radix.c revision 1.4 1 /* $NetBSD: radix.c,v 1.4 1997/09/15 10:38:18 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1988, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)radix.c 8.4 (Berkeley) 11/2/94
36 */
37
38 /*
39 * Routines to build and maintain radix trees for routing lookups.
40 */
41 #if !defined(lint) && !defined(sgi) && !defined(__NetBSD__)
42 static char sccsid[] = "@(#)rdisc.c 8.1 (Berkeley) x/y/95";
43 #elif defined(__NetBSD__)
44 #include <sys/cdefs.h>
45 __RCSID("$NetBSD: radix.c,v 1.4 1997/09/15 10:38:18 lukem Exp $");
46 #endif
47
48 #include "defs.h"
49
50 #define log(x, msg) syslog(x, msg)
51 #define panic(s) {log(LOG_ERR,s); exit(1);}
52 #define min(a,b) (((a)<(b))?(a):(b))
53
54 int max_keylen;
55 struct radix_mask *rn_mkfreelist;
56 struct radix_node_head *mask_rnhead;
57 static char *addmask_key;
58 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
59 static char *rn_zeros, *rn_ones;
60
61 #define rn_masktop (mask_rnhead->rnh_treetop)
62 #undef Bcmp
63 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
64
65 static int rn_satsifies_leaf(char *, struct radix_node *, int);
66
67 /*
68 * The data structure for the keys is a radix tree with one way
69 * branching removed. The index rn_b at an internal node n represents a bit
70 * position to be tested. The tree is arranged so that all descendants
71 * of a node n have keys whose bits all agree up to position rn_b - 1.
72 * (We say the index of n is rn_b.)
73 *
74 * There is at least one descendant which has a one bit at position rn_b,
75 * and at least one with a zero there.
76 *
77 * A route is determined by a pair of key and mask. We require that the
78 * bit-wise logical and of the key and mask to be the key.
79 * We define the index of a route to associated with the mask to be
80 * the first bit number in the mask where 0 occurs (with bit number 0
81 * representing the highest order bit).
82 *
83 * We say a mask is normal if every bit is 0, past the index of the mask.
84 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
85 * and m is a normal mask, then the route applies to every descendant of n.
86 * If the index(m) < rn_b, this implies the trailing last few bits of k
87 * before bit b are all 0, (and hence consequently true of every descendant
88 * of n), so the route applies to all descendants of the node as well.
89 *
90 * Similar logic shows that a non-normal mask m such that
91 * index(m) <= index(n) could potentially apply to many children of n.
92 * Thus, for each non-host route, we attach its mask to a list at an internal
93 * node as high in the tree as we can go.
94 *
95 * The present version of the code makes use of normal routes in short-
96 * circuiting an explict mask and compare operation when testing whether
97 * a key satisfies a normal route, and also in remembering the unique leaf
98 * that governs a subtree.
99 */
100
101 struct radix_node *
102 rn_search(void *v_arg,
103 struct radix_node *head)
104 {
105 struct radix_node *x;
106 caddr_t v;
107
108 for (x = head, v = v_arg; x->rn_b >= 0;) {
109 if (x->rn_bmask & v[x->rn_off])
110 x = x->rn_r;
111 else
112 x = x->rn_l;
113 }
114 return (x);
115 }
116
117 struct radix_node *
118 rn_search_m(void *v_arg,
119 struct radix_node *head,
120 void *m_arg)
121 {
122 struct radix_node *x;
123 caddr_t v = v_arg, m = m_arg;
124
125 for (x = head; x->rn_b >= 0;) {
126 if ((x->rn_bmask & m[x->rn_off]) &&
127 (x->rn_bmask & v[x->rn_off]))
128 x = x->rn_r;
129 else
130 x = x->rn_l;
131 }
132 return x;
133 }
134
135 int
136 rn_refines(void* m_arg, void *n_arg)
137 {
138 caddr_t m = m_arg, n = n_arg;
139 caddr_t lim, lim2 = lim = n + *(u_char *)n;
140 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
141 int masks_are_equal = 1;
142
143 if (longer > 0)
144 lim -= longer;
145 while (n < lim) {
146 if (*n & ~(*m))
147 return 0;
148 if (*n++ != *m++)
149 masks_are_equal = 0;
150 }
151 while (n < lim2)
152 if (*n++)
153 return 0;
154 if (masks_are_equal && (longer < 0))
155 for (lim2 = m - longer; m < lim2; )
156 if (*m++)
157 return 1;
158 return (!masks_are_equal);
159 }
160
161 struct radix_node *
162 rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
163 {
164 struct radix_node *x;
165 caddr_t netmask = 0;
166
167 if (m_arg) {
168 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
169 return (0);
170 netmask = x->rn_key;
171 }
172 x = rn_match(v_arg, head);
173 if (x && netmask) {
174 while (x && x->rn_mask != netmask)
175 x = x->rn_dupedkey;
176 }
177 return x;
178 }
179
180 static int
181 rn_satsifies_leaf(char *trial,
182 struct radix_node *leaf,
183 int skip)
184 {
185 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
186 char *cplim;
187 int length = min(*(u_char *)cp, *(u_char *)cp2);
188
189 if (cp3 == 0)
190 cp3 = rn_ones;
191 else
192 length = min(length, *(u_char *)cp3);
193 cplim = cp + length; cp3 += skip; cp2 += skip;
194 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
195 if ((*cp ^ *cp2) & *cp3)
196 return 0;
197 return 1;
198 }
199
200 struct radix_node *
201 rn_match(void *v_arg,
202 struct radix_node_head *head)
203 {
204 caddr_t v = v_arg;
205 struct radix_node *t = head->rnh_treetop, *x;
206 caddr_t cp = v, cp2;
207 caddr_t cplim;
208 struct radix_node *saved_t, *top = t;
209 int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
210 int test, b, rn_b;
211
212 /*
213 * Open code rn_search(v, top) to avoid overhead of extra
214 * subroutine call.
215 */
216 for (; t->rn_b >= 0; ) {
217 if (t->rn_bmask & cp[t->rn_off])
218 t = t->rn_r;
219 else
220 t = t->rn_l;
221 }
222 /*
223 * See if we match exactly as a host destination
224 * or at least learn how many bits match, for normal mask finesse.
225 *
226 * It doesn't hurt us to limit how many bytes to check
227 * to the length of the mask, since if it matches we had a genuine
228 * match and the leaf we have is the most specific one anyway;
229 * if it didn't match with a shorter length it would fail
230 * with a long one. This wins big for class B&C netmasks which
231 * are probably the most common case...
232 */
233 if (t->rn_mask)
234 vlen = *(u_char *)t->rn_mask;
235 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
236 for (; cp < cplim; cp++, cp2++)
237 if (*cp != *cp2)
238 goto on1;
239 /*
240 * This extra grot is in case we are explicitly asked
241 * to look up the default. Ugh!
242 * Or 255.255.255.255
243 *
244 * In this case, we have a complete match of the key. Unless
245 * the node is one of the roots, we are finished.
246 * If it is the zeros root, then take what we have, prefering
247 * any real data.
248 * If it is the ones root, then pretend the target key was followed
249 * by a byte of zeros.
250 */
251 if (!(t->rn_flags & RNF_ROOT))
252 return t; /* not a root */
253 if (t->rn_dupedkey) {
254 t = t->rn_dupedkey;
255 return t; /* have some real data */
256 }
257 if (*(cp-1) == 0)
258 return t; /* not the ones root */
259 b = 0; /* fake a zero after 255.255.255.255 */
260 goto on2;
261 on1:
262 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
263 for (b = 7; (test >>= 1) > 0;)
264 b--;
265 on2:
266 matched_off = cp - v;
267 b += matched_off << 3;
268 rn_b = -1 - b;
269 /*
270 * If there is a host route in a duped-key chain, it will be first.
271 */
272 if ((saved_t = t)->rn_mask == 0)
273 t = t->rn_dupedkey;
274 for (; t; t = t->rn_dupedkey)
275 /*
276 * Even if we don't match exactly as a host,
277 * we may match if the leaf we wound up at is
278 * a route to a net.
279 */
280 if (t->rn_flags & RNF_NORMAL) {
281 if (rn_b <= t->rn_b)
282 return t;
283 } else if (rn_satsifies_leaf(v, t, matched_off))
284 return t;
285 t = saved_t;
286 /* start searching up the tree */
287 do {
288 struct radix_mask *m;
289 t = t->rn_p;
290 if ((m = t->rn_mklist)) {
291 /*
292 * If non-contiguous masks ever become important
293 * we can restore the masking and open coding of
294 * the search and satisfaction test and put the
295 * calculation of "off" back before the "do".
296 */
297 do {
298 if (m->rm_flags & RNF_NORMAL) {
299 if (rn_b <= m->rm_b)
300 return (m->rm_leaf);
301 } else {
302 off = min(t->rn_off, matched_off);
303 x = rn_search_m(v, t, m->rm_mask);
304 while (x && x->rn_mask != m->rm_mask)
305 x = x->rn_dupedkey;
306 if (x && rn_satsifies_leaf(v, x, off))
307 return x;
308 }
309 } while ((m = m->rm_mklist));
310 }
311 } while (t != top);
312 return 0;
313 }
314
315 #ifdef RN_DEBUG
316 int rn_nodenum;
317 struct radix_node *rn_clist;
318 int rn_saveinfo;
319 int rn_debug = 1;
320 #endif
321
322 struct radix_node *
323 rn_newpair(void *v, int b, struct radix_node nodes[2])
324 {
325 struct radix_node *tt = nodes, *t = tt + 1;
326 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
327 t->rn_l = tt; t->rn_off = b >> 3;
328 tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
329 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
330 #ifdef RN_DEBUG
331 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
332 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
333 #endif
334 return t;
335 }
336
337 struct radix_node *
338 rn_insert(void* v_arg,
339 struct radix_node_head *head,
340 int *dupentry,
341 struct radix_node nodes[2])
342 {
343 caddr_t v = v_arg;
344 struct radix_node *top = head->rnh_treetop;
345 int head_off = top->rn_off, vlen = (int)*((u_char *)v);
346 struct radix_node *t = rn_search(v_arg, top);
347 caddr_t cp = v + head_off;
348 int b;
349 struct radix_node *tt;
350
351 /*
352 * Find first bit at which v and t->rn_key differ
353 */
354 {
355 caddr_t cp2 = t->rn_key + head_off;
356 int cmp_res;
357 caddr_t cplim = v + vlen;
358
359 while (cp < cplim)
360 if (*cp2++ != *cp++)
361 goto on1;
362 /* handle adding 255.255.255.255 */
363 if (!(t->rn_flags & RNF_ROOT) || *(cp2-1) == 0) {
364 *dupentry = 1;
365 return t;
366 }
367 on1:
368 *dupentry = 0;
369 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
370 for (b = (cp - v) << 3; cmp_res; b--)
371 cmp_res >>= 1;
372 }
373 {
374 struct radix_node *p, *x = top;
375 cp = v;
376 do {
377 p = x;
378 if (cp[x->rn_off] & x->rn_bmask)
379 x = x->rn_r;
380 else x = x->rn_l;
381 } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
382 #ifdef RN_DEBUG
383 if (rn_debug)
384 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
385 #endif
386 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
387 if ((cp[p->rn_off] & p->rn_bmask) == 0)
388 p->rn_l = t;
389 else
390 p->rn_r = t;
391 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
392 if ((cp[t->rn_off] & t->rn_bmask) == 0) {
393 t->rn_r = x;
394 } else {
395 t->rn_r = tt; t->rn_l = x;
396 }
397 #ifdef RN_DEBUG
398 if (rn_debug)
399 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
400 #endif
401 }
402 return (tt);
403 }
404
405 struct radix_node *
406 rn_addmask(void *n_arg, int search, int skip)
407 {
408 caddr_t netmask = (caddr_t)n_arg;
409 struct radix_node *x;
410 caddr_t cp, cplim;
411 int b = 0, mlen, j;
412 int maskduplicated, m0, isnormal;
413 struct radix_node *saved_x;
414 static int last_zeroed = 0;
415
416 if ((mlen = *(u_char *)netmask) > max_keylen)
417 mlen = max_keylen;
418 if (skip == 0)
419 skip = 1;
420 if (mlen <= skip)
421 return (mask_rnhead->rnh_nodes);
422 if (skip > 1)
423 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
424 if ((m0 = mlen) > skip)
425 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
426 /*
427 * Trim trailing zeroes.
428 */
429 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
430 cp--;
431 mlen = cp - addmask_key;
432 if (mlen <= skip) {
433 if (m0 >= last_zeroed)
434 last_zeroed = mlen;
435 return (mask_rnhead->rnh_nodes);
436 }
437 if (m0 < last_zeroed)
438 Bzero(addmask_key + m0, last_zeroed - m0);
439 *addmask_key = last_zeroed = mlen;
440 x = rn_search(addmask_key, rn_masktop);
441 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
442 x = 0;
443 if (x || search)
444 return (x);
445 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
446 if ((saved_x = x) == 0)
447 return (0);
448 Bzero(x, max_keylen + 2 * sizeof (*x));
449 netmask = cp = (caddr_t)(x + 2);
450 Bcopy(addmask_key, cp, mlen);
451 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
452 if (maskduplicated) {
453 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
454 Free(saved_x);
455 return (x);
456 }
457 /*
458 * Calculate index of mask, and check for normalcy.
459 */
460 cplim = netmask + mlen; isnormal = 1;
461 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
462 cp++;
463 if (cp != cplim) {
464 for (j = 0x80; (j & *cp) != 0; j >>= 1)
465 b++;
466 if (*cp != normal_chars[b] || cp != (cplim - 1))
467 isnormal = 0;
468 }
469 b += (cp - netmask) << 3;
470 x->rn_b = -1 - b;
471 if (isnormal)
472 x->rn_flags |= RNF_NORMAL;
473 return (x);
474 }
475
476 static int /* XXX: arbitrary ordering for non-contiguous masks */
477 rn_lexobetter(void *m_arg, void *n_arg)
478 {
479 u_char *mp = m_arg, *np = n_arg, *lim;
480
481 if (*mp > *np)
482 return 1; /* not really, but need to check longer one first */
483 if (*mp == *np)
484 for (lim = mp + *mp; mp < lim;)
485 if (*mp++ > *np++)
486 return 1;
487 return 0;
488 }
489
490 static struct radix_mask *
491 rn_new_radix_mask(struct radix_node *tt,
492 struct radix_mask *next)
493 {
494 struct radix_mask *m;
495
496 MKGet(m);
497 if (m == 0) {
498 log(LOG_ERR, "Mask for route not entered\n");
499 return (0);
500 }
501 Bzero(m, sizeof *m);
502 m->rm_b = tt->rn_b;
503 m->rm_flags = tt->rn_flags;
504 if (tt->rn_flags & RNF_NORMAL)
505 m->rm_leaf = tt;
506 else
507 m->rm_mask = tt->rn_mask;
508 m->rm_mklist = next;
509 tt->rn_mklist = m;
510 return m;
511 }
512
513 struct radix_node *
514 rn_addroute(void *v_arg,
515 void *n_arg,
516 struct radix_node_head *head,
517 struct radix_node treenodes[2])
518 {
519 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
520 struct radix_node *t, *x = 0, *tt;
521 struct radix_node *saved_tt, *top = head->rnh_treetop;
522 short b = 0, b_leaf = 0;
523 int keyduplicated;
524 caddr_t mmask;
525 struct radix_mask *m, **mp;
526
527 /*
528 * In dealing with non-contiguous masks, there may be
529 * many different routes which have the same mask.
530 * We will find it useful to have a unique pointer to
531 * the mask to speed avoiding duplicate references at
532 * nodes and possibly save time in calculating indices.
533 */
534 if (netmask) {
535 if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
536 return (0);
537 b_leaf = x->rn_b;
538 b = -1 - x->rn_b;
539 netmask = x->rn_key;
540 }
541 /*
542 * Deal with duplicated keys: attach node to previous instance
543 */
544 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
545 if (keyduplicated) {
546 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
547 if (tt->rn_mask == netmask)
548 return (0);
549 if (netmask == 0 ||
550 (tt->rn_mask &&
551 ((b_leaf < tt->rn_b) || /* index(netmask) > node */
552 rn_refines(netmask, tt->rn_mask) ||
553 rn_lexobetter(netmask, tt->rn_mask))))
554 break;
555 }
556 /*
557 * If the mask is not duplicated, we wouldn't
558 * find it among possible duplicate key entries
559 * anyway, so the above test doesn't hurt.
560 *
561 * We sort the masks for a duplicated key the same way as
562 * in a masklist -- most specific to least specific.
563 * This may require the unfortunate nuisance of relocating
564 * the head of the list.
565 */
566 if (tt == saved_tt) {
567 struct radix_node *xx = x;
568 /* link in at head of list */
569 (tt = treenodes)->rn_dupedkey = t;
570 tt->rn_flags = t->rn_flags;
571 tt->rn_p = x = t->rn_p;
572 if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
573 saved_tt = tt; x = xx;
574 } else {
575 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
576 t->rn_dupedkey = tt;
577 }
578 #ifdef RN_DEBUG
579 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
580 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
581 #endif
582 tt->rn_key = (caddr_t) v;
583 tt->rn_b = -1;
584 tt->rn_flags = RNF_ACTIVE;
585 }
586 /*
587 * Put mask in tree.
588 */
589 if (netmask) {
590 tt->rn_mask = netmask;
591 tt->rn_b = x->rn_b;
592 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
593 }
594 t = saved_tt->rn_p;
595 if (keyduplicated)
596 goto on2;
597 b_leaf = -1 - t->rn_b;
598 if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
599 /* Promote general routes from below */
600 if (x->rn_b < 0) {
601 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
602 if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
603 if ((*mp = m = rn_new_radix_mask(x, 0)))
604 mp = &m->rm_mklist;
605 }
606 } else if (x->rn_mklist) {
607 /*
608 * Skip over masks whose index is > that of new node
609 */
610 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
611 if (m->rm_b >= b_leaf)
612 break;
613 t->rn_mklist = m; *mp = 0;
614 }
615 on2:
616 /* Add new route to highest possible ancestor's list */
617 if ((netmask == 0) || (b > t->rn_b ))
618 return tt; /* can't lift at all */
619 b_leaf = tt->rn_b;
620 do {
621 x = t;
622 t = t->rn_p;
623 } while (b <= t->rn_b && x != top);
624 /*
625 * Search through routes associated with node to
626 * insert new route according to index.
627 * Need same criteria as when sorting dupedkeys to avoid
628 * double loop on deletion.
629 */
630 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
631 if (m->rm_b < b_leaf)
632 continue;
633 if (m->rm_b > b_leaf)
634 break;
635 if (m->rm_flags & RNF_NORMAL) {
636 mmask = m->rm_leaf->rn_mask;
637 if (tt->rn_flags & RNF_NORMAL) {
638 log(LOG_ERR,
639 "Non-unique normal route, mask not entered");
640 return tt;
641 }
642 } else
643 mmask = m->rm_mask;
644 if (mmask == netmask) {
645 m->rm_refs++;
646 tt->rn_mklist = m;
647 return tt;
648 }
649 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
650 break;
651 }
652 *mp = rn_new_radix_mask(tt, *mp);
653 return tt;
654 }
655
656 struct radix_node *
657 rn_delete(void *v_arg,
658 void *netmask_arg,
659 struct radix_node_head *head)
660 {
661 struct radix_node *t, *p, *x, *tt;
662 struct radix_mask *m, *saved_m, **mp;
663 struct radix_node *dupedkey, *saved_tt, *top;
664 caddr_t v, netmask;
665 int b, head_off, vlen;
666
667 v = v_arg;
668 netmask = netmask_arg;
669 x = head->rnh_treetop;
670 tt = rn_search(v, x);
671 head_off = x->rn_off;
672 vlen = *(u_char *)v;
673 saved_tt = tt;
674 top = x;
675 if (tt == 0 ||
676 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
677 return (0);
678 /*
679 * Delete our route from mask lists.
680 */
681 if (netmask) {
682 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
683 return (0);
684 netmask = x->rn_key;
685 while (tt->rn_mask != netmask)
686 if ((tt = tt->rn_dupedkey) == 0)
687 return (0);
688 }
689 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
690 goto on1;
691 if (tt->rn_flags & RNF_NORMAL) {
692 if (m->rm_leaf != tt || m->rm_refs > 0) {
693 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
694 return 0; /* dangling ref could cause disaster */
695 }
696 } else {
697 if (m->rm_mask != tt->rn_mask) {
698 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
699 goto on1;
700 }
701 if (--m->rm_refs >= 0)
702 goto on1;
703 }
704 b = -1 - tt->rn_b;
705 t = saved_tt->rn_p;
706 if (b > t->rn_b)
707 goto on1; /* Wasn't lifted at all */
708 do {
709 x = t;
710 t = t->rn_p;
711 } while (b <= t->rn_b && x != top);
712 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
713 if (m == saved_m) {
714 *mp = m->rm_mklist;
715 MKFree(m);
716 break;
717 }
718 if (m == 0) {
719 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
720 if (tt->rn_flags & RNF_NORMAL)
721 return (0); /* Dangling ref to us */
722 }
723 on1:
724 /*
725 * Eliminate us from tree
726 */
727 if (tt->rn_flags & RNF_ROOT)
728 return (0);
729 #ifdef RN_DEBUG
730 /* Get us out of the creation list */
731 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
732 if (t) t->rn_ybro = tt->rn_ybro;
733 #endif
734 t = tt->rn_p;
735 if ((dupedkey = saved_tt->rn_dupedkey)) {
736 if (tt == saved_tt) {
737 x = dupedkey; x->rn_p = t;
738 if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
739 } else {
740 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
741 p = p->rn_dupedkey;
742 if (p) p->rn_dupedkey = tt->rn_dupedkey;
743 else log(LOG_ERR, "rn_delete: couldn't find us\n");
744 }
745 t = tt + 1;
746 if (t->rn_flags & RNF_ACTIVE) {
747 #ifndef RN_DEBUG
748 *++x = *t; p = t->rn_p;
749 #else
750 b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
751 #endif
752 if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
753 x->rn_l->rn_p = x; x->rn_r->rn_p = x;
754 }
755 goto out;
756 }
757 if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
758 p = t->rn_p;
759 if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
760 x->rn_p = p;
761 /*
762 * Demote routes attached to us.
763 */
764 if (t->rn_mklist) {
765 if (x->rn_b >= 0) {
766 for (mp = &x->rn_mklist; (m = *mp);)
767 mp = &m->rm_mklist;
768 *mp = t->rn_mklist;
769 } else {
770 /* If there are any key,mask pairs in a sibling
771 duped-key chain, some subset will appear sorted
772 in the same order attached to our mklist */
773 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
774 if (m == x->rn_mklist) {
775 struct radix_mask *mm = m->rm_mklist;
776 x->rn_mklist = 0;
777 if (--(m->rm_refs) < 0)
778 MKFree(m);
779 m = mm;
780 }
781 if (m)
782 syslog(LOG_ERR, "%s 0x%lx at 0x%lx\n",
783 "rn_delete: Orphaned Mask",
784 (unsigned long)m,
785 (unsigned long)x);
786 }
787 }
788 /*
789 * We may be holding an active internal node in the tree.
790 */
791 x = tt + 1;
792 if (t != x) {
793 #ifndef RN_DEBUG
794 *t = *x;
795 #else
796 b = t->rn_info; *t = *x; t->rn_info = b;
797 #endif
798 t->rn_l->rn_p = t; t->rn_r->rn_p = t;
799 p = x->rn_p;
800 if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
801 }
802 out:
803 tt->rn_flags &= ~RNF_ACTIVE;
804 tt[1].rn_flags &= ~RNF_ACTIVE;
805 return (tt);
806 }
807
808 int
809 rn_walktree(struct radix_node_head *h,
810 int (*f)(struct radix_node *, struct walkarg *),
811 struct walkarg *w)
812 {
813 int error;
814 struct radix_node *base, *next;
815 struct radix_node *rn = h->rnh_treetop;
816 /*
817 * This gets complicated because we may delete the node
818 * while applying the function f to it, so we need to calculate
819 * the successor node in advance.
820 */
821 /* First time through node, go left */
822 while (rn->rn_b >= 0)
823 rn = rn->rn_l;
824 for (;;) {
825 base = rn;
826 /* If at right child go back up, otherwise, go right */
827 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
828 rn = rn->rn_p;
829 /* Find the next *leaf* since next node might vanish, too */
830 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
831 rn = rn->rn_l;
832 next = rn;
833 /* Process leaves */
834 while ((rn = base)) {
835 base = rn->rn_dupedkey;
836 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
837 return (error);
838 }
839 rn = next;
840 if (rn->rn_flags & RNF_ROOT)
841 return (0);
842 }
843 /* NOTREACHED */
844 }
845
846 int
847 rn_inithead(void **head, int off)
848 {
849 struct radix_node_head *rnh;
850 struct radix_node *t, *tt, *ttt;
851 if (*head)
852 return (1);
853 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
854 if (rnh == 0)
855 return (0);
856 Bzero(rnh, sizeof (*rnh));
857 *head = rnh;
858 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
859 ttt = rnh->rnh_nodes + 2;
860 t->rn_r = ttt;
861 t->rn_p = t;
862 tt = t->rn_l;
863 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
864 tt->rn_b = -1 - off;
865 *ttt = *tt;
866 ttt->rn_key = rn_ones;
867 rnh->rnh_addaddr = rn_addroute;
868 rnh->rnh_deladdr = rn_delete;
869 rnh->rnh_matchaddr = rn_match;
870 rnh->rnh_lookup = rn_lookup;
871 rnh->rnh_walktree = rn_walktree;
872 rnh->rnh_treetop = t;
873 return (1);
874 }
875
876 void
877 rn_init(void)
878 {
879 char *cp, *cplim;
880 if (max_keylen == 0) {
881 printf("rn_init: radix functions require max_keylen be set\n");
882 return;
883 }
884 R_Malloc(rn_zeros, char *, 3 * max_keylen);
885 if (rn_zeros == NULL)
886 panic("rn_init");
887 Bzero(rn_zeros, 3 * max_keylen);
888 rn_ones = cp = rn_zeros + max_keylen;
889 addmask_key = cplim = rn_ones + max_keylen;
890 while (cp < cplim)
891 *cp++ = -1;
892 if (rn_inithead((void **)&mask_rnhead, 0) == 0)
893 panic("rn_init 2");
894 }
895
896