylen + 2 * sizeof (*x));
436 netmask = cp = (caddr_t)(x + 2);
437 Bcopy(addmask_key, cp, mlen);
438 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
439 if (maskduplicated) {
440 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
441 Free(saved_x);
442 return (x);
443 }
444 /*
445 * Calculate index of mask, and check for normalcy.
446 */
447 cplim = netmask + mlen; isnormal = 1;
448 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
449 cp++;
450 if (cp != cplim) {
451 for (j = 0x80; (j & *cp) != 0; j >>= 1)
452 b++;
453 if (*cp != normal_chars[b] || cp != (cplim - 1))
454 isnormal = 0;
455 }
456 b += (cp - netmask) << 3;
457 x->rn_b = -1 - b;
458 if (isnormal)
459 x->rn_flags |= RNF_NORMAL;
460 return (x);
461 }
462
463 static int /* XXX: arbitrary ordering for non-contiguous masks */
464 rn_lexobetter(void *m_arg, void *n_arg)
465 {
466 register u_char *mp = m_arg, *np = n_arg, *lim;
467
468 if (*mp > *np)
469 return 1; /* not really, but need to check longer one first */
470 if (*mp == *np)
471 for (lim = mp + *mp; mp < lim;)
472 if (*mp++ > *np++)
473 return 1;
474 return 0;
475 }
476
477 static struct radix_mask *
478 rn_new_radix_mask(register struct radix_node *tt,
479 register struct radix_mask *next)
480 {
481 register struct radix_mask *m;
482
483 MKGet(m);
484 if (m == 0) {
485 log(LOG_ERR, "Mask for route not entered\n");
486 return (0);
487 }
488 Bzero(m, sizeof *m);
489 m->rm_b = tt->rn_b;
490 m->rm_flags = tt->rn_flags;
491 if (tt->rn_flags & RNF_NORMAL)
492 m->rm_leaf = tt;
493 else
494 m->rm_mask = tt->rn_mask;
495 m->rm_mklist = next;
496 tt->rn_mklist = m;
497 return m;
498 }
499
500 struct radix_node *
501 rn_addroute(v_arg, n_arg, head, treenodes)
502 void *v_arg, *n_arg;
503 struct radix_node_head *head;
504 struct radix_node treenodes[2];
505 {
506 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
507 register struct radix_node *t, *x, *tt;
508 struct radix_node *saved_tt, *top = head->rnh_treetop;
509 short b = 0, b_leaf;
510 int keyduplicated;
511 caddr_t mmask;
512 struct radix_mask *m, **mp;
513
514 /*
515 * In dealing with non-contiguous masks, there may be
516 * many different routes which have the same mask.
517 * We will find it useful to have a unique pointer to
518 * the mask to speed avoiding duplicate references at
519 * nodes and possibly save time in calculating indices.
520 */
521 if (netmask) {
522 if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
523 return (0);
524 b_leaf = x->rn_b;
525 b = -1 - x->rn_b;
526 netmask = x->rn_key;
527 }
528 /*
529 * Deal with duplicated keys: attach node to previous instance
530 */
531 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
532 if (keyduplicated) {
533 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
534 if (tt->rn_mask == netmask)
535 return (0);
536 if (netmask == 0 ||
537 (tt->rn_mask &&
538 ((b_leaf < tt->rn_b) || /* index(netmask) > node */
539 rn_refines(netmask, tt->rn_mask) ||
540 rn_lexobetter(netmask, tt->rn_mask))))
541 break;
542 }
543 /*
544 * If the mask is not duplicated, we wouldn't
545 * find it among possible duplicate key entries
546 * anyway, so the above test doesn't hurt.
547 *
548 * We sort the masks for a duplicated key the same way as
549 * in a masklist -- most specific to least specific.
550 * This may require the unfortunate nuisance of relocating
551 * the head of the list.
552 */
553 if (tt == saved_tt) {
554 struct radix_node *xx = x;
555 /* link in at head of list */
556 (tt = treenodes)->rn_dupedkey = t;
557 tt->rn_flags = t->rn_flags;
558 tt->rn_p = x = t->rn_p;
559 if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
560 saved_tt = tt; x = xx;
561 } else {
562 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
563 t->rn_dupedkey = tt;
564 }
565 #ifdef RN_DEBUG
566 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
567 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
568 #endif
569 tt->rn_key = (caddr_t) v;
570 tt->rn_b = -1;
571 tt->rn_flags = RNF_ACTIVE;
572 }
573 /*
574 * Put mask in tree.
575 */
576 if (netmask) {
577 tt->rn_mask = netmask;
578 tt->rn_b = x->rn_b;
579 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
580 }
581 t = saved_tt->rn_p;
582 if (keyduplicated)
583 goto on2;
584 b_leaf = -1 - t->rn_b;
585 if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
586 /* Promote general routes from below */
587 if (x->rn_b < 0) {
588 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
589 if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
590 if (*mp = m = rn_new_radix_mask(x, 0))
591 mp = &m->rm_mklist;
592 }
593 } else if (x->rn_mklist) {
594 /*
595 * Skip over masks whose index is > that of new node
596 */
597 for (mp = &x->rn_mklist; m = *mp; mp = &m->rm_mklist)
598 if (m->rm_b >= b_leaf)
599 break;
600 t->rn_mklist = m; *mp = 0;
601 }
602 on2:
603 /* Add new route to highest possible ancestor's list */
604 if ((netmask == 0) || (b > t->rn_b ))
605 return tt; /* can't lift at all */
606 b_leaf = tt->rn_b;
607 do {
608 x = t;
609 t = t->rn_p;
610 } while (b <= t->rn_b && x != top);
611 /*
612 * Search through routes associated with node to
613 * insert new route according to index.
614 * Need same criteria as when sorting dupedkeys to avoid
615 * double loop on deletion.
616 */
617 for (mp = &x->rn_mklist; m = *mp; mp = &m->rm_mklist) {
618 if (m->rm_b < b_leaf)
619 continue;
620 if (m->rm_b > b_leaf)
621 break;
622 if (m->rm_flags & RNF_NORMAL) {
623 mmask = m->rm_leaf->rn_mask;
624 if (tt->rn_flags & RNF_NORMAL) {
625 log(LOG_ERR,
626 "Non-unique normal route, mask not entered");
627 return tt;
628 }
629 } else
630 mmask = m->rm_mask;
631 if (mmask == netmask) {
632 m->rm_refs++;
633 tt->rn_mklist = m;
634 return tt;
635 }
636 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
637 break;
638 }
639 *mp = rn_new_radix_mask(tt, *mp);
640 return tt;
641 }
642
643 struct radix_node *
644 rn_delete(v_arg, netmask_arg, head)
645 void *v_arg, *netmask_arg;
646 struct radix_node_head *head;
647 {
648 register struct radix_node *t, *p, *x, *tt;
649 struct radix_mask *m, *saved_m, **mp;
650 struct radix_node *dupedkey, *saved_tt, *top;
651 caddr_t v, netmask;
652 int b, head_off, vlen;
653
654 v = v_arg;
655 netmask = netmask_arg;
656 x = head->rnh_treetop;
657 tt = rn_search(v, x);
658 head_off = x->rn_off;
659 vlen = *(u_char *)v;
660 saved_tt = tt;
661 top = x;
662 if (tt == 0 ||
663 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
664 return (0);
665 /*
666 * Delete our route from mask lists.
667 */
668 if (netmask) {
669 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
670 return (0);
671 netmask = x->rn_key;
672 while (tt->rn_mask != netmask)
673 if ((tt = tt->rn_dupedkey) == 0)
674 return (0);
675 }
676 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
677 goto on1;
678 if (tt->rn_flags & RNF_NORMAL) {
679 if (m->rm_leaf != tt || m->rm_refs > 0) {
680 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
681 return 0; /* dangling ref could cause disaster */
682 }
683 } else {
684 if (m->rm_mask != tt->rn_mask) {
685 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
686 goto on1;
687 }
688 if (--m->rm_refs >= 0)
689 goto on1;
690 }
691 b = -1 - tt->rn_b;
692 t = saved_tt->rn_p;
693 if (b > t->rn_b)
694 goto on1; /* Wasn't lifted at all */
695 do {
696 x = t;
697 t = t->rn_p;
698 } while (b <= t->rn_b && x != top);
699 for (mp = &x->rn_mklist; m = *mp; mp = &m->rm_mklist)
700 if (m == saved_m) {
701 *mp = m->rm_mklist;
702 MKFree(m);
703 break;
704 }
705 if (m == 0) {
706 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
707 if (tt->rn_flags & RNF_NORMAL)
708 return (0); /* Dangling ref to us */
709 }
710 on1:
711 /*
712 * Eliminate us from tree
713 */
714 if (tt->rn_flags & RNF_ROOT)
715 return (0);
716 #ifdef RN_DEBUG
717 /* Get us out of the creation list */
718 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
719 if (t) t->rn_ybro = tt->rn_ybro;
720 #endif
721 t = tt->rn_p;
722 if (dupedkey = saved_tt->rn_dupedkey) {
723 if (tt == saved_tt) {
724 x = dupedkey; x->rn_p = t;
725 if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
726 } else {
727 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
728 p = p->rn_dupedkey;
729 if (p) p->rn_dupedkey = tt->rn_dupedkey;
730 else log(LOG_ERR, "rn_delete: couldn't find us\n");
731 }
732 t = tt + 1;
733 if (t->rn_flags & RNF_ACTIVE) {
734 #ifndef RN_DEBUG
735 *++x = *t; p = t->rn_p;
736 #else
737 b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
738 #endif
739 if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
740 x->rn_l->rn_p = x; x->rn_r->rn_p = x;
741 }
742 goto out;
743 }
744 if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
745 p = t->rn_p;
746 if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
747 x->rn_p = p;
748 /*
749 * Demote routes attached to us.
750 */
751 if (t->rn_mklist) {
752 if (x->rn_b >= 0) {
753 for (mp = &x->rn_mklist; m = *mp;)
754 mp = &m->rm_mklist;
755 *mp = t->rn_mklist;
756 } else {
757 /* If there are any key,mask pairs in a sibling
758 duped-key chain, some subset will appear sorted
759 in the same order attached to our mklist */
760 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
761 if (m == x->rn_mklist) {
762 struct radix_mask *mm = m->rm_mklist;
763 x->rn_mklist = 0;
764 if (--(m->rm_refs) < 0)
765 MKFree(m);
766 m = mm;
767 }
768 if (m)
769 #ifdef _KERNEL
770 printf("%s %x at %x\n",
771 "rn_delete: Orphaned Mask", m, x);
772 #else
773 syslog(LOG_ERR, "%s %x at %x\n",
774 "rn_delete: Orphaned Mask", m, x);
775 #endif
776 }
777 }
778 /*
779 * We may be holding an active internal node in the tree.
780 */
781 x = tt + 1;
782 if (t != x) {
783 #ifndef RN_DEBUG
784 *t = *x;
785 #else
786 b = t->rn_info; *t = *x; t->rn_info = b;
787 #endif
788 t->rn_l->rn_p = t; t->rn_r->rn_p = t;
789 p = x->rn_p;
790 if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
791 }
792 out:
793 tt->rn_flags &= ~RNF_ACTIVE;
794 tt[1].rn_flags &= ~RNF_ACTIVE;
795 return (tt);
796 }
797
798 int
799 rn_walktree(h, f, w)
800 struct radix_node_head *h;
801 register int (*f)();
802 void *w;
803 {
804 int error;
805 struct radix_node *base, *next;
806 register struct radix_node *rn = h->rnh_treetop;
807 /*
808 * This gets complicated because we may delete the node
809 * while applying the function f to it, so we need to calculate
810 * the successor node in advance.
811 */
812 /* First time through node, go left */
813 while (rn->rn_b >= 0)
814 rn = rn->rn_l;
815 for (;;) {
816 base = rn;
817 /* If at right child go back up, otherwise, go right */
818 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
819 rn = rn->rn_p;
820 /* Find the next *leaf* since next node might vanish, too */
821 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
822 rn = rn->rn_l;
823 next = rn;
824 /* Process leaves */
825 while (rn = base) {
826 base = rn->rn_dupedkey;
827 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
828 return (error);
829 }
830 rn = next;
831 if (rn->rn_flags & RNF_ROOT)
832 return (0);
833 }
834 /* NOTREACHED */
835 }
836
837 int
838 rn_inithead(head, off)
839 void **head;
840 int off;
841 {
842 register struct radix_node_head *rnh;
843 register struct radix_node *t, *tt, *ttt;
844 if (*head)
845 return (1);
846 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
847 if (rnh == 0)
848 return (0);
849 Bzero(rnh, sizeof (*rnh));
850 *head = rnh;
851 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
852 ttt = rnh->rnh_nodes + 2;
853 t->rn_r = ttt;
854 t->rn_p = t;
855 tt = t->rn_l;
856 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
857 tt->rn_b = -1 - off;
858 *ttt = *tt;
859 ttt->rn_key = rn_ones;
860 rnh->rnh_addaddr = rn_addroute;
861 rnh->rnh_deladdr = rn_delete;
862 rnh->rnh_matchaddr = rn_match;
863 rnh->rnh_lookup = rn_lookup;
864 rnh->rnh_walktree = rn_walktree;
865 rnh->rnh_treetop = t;
866 return (1);
867 }
868
869 void
870 rn_init()
871 {
872 char *cp, *cplim;
873 #ifdef KERNEL
874 struct domain *dom;
875
876 for (dom = domains; dom; dom = dom->dom_next)
877 if (dom->dom_maxrtkey > max_keylen)
878 max_keylen = dom->dom_maxrtkey;
879 #endif
880 if (max_keylen == 0) {
881 printf("rn_init: radix functions require max_keylen be set\n");
882 return;
883 }
884 R_Malloc(rn_zeros, char *, 3 * max_keylen);
885 if (rn_zeros == NULL)
886 panic("rn_init");
887 Bzero(rn_zeros, 3 * max_keylen);
888 rn_ones = cp = rn_zeros + max_keylen;
889 addmask_key = cplim = rn_ones + max_keylen;
890 while (cp < cplim)
891 *cp++ = -1;
892 if (rn_inithead((void **)&mask_rnhead, 0) == 0)
893 panic("rn_init 2");
894 }
895