table.c revision 1.1.1.3 1 /*
2 * Copyright (c) 1983, 1988, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #if !defined(lint) && !defined(sgi) && !defined(__NetBSD__)
35 static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 6/5/93";
36 #elif defined(__NetBSD__)
37 static char rcsid[] = "$NetBSD: table.c,v 1.1.1.3 1997/02/03 21:06:39 christos Exp $";
38 #endif
39 #ident "$Revision: 1.1.1.3 $"
40
41 #include "defs.h"
42
43 static struct rt_spare *rts_better(struct rt_entry *);
44 static struct rt_spare rts_empty = {0,0,0,HOPCNT_INFINITY,0,0};
45
46 struct radix_node_head *rhead; /* root of the radix tree */
47
48 int need_flash = 1; /* flash update needed
49 * start =1 to suppress the 1st
50 */
51
52 struct timeval age_timer; /* next check of old routes */
53 struct timeval need_kern = { /* need to update kernel table */
54 EPOCH+MIN_WAITTIME-1
55 };
56
57 int stopint;
58
59 int total_routes;
60
61 /* zap any old routes through this gateway */
62 naddr age_bad_gate;
63
64
65 /* It is desirable to "aggregate" routes, to combine differing routes of
66 * the same metric and next hop into a common route with a smaller netmask
67 * or to suppress redundant routes, routes that add no information to
68 * routes with smaller netmasks.
69 *
70 * A route is redundant if and only if any and all routes with smaller
71 * but matching netmasks and nets are the same. Since routes are
72 * kept sorted in the radix tree, redundant routes always come second.
73 *
74 * There are two kinds of aggregations. First, two routes of the same bit
75 * mask and differing only in the least significant bit of the network
76 * number can be combined into a single route with a coarser mask.
77 *
78 * Second, a route can be suppressed in favor of another route with a more
79 * coarse mask provided no incompatible routes with intermediate masks
80 * are present. The second kind of aggregation involves suppressing routes.
81 * A route must not be suppressed if an incompatible route exists with
82 * an intermediate mask, since the suppressed route would be covered
83 * by the intermediate.
84 *
85 * This code relies on the radix tree walk encountering routes
86 * sorted first by address, with the smallest address first.
87 */
88
89 struct ag_info ag_slots[NUM_AG_SLOTS], *ag_avail, *ag_corsest, *ag_finest;
90
91 /* #define DEBUG_AG */
92 #ifdef DEBUG_AG
93 #define CHECK_AG() {int acnt = 0; struct ag_info *cag; \
94 for (cag = ag_avail; cag != 0; cag = cag->ag_fine) \
95 acnt++; \
96 for (cag = ag_corsest; cag != 0; cag = cag->ag_fine) \
97 acnt++; \
98 if (acnt != NUM_AG_SLOTS) { \
99 (void)fflush(stderr); \
100 abort(); \
101 } \
102 }
103 #else
104 #define CHECK_AG()
105 #endif
106
107
108 /* Output the contents of an aggregation table slot.
109 * This function must always be immediately followed with the deletion
110 * of the target slot.
111 */
112 static void
113 ag_out(struct ag_info *ag,
114 void (*out)(struct ag_info *))
115 {
116 struct ag_info *ag_cors;
117 naddr bit;
118
119
120 /* If we output both the even and odd twins, then the immediate parent,
121 * if it is present, is redundant, unless the parent manages to
122 * aggregate into something coarser.
123 * On successive calls, this code detects the even and odd twins,
124 * and marks the parent.
125 *
126 * Note that the order in which the radix tree code emits routes
127 * ensures that the twins are seen before the parent is emitted.
128 */
129 ag_cors = ag->ag_cors;
130 if (ag_cors != 0
131 && ag_cors->ag_mask == ag->ag_mask<<1
132 && ag_cors->ag_dst_h == (ag->ag_dst_h & ag_cors->ag_mask)) {
133 ag_cors->ag_state |= ((ag_cors->ag_dst_h == ag->ag_dst_h)
134 ? AGS_REDUN0
135 : AGS_REDUN1);
136 }
137
138 /* Skip it if this route is itself redundant.
139 *
140 * It is ok to change the contents of the slot here, since it is
141 * always deleted next.
142 */
143 if (ag->ag_state & AGS_REDUN0) {
144 if (ag->ag_state & AGS_REDUN1)
145 return;
146 bit = (-ag->ag_mask) >> 1;
147 ag->ag_dst_h |= bit;
148 ag->ag_mask |= bit;
149
150 } else if (ag->ag_state & AGS_REDUN1) {
151 bit = (-ag->ag_mask) >> 1;
152 ag->ag_mask |= bit;
153 }
154 out(ag);
155 }
156
157
158 static void
159 ag_del(struct ag_info *ag)
160 {
161 CHECK_AG();
162
163 if (ag->ag_cors == 0)
164 ag_corsest = ag->ag_fine;
165 else
166 ag->ag_cors->ag_fine = ag->ag_fine;
167
168 if (ag->ag_fine == 0)
169 ag_finest = ag->ag_cors;
170 else
171 ag->ag_fine->ag_cors = ag->ag_cors;
172
173 ag->ag_fine = ag_avail;
174 ag_avail = ag;
175
176 CHECK_AG();
177 }
178
179
180 /* Flush routes waiting for aggretation.
181 * This must not suppress a route unless it is known that among all
182 * routes with coarser masks that match it, the one with the longest
183 * mask is appropriate. This is ensured by scanning the routes
184 * in lexical order, and with the most restritive mask first
185 * among routes to the same destination.
186 */
187 void
188 ag_flush(naddr lim_dst_h, /* flush routes to here */
189 naddr lim_mask, /* matching this mask */
190 void (*out)(struct ag_info *))
191 {
192 struct ag_info *ag, *ag_cors;
193 naddr dst_h;
194
195
196 for (ag = ag_finest;
197 ag != 0 && ag->ag_mask >= lim_mask;
198 ag = ag_cors) {
199 ag_cors = ag->ag_cors;
200
201 /* work on only the specified routes */
202 dst_h = ag->ag_dst_h;
203 if ((dst_h & lim_mask) != lim_dst_h)
204 continue;
205
206 if (!(ag->ag_state & AGS_SUPPRESS))
207 ag_out(ag, out);
208
209 else for ( ; ; ag_cors = ag_cors->ag_cors) {
210 /* Look for a route that can suppress the
211 * current route */
212 if (ag_cors == 0) {
213 /* failed, so output it and look for
214 * another route to work on
215 */
216 ag_out(ag, out);
217 break;
218 }
219
220 if ((dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h) {
221 /* We found a route with a coarser mask that
222 * aggregates the current target.
223 *
224 * If it has a different next hop, it
225 * cannot replace the target, so output
226 * the target.
227 */
228 if (ag->ag_gate != ag_cors->ag_gate
229 && !(ag->ag_state & AGS_FINE_GATE)
230 && !(ag_cors->ag_state & AGS_CORS_GATE)) {
231 ag_out(ag, out);
232 break;
233 }
234
235 /* If the coarse route has a good enough
236 * metric, it suppresses the target.
237 */
238 if (ag_cors->ag_pref <= ag->ag_pref) {
239 if (ag_cors->ag_seqno > ag->ag_seqno)
240 ag_cors->ag_seqno = ag->ag_seqno;
241 if (AG_IS_REDUN(ag->ag_state)
242 && ag_cors->ag_mask==ag->ag_mask<<1) {
243 if (ag_cors->ag_dst_h == dst_h)
244 ag_cors->ag_state |= AGS_REDUN0;
245 else
246 ag_cors->ag_state |= AGS_REDUN1;
247 }
248 if (ag->ag_tag != ag_cors->ag_tag)
249 ag_cors->ag_tag = 0;
250 if (ag->ag_nhop != ag_cors->ag_nhop)
251 ag_cors->ag_nhop = 0;
252 break;
253 }
254 }
255 }
256
257 /* That route has either been output or suppressed */
258 ag_cors = ag->ag_cors;
259 ag_del(ag);
260 }
261
262 CHECK_AG();
263 }
264
265
266 /* Try to aggregate a route with previous routes.
267 */
268 void
269 ag_check(naddr dst,
270 naddr mask,
271 naddr gate,
272 naddr nhop,
273 char metric,
274 char pref,
275 u_int seqno,
276 u_short tag,
277 u_short state,
278 void (*out)(struct ag_info *)) /* output using this */
279 {
280 struct ag_info *ag, *nag, *ag_cors;
281 naddr xaddr;
282 int x;
283
284 NTOHL(dst);
285
286 /* Punt non-contiguous subnet masks.
287 *
288 * (X & -X) contains a single bit if and only if X is a power of 2.
289 * (X + (X & -X)) == 0 if and only if X is a power of 2.
290 */
291 if ((mask & -mask) + mask != 0) {
292 struct ag_info nc_ag;
293
294 nc_ag.ag_dst_h = dst;
295 nc_ag.ag_mask = mask;
296 nc_ag.ag_gate = gate;
297 nc_ag.ag_nhop = nhop;
298 nc_ag.ag_metric = metric;
299 nc_ag.ag_pref = pref;
300 nc_ag.ag_tag = tag;
301 nc_ag.ag_state = state;
302 nc_ag.ag_seqno = seqno;
303 out(&nc_ag);
304 return;
305 }
306
307 /* Search for the right slot in the aggregation table.
308 */
309 ag_cors = 0;
310 ag = ag_corsest;
311 while (ag != 0) {
312 if (ag->ag_mask >= mask)
313 break;
314
315 /* Suppress old routes (i.e. combine with compatible routes
316 * with coarser masks) as we look for the right slot in the
317 * aggregation table for the new route.
318 * A route to an address less than the current destination
319 * will not be affected by the current route or any route
320 * seen hereafter. That means it is safe to suppress it.
321 * This check keeps poor routes (eg. with large hop counts)
322 * from preventing suppresion of finer routes.
323 */
324 if (ag_cors != 0
325 && ag->ag_dst_h < dst
326 && (ag->ag_state & AGS_SUPPRESS)
327 && ag_cors->ag_pref <= ag->ag_pref
328 && (ag->ag_dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h
329 && (ag_cors->ag_gate == ag->ag_gate
330 || (ag->ag_state & AGS_FINE_GATE)
331 || (ag_cors->ag_state & AGS_CORS_GATE))) {
332 if (ag_cors->ag_seqno > ag->ag_seqno)
333 ag_cors->ag_seqno = ag->ag_seqno;
334 if (AG_IS_REDUN(ag->ag_state)
335 && ag_cors->ag_mask==ag->ag_mask<<1) {
336 if (ag_cors->ag_dst_h == dst)
337 ag_cors->ag_state |= AGS_REDUN0;
338 else
339 ag_cors->ag_state |= AGS_REDUN1;
340 }
341 if (ag->ag_tag != ag_cors->ag_tag)
342 ag_cors->ag_tag = 0;
343 if (ag->ag_nhop != ag_cors->ag_nhop)
344 ag_cors->ag_nhop = 0;
345 ag_del(ag);
346 CHECK_AG();
347 } else {
348 ag_cors = ag;
349 }
350 ag = ag_cors->ag_fine;
351 }
352
353 /* If we find the even/odd twin of the new route, and if the
354 * masks and so forth are equal, we can aggregate them.
355 * We can probably promote one of the pair.
356 *
357 * Since the routes are encountered in lexical order,
358 * the new route must be odd. However, the second or later
359 * times around this loop, it could be the even twin promoted
360 * from the even/odd pair of twins of the finer route.
361 */
362 while (ag != 0
363 && ag->ag_mask == mask
364 && ((ag->ag_dst_h ^ dst) & (mask<<1)) == 0) {
365
366 /* Here we know the target route and the route in the current
367 * slot have the same netmasks and differ by at most the
368 * last bit. They are either for the same destination, or
369 * for an even/odd pair of destinations.
370 */
371 if (ag->ag_dst_h == dst) {
372 /* We have two routes to the same destination.
373 * Routes are encountered in lexical order, so a
374 * route is never promoted until the parent route is
375 * already present. So we know that the new route is
376 * a promoted pair and the route already in the slot
377 * is the explicit route.
378 *
379 * Prefer the best route if their metrics differ,
380 * or the promoted one if not, following a sort
381 * of longest-match rule.
382 */
383 if (pref <= ag->ag_pref) {
384 ag->ag_gate = gate;
385 ag->ag_nhop = nhop;
386 ag->ag_tag = tag;
387 ag->ag_metric = metric;
388 ag->ag_pref = pref;
389 x = ag->ag_state;
390 ag->ag_state = state;
391 state = x;
392 }
393
394 /* The sequence number controls flash updating,
395 * and should be the smaller of the two.
396 */
397 if (ag->ag_seqno > seqno)
398 ag->ag_seqno = seqno;
399
400 /* some bits are set if they are set on either route */
401 ag->ag_state |= (state & (AGS_PROMOTE_EITHER
402 | AGS_REDUN0 | AGS_REDUN1));
403 return;
404 }
405
406 /* If one of the routes can be promoted and the other can
407 * be suppressed, it may be possible to combine them or
408 * worthwhile to promote one.
409 *
410 * Note that any route that can be promoted is always
411 * marked to be eligible to be suppressed.
412 */
413 if (!((state & AGS_PROMOTE)
414 && (ag->ag_state & AGS_SUPPRESS))
415 && !((ag->ag_state & AGS_PROMOTE)
416 && (state & AGS_SUPPRESS)))
417 break;
418
419 /* A pair of even/odd twin routes can be combined
420 * if either is redundant, or if they are via the
421 * same gateway and have the same metric.
422 */
423 if (AG_IS_REDUN(ag->ag_state)
424 || AG_IS_REDUN(state)
425 || (ag->ag_gate == gate
426 && ag->ag_pref == pref
427 && (state & ag->ag_state & AGS_PROMOTE) != 0)) {
428
429 /* We have both the even and odd pairs.
430 * Since the routes are encountered in order,
431 * the route in the slot must be the even twin.
432 *
433 * Combine and promote the pair of routes.
434 */
435 if (seqno > ag->ag_seqno)
436 seqno = ag->ag_seqno;
437 if (!AG_IS_REDUN(state))
438 state &= ~AGS_REDUN1;
439 if (AG_IS_REDUN(ag->ag_state))
440 state |= AGS_REDUN0;
441 else
442 state &= ~AGS_REDUN0;
443 state |= (ag->ag_state & AGS_PROMOTE_EITHER);
444 if (ag->ag_tag != tag)
445 tag = 0;
446 if (ag->ag_nhop != nhop)
447 nhop = 0;
448
449 /* Get rid of the even twin that was already
450 * in the slot.
451 */
452 ag_del(ag);
453
454 } else if (ag->ag_pref >= pref
455 && (ag->ag_state & AGS_PROMOTE)) {
456 /* If we cannot combine the pair, maybe the route
457 * with the worse metric can be promoted.
458 *
459 * Promote the old, even twin, by giving its slot
460 * in the table to the new, odd twin.
461 */
462 ag->ag_dst_h = dst;
463
464 xaddr = ag->ag_gate;
465 ag->ag_gate = gate;
466 gate = xaddr;
467
468 xaddr = ag->ag_nhop;
469 ag->ag_nhop = nhop;
470 nhop = xaddr;
471
472 x = ag->ag_tag;
473 ag->ag_tag = tag;
474 tag = x;
475
476 x = ag->ag_state;
477 ag->ag_state = state;
478 state = x;
479 if (!AG_IS_REDUN(state))
480 state &= ~AGS_REDUN0;
481
482 x = ag->ag_metric;
483 ag->ag_metric = metric;
484 metric = x;
485
486 x = ag->ag_pref;
487 ag->ag_pref = pref;
488 pref = x;
489
490 if (seqno >= ag->ag_seqno)
491 seqno = ag->ag_seqno;
492 else
493 ag->ag_seqno = seqno;
494
495 } else {
496 if (!(state & AGS_PROMOTE))
497 break; /* cannot promote either twin */
498
499 /* promote the new, odd twin by shaving its
500 * mask and address.
501 */
502 if (seqno > ag->ag_seqno)
503 seqno = ag->ag_seqno;
504 else
505 ag->ag_seqno = seqno;
506 if (!AG_IS_REDUN(state))
507 state &= ~AGS_REDUN1;
508 }
509
510 mask <<= 1;
511 dst &= mask;
512
513 if (ag_cors == 0) {
514 ag = ag_corsest;
515 break;
516 }
517 ag = ag_cors;
518 ag_cors = ag->ag_cors;
519 }
520
521 /* When we can no longer promote and combine routes,
522 * flush the old route in the target slot. Also flush
523 * any finer routes that we know will never be aggregated by
524 * the new route.
525 *
526 * In case we moved toward coarser masks,
527 * get back where we belong
528 */
529 if (ag != 0
530 && ag->ag_mask < mask) {
531 ag_cors = ag;
532 ag = ag->ag_fine;
533 }
534
535 /* Empty the target slot
536 */
537 if (ag != 0 && ag->ag_mask == mask) {
538 ag_flush(ag->ag_dst_h, ag->ag_mask, out);
539 ag = (ag_cors == 0) ? ag_corsest : ag_cors->ag_fine;
540 }
541
542 #ifdef DEBUG_AG
543 (void)fflush(stderr);
544 if (ag == 0 && ag_cors != ag_finest)
545 abort();
546 if (ag_cors == 0 && ag != ag_corsest)
547 abort();
548 if (ag != 0 && ag->ag_cors != ag_cors)
549 abort();
550 if (ag_cors != 0 && ag_cors->ag_fine != ag)
551 abort();
552 CHECK_AG();
553 #endif
554
555 /* Save the new route on the end of the table.
556 */
557 nag = ag_avail;
558 ag_avail = nag->ag_fine;
559
560 nag->ag_dst_h = dst;
561 nag->ag_mask = mask;
562 nag->ag_gate = gate;
563 nag->ag_nhop = nhop;
564 nag->ag_metric = metric;
565 nag->ag_pref = pref;
566 nag->ag_tag = tag;
567 nag->ag_state = state;
568 nag->ag_seqno = seqno;
569
570 nag->ag_fine = ag;
571 if (ag != 0)
572 ag->ag_cors = nag;
573 else
574 ag_finest = nag;
575 nag->ag_cors = ag_cors;
576 if (ag_cors == 0)
577 ag_corsest = nag;
578 else
579 ag_cors->ag_fine = nag;
580 CHECK_AG();
581 }
582
583
584 static char *
585 rtm_type_name(u_char type)
586 {
587 static char *rtm_types[] = {
588 "RTM_ADD",
589 "RTM_DELETE",
590 "RTM_CHANGE",
591 "RTM_GET",
592 "RTM_LOSING",
593 "RTM_REDIRECT",
594 "RTM_MISS",
595 "RTM_LOCK",
596 "RTM_OLDADD",
597 "RTM_OLDDEL",
598 "RTM_RESOLVE",
599 "RTM_NEWADDR",
600 "RTM_DELADDR",
601 "RTM_IFINFO"
602 };
603 static char name0[10];
604
605
606 if (type > sizeof(rtm_types)/sizeof(rtm_types[0])
607 || type == 0) {
608 sprintf(name0, "RTM type %#x", type);
609 return name0;
610 } else {
611 return rtm_types[type-1];
612 }
613 }
614
615
616 /* Trim a mask in a sockaddr
617 * Produce a length of 0 for an address of 0.
618 * Otherwise produce the index of the first zero byte.
619 */
620 void
621 #ifdef _HAVE_SIN_LEN
622 masktrim(struct sockaddr_in *ap)
623 #else
624 masktrim(struct sockaddr_in_new *ap)
625 #endif
626 {
627 register char *cp;
628
629 if (ap->sin_addr.s_addr == 0) {
630 ap->sin_len = 0;
631 return;
632 }
633 cp = (char *)(&ap->sin_addr.s_addr+1);
634 while (*--cp == 0)
635 continue;
636 ap->sin_len = cp - (char*)ap + 1;
637 }
638
639
640 /* Tell the kernel to add, delete or change a route
641 */
642 static void
643 rtioctl(int action, /* RTM_DELETE, etc */
644 naddr dst,
645 naddr gate,
646 naddr mask,
647 int metric,
648 int flags)
649 {
650 struct {
651 struct rt_msghdr w_rtm;
652 struct sockaddr_in w_dst;
653 struct sockaddr_in w_gate;
654 #ifdef _HAVE_SA_LEN
655 struct sockaddr_in w_mask;
656 #else
657 struct sockaddr_in_new w_mask;
658 #endif
659 } w;
660 long cc;
661 # define PAT " %-10s %s metric=%d flags=%#x"
662 # define ARGS rtm_type_name(action), rtname(dst,mask,gate), metric, flags
663
664 again:
665 bzero(&w, sizeof(w));
666 w.w_rtm.rtm_msglen = sizeof(w);
667 w.w_rtm.rtm_version = RTM_VERSION;
668 w.w_rtm.rtm_type = action;
669 w.w_rtm.rtm_flags = flags;
670 w.w_rtm.rtm_seq = ++rt_sock_seqno;
671 w.w_rtm.rtm_addrs = RTA_DST|RTA_GATEWAY;
672 if (metric != 0) {
673 w.w_rtm.rtm_rmx.rmx_hopcount = metric;
674 w.w_rtm.rtm_inits |= RTV_HOPCOUNT;
675 }
676 w.w_dst.sin_family = AF_INET;
677 w.w_dst.sin_addr.s_addr = dst;
678 w.w_gate.sin_family = AF_INET;
679 w.w_gate.sin_addr.s_addr = gate;
680 #ifdef _HAVE_SA_LEN
681 w.w_dst.sin_len = sizeof(w.w_dst);
682 w.w_gate.sin_len = sizeof(w.w_gate);
683 #endif
684 if (mask == HOST_MASK) {
685 w.w_rtm.rtm_flags |= RTF_HOST;
686 w.w_rtm.rtm_msglen -= sizeof(w.w_mask);
687 } else {
688 w.w_rtm.rtm_addrs |= RTA_NETMASK;
689 w.w_mask.sin_addr.s_addr = htonl(mask);
690 #ifdef _HAVE_SA_LEN
691 masktrim(&w.w_mask);
692 if (w.w_mask.sin_len == 0)
693 w.w_mask.sin_len = sizeof(long);
694 w.w_rtm.rtm_msglen -= (sizeof(w.w_mask) - w.w_mask.sin_len);
695 #endif
696 }
697
698 #ifndef NO_INSTALL
699 cc = write(rt_sock, &w, w.w_rtm.rtm_msglen);
700 if (cc < 0) {
701 if (errno == ESRCH
702 && (action == RTM_CHANGE || action == RTM_DELETE)) {
703 trace_act("route disappeared before" PAT, ARGS);
704 if (action == RTM_CHANGE) {
705 action = RTM_ADD;
706 goto again;
707 }
708 return;
709 }
710 msglog("write(rt_sock)" PAT ": ", ARGS, strerror(errno));
711 return;
712 } else if (cc != w.w_rtm.rtm_msglen) {
713 msglog("write(rt_sock) wrote %d instead of %d for" PAT,
714 cc, w.w_rtm.rtm_msglen, ARGS);
715 return;
716 }
717 #endif
718 if (TRACEKERNEL)
719 trace_kernel("write kernel" PAT, ARGS);
720 #undef PAT
721 #undef ARGS
722 }
723
724
725 #define KHASH_SIZE 71 /* should be prime */
726 #define KHASH(a,m) khash_bins[((a) ^ (m)) % KHASH_SIZE]
727 static struct khash {
728 struct khash *k_next;
729 naddr k_dst;
730 naddr k_mask;
731 naddr k_gate;
732 short k_metric;
733 u_short k_state;
734 #define KS_NEW 0x001
735 #define KS_DELETE 0x002
736 #define KS_ADD 0x004 /* add to the kernel */
737 #define KS_CHANGE 0x008 /* tell kernel to change the route */
738 #define KS_DEL_ADD 0x010 /* delete & add to change the kernel */
739 #define KS_STATIC 0x020 /* Static flag in kernel */
740 #define KS_GATEWAY 0x040 /* G flag in kernel */
741 #define KS_DYNAMIC 0x080 /* result of redirect */
742 #define KS_DELETED 0x100 /* already deleted */
743 time_t k_keep;
744 #define K_KEEP_LIM 30
745 time_t k_redirect_time; /* when redirected route 1st seen */
746 } *khash_bins[KHASH_SIZE];
747
748
749 static struct khash*
750 kern_find(naddr dst, naddr mask, struct khash ***ppk)
751 {
752 struct khash *k, **pk;
753
754 for (pk = &KHASH(dst,mask); (k = *pk) != 0; pk = &k->k_next) {
755 if (k->k_dst == dst && k->k_mask == mask)
756 break;
757 }
758 if (ppk != 0)
759 *ppk = pk;
760 return k;
761 }
762
763
764 static struct khash*
765 kern_add(naddr dst, naddr mask)
766 {
767 struct khash *k, **pk;
768
769 k = kern_find(dst, mask, &pk);
770 if (k != 0)
771 return k;
772
773 k = (struct khash *)malloc(sizeof(*k));
774
775 bzero(k, sizeof(*k));
776 k->k_dst = dst;
777 k->k_mask = mask;
778 k->k_state = KS_NEW;
779 k->k_keep = now.tv_sec;
780 *pk = k;
781
782 return k;
783 }
784
785
786 /* If a kernel route has a non-zero metric, check that it is still in the
787 * daemon table, and not deleted by interfaces coming and going.
788 */
789 static void
790 kern_check_static(struct khash *k,
791 struct interface *ifp)
792 {
793 struct rt_entry *rt;
794 naddr int_addr;
795
796 if (k->k_metric == 0)
797 return;
798
799 int_addr = (ifp != 0) ? ifp->int_addr : loopaddr;
800
801 rt = rtget(k->k_dst, k->k_mask);
802 if (rt != 0) {
803 if (!(rt->rt_state & RS_STATIC))
804 rtchange(rt, rt->rt_state | RS_STATIC,
805 k->k_gate, int_addr,
806 k->k_metric, 0, ifp, now.tv_sec, 0);
807 } else {
808 rtadd(k->k_dst, k->k_mask, k->k_gate, int_addr,
809 k->k_metric, 0, RS_STATIC, ifp);
810 }
811 }
812
813
814 /* operate on a kernel entry
815 */
816 static void
817 kern_ioctl(struct khash *k,
818 int action, /* RTM_DELETE, etc */
819 int flags)
820
821 {
822 switch (action) {
823 case RTM_DELETE:
824 k->k_state &= ~KS_DYNAMIC;
825 if (k->k_state & KS_DELETED)
826 return;
827 k->k_state |= KS_DELETED;
828 break;
829 case RTM_ADD:
830 k->k_state &= ~KS_DELETED;
831 break;
832 case RTM_CHANGE:
833 if (k->k_state & KS_DELETED) {
834 action = RTM_ADD;
835 k->k_state &= ~KS_DELETED;
836 }
837 break;
838 }
839
840 rtioctl(action, k->k_dst, k->k_gate, k->k_mask, k->k_metric, flags);
841 }
842
843
844 /* add a route the kernel told us
845 */
846 static void
847 rtm_add(struct rt_msghdr *rtm,
848 struct rt_addrinfo *info,
849 time_t keep)
850 {
851 struct khash *k;
852 struct interface *ifp;
853 naddr mask;
854
855
856 if (rtm->rtm_flags & RTF_HOST) {
857 mask = HOST_MASK;
858 } else if (INFO_MASK(info) != 0) {
859 mask = ntohl(S_ADDR(INFO_MASK(info)));
860 } else {
861 msglog("ignore %s without mask", rtm_type_name(rtm->rtm_type));
862 return;
863 }
864
865 if (INFO_GATE(info) == 0
866 || INFO_GATE(info)->sa_family != AF_INET) {
867 msglog("ignore %s without gateway",
868 rtm_type_name(rtm->rtm_type));
869 return;
870 }
871
872 k = kern_add(S_ADDR(INFO_DST(info)), mask);
873 if (k->k_state & KS_NEW)
874 k->k_keep = now.tv_sec+keep;
875 k->k_gate = S_ADDR(INFO_GATE(info));
876 k->k_metric = rtm->rtm_rmx.rmx_hopcount;
877 if (k->k_metric < 0)
878 k->k_metric = 0;
879 else if (k->k_metric > HOPCNT_INFINITY)
880 k->k_metric = HOPCNT_INFINITY;
881 k->k_state &= ~(KS_DELETED | KS_GATEWAY | KS_STATIC | KS_NEW);
882 if (rtm->rtm_flags & RTF_GATEWAY)
883 k->k_state |= KS_GATEWAY;
884 if (rtm->rtm_flags & RTF_STATIC)
885 k->k_state |= KS_STATIC;
886
887 if (0 != (rtm->rtm_flags & (RTF_DYNAMIC | RTF_MODIFIED))) {
888 if (INFO_AUTHOR(info) != 0
889 && INFO_AUTHOR(info)->sa_family == AF_INET)
890 ifp = iflookup(S_ADDR(INFO_AUTHOR(info)));
891 else
892 ifp = 0;
893 if (supplier
894 && (ifp == 0 || !(ifp->int_state & IS_REDIRECT_OK))) {
895 /* Routers are not supposed to listen to redirects,
896 * so delete it if it came via an unknown interface
897 * or the interface does not have special permission.
898 */
899 k->k_state &= ~KS_DYNAMIC;
900 k->k_state |= KS_DELETE;
901 LIM_SEC(need_kern, 0);
902 trace_act("mark for deletion redirected %s --> %s"
903 " via %s",
904 addrname(k->k_dst, k->k_mask, 0),
905 naddr_ntoa(k->k_gate),
906 ifp ? ifp->int_name : "unknown interface");
907 } else {
908 k->k_state |= KS_DYNAMIC;
909 k->k_redirect_time = now.tv_sec;
910 trace_act("accept redirected %s --> %s via %s",
911 addrname(k->k_dst, k->k_mask, 0),
912 naddr_ntoa(k->k_gate),
913 ifp ? ifp->int_name : "unknown interface");
914 }
915 return;
916 }
917
918 /* If it is not a static route, quit until the next comparison
919 * between the kernel and daemon tables, when it will be deleted.
920 */
921 if (!(k->k_state & KS_STATIC)) {
922 k->k_state |= KS_DELETE;
923 LIM_SEC(need_kern, k->k_keep);
924 return;
925 }
926
927 /* Put static routes with real metrics into the daemon table so
928 * they can be advertised.
929 *
930 * Find the interface toward the gateway.
931 */
932 ifp = iflookup(k->k_gate);
933 if (ifp == 0)
934 msglog("static route %s --> %s impossibly lacks ifp",
935 addrname(S_ADDR(INFO_DST(info)), mask, 0),
936 naddr_ntoa(k->k_gate));
937
938 kern_check_static(k, ifp);
939 }
940
941
942 /* deal with packet loss
943 */
944 static void
945 rtm_lose(struct rt_msghdr *rtm,
946 struct rt_addrinfo *info)
947 {
948 if (INFO_GATE(info) == 0
949 || INFO_GATE(info)->sa_family != AF_INET) {
950 trace_act("ignore %s without gateway",
951 rtm_type_name(rtm->rtm_type));
952 return;
953 }
954
955 if (!supplier)
956 rdisc_age(S_ADDR(INFO_GATE(info)));
957
958 age(S_ADDR(INFO_GATE(info)));
959 }
960
961
962 /* Clean the kernel table by copying it to the daemon image.
963 * Eventually the daemon will delete any extra routes.
964 */
965 void
966 flush_kern(void)
967 {
968 size_t needed;
969 int mib[6];
970 char *buf, *next, *lim;
971 struct rt_msghdr *rtm;
972 struct interface *ifp;
973 static struct sockaddr_in gate_sa;
974 struct rt_addrinfo info;
975
976
977 mib[0] = CTL_NET;
978 mib[1] = PF_ROUTE;
979 mib[2] = 0; /* protocol */
980 mib[3] = 0; /* wildcard address family */
981 mib[4] = NET_RT_DUMP;
982 mib[5] = 0; /* no flags */
983 if (sysctl(mib, 6, 0, &needed, 0, 0) < 0) {
984 DBGERR(1,"RT_DUMP-sysctl-estimate");
985 return;
986 }
987 buf = malloc(needed);
988 if (sysctl(mib, 6, buf, &needed, 0, 0) < 0)
989 BADERR(1,"RT_DUMP");
990 lim = buf + needed;
991 for (next = buf; next < lim; next += rtm->rtm_msglen) {
992 rtm = (struct rt_msghdr *)next;
993
994 rt_xaddrs(&info,
995 (struct sockaddr *)(rtm+1),
996 (struct sockaddr *)(next + rtm->rtm_msglen),
997 rtm->rtm_addrs);
998
999 if (INFO_DST(&info) == 0
1000 || INFO_DST(&info)->sa_family != AF_INET)
1001 continue;
1002
1003 /* ignore ARP table entries on systems with a merged route
1004 * and ARP table.
1005 */
1006 if (rtm->rtm_flags & RTF_LLINFO)
1007 continue;
1008
1009 if (INFO_GATE(&info) == 0)
1010 continue;
1011 if (INFO_GATE(&info)->sa_family != AF_INET) {
1012 if (INFO_GATE(&info)->sa_family != AF_LINK)
1013 continue;
1014 ifp = ifwithindex(((struct sockaddr_dl *)
1015 INFO_GATE(&info))->sdl_index, 0);
1016 if (ifp == 0)
1017 continue;
1018 if ((ifp->int_if_flags & IFF_POINTOPOINT)
1019 || S_ADDR(INFO_DST(&info)) == ifp->int_addr)
1020 gate_sa.sin_addr.s_addr = ifp->int_addr;
1021 else
1022 gate_sa.sin_addr.s_addr = htonl(ifp->int_net);
1023 #ifdef _HAVE_SA_LEN
1024 gate_sa.sin_len = sizeof(gate_sa);
1025 #endif
1026 gate_sa.sin_family = AF_INET;
1027 INFO_GATE(&info) = (struct sockaddr *)&gate_sa;
1028 }
1029
1030 /* ignore multicast addresses
1031 */
1032 if (IN_MULTICAST(ntohl(S_ADDR(INFO_DST(&info)))))
1033 continue;
1034
1035 /* Note static routes and interface routes, and also
1036 * preload the image of the kernel table so that
1037 * we can later clean it, as well as avoid making
1038 * unneeded changes. Keep the old kernel routes for a
1039 * few seconds to allow a RIP or router-discovery
1040 * response to be heard.
1041 */
1042 rtm_add(rtm,&info,MIN_WAITTIME);
1043 }
1044 free(buf);
1045 }
1046
1047
1048 /* Listen to announcements from the kernel
1049 */
1050 void
1051 read_rt(void)
1052 {
1053 long cc;
1054 struct interface *ifp;
1055 naddr mask;
1056 union {
1057 struct {
1058 struct rt_msghdr rtm;
1059 struct sockaddr addrs[RTAX_MAX];
1060 } r;
1061 struct if_msghdr ifm;
1062 } m;
1063 char str[100], *strp;
1064 struct rt_addrinfo info;
1065
1066
1067 for (;;) {
1068 cc = read(rt_sock, &m, sizeof(m));
1069 if (cc <= 0) {
1070 if (cc < 0 && errno != EWOULDBLOCK)
1071 LOGERR("read(rt_sock)");
1072 return;
1073 }
1074
1075 if (m.r.rtm.rtm_version != RTM_VERSION) {
1076 msglog("bogus routing message version %d",
1077 m.r.rtm.rtm_version);
1078 continue;
1079 }
1080
1081 /* Ignore our own results.
1082 */
1083 if (m.r.rtm.rtm_type <= RTM_CHANGE
1084 && m.r.rtm.rtm_pid == mypid) {
1085 static int complained = 0;
1086 if (!complained) {
1087 msglog("receiving our own change messages");
1088 complained = 1;
1089 }
1090 continue;
1091 }
1092
1093 if (m.r.rtm.rtm_type == RTM_IFINFO
1094 || m.r.rtm.rtm_type == RTM_NEWADDR
1095 || m.r.rtm.rtm_type == RTM_DELADDR) {
1096 ifp = ifwithindex(m.ifm.ifm_index,
1097 m.r.rtm.rtm_type != RTM_DELADDR);
1098 if (ifp == 0)
1099 trace_act("note %s with flags %#x"
1100 " for interface index #%d",
1101 rtm_type_name(m.r.rtm.rtm_type),
1102 m.ifm.ifm_flags,
1103 m.ifm.ifm_index);
1104 else
1105 trace_act("note %s with flags %#x for %s",
1106 rtm_type_name(m.r.rtm.rtm_type),
1107 m.ifm.ifm_flags,
1108 ifp->int_name);
1109
1110 /* After being informed of a change to an interface,
1111 * check them all now if the check would otherwise
1112 * be a long time from now, if the interface is
1113 * not known, or if the interface has been turned
1114 * off or on.
1115 */
1116 if (ifinit_timer.tv_sec-now.tv_sec>=CHECK_BAD_INTERVAL
1117 || ifp == 0
1118 || ((ifp->int_if_flags ^ m.ifm.ifm_flags)
1119 & IFF_UP_RUNNING) != 0)
1120 ifinit_timer.tv_sec = now.tv_sec;
1121 continue;
1122 }
1123
1124 strcpy(str, rtm_type_name(m.r.rtm.rtm_type));
1125 strp = &str[strlen(str)];
1126 if (m.r.rtm.rtm_type <= RTM_CHANGE)
1127 strp += sprintf(strp," from pid %d",m.r.rtm.rtm_pid);
1128
1129 rt_xaddrs(&info, m.r.addrs, &m.r.addrs[RTAX_MAX],
1130 m.r.rtm.rtm_addrs);
1131
1132 if (INFO_DST(&info) == 0) {
1133 trace_act("ignore %s without dst", str);
1134 continue;
1135 }
1136
1137 if (INFO_DST(&info)->sa_family != AF_INET) {
1138 trace_act("ignore %s for AF %d", str,
1139 INFO_DST(&info)->sa_family);
1140 continue;
1141 }
1142
1143 mask = ((INFO_MASK(&info) != 0)
1144 ? ntohl(S_ADDR(INFO_MASK(&info)))
1145 : (m.r.rtm.rtm_flags & RTF_HOST)
1146 ? HOST_MASK
1147 : std_mask(S_ADDR(INFO_DST(&info))));
1148
1149 strp += sprintf(strp, ": %s",
1150 addrname(S_ADDR(INFO_DST(&info)), mask, 0));
1151
1152 if (IN_MULTICAST(ntohl(S_ADDR(INFO_DST(&info))))) {
1153 trace_act("ignore multicast %s", str);
1154 continue;
1155 }
1156
1157 if (INFO_GATE(&info) != 0
1158 && INFO_GATE(&info)->sa_family == AF_INET)
1159 strp += sprintf(strp, " --> %s",
1160 saddr_ntoa(INFO_GATE(&info)));
1161
1162 if (INFO_AUTHOR(&info) != 0)
1163 strp += sprintf(strp, " by authority of %s",
1164 saddr_ntoa(INFO_AUTHOR(&info)));
1165
1166 switch (m.r.rtm.rtm_type) {
1167 case RTM_ADD:
1168 case RTM_CHANGE:
1169 case RTM_REDIRECT:
1170 if (m.r.rtm.rtm_errno != 0) {
1171 trace_act("ignore %s with \"%s\" error",
1172 str, strerror(m.r.rtm.rtm_errno));
1173 } else {
1174 trace_act("%s", str);
1175 rtm_add(&m.r.rtm,&info,0);
1176 }
1177 break;
1178
1179 case RTM_DELETE:
1180 if (m.r.rtm.rtm_errno != 0) {
1181 trace_act("ignore %s with \"%s\" error",
1182 str, strerror(m.r.rtm.rtm_errno));
1183 } else {
1184 trace_act("%s", str);
1185 del_static(S_ADDR(INFO_DST(&info)), mask, 1);
1186 }
1187 break;
1188
1189 case RTM_LOSING:
1190 trace_act("%s", str);
1191 rtm_lose(&m.r.rtm,&info);
1192 break;
1193
1194 default:
1195 trace_act("ignore %s", str);
1196 break;
1197 }
1198 }
1199 }
1200
1201
1202 /* after aggregating, note routes that belong in the kernel
1203 */
1204 static void
1205 kern_out(struct ag_info *ag)
1206 {
1207 struct khash *k;
1208
1209
1210 /* Do not install bad routes if they are not already present.
1211 * This includes routes that had RS_NET_SYN for interfaces that
1212 * recently died.
1213 */
1214 if (ag->ag_metric == HOPCNT_INFINITY) {
1215 k = kern_find(htonl(ag->ag_dst_h), ag->ag_mask, 0);
1216 if (k == 0)
1217 return;
1218 } else {
1219 k = kern_add(htonl(ag->ag_dst_h), ag->ag_mask);
1220 }
1221
1222 if (k->k_state & KS_NEW) {
1223 /* will need to add new entry to the kernel table */
1224 k->k_state = KS_ADD;
1225 if (ag->ag_state & AGS_GATEWAY)
1226 k->k_state |= KS_GATEWAY;
1227 k->k_gate = ag->ag_gate;
1228 k->k_metric = ag->ag_metric;
1229 return;
1230 }
1231
1232 if (k->k_state & KS_STATIC)
1233 return;
1234
1235 /* modify existing kernel entry if necessary */
1236 if (k->k_gate != ag->ag_gate
1237 || k->k_metric != ag->ag_metric) {
1238 k->k_gate = ag->ag_gate;
1239 k->k_metric = ag->ag_metric;
1240 k->k_state |= KS_CHANGE;
1241 }
1242
1243 if (k->k_state & KS_DYNAMIC) {
1244 k->k_state &= ~KS_DYNAMIC;
1245 k->k_state |= (KS_ADD | KS_DEL_ADD);
1246 }
1247
1248 if ((k->k_state & KS_GATEWAY)
1249 && !(ag->ag_state & AGS_GATEWAY)) {
1250 k->k_state &= ~KS_GATEWAY;
1251 k->k_state |= (KS_ADD | KS_DEL_ADD);
1252 } else if (!(k->k_state & KS_GATEWAY)
1253 && (ag->ag_state & AGS_GATEWAY)) {
1254 k->k_state |= KS_GATEWAY;
1255 k->k_state |= (KS_ADD | KS_DEL_ADD);
1256 }
1257
1258 /* Deleting-and-adding is necessary to change aspects of a route.
1259 * Just delete instead of deleting and then adding a bad route.
1260 * Otherwise, we want to keep the route in the kernel.
1261 */
1262 if (k->k_metric == HOPCNT_INFINITY
1263 && (k->k_state & KS_DEL_ADD))
1264 k->k_state |= KS_DELETE;
1265 else
1266 k->k_state &= ~KS_DELETE;
1267 #undef RT
1268 }
1269
1270
1271 /* ARGSUSED */
1272 static int
1273 walk_kern(struct radix_node *rn,
1274 struct walkarg *w)
1275 {
1276 #define RT ((struct rt_entry *)rn)
1277 char metric, pref;
1278 u_int ags = 0;
1279
1280
1281 /* Do not install synthetic routes */
1282 if (RT->rt_state & RS_NET_SYN)
1283 return 0;
1284
1285 if (!(RT->rt_state & RS_IF)) {
1286 ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_PROMOTE);
1287
1288 } else {
1289 /* Do not install routes for "external" remote interfaces.
1290 */
1291 if (RT->rt_ifp != 0 && (RT->rt_ifp->int_state & IS_EXTERNAL))
1292 return 0;
1293
1294 ags |= AGS_IF;
1295
1296 /* If it is not an interface, or an alias for an interface,
1297 * it must be a "gateway."
1298 *
1299 * If it is a "remote" interface, it is also a "gateway" to
1300 * the kernel if is not a alias.
1301 */
1302 if (RT->rt_ifp == 0
1303 || (RT->rt_ifp->int_state & IS_REMOTE))
1304 ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_PROMOTE);
1305 }
1306
1307 if (RT->rt_state & RS_RDISC)
1308 ags |= AGS_CORS_GATE;
1309
1310 /* aggregate good routes without regard to their metric */
1311 pref = 1;
1312 metric = RT->rt_metric;
1313 if (metric == HOPCNT_INFINITY) {
1314 /* if the route is dead, so try hard to aggregate. */
1315 pref = HOPCNT_INFINITY;
1316 ags |= (AGS_FINE_GATE | AGS_SUPPRESS);
1317 }
1318
1319 ag_check(RT->rt_dst, RT->rt_mask, RT->rt_gate, 0,
1320 metric,pref, 0, 0, ags, kern_out);
1321 return 0;
1322 #undef RT
1323 }
1324
1325
1326 /* Update the kernel table to match the daemon table.
1327 */
1328 static void
1329 fix_kern(void)
1330 {
1331 int i;
1332 struct khash *k, **pk;
1333
1334
1335 need_kern = age_timer;
1336
1337 /* Walk daemon table, updating the copy of the kernel table.
1338 */
1339 (void)rn_walktree(rhead, walk_kern, 0);
1340 ag_flush(0,0,kern_out);
1341
1342 for (i = 0; i < KHASH_SIZE; i++) {
1343 for (pk = &khash_bins[i]; (k = *pk) != 0; ) {
1344 /* Do not touch static routes */
1345 if (k->k_state & KS_STATIC) {
1346 kern_check_static(k,0);
1347 pk = &k->k_next;
1348 continue;
1349 }
1350
1351 /* check hold on routes deleted by the operator */
1352 if (k->k_keep > now.tv_sec) {
1353 LIM_SEC(need_kern, k->k_keep);
1354 k->k_state |= KS_DELETE;
1355 pk = &k->k_next;
1356 continue;
1357 }
1358
1359 if ((k->k_state & KS_DELETE)
1360 && !(k->k_state & KS_DYNAMIC)) {
1361 kern_ioctl(k, RTM_DELETE, 0);
1362 *pk = k->k_next;
1363 free(k);
1364 continue;
1365 }
1366
1367 if (k->k_state & KS_DEL_ADD)
1368 kern_ioctl(k, RTM_DELETE, 0);
1369
1370 if (k->k_state & KS_ADD) {
1371 kern_ioctl(k, RTM_ADD,
1372 ((0 != (k->k_state & (KS_GATEWAY
1373 | KS_DYNAMIC)))
1374 ? RTF_GATEWAY : 0));
1375 } else if (k->k_state & KS_CHANGE) {
1376 kern_ioctl(k, RTM_CHANGE,
1377 ((0 != (k->k_state & (KS_GATEWAY
1378 | KS_DYNAMIC)))
1379 ? RTF_GATEWAY : 0));
1380 }
1381 k->k_state &= ~(KS_ADD|KS_CHANGE|KS_DEL_ADD);
1382
1383 /* Mark this route to be deleted in the next cycle.
1384 * This deletes routes that disappear from the
1385 * daemon table, since the normal aging code
1386 * will clear the bit for routes that have not
1387 * disappeared from the daemon table.
1388 */
1389 k->k_state |= KS_DELETE;
1390 pk = &k->k_next;
1391 }
1392 }
1393 }
1394
1395
1396 /* Delete a static route in the image of the kernel table.
1397 */
1398 void
1399 del_static(naddr dst,
1400 naddr mask,
1401 int gone)
1402 {
1403 struct khash *k;
1404 struct rt_entry *rt;
1405
1406 /* Just mark it in the table to be deleted next time the kernel
1407 * table is updated.
1408 * If it has already been deleted, mark it as such, and set its
1409 * keep-timer so that it will not be deleted again for a while.
1410 * This lets the operator delete a route added by the daemon
1411 * and add a replacement.
1412 */
1413 k = kern_find(dst, mask, 0);
1414 if (k != 0) {
1415 k->k_state &= ~(KS_STATIC | KS_DYNAMIC);
1416 k->k_state |= KS_DELETE;
1417 if (gone) {
1418 k->k_state |= KS_DELETED;
1419 k->k_keep = now.tv_sec + K_KEEP_LIM;
1420 }
1421 }
1422
1423 rt = rtget(dst, mask);
1424 if (rt != 0 && (rt->rt_state & RS_STATIC))
1425 rtbad(rt);
1426 }
1427
1428
1429 /* Delete all routes generated from ICMP Redirects that use a given gateway,
1430 * as well as old redirected routes.
1431 */
1432 void
1433 del_redirects(naddr bad_gate,
1434 time_t old)
1435 {
1436 int i;
1437 struct khash *k;
1438
1439
1440 for (i = 0; i < KHASH_SIZE; i++) {
1441 for (k = khash_bins[i]; k != 0; k = k->k_next) {
1442 if (!(k->k_state & KS_DYNAMIC)
1443 || (k->k_state & KS_STATIC))
1444 continue;
1445
1446 if (k->k_gate != bad_gate
1447 && k->k_redirect_time > old
1448 && !supplier)
1449 continue;
1450
1451 k->k_state |= KS_DELETE;
1452 k->k_state &= ~KS_DYNAMIC;
1453 need_kern.tv_sec = now.tv_sec;
1454 trace_act("mark redirected %s --> %s for deletion",
1455 addrname(k->k_dst, k->k_mask, 0),
1456 naddr_ntoa(k->k_gate));
1457 }
1458 }
1459 }
1460
1461
1462 /* Start the daemon tables.
1463 */
1464 void
1465 rtinit(void)
1466 {
1467 extern int max_keylen;
1468 int i;
1469 struct ag_info *ag;
1470
1471 /* Initialize the radix trees */
1472 max_keylen = sizeof(struct sockaddr_in);
1473 rn_init();
1474 rn_inithead((void**)&rhead, 32);
1475
1476 /* mark all of the slots in the table free */
1477 ag_avail = ag_slots;
1478 for (ag = ag_slots, i = 1; i < NUM_AG_SLOTS; i++) {
1479 ag->ag_fine = ag+1;
1480 ag++;
1481 }
1482 }
1483
1484
1485 #ifdef _HAVE_SIN_LEN
1486 static struct sockaddr_in dst_sock = {sizeof(dst_sock), AF_INET};
1487 static struct sockaddr_in mask_sock = {sizeof(mask_sock), AF_INET};
1488 #else
1489 static struct sockaddr_in_new dst_sock = {_SIN_ADDR_SIZE, AF_INET};
1490 static struct sockaddr_in_new mask_sock = {_SIN_ADDR_SIZE, AF_INET};
1491 #endif
1492
1493
1494 void
1495 set_need_flash(void)
1496 {
1497 if (!need_flash) {
1498 need_flash = 1;
1499 /* Do not send the flash update immediately. Wait a little
1500 * while to hear from other routers.
1501 */
1502 no_flash.tv_sec = now.tv_sec + MIN_WAITTIME;
1503 }
1504 }
1505
1506
1507 /* Get a particular routing table entry
1508 */
1509 struct rt_entry *
1510 rtget(naddr dst, naddr mask)
1511 {
1512 struct rt_entry *rt;
1513
1514 dst_sock.sin_addr.s_addr = dst;
1515 mask_sock.sin_addr.s_addr = mask;
1516 masktrim(&mask_sock);
1517 rt = (struct rt_entry *)rhead->rnh_lookup(&dst_sock,&mask_sock,rhead);
1518 if (!rt
1519 || rt->rt_dst != dst
1520 || rt->rt_mask != mask)
1521 return 0;
1522
1523 return rt;
1524 }
1525
1526
1527 /* Find a route to dst as the kernel would.
1528 */
1529 struct rt_entry *
1530 rtfind(naddr dst)
1531 {
1532 dst_sock.sin_addr.s_addr = dst;
1533 return (struct rt_entry *)rhead->rnh_matchaddr(&dst_sock, rhead);
1534 }
1535
1536
1537 /* add a route to the table
1538 */
1539 void
1540 rtadd(naddr dst,
1541 naddr mask,
1542 naddr gate, /* forward packets here */
1543 naddr router, /* on the authority of this router */
1544 int metric,
1545 u_short tag,
1546 u_int state, /* rs_state for the entry */
1547 struct interface *ifp)
1548 {
1549 struct rt_entry *rt;
1550 naddr smask;
1551 int i;
1552 struct rt_spare *rts;
1553
1554 rt = (struct rt_entry *)rtmalloc(sizeof (*rt), "rtadd");
1555 bzero(rt, sizeof(*rt));
1556 for (rts = rt->rt_spares, i = NUM_SPARES; i != 0; i--, rts++)
1557 rts->rts_metric = HOPCNT_INFINITY;
1558
1559 rt->rt_nodes->rn_key = (caddr_t)&rt->rt_dst_sock;
1560 rt->rt_dst = dst;
1561 rt->rt_dst_sock.sin_family = AF_INET;
1562 #ifdef _HAVE_SIN_LEN
1563 rt->rt_dst_sock.sin_len = dst_sock.sin_len;
1564 #endif
1565 if (mask != HOST_MASK) {
1566 smask = std_mask(dst);
1567 if ((smask & ~mask) == 0 && mask > smask)
1568 state |= RS_SUBNET;
1569 }
1570 mask_sock.sin_addr.s_addr = mask;
1571 masktrim(&mask_sock);
1572 rt->rt_mask = mask;
1573 rt->rt_state = state;
1574 rt->rt_gate = gate;
1575 rt->rt_router = router;
1576 rt->rt_time = now.tv_sec;
1577 rt->rt_metric = metric;
1578 rt->rt_poison_metric = HOPCNT_INFINITY;
1579 rt->rt_tag = tag;
1580 rt->rt_ifp = ifp;
1581 rt->rt_seqno = update_seqno;
1582
1583 if (++total_routes == MAX_ROUTES)
1584 msglog("have maximum (%d) routes", total_routes);
1585 if (TRACEACTIONS)
1586 trace_add_del("Add", rt);
1587
1588 need_kern.tv_sec = now.tv_sec;
1589 set_need_flash();
1590
1591 if (0 == rhead->rnh_addaddr(&rt->rt_dst_sock, &mask_sock,
1592 rhead, rt->rt_nodes)) {
1593 msglog("rnh_addaddr() failed for %s mask=%#x",
1594 naddr_ntoa(dst), mask);
1595 }
1596 }
1597
1598
1599 /* notice a changed route
1600 */
1601 void
1602 rtchange(struct rt_entry *rt,
1603 u_int state, /* new state bits */
1604 naddr gate, /* now forward packets here */
1605 naddr router, /* on the authority of this router */
1606 int metric, /* new metric */
1607 u_short tag,
1608 struct interface *ifp,
1609 time_t new_time,
1610 char *label)
1611 {
1612 if (rt->rt_metric != metric) {
1613 /* Fix the kernel immediately if it seems the route
1614 * has gone bad, since there may be a working route that
1615 * aggregates this route.
1616 */
1617 if (metric == HOPCNT_INFINITY) {
1618 need_kern.tv_sec = now.tv_sec;
1619 if (new_time >= now.tv_sec - EXPIRE_TIME)
1620 new_time = now.tv_sec - EXPIRE_TIME;
1621 }
1622 rt->rt_seqno = update_seqno;
1623 set_need_flash();
1624 }
1625
1626 if (rt->rt_gate != gate) {
1627 need_kern.tv_sec = now.tv_sec;
1628 rt->rt_seqno = update_seqno;
1629 set_need_flash();
1630 }
1631
1632 state |= (rt->rt_state & RS_SUBNET);
1633
1634 /* Keep various things from deciding ageless routes are stale.
1635 */
1636 if (!AGE_RT(state, ifp))
1637 new_time = now.tv_sec;
1638
1639 if (TRACEACTIONS)
1640 trace_change(rt, state, gate, router, metric, tag, ifp,
1641 new_time,
1642 label ? label : "Chg ");
1643
1644 rt->rt_state = state;
1645 rt->rt_gate = gate;
1646 rt->rt_router = router;
1647 rt->rt_metric = metric;
1648 rt->rt_tag = tag;
1649 rt->rt_ifp = ifp;
1650 rt->rt_time = new_time;
1651 }
1652
1653
1654 /* check for a better route among the spares
1655 */
1656 static struct rt_spare *
1657 rts_better(struct rt_entry *rt)
1658 {
1659 struct rt_spare *rts, *rts1;
1660 int i;
1661
1662 /* find the best alternative among the spares */
1663 rts = rt->rt_spares+1;
1664 for (i = NUM_SPARES, rts1 = rts+1; i > 2; i--, rts1++) {
1665 if (BETTER_LINK(rt,rts1,rts))
1666 rts = rts1;
1667 }
1668
1669 return rts;
1670 }
1671
1672
1673 /* switch to a backup route
1674 */
1675 void
1676 rtswitch(struct rt_entry *rt,
1677 struct rt_spare *rts)
1678 {
1679 struct rt_spare swap;
1680 char label[10];
1681
1682
1683 /* Do not change permanent routes */
1684 if (0 != (rt->rt_state & (RS_MHOME | RS_STATIC | RS_RDISC
1685 | RS_NET_SYN | RS_IF)))
1686 return;
1687
1688 /* find the best alternative among the spares */
1689 if (rts == 0)
1690 rts = rts_better(rt);
1691
1692 /* Do not bother if it is not worthwhile.
1693 */
1694 if (!BETTER_LINK(rt, rts, rt->rt_spares))
1695 return;
1696
1697 swap = rt->rt_spares[0];
1698 (void)sprintf(label, "Use #%d", rts - rt->rt_spares);
1699 rtchange(rt, rt->rt_state & ~(RS_NET_SYN | RS_RDISC),
1700 rts->rts_gate, rts->rts_router, rts->rts_metric,
1701 rts->rts_tag, rts->rts_ifp, rts->rts_time, label);
1702 if (swap.rts_metric == HOPCNT_INFINITY) {
1703 *rts = rts_empty;
1704 } else {
1705 *rts = swap;
1706 }
1707 }
1708
1709
1710 void
1711 rtdelete(struct rt_entry *rt)
1712 {
1713 struct khash *k;
1714
1715
1716 if (TRACEACTIONS)
1717 trace_add_del("Del", rt);
1718
1719 k = kern_find(rt->rt_dst, rt->rt_mask, 0);
1720 if (k != 0) {
1721 k->k_state |= KS_DELETE;
1722 need_kern.tv_sec = now.tv_sec;
1723 }
1724
1725 dst_sock.sin_addr.s_addr = rt->rt_dst;
1726 mask_sock.sin_addr.s_addr = rt->rt_mask;
1727 masktrim(&mask_sock);
1728 if (rt != (struct rt_entry *)rhead->rnh_deladdr(&dst_sock, &mask_sock,
1729 rhead)) {
1730 msglog("rnh_deladdr() failed");
1731 } else {
1732 free(rt);
1733 total_routes--;
1734 }
1735 }
1736
1737
1738 void
1739 rts_delete(struct rt_entry *rt,
1740 struct rt_spare *rts)
1741 {
1742 trace_upslot(rt, rts, 0, 0, 0, HOPCNT_INFINITY, 0, 0);
1743 *rts = rts_empty;
1744 }
1745
1746
1747 /* Get rid of a bad route, and try to switch to a replacement.
1748 */
1749 void
1750 rtbad(struct rt_entry *rt)
1751 {
1752 /* Poison the route */
1753 rtchange(rt, rt->rt_state & ~(RS_IF | RS_LOCAL | RS_STATIC),
1754 rt->rt_gate, rt->rt_router, HOPCNT_INFINITY, rt->rt_tag,
1755 0, rt->rt_time, 0);
1756
1757 rtswitch(rt, 0);
1758 }
1759
1760
1761 /* Junk a RS_NET_SYN or RS_LOCAL route,
1762 * unless it is needed by another interface.
1763 */
1764 void
1765 rtbad_sub(struct rt_entry *rt)
1766 {
1767 struct interface *ifp, *ifp1;
1768 struct intnet *intnetp;
1769 u_int state;
1770
1771
1772 ifp1 = 0;
1773 state = 0;
1774
1775 if (rt->rt_state & RS_LOCAL) {
1776 /* Is this the route through loopback for the interface?
1777 * If so, see if it is used by any other interfaces, such
1778 * as a point-to-point interface with the same local address.
1779 */
1780 for (ifp = ifnet; ifp != 0; ifp = ifp->int_next) {
1781 /* Retain it if another interface needs it.
1782 */
1783 if (ifp->int_addr == rt->rt_ifp->int_addr) {
1784 state |= RS_LOCAL;
1785 ifp1 = ifp;
1786 break;
1787 }
1788 }
1789
1790 }
1791
1792 if (!(state & RS_LOCAL)) {
1793 /* Retain RIPv1 logical network route if there is another
1794 * interface that justifies it.
1795 */
1796 if (rt->rt_state & RS_NET_SYN) {
1797 for (ifp = ifnet; ifp != 0; ifp = ifp->int_next) {
1798 if ((ifp->int_state & IS_NEED_NET_SYN)
1799 && rt->rt_mask == ifp->int_std_mask
1800 && rt->rt_dst == ifp->int_std_addr) {
1801 state |= RS_NET_SYN;
1802 ifp1 = ifp;
1803 break;
1804 }
1805 }
1806 }
1807
1808 /* or if there is an authority route that needs it. */
1809 for (intnetp = intnets;
1810 intnetp != 0;
1811 intnetp = intnetp->intnet_next) {
1812 if (intnetp->intnet_addr == rt->rt_dst
1813 && intnetp->intnet_mask == rt->rt_mask) {
1814 state |= (RS_NET_SYN | RS_NET_INT);
1815 break;
1816 }
1817 }
1818 }
1819
1820 if (ifp1 != 0 || (state & RS_NET_SYN)) {
1821 rtchange(rt, ((rt->rt_state & ~(RS_NET_SYN | RS_LOCAL))
1822 | state),
1823 rt->rt_gate, rt->rt_router, rt->rt_metric,
1824 rt->rt_tag, ifp1, rt->rt_time, 0);
1825 } else {
1826 rtbad(rt);
1827 }
1828 }
1829
1830
1831 /* Called while walking the table looking for sick interfaces
1832 * or after a time change.
1833 */
1834 /* ARGSUSED */
1835 int
1836 walk_bad(struct radix_node *rn,
1837 struct walkarg *w)
1838 {
1839 #define RT ((struct rt_entry *)rn)
1840 struct rt_spare *rts;
1841 int i;
1842
1843
1844 /* fix any spare routes through the interface
1845 */
1846 rts = RT->rt_spares;
1847 for (i = NUM_SPARES; i != 1; i--) {
1848 rts++;
1849 if (rts->rts_metric < HOPCNT_INFINITY
1850 && (rts->rts_ifp == 0
1851 || (rts->rts_ifp->int_state & IS_BROKE)))
1852 rts_delete(RT, rts);
1853 }
1854
1855 /* Deal with the main route
1856 */
1857 /* finished if it has been handled before or if its interface is ok
1858 */
1859 if (RT->rt_ifp == 0 || !(RT->rt_ifp->int_state & IS_BROKE))
1860 return 0;
1861
1862 /* Bad routes for other than interfaces are easy.
1863 */
1864 if (0 == (RT->rt_state & (RS_IF | RS_NET_SYN | RS_LOCAL))) {
1865 rtbad(RT);
1866 return 0;
1867 }
1868
1869 rtbad_sub(RT);
1870 return 0;
1871 #undef RT
1872 }
1873
1874
1875 /* Check the age of an individual route.
1876 */
1877 /* ARGSUSED */
1878 static int
1879 walk_age(struct radix_node *rn,
1880 struct walkarg *w)
1881 {
1882 #define RT ((struct rt_entry *)rn)
1883 struct interface *ifp;
1884 struct rt_spare *rts;
1885 int i;
1886
1887
1888 /* age all of the spare routes, including the primary route
1889 * currently in use
1890 */
1891 rts = RT->rt_spares;
1892 for (i = NUM_SPARES; i != 0; i--, rts++) {
1893
1894 ifp = rts->rts_ifp;
1895 if (i == NUM_SPARES) {
1896 if (!AGE_RT(RT->rt_state, ifp)) {
1897 /* Keep various things from deciding ageless
1898 * routes are stale
1899 */
1900 rts->rts_time = now.tv_sec;
1901 continue;
1902 }
1903
1904 /* forget RIP routes after RIP has been turned off.
1905 */
1906 if (rip_sock < 0) {
1907 rtdelete(RT);
1908 return 0;
1909 }
1910 }
1911
1912 /* age failing routes
1913 */
1914 if (age_bad_gate == rts->rts_gate
1915 && rts->rts_time >= now_stale) {
1916 rts->rts_time -= SUPPLY_INTERVAL;
1917 }
1918
1919 /* trash the spare routes when they go bad */
1920 if (rts->rts_metric < HOPCNT_INFINITY
1921 && now_garbage > rts->rts_time)
1922 rts_delete(RT, rts);
1923 }
1924
1925
1926 /* finished if the active route is still fresh */
1927 if (now_stale <= RT->rt_time)
1928 return 0;
1929
1930 /* try to switch to an alternative */
1931 rtswitch(RT, 0);
1932
1933 /* Delete a dead route after it has been publically mourned. */
1934 if (now_garbage > RT->rt_time) {
1935 rtdelete(RT);
1936 return 0;
1937 }
1938
1939 /* Start poisoning a bad route before deleting it. */
1940 if (now.tv_sec - RT->rt_time > EXPIRE_TIME)
1941 rtchange(RT, RT->rt_state, RT->rt_gate, RT->rt_router,
1942 HOPCNT_INFINITY, RT->rt_tag, RT->rt_ifp,
1943 RT->rt_time, 0);
1944 return 0;
1945 }
1946
1947
1948 /* Watch for dead routes and interfaces.
1949 */
1950 void
1951 age(naddr bad_gate)
1952 {
1953 struct interface *ifp;
1954 int need_query = 0;
1955
1956 /* If not listening to RIP, there is no need to age the routes in
1957 * the table.
1958 */
1959 age_timer.tv_sec = (now.tv_sec
1960 + ((rip_sock < 0) ? NEVER : SUPPLY_INTERVAL));
1961
1962 /* Check for dead IS_REMOTE interfaces by timing their
1963 * transmissions.
1964 */
1965 for (ifp = ifnet; ifp; ifp = ifp->int_next) {
1966 if (!(ifp->int_state & IS_REMOTE))
1967 continue;
1968
1969 /* ignore unreachable remote interfaces */
1970 if (!check_remote(ifp))
1971 continue;
1972 /* Restore remote interface that has become reachable
1973 */
1974 if (ifp->int_state & IS_BROKE)
1975 if_ok(ifp, "remote ");
1976
1977 if (ifp->int_act_time != NEVER
1978 && now.tv_sec - ifp->int_act_time > EXPIRE_TIME) {
1979 msglog("remote interface %s to %s timed out after"
1980 " %d:%d",
1981 ifp->int_name,
1982 naddr_ntoa(ifp->int_dstaddr),
1983 (now.tv_sec - ifp->int_act_time)/60,
1984 (now.tv_sec - ifp->int_act_time)%60);
1985 if_sick(ifp);
1986 }
1987
1988 /* If we have not heard from the other router
1989 * recently, ask it.
1990 */
1991 if (now.tv_sec >= ifp->int_query_time) {
1992 ifp->int_query_time = NEVER;
1993 need_query = 1;
1994 }
1995 }
1996
1997 /* Age routes. */
1998 age_bad_gate = bad_gate;
1999 (void)rn_walktree(rhead, walk_age, 0);
2000
2001 /* Update the kernel routing table. */
2002 fix_kern();
2003
2004 /* poke reticent remote gateways */
2005 if (need_query)
2006 rip_query();
2007 }
2008