table.c revision 1.1.1.5 1 /*
2 * Copyright (c) 1983, 1988, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgment:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #if !defined(sgi) && !defined(__NetBSD__)
35 static char sccsid[] __attribute__((unused)) = "@(#)tables.c 8.1 (Berkeley) 6/5/93";
36 #elif defined(__NetBSD__)
37 __RCSID("$NetBSD: table.c,v 1.1.1.5 1999/02/23 09:56:52 christos Exp $");
38 #endif
39
40 #include "defs.h"
41
42 static struct rt_spare *rts_better(struct rt_entry *);
43 static struct rt_spare rts_empty = {0,0,0,HOPCNT_INFINITY,0,0,0};
44
45 struct radix_node_head *rhead; /* root of the radix tree */
46
47 int need_flash = 1; /* flash update needed
48 * start =1 to suppress the 1st
49 */
50
51 struct timeval age_timer; /* next check of old routes */
52 struct timeval need_kern = { /* need to update kernel table */
53 EPOCH+MIN_WAITTIME-1
54 };
55
56 int stopint;
57
58 int total_routes;
59
60 /* zap any old routes through this gateway */
61 naddr age_bad_gate;
62
63
64 /* It is desirable to "aggregate" routes, to combine differing routes of
65 * the same metric and next hop into a common route with a smaller netmask
66 * or to suppress redundant routes, routes that add no information to
67 * routes with smaller netmasks.
68 *
69 * A route is redundant if and only if any and all routes with smaller
70 * but matching netmasks and nets are the same. Since routes are
71 * kept sorted in the radix tree, redundant routes always come second.
72 *
73 * There are two kinds of aggregations. First, two routes of the same bit
74 * mask and differing only in the least significant bit of the network
75 * number can be combined into a single route with a coarser mask.
76 *
77 * Second, a route can be suppressed in favor of another route with a more
78 * coarse mask provided no incompatible routes with intermediate masks
79 * are present. The second kind of aggregation involves suppressing routes.
80 * A route must not be suppressed if an incompatible route exists with
81 * an intermediate mask, since the suppressed route would be covered
82 * by the intermediate.
83 *
84 * This code relies on the radix tree walk encountering routes
85 * sorted first by address, with the smallest address first.
86 */
87
88 struct ag_info ag_slots[NUM_AG_SLOTS], *ag_avail, *ag_corsest, *ag_finest;
89
90 /* #define DEBUG_AG */
91 #ifdef DEBUG_AG
92 #define CHECK_AG() {int acnt = 0; struct ag_info *cag; \
93 for (cag = ag_avail; cag != 0; cag = cag->ag_fine) \
94 acnt++; \
95 for (cag = ag_corsest; cag != 0; cag = cag->ag_fine) \
96 acnt++; \
97 if (acnt != NUM_AG_SLOTS) { \
98 (void)fflush(stderr); \
99 abort(); \
100 } \
101 }
102 #else
103 #define CHECK_AG()
104 #endif
105
106
107 /* Output the contents of an aggregation table slot.
108 * This function must always be immediately followed with the deletion
109 * of the target slot.
110 */
111 static void
112 ag_out(struct ag_info *ag,
113 void (*out)(struct ag_info *))
114 {
115 struct ag_info *ag_cors;
116 naddr bit;
117
118
119 /* Forget it if this route should not be output for split-horizon. */
120 if (ag->ag_state & AGS_SPLIT_HZ)
121 return;
122
123 /* If we output both the even and odd twins, then the immediate parent,
124 * if it is present, is redundant, unless the parent manages to
125 * aggregate into something coarser.
126 * On successive calls, this code detects the even and odd twins,
127 * and marks the parent.
128 *
129 * Note that the order in which the radix tree code emits routes
130 * ensures that the twins are seen before the parent is emitted.
131 */
132 ag_cors = ag->ag_cors;
133 if (ag_cors != 0
134 && ag_cors->ag_mask == ag->ag_mask<<1
135 && ag_cors->ag_dst_h == (ag->ag_dst_h & ag_cors->ag_mask)) {
136 ag_cors->ag_state |= ((ag_cors->ag_dst_h == ag->ag_dst_h)
137 ? AGS_REDUN0
138 : AGS_REDUN1);
139 }
140
141 /* Skip it if this route is itself redundant.
142 *
143 * It is ok to change the contents of the slot here, since it is
144 * always deleted next.
145 */
146 if (ag->ag_state & AGS_REDUN0) {
147 if (ag->ag_state & AGS_REDUN1)
148 return; /* quit if fully redundant */
149 /* make it finer if it is half-redundant */
150 bit = (-ag->ag_mask) >> 1;
151 ag->ag_dst_h |= bit;
152 ag->ag_mask |= bit;
153
154 } else if (ag->ag_state & AGS_REDUN1) {
155 /* make it finer if it is half-redundant */
156 bit = (-ag->ag_mask) >> 1;
157 ag->ag_mask |= bit;
158 }
159 out(ag);
160 }
161
162
163 static void
164 ag_del(struct ag_info *ag)
165 {
166 CHECK_AG();
167
168 if (ag->ag_cors == 0)
169 ag_corsest = ag->ag_fine;
170 else
171 ag->ag_cors->ag_fine = ag->ag_fine;
172
173 if (ag->ag_fine == 0)
174 ag_finest = ag->ag_cors;
175 else
176 ag->ag_fine->ag_cors = ag->ag_cors;
177
178 ag->ag_fine = ag_avail;
179 ag_avail = ag;
180
181 CHECK_AG();
182 }
183
184
185 /* Flush routes waiting for aggregation.
186 * This must not suppress a route unless it is known that among all
187 * routes with coarser masks that match it, the one with the longest
188 * mask is appropriate. This is ensured by scanning the routes
189 * in lexical order, and with the most restrictive mask first
190 * among routes to the same destination.
191 */
192 void
193 ag_flush(naddr lim_dst_h, /* flush routes to here */
194 naddr lim_mask, /* matching this mask */
195 void (*out)(struct ag_info *))
196 {
197 struct ag_info *ag, *ag_cors;
198 naddr dst_h;
199
200
201 for (ag = ag_finest;
202 ag != 0 && ag->ag_mask >= lim_mask;
203 ag = ag_cors) {
204 ag_cors = ag->ag_cors;
205
206 /* work on only the specified routes */
207 dst_h = ag->ag_dst_h;
208 if ((dst_h & lim_mask) != lim_dst_h)
209 continue;
210
211 if (!(ag->ag_state & AGS_SUPPRESS))
212 ag_out(ag, out);
213
214 else for ( ; ; ag_cors = ag_cors->ag_cors) {
215 /* Look for a route that can suppress the
216 * current route */
217 if (ag_cors == 0) {
218 /* failed, so output it and look for
219 * another route to work on
220 */
221 ag_out(ag, out);
222 break;
223 }
224
225 if ((dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h) {
226 /* We found a route with a coarser mask that
227 * aggregates the current target.
228 *
229 * If it has a different next hop, it
230 * cannot replace the target, so output
231 * the target.
232 */
233 if (ag->ag_gate != ag_cors->ag_gate
234 && !(ag->ag_state & AGS_FINE_GATE)
235 && !(ag_cors->ag_state & AGS_CORS_GATE)) {
236 ag_out(ag, out);
237 break;
238 }
239
240 /* If the coarse route has a good enough
241 * metric, it suppresses the target.
242 * If the suppressed target was redundant,
243 * then mark the suppressor redundant.
244 */
245 if (ag_cors->ag_pref <= ag->ag_pref) {
246 if (ag_cors->ag_seqno > ag->ag_seqno)
247 ag_cors->ag_seqno = ag->ag_seqno;
248 if (AG_IS_REDUN(ag->ag_state)
249 && ag_cors->ag_mask==ag->ag_mask<<1) {
250 if (ag_cors->ag_dst_h == dst_h)
251 ag_cors->ag_state |= AGS_REDUN0;
252 else
253 ag_cors->ag_state |= AGS_REDUN1;
254 }
255 if (ag->ag_tag != ag_cors->ag_tag)
256 ag_cors->ag_tag = 0;
257 if (ag->ag_nhop != ag_cors->ag_nhop)
258 ag_cors->ag_nhop = 0;
259 break;
260 }
261 }
262 }
263
264 /* That route has either been output or suppressed */
265 ag_cors = ag->ag_cors;
266 ag_del(ag);
267 }
268
269 CHECK_AG();
270 }
271
272
273 /* Try to aggregate a route with previous routes.
274 */
275 void
276 ag_check(naddr dst,
277 naddr mask,
278 naddr gate,
279 naddr nhop,
280 char metric,
281 char pref,
282 u_int seqno,
283 u_short tag,
284 u_short state,
285 void (*out)(struct ag_info *)) /* output using this */
286 {
287 struct ag_info *ag, *nag, *ag_cors;
288 naddr xaddr;
289 int x;
290
291 NTOHL(dst);
292
293 /* Punt non-contiguous subnet masks.
294 *
295 * (X & -X) contains a single bit if and only if X is a power of 2.
296 * (X + (X & -X)) == 0 if and only if X is a power of 2.
297 */
298 if ((mask & -mask) + mask != 0) {
299 struct ag_info nc_ag;
300
301 nc_ag.ag_dst_h = dst;
302 nc_ag.ag_mask = mask;
303 nc_ag.ag_gate = gate;
304 nc_ag.ag_nhop = nhop;
305 nc_ag.ag_metric = metric;
306 nc_ag.ag_pref = pref;
307 nc_ag.ag_tag = tag;
308 nc_ag.ag_state = state;
309 nc_ag.ag_seqno = seqno;
310 out(&nc_ag);
311 return;
312 }
313
314 /* Search for the right slot in the aggregation table.
315 */
316 ag_cors = 0;
317 ag = ag_corsest;
318 while (ag != 0) {
319 if (ag->ag_mask >= mask)
320 break;
321
322 /* Suppress old routes (i.e. combine with compatible routes
323 * with coarser masks) as we look for the right slot in the
324 * aggregation table for the new route.
325 * A route to an address less than the current destination
326 * will not be affected by the current route or any route
327 * seen hereafter. That means it is safe to suppress it.
328 * This check keeps poor routes (e.g. with large hop counts)
329 * from preventing suppression of finer routes.
330 */
331 if (ag_cors != 0
332 && ag->ag_dst_h < dst
333 && (ag->ag_state & AGS_SUPPRESS)
334 && ag_cors->ag_pref <= ag->ag_pref
335 && (ag->ag_dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h
336 && (ag_cors->ag_gate == ag->ag_gate
337 || (ag->ag_state & AGS_FINE_GATE)
338 || (ag_cors->ag_state & AGS_CORS_GATE))) {
339 if (ag_cors->ag_seqno > ag->ag_seqno)
340 ag_cors->ag_seqno = ag->ag_seqno;
341 /* If the suppressed target was redundant,
342 * then mark the suppressor redundant.
343 */
344 if (AG_IS_REDUN(ag->ag_state)
345 && ag_cors->ag_mask==ag->ag_mask<<1) {
346 if (ag_cors->ag_dst_h == dst)
347 ag_cors->ag_state |= AGS_REDUN0;
348 else
349 ag_cors->ag_state |= AGS_REDUN1;
350 }
351 if (ag->ag_tag != ag_cors->ag_tag)
352 ag_cors->ag_tag = 0;
353 if (ag->ag_nhop != ag_cors->ag_nhop)
354 ag_cors->ag_nhop = 0;
355 ag_del(ag);
356 CHECK_AG();
357 } else {
358 ag_cors = ag;
359 }
360 ag = ag_cors->ag_fine;
361 }
362
363 /* If we find the even/odd twin of the new route, and if the
364 * masks and so forth are equal, we can aggregate them.
365 * We can probably promote one of the pair.
366 *
367 * Since the routes are encountered in lexical order,
368 * the new route must be odd. However, the second or later
369 * times around this loop, it could be the even twin promoted
370 * from the even/odd pair of twins of the finer route.
371 */
372 while (ag != 0
373 && ag->ag_mask == mask
374 && ((ag->ag_dst_h ^ dst) & (mask<<1)) == 0) {
375
376 /* Here we know the target route and the route in the current
377 * slot have the same netmasks and differ by at most the
378 * last bit. They are either for the same destination, or
379 * for an even/odd pair of destinations.
380 */
381 if (ag->ag_dst_h == dst) {
382 /* We have two routes to the same destination.
383 * Routes are encountered in lexical order, so a
384 * route is never promoted until the parent route is
385 * already present. So we know that the new route is
386 * a promoted (or aggregated) pair and the route
387 * already in the slot is the explicit route.
388 *
389 * Prefer the best route if their metrics differ,
390 * or the aggregated one if not, following a sort
391 * of longest-match rule.
392 */
393 if (pref <= ag->ag_pref) {
394 ag->ag_gate = gate;
395 ag->ag_nhop = nhop;
396 ag->ag_tag = tag;
397 ag->ag_metric = metric;
398 ag->ag_pref = pref;
399 x = ag->ag_state;
400 ag->ag_state = state;
401 state = x;
402 }
403
404 /* The sequence number controls flash updating,
405 * and should be the smaller of the two.
406 */
407 if (ag->ag_seqno > seqno)
408 ag->ag_seqno = seqno;
409
410 /* Some bits are set if they are set on either route,
411 * except when the route is for an interface.
412 */
413 if (!(ag->ag_state & AGS_IF))
414 ag->ag_state |= (state & (AGS_AGGREGATE_EITHER
415 | AGS_REDUN0
416 | AGS_REDUN1));
417 return;
418 }
419
420 /* If one of the routes can be promoted and the other can
421 * be suppressed, it may be possible to combine them or
422 * worthwhile to promote one.
423 *
424 * Any route that can be promoted is always
425 * marked to be eligible to be suppressed.
426 */
427 if (!((state & AGS_AGGREGATE)
428 && (ag->ag_state & AGS_SUPPRESS))
429 && !((ag->ag_state & AGS_AGGREGATE)
430 && (state & AGS_SUPPRESS)))
431 break;
432
433 /* A pair of even/odd twin routes can be combined
434 * if either is redundant, or if they are via the
435 * same gateway and have the same metric.
436 */
437 if (AG_IS_REDUN(ag->ag_state)
438 || AG_IS_REDUN(state)
439 || (ag->ag_gate == gate
440 && ag->ag_pref == pref
441 && (state & ag->ag_state & AGS_AGGREGATE) != 0)) {
442
443 /* We have both the even and odd pairs.
444 * Since the routes are encountered in order,
445 * the route in the slot must be the even twin.
446 *
447 * Combine and promote (aggregate) the pair of routes.
448 */
449 if (seqno > ag->ag_seqno)
450 seqno = ag->ag_seqno;
451 if (!AG_IS_REDUN(state))
452 state &= ~AGS_REDUN1;
453 if (AG_IS_REDUN(ag->ag_state))
454 state |= AGS_REDUN0;
455 else
456 state &= ~AGS_REDUN0;
457 state |= (ag->ag_state & AGS_AGGREGATE_EITHER);
458 if (ag->ag_tag != tag)
459 tag = 0;
460 if (ag->ag_nhop != nhop)
461 nhop = 0;
462
463 /* Get rid of the even twin that was already
464 * in the slot.
465 */
466 ag_del(ag);
467
468 } else if (ag->ag_pref >= pref
469 && (ag->ag_state & AGS_AGGREGATE)) {
470 /* If we cannot combine the pair, maybe the route
471 * with the worse metric can be promoted.
472 *
473 * Promote the old, even twin, by giving its slot
474 * in the table to the new, odd twin.
475 */
476 ag->ag_dst_h = dst;
477
478 xaddr = ag->ag_gate;
479 ag->ag_gate = gate;
480 gate = xaddr;
481
482 xaddr = ag->ag_nhop;
483 ag->ag_nhop = nhop;
484 nhop = xaddr;
485
486 x = ag->ag_tag;
487 ag->ag_tag = tag;
488 tag = x;
489
490 /* The promoted route is even-redundant only if the
491 * even twin was fully redundant. It is not
492 * odd-redundant because the odd-twin will still be
493 * in the table.
494 */
495 x = ag->ag_state;
496 if (!AG_IS_REDUN(x))
497 x &= ~AGS_REDUN0;
498 x &= ~AGS_REDUN1;
499 ag->ag_state = state;
500 state = x;
501
502 x = ag->ag_metric;
503 ag->ag_metric = metric;
504 metric = x;
505
506 x = ag->ag_pref;
507 ag->ag_pref = pref;
508 pref = x;
509
510 /* take the newest sequence number */
511 if (seqno >= ag->ag_seqno)
512 seqno = ag->ag_seqno;
513 else
514 ag->ag_seqno = seqno;
515
516 } else {
517 if (!(state & AGS_AGGREGATE))
518 break; /* cannot promote either twin */
519
520 /* Promote the new, odd twin by shaving its
521 * mask and address.
522 * The promoted route is odd-redundant only if the
523 * odd twin was fully redundant. It is not
524 * even-redundant because the even twin is still in
525 * the table.
526 */
527 if (!AG_IS_REDUN(state))
528 state &= ~AGS_REDUN1;
529 state &= ~AGS_REDUN0;
530 if (seqno > ag->ag_seqno)
531 seqno = ag->ag_seqno;
532 else
533 ag->ag_seqno = seqno;
534 }
535
536 mask <<= 1;
537 dst &= mask;
538
539 if (ag_cors == 0) {
540 ag = ag_corsest;
541 break;
542 }
543 ag = ag_cors;
544 ag_cors = ag->ag_cors;
545 }
546
547 /* When we can no longer promote and combine routes,
548 * flush the old route in the target slot. Also flush
549 * any finer routes that we know will never be aggregated by
550 * the new route.
551 *
552 * In case we moved toward coarser masks,
553 * get back where we belong
554 */
555 if (ag != 0
556 && ag->ag_mask < mask) {
557 ag_cors = ag;
558 ag = ag->ag_fine;
559 }
560
561 /* Empty the target slot
562 */
563 if (ag != 0 && ag->ag_mask == mask) {
564 ag_flush(ag->ag_dst_h, ag->ag_mask, out);
565 ag = (ag_cors == 0) ? ag_corsest : ag_cors->ag_fine;
566 }
567
568 #ifdef DEBUG_AG
569 (void)fflush(stderr);
570 if (ag == 0 && ag_cors != ag_finest)
571 abort();
572 if (ag_cors == 0 && ag != ag_corsest)
573 abort();
574 if (ag != 0 && ag->ag_cors != ag_cors)
575 abort();
576 if (ag_cors != 0 && ag_cors->ag_fine != ag)
577 abort();
578 CHECK_AG();
579 #endif
580
581 /* Save the new route on the end of the table.
582 */
583 nag = ag_avail;
584 ag_avail = nag->ag_fine;
585
586 nag->ag_dst_h = dst;
587 nag->ag_mask = mask;
588 nag->ag_gate = gate;
589 nag->ag_nhop = nhop;
590 nag->ag_metric = metric;
591 nag->ag_pref = pref;
592 nag->ag_tag = tag;
593 nag->ag_state = state;
594 nag->ag_seqno = seqno;
595
596 nag->ag_fine = ag;
597 if (ag != 0)
598 ag->ag_cors = nag;
599 else
600 ag_finest = nag;
601 nag->ag_cors = ag_cors;
602 if (ag_cors == 0)
603 ag_corsest = nag;
604 else
605 ag_cors->ag_fine = nag;
606 CHECK_AG();
607 }
608
609
610 static const char *
611 rtm_type_name(u_char type)
612 {
613 static const char *rtm_types[] = {
614 "RTM_ADD",
615 "RTM_DELETE",
616 "RTM_CHANGE",
617 "RTM_GET",
618 "RTM_LOSING",
619 "RTM_REDIRECT",
620 "RTM_MISS",
621 "RTM_LOCK",
622 "RTM_OLDADD",
623 "RTM_OLDDEL",
624 "RTM_RESOLVE",
625 "RTM_NEWADDR",
626 "RTM_DELADDR",
627 "RTM_IFINFO"
628 };
629 static char name0[10];
630
631
632 if (type > sizeof(rtm_types)/sizeof(rtm_types[0])
633 || type == 0) {
634 sprintf(name0, "RTM type %#x", type);
635 return name0;
636 } else {
637 return rtm_types[type-1];
638 }
639 }
640
641
642 /* Trim a mask in a sockaddr
643 * Produce a length of 0 for an address of 0.
644 * Otherwise produce the index of the first zero byte.
645 */
646 void
647 #ifdef _HAVE_SIN_LEN
648 masktrim(struct sockaddr_in *ap)
649 #else
650 masktrim(struct sockaddr_in_new *ap)
651 #endif
652 {
653 char *cp;
654
655 if (ap->sin_addr.s_addr == 0) {
656 ap->sin_len = 0;
657 return;
658 }
659 cp = (char *)(&ap->sin_addr.s_addr+1);
660 while (*--cp == 0)
661 continue;
662 ap->sin_len = cp - (char*)ap + 1;
663 }
664
665
666 /* Tell the kernel to add, delete or change a route
667 */
668 static void
669 rtioctl(int action, /* RTM_DELETE, etc */
670 naddr dst,
671 naddr gate,
672 naddr mask,
673 int metric,
674 int flags)
675 {
676 struct {
677 struct rt_msghdr w_rtm;
678 struct sockaddr_in w_dst;
679 struct sockaddr_in w_gate;
680 #ifdef _HAVE_SA_LEN
681 struct sockaddr_in w_mask;
682 #else
683 struct sockaddr_in_new w_mask;
684 #endif
685 } w;
686 long cc;
687 # define PAT " %-10s %s metric=%d flags=%#x"
688 # define ARGS rtm_type_name(action), rtname(dst,mask,gate), metric, flags
689
690 again:
691 memset(&w, 0, sizeof(w));
692 w.w_rtm.rtm_msglen = sizeof(w);
693 w.w_rtm.rtm_version = RTM_VERSION;
694 w.w_rtm.rtm_type = action;
695 w.w_rtm.rtm_flags = flags;
696 w.w_rtm.rtm_seq = ++rt_sock_seqno;
697 w.w_rtm.rtm_addrs = RTA_DST|RTA_GATEWAY;
698 if (metric != 0 || action == RTM_CHANGE) {
699 w.w_rtm.rtm_rmx.rmx_hopcount = metric;
700 w.w_rtm.rtm_inits |= RTV_HOPCOUNT;
701 }
702 w.w_dst.sin_family = AF_INET;
703 w.w_dst.sin_addr.s_addr = dst;
704 w.w_gate.sin_family = AF_INET;
705 w.w_gate.sin_addr.s_addr = gate;
706 #ifdef _HAVE_SA_LEN
707 w.w_dst.sin_len = sizeof(w.w_dst);
708 w.w_gate.sin_len = sizeof(w.w_gate);
709 #endif
710 if (mask == HOST_MASK) {
711 w.w_rtm.rtm_flags |= RTF_HOST;
712 w.w_rtm.rtm_msglen -= sizeof(w.w_mask);
713 } else {
714 w.w_rtm.rtm_addrs |= RTA_NETMASK;
715 w.w_mask.sin_addr.s_addr = htonl(mask);
716 #ifdef _HAVE_SA_LEN
717 masktrim(&w.w_mask);
718 if (w.w_mask.sin_len == 0)
719 w.w_mask.sin_len = sizeof(long);
720 w.w_rtm.rtm_msglen -= (sizeof(w.w_mask) - w.w_mask.sin_len);
721 #endif
722 }
723
724 #ifndef NO_INSTALL
725 cc = write(rt_sock, &w, w.w_rtm.rtm_msglen);
726 if (cc < 0) {
727 if (errno == ESRCH
728 && (action == RTM_CHANGE || action == RTM_DELETE)) {
729 trace_act("route disappeared before" PAT, ARGS);
730 if (action == RTM_CHANGE) {
731 action = RTM_ADD;
732 goto again;
733 }
734 return;
735 }
736 msglog("write(rt_sock)" PAT ": %s", ARGS, strerror(errno));
737 return;
738 } else if (cc != w.w_rtm.rtm_msglen) {
739 msglog("write(rt_sock) wrote %ld instead of %d for" PAT,
740 cc, w.w_rtm.rtm_msglen, ARGS);
741 return;
742 }
743 #endif
744 if (TRACEKERNEL)
745 trace_misc("write kernel" PAT, ARGS);
746 #undef PAT
747 #undef ARGS
748 }
749
750
751 #define KHASH_SIZE 71 /* should be prime */
752 #define KHASH(a,m) khash_bins[((a) ^ (m)) % KHASH_SIZE]
753 static struct khash {
754 struct khash *k_next;
755 naddr k_dst;
756 naddr k_mask;
757 naddr k_gate;
758 short k_metric;
759 u_short k_state;
760 #define KS_NEW 0x001
761 #define KS_DELETE 0x002 /* need to delete the route */
762 #define KS_ADD 0x004 /* add to the kernel */
763 #define KS_CHANGE 0x008 /* tell kernel to change the route */
764 #define KS_DEL_ADD 0x010 /* delete & add to change the kernel */
765 #define KS_STATIC 0x020 /* Static flag in kernel */
766 #define KS_GATEWAY 0x040 /* G flag in kernel */
767 #define KS_DYNAMIC 0x080 /* result of redirect */
768 #define KS_DELETED 0x100 /* already deleted from kernel */
769 #define KS_CHECK 0x200
770 time_t k_keep;
771 #define K_KEEP_LIM 30
772 time_t k_redirect_time; /* when redirected route 1st seen */
773 } *khash_bins[KHASH_SIZE];
774
775
776 static struct khash*
777 kern_find(naddr dst, naddr mask, struct khash ***ppk)
778 {
779 struct khash *k, **pk;
780
781 for (pk = &KHASH(dst,mask); (k = *pk) != 0; pk = &k->k_next) {
782 if (k->k_dst == dst && k->k_mask == mask)
783 break;
784 }
785 if (ppk != 0)
786 *ppk = pk;
787 return k;
788 }
789
790
791 static struct khash*
792 kern_add(naddr dst, naddr mask)
793 {
794 struct khash *k, **pk;
795
796 k = kern_find(dst, mask, &pk);
797 if (k != 0)
798 return k;
799
800 k = (struct khash *)rtmalloc(sizeof(*k), "kern_add");
801
802 memset(k, 0, sizeof(*k));
803 k->k_dst = dst;
804 k->k_mask = mask;
805 k->k_state = KS_NEW;
806 k->k_keep = now.tv_sec;
807 *pk = k;
808
809 return k;
810 }
811
812
813 /* If a kernel route has a non-zero metric, check that it is still in the
814 * daemon table, and not deleted by interfaces coming and going.
815 */
816 static void
817 kern_check_static(struct khash *k,
818 struct interface *ifp)
819 {
820 struct rt_entry *rt;
821 struct rt_spare new;
822
823 if (k->k_metric == 0)
824 return;
825
826 memset(&new, 0, sizeof(new));
827 new.rts_ifp = ifp;
828 new.rts_gate = k->k_gate;
829 new.rts_router = (ifp != 0) ? ifp->int_addr : loopaddr;
830 new.rts_metric = k->k_metric;
831 new.rts_time = now.tv_sec;
832
833 rt = rtget(k->k_dst, k->k_mask);
834 if (rt != 0) {
835 if (!(rt->rt_state & RS_STATIC))
836 rtchange(rt, rt->rt_state | RS_STATIC, &new, 0);
837 } else {
838 rtadd(k->k_dst, k->k_mask, RS_STATIC, &new);
839 }
840 }
841
842
843 /* operate on a kernel entry
844 */
845 static void
846 kern_ioctl(struct khash *k,
847 int action, /* RTM_DELETE, etc */
848 int flags)
849
850 {
851 switch (action) {
852 case RTM_DELETE:
853 k->k_state &= ~KS_DYNAMIC;
854 if (k->k_state & KS_DELETED)
855 return;
856 k->k_state |= KS_DELETED;
857 break;
858 case RTM_ADD:
859 k->k_state &= ~KS_DELETED;
860 break;
861 case RTM_CHANGE:
862 if (k->k_state & KS_DELETED) {
863 action = RTM_ADD;
864 k->k_state &= ~KS_DELETED;
865 }
866 break;
867 }
868
869 rtioctl(action, k->k_dst, k->k_gate, k->k_mask, k->k_metric, flags);
870 }
871
872
873 /* add a route the kernel told us
874 */
875 static void
876 rtm_add(struct rt_msghdr *rtm,
877 struct rt_addrinfo *info,
878 time_t keep)
879 {
880 struct khash *k;
881 struct interface *ifp;
882 naddr mask;
883
884
885 if (rtm->rtm_flags & RTF_HOST) {
886 mask = HOST_MASK;
887 } else if (INFO_MASK(info) != 0) {
888 mask = ntohl(S_ADDR(INFO_MASK(info)));
889 } else {
890 msglog("ignore %s without mask", rtm_type_name(rtm->rtm_type));
891 return;
892 }
893
894 k = kern_add(S_ADDR(INFO_DST(info)), mask);
895 if (k->k_state & KS_NEW)
896 k->k_keep = now.tv_sec+keep;
897 if (INFO_GATE(info) == 0) {
898 trace_act("note %s without gateway",
899 rtm_type_name(rtm->rtm_type));
900 k->k_metric = HOPCNT_INFINITY;
901 } else if (INFO_GATE(info)->sa_family != AF_INET) {
902 trace_act("note %s with gateway AF=%d",
903 rtm_type_name(rtm->rtm_type),
904 INFO_GATE(info)->sa_family);
905 k->k_metric = HOPCNT_INFINITY;
906 } else {
907 k->k_gate = S_ADDR(INFO_GATE(info));
908 k->k_metric = rtm->rtm_rmx.rmx_hopcount;
909 if (k->k_metric < 0)
910 k->k_metric = 0;
911 else if (k->k_metric > HOPCNT_INFINITY-1)
912 k->k_metric = HOPCNT_INFINITY-1;
913 }
914 k->k_state &= ~(KS_DELETE | KS_ADD | KS_CHANGE | KS_DEL_ADD
915 | KS_DELETED | KS_GATEWAY | KS_STATIC
916 | KS_NEW | KS_CHECK);
917 if (rtm->rtm_flags & RTF_GATEWAY)
918 k->k_state |= KS_GATEWAY;
919 if (rtm->rtm_flags & RTF_STATIC)
920 k->k_state |= KS_STATIC;
921
922 if (0 != (rtm->rtm_flags & (RTF_DYNAMIC | RTF_MODIFIED))) {
923 if (INFO_AUTHOR(info) != 0
924 && INFO_AUTHOR(info)->sa_family == AF_INET)
925 ifp = iflookup(S_ADDR(INFO_AUTHOR(info)));
926 else
927 ifp = 0;
928 if (supplier
929 && (ifp == 0 || !(ifp->int_state & IS_REDIRECT_OK))) {
930 /* Routers are not supposed to listen to redirects,
931 * so delete it if it came via an unknown interface
932 * or the interface does not have special permission.
933 */
934 k->k_state &= ~KS_DYNAMIC;
935 k->k_state |= KS_DELETE;
936 LIM_SEC(need_kern, 0);
937 trace_act("mark for deletion redirected %s --> %s"
938 " via %s",
939 addrname(k->k_dst, k->k_mask, 0),
940 naddr_ntoa(k->k_gate),
941 ifp ? ifp->int_name : "unknown interface");
942 } else {
943 k->k_state |= KS_DYNAMIC;
944 k->k_redirect_time = now.tv_sec;
945 trace_act("accept redirected %s --> %s via %s",
946 addrname(k->k_dst, k->k_mask, 0),
947 naddr_ntoa(k->k_gate),
948 ifp ? ifp->int_name : "unknown interface");
949 }
950 return;
951 }
952
953 /* If it is not a static route, quit until the next comparison
954 * between the kernel and daemon tables, when it will be deleted.
955 */
956 if (!(k->k_state & KS_STATIC)) {
957 k->k_state |= KS_DELETE;
958 LIM_SEC(need_kern, k->k_keep);
959 return;
960 }
961
962 /* Put static routes with real metrics into the daemon table so
963 * they can be advertised.
964 *
965 * Find the interface toward the gateway.
966 */
967 ifp = iflookup(k->k_gate);
968 if (ifp == 0)
969 msglog("static route %s --> %s impossibly lacks ifp",
970 addrname(S_ADDR(INFO_DST(info)), mask, 0),
971 naddr_ntoa(k->k_gate));
972
973 kern_check_static(k, ifp);
974 }
975
976
977 /* deal with packet loss
978 */
979 static void
980 rtm_lose(struct rt_msghdr *rtm,
981 struct rt_addrinfo *info)
982 {
983 if (INFO_GATE(info) == 0
984 || INFO_GATE(info)->sa_family != AF_INET) {
985 trace_act("ignore %s without gateway",
986 rtm_type_name(rtm->rtm_type));
987 return;
988 }
989
990 if (rdisc_ok)
991 rdisc_age(S_ADDR(INFO_GATE(info)));
992 age(S_ADDR(INFO_GATE(info)));
993 }
994
995
996 /* Make the gateway slot of an info structure point to something
997 * useful. If it is not already useful, but it specifies an interface,
998 * then fill in the sockaddr_in provided and point it there.
999 */
1000 static int
1001 get_info_gate(struct sockaddr **sap,
1002 struct sockaddr_in *sin)
1003 {
1004 struct sockaddr_dl *sdl = (struct sockaddr_dl *)*sap;
1005 struct interface *ifp;
1006
1007 if (sdl == 0)
1008 return 0;
1009 if ((sdl)->sdl_family == AF_INET)
1010 return 1;
1011 if ((sdl)->sdl_family != AF_LINK)
1012 return 0;
1013
1014 ifp = ifwithindex(sdl->sdl_index, 1);
1015 if (ifp == 0)
1016 return 0;
1017
1018 sin->sin_addr.s_addr = ifp->int_addr;
1019 #ifdef _HAVE_SA_LEN
1020 sin->sin_len = sizeof(*sin);
1021 #endif
1022 sin->sin_family = AF_INET;
1023 *sap = (struct sockaddr*)sin;
1024
1025 return 1;
1026 }
1027
1028
1029 /* Clean the kernel table by copying it to the daemon image.
1030 * Eventually the daemon will delete any extra routes.
1031 */
1032 void
1033 flush_kern(void)
1034 {
1035 static char *sysctl_buf;
1036 static size_t sysctl_buf_size = 0;
1037 size_t needed;
1038 int mib[6];
1039 char *next, *lim;
1040 struct rt_msghdr *rtm;
1041 struct sockaddr_in gate_sin;
1042 struct rt_addrinfo info;
1043 int i;
1044 struct khash *k;
1045
1046
1047 for (i = 0; i < KHASH_SIZE; i++) {
1048 for (k = khash_bins[i]; k != 0; k = k->k_next) {
1049 k->k_state |= KS_CHECK;
1050 }
1051 }
1052
1053 mib[0] = CTL_NET;
1054 mib[1] = PF_ROUTE;
1055 mib[2] = 0; /* protocol */
1056 mib[3] = 0; /* wildcard address family */
1057 mib[4] = NET_RT_DUMP;
1058 mib[5] = 0; /* no flags */
1059 for (;;) {
1060 if ((needed = sysctl_buf_size) != 0) {
1061 if (sysctl(mib, 6, sysctl_buf,&needed, 0, 0) >= 0)
1062 break;
1063 if (errno != ENOMEM && errno != EFAULT)
1064 BADERR(1,"flush_kern: sysctl(RT_DUMP)");
1065 free(sysctl_buf);
1066 needed = 0;
1067 }
1068 if (sysctl(mib, 6, 0, &needed, 0, 0) < 0)
1069 BADERR(1,"flush_kern: sysctl(RT_DUMP) estimate");
1070 /* Kludge around the habit of some systems, such as
1071 * BSD/OS 3.1, to not admit how many routes are in the
1072 * kernel, or at least to be quite wrong.
1073 */
1074 needed += 50*(sizeof(*rtm)+5*sizeof(struct sockaddr));
1075 sysctl_buf = rtmalloc(sysctl_buf_size = needed,
1076 "flush_kern sysctl(RT_DUMP)");
1077 }
1078
1079 lim = sysctl_buf + needed;
1080 for (next = sysctl_buf; next < lim; next += rtm->rtm_msglen) {
1081 rtm = (struct rt_msghdr *)next;
1082 if (rtm->rtm_msglen == 0) {
1083 msglog("zero length kernel route at "
1084 " %#x in buffer %#x before %#x",
1085 (int)rtm, (int)sysctl_buf, (int)lim);
1086 break;
1087 }
1088
1089 rt_xaddrs(&info,
1090 (struct sockaddr *)(rtm+1),
1091 (struct sockaddr *)(next + rtm->rtm_msglen),
1092 rtm->rtm_addrs);
1093
1094 if (INFO_DST(&info) == 0
1095 || INFO_DST(&info)->sa_family != AF_INET)
1096 continue;
1097
1098 /* ignore ARP table entries on systems with a merged route
1099 * and ARP table.
1100 */
1101 if (rtm->rtm_flags & RTF_LLINFO)
1102 continue;
1103
1104 /* ignore multicast addresses
1105 */
1106 if (IN_MULTICAST(ntohl(S_ADDR(INFO_DST(&info)))))
1107 continue;
1108
1109 if (!get_info_gate(&INFO_GATE(&info), &gate_sin))
1110 continue;
1111
1112 /* Note static routes and interface routes, and also
1113 * preload the image of the kernel table so that
1114 * we can later clean it, as well as avoid making
1115 * unneeded changes. Keep the old kernel routes for a
1116 * few seconds to allow a RIP or router-discovery
1117 * response to be heard.
1118 */
1119 rtm_add(rtm,&info,MIN_WAITTIME);
1120 }
1121
1122 for (i = 0; i < KHASH_SIZE; i++) {
1123 for (k = khash_bins[i]; k != 0; k = k->k_next) {
1124 if (k->k_state & KS_CHECK) {
1125 msglog("%s --> %s disappeared from kernel",
1126 addrname(k->k_dst, k->k_mask, 0),
1127 naddr_ntoa(k->k_gate));
1128 del_static(k->k_dst, k->k_mask, k->k_gate, 1);
1129 }
1130 }
1131 }
1132 }
1133
1134
1135 /* Listen to announcements from the kernel
1136 */
1137 void
1138 read_rt(void)
1139 {
1140 long cc;
1141 struct interface *ifp;
1142 struct sockaddr_in gate_sin;
1143 naddr mask, gate;
1144 union {
1145 struct {
1146 struct rt_msghdr rtm;
1147 struct sockaddr addrs[RTAX_MAX];
1148 } r;
1149 struct if_msghdr ifm;
1150 } m;
1151 char str[100], *strp;
1152 struct rt_addrinfo info;
1153
1154
1155 for (;;) {
1156 cc = read(rt_sock, &m, sizeof(m));
1157 if (cc <= 0) {
1158 if (cc < 0 && errno != EWOULDBLOCK)
1159 LOGERR("read(rt_sock)");
1160 return;
1161 }
1162
1163 if (m.r.rtm.rtm_version != RTM_VERSION) {
1164 msglog("bogus routing message version %d",
1165 m.r.rtm.rtm_version);
1166 continue;
1167 }
1168
1169 /* Ignore our own results.
1170 */
1171 if (m.r.rtm.rtm_type <= RTM_CHANGE
1172 && m.r.rtm.rtm_pid == mypid) {
1173 static int complained = 0;
1174 if (!complained) {
1175 msglog("receiving our own change messages");
1176 complained = 1;
1177 }
1178 continue;
1179 }
1180
1181 if (m.r.rtm.rtm_type == RTM_IFINFO
1182 || m.r.rtm.rtm_type == RTM_NEWADDR
1183 || m.r.rtm.rtm_type == RTM_DELADDR) {
1184 ifp = ifwithindex(m.ifm.ifm_index,
1185 m.r.rtm.rtm_type != RTM_DELADDR);
1186 if (ifp == 0)
1187 trace_act("note %s with flags %#x"
1188 " for unknown interface index #%d",
1189 rtm_type_name(m.r.rtm.rtm_type),
1190 m.ifm.ifm_flags,
1191 m.ifm.ifm_index);
1192 else
1193 trace_act("note %s with flags %#x for %s",
1194 rtm_type_name(m.r.rtm.rtm_type),
1195 m.ifm.ifm_flags,
1196 ifp->int_name);
1197
1198 /* After being informed of a change to an interface,
1199 * check them all now if the check would otherwise
1200 * be a long time from now, if the interface is
1201 * not known, or if the interface has been turned
1202 * off or on.
1203 */
1204 if (ifinit_timer.tv_sec-now.tv_sec>=CHECK_BAD_INTERVAL
1205 || ifp == 0
1206 || ((ifp->int_if_flags ^ m.ifm.ifm_flags)
1207 & IFF_UP) != 0)
1208 ifinit_timer.tv_sec = now.tv_sec;
1209 continue;
1210 }
1211
1212 strcpy(str, rtm_type_name(m.r.rtm.rtm_type));
1213 strp = &str[strlen(str)];
1214 if (m.r.rtm.rtm_type <= RTM_CHANGE)
1215 strp += sprintf(strp," from pid %d",m.r.rtm.rtm_pid);
1216
1217 rt_xaddrs(&info, m.r.addrs, &m.r.addrs[RTAX_MAX],
1218 m.r.rtm.rtm_addrs);
1219
1220 if (INFO_DST(&info) == 0) {
1221 trace_act("ignore %s without dst", str);
1222 continue;
1223 }
1224
1225 if (INFO_DST(&info)->sa_family != AF_INET) {
1226 trace_act("ignore %s for AF %d", str,
1227 INFO_DST(&info)->sa_family);
1228 continue;
1229 }
1230
1231 mask = ((INFO_MASK(&info) != 0)
1232 ? ntohl(S_ADDR(INFO_MASK(&info)))
1233 : (m.r.rtm.rtm_flags & RTF_HOST)
1234 ? HOST_MASK
1235 : std_mask(S_ADDR(INFO_DST(&info))));
1236
1237 strp += sprintf(strp, ": %s",
1238 addrname(S_ADDR(INFO_DST(&info)), mask, 0));
1239
1240 if (IN_MULTICAST(ntohl(S_ADDR(INFO_DST(&info))))) {
1241 trace_act("ignore multicast %s", str);
1242 continue;
1243 }
1244
1245 if (m.r.rtm.rtm_flags & RTF_LLINFO) {
1246 trace_act("ignore ARP %s", str);
1247 continue;
1248 }
1249
1250 if (get_info_gate(&INFO_GATE(&info), &gate_sin)) {
1251 gate = S_ADDR(INFO_GATE(&info));
1252 strp += sprintf(strp, " --> %s", naddr_ntoa(gate));
1253 } else {
1254 gate = 0;
1255 }
1256
1257 if (INFO_AUTHOR(&info) != 0)
1258 strp += sprintf(strp, " by authority of %s",
1259 saddr_ntoa(INFO_AUTHOR(&info)));
1260
1261 switch (m.r.rtm.rtm_type) {
1262 case RTM_ADD:
1263 case RTM_CHANGE:
1264 case RTM_REDIRECT:
1265 if (m.r.rtm.rtm_errno != 0) {
1266 trace_act("ignore %s with \"%s\" error",
1267 str, strerror(m.r.rtm.rtm_errno));
1268 } else {
1269 trace_act("%s", str);
1270 rtm_add(&m.r.rtm,&info,0);
1271 }
1272 break;
1273
1274 case RTM_DELETE:
1275 if (m.r.rtm.rtm_errno != 0
1276 && m.r.rtm.rtm_errno != ESRCH) {
1277 trace_act("ignore %s with \"%s\" error",
1278 str, strerror(m.r.rtm.rtm_errno));
1279 } else {
1280 trace_act("%s", str);
1281 del_static(S_ADDR(INFO_DST(&info)), mask,
1282 gate, 1);
1283 }
1284 break;
1285
1286 case RTM_LOSING:
1287 trace_act("%s", str);
1288 rtm_lose(&m.r.rtm,&info);
1289 break;
1290
1291 default:
1292 trace_act("ignore %s", str);
1293 break;
1294 }
1295 }
1296 }
1297
1298
1299 /* after aggregating, note routes that belong in the kernel
1300 */
1301 static void
1302 kern_out(struct ag_info *ag)
1303 {
1304 struct khash *k;
1305
1306
1307 /* Do not install bad routes if they are not already present.
1308 * This includes routes that had RS_NET_SYN for interfaces that
1309 * recently died.
1310 */
1311 if (ag->ag_metric == HOPCNT_INFINITY) {
1312 k = kern_find(htonl(ag->ag_dst_h), ag->ag_mask, 0);
1313 if (k == 0)
1314 return;
1315 } else {
1316 k = kern_add(htonl(ag->ag_dst_h), ag->ag_mask);
1317 }
1318
1319 if (k->k_state & KS_NEW) {
1320 /* will need to add new entry to the kernel table */
1321 k->k_state = KS_ADD;
1322 if (ag->ag_state & AGS_GATEWAY)
1323 k->k_state |= KS_GATEWAY;
1324 k->k_gate = ag->ag_gate;
1325 k->k_metric = ag->ag_metric;
1326 return;
1327 }
1328
1329 if (k->k_state & KS_STATIC)
1330 return;
1331
1332 /* modify existing kernel entry if necessary */
1333 if (k->k_gate != ag->ag_gate
1334 || k->k_metric != ag->ag_metric) {
1335 /* Must delete bad interface routes etc. to change them. */
1336 if (k->k_metric == HOPCNT_INFINITY)
1337 k->k_state |= KS_DEL_ADD;
1338 k->k_gate = ag->ag_gate;
1339 k->k_metric = ag->ag_metric;
1340 k->k_state |= KS_CHANGE;
1341 }
1342
1343 /* If the daemon thinks the route should exist, forget
1344 * about any redirections.
1345 * If the daemon thinks the route should exist, eventually
1346 * override manual intervention by the operator.
1347 */
1348 if ((k->k_state & (KS_DYNAMIC | KS_DELETED)) != 0) {
1349 k->k_state &= ~KS_DYNAMIC;
1350 k->k_state |= (KS_ADD | KS_DEL_ADD);
1351 }
1352
1353 if ((k->k_state & KS_GATEWAY)
1354 && !(ag->ag_state & AGS_GATEWAY)) {
1355 k->k_state &= ~KS_GATEWAY;
1356 k->k_state |= (KS_ADD | KS_DEL_ADD);
1357 } else if (!(k->k_state & KS_GATEWAY)
1358 && (ag->ag_state & AGS_GATEWAY)) {
1359 k->k_state |= KS_GATEWAY;
1360 k->k_state |= (KS_ADD | KS_DEL_ADD);
1361 }
1362
1363 /* Deleting-and-adding is necessary to change aspects of a route.
1364 * Just delete instead of deleting and then adding a bad route.
1365 * Otherwise, we want to keep the route in the kernel.
1366 */
1367 if (k->k_metric == HOPCNT_INFINITY
1368 && (k->k_state & KS_DEL_ADD))
1369 k->k_state |= KS_DELETE;
1370 else
1371 k->k_state &= ~KS_DELETE;
1372 #undef RT
1373 }
1374
1375
1376 /* ARGSUSED */
1377 static int
1378 walk_kern(struct radix_node *rn,
1379 struct walkarg *argp UNUSED)
1380 {
1381 #define RT ((struct rt_entry *)rn)
1382 char metric, pref;
1383 u_int ags = 0;
1384
1385
1386 /* Do not install synthetic routes */
1387 if (RT->rt_state & RS_NET_SYN)
1388 return 0;
1389
1390 if (!(RT->rt_state & RS_IF)) {
1391 /* This is an ordinary route, not for an interface.
1392 */
1393
1394 /* aggregate, ordinary good routes without regard to
1395 * their metric
1396 */
1397 pref = 1;
1398 ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_AGGREGATE);
1399
1400 /* Do not install host routes directly to hosts, to avoid
1401 * interfering with ARP entries in the kernel table.
1402 */
1403 if (RT_ISHOST(RT)
1404 && ntohl(RT->rt_dst) == RT->rt_gate)
1405 return 0;
1406
1407 } else {
1408 /* This is an interface route.
1409 * Do not install routes for "external" remote interfaces.
1410 */
1411 if (RT->rt_ifp != 0 && (RT->rt_ifp->int_state & IS_EXTERNAL))
1412 return 0;
1413
1414 /* Interfaces should override received routes.
1415 */
1416 pref = 0;
1417 ags |= (AGS_IF | AGS_CORS_GATE);
1418
1419 /* If it is not an interface, or an alias for an interface,
1420 * it must be a "gateway."
1421 *
1422 * If it is a "remote" interface, it is also a "gateway" to
1423 * the kernel if is not a alias.
1424 */
1425 if (RT->rt_ifp == 0
1426 || (RT->rt_ifp->int_state & IS_REMOTE))
1427 ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_AGGREGATE);
1428 }
1429
1430 /* If RIP is off and IRDP is on, let the route to the discovered
1431 * route suppress any RIP routes. Eventually the RIP routes
1432 * will time-out and be deleted. This reaches the steady-state
1433 * quicker.
1434 */
1435 if ((RT->rt_state & RS_RDISC) && rip_sock < 0)
1436 ags |= AGS_CORS_GATE;
1437
1438 metric = RT->rt_metric;
1439 if (metric == HOPCNT_INFINITY) {
1440 /* if the route is dead, so try hard to aggregate. */
1441 pref = HOPCNT_INFINITY;
1442 ags |= (AGS_FINE_GATE | AGS_SUPPRESS);
1443 ags &= ~(AGS_IF | AGS_CORS_GATE);
1444 }
1445
1446 ag_check(RT->rt_dst, RT->rt_mask, RT->rt_gate, 0,
1447 metric,pref, 0, 0, ags, kern_out);
1448 return 0;
1449 #undef RT
1450 }
1451
1452
1453 /* Update the kernel table to match the daemon table.
1454 */
1455 static void
1456 fix_kern(void)
1457 {
1458 int i;
1459 struct khash *k, **pk;
1460
1461
1462 need_kern = age_timer;
1463
1464 /* Walk daemon table, updating the copy of the kernel table.
1465 */
1466 (void)rn_walktree(rhead, walk_kern, 0);
1467 ag_flush(0,0,kern_out);
1468
1469 for (i = 0; i < KHASH_SIZE; i++) {
1470 for (pk = &khash_bins[i]; (k = *pk) != 0; ) {
1471 /* Do not touch static routes */
1472 if (k->k_state & KS_STATIC) {
1473 kern_check_static(k,0);
1474 pk = &k->k_next;
1475 continue;
1476 }
1477
1478 /* check hold on routes deleted by the operator */
1479 if (k->k_keep > now.tv_sec) {
1480 /* ensure we check when the hold is over */
1481 LIM_SEC(need_kern, k->k_keep);
1482 /* mark for the next cycle */
1483 k->k_state |= KS_DELETE;
1484 pk = &k->k_next;
1485 continue;
1486 }
1487
1488 if ((k->k_state & KS_DELETE)
1489 && !(k->k_state & KS_DYNAMIC)) {
1490 kern_ioctl(k, RTM_DELETE, 0);
1491 *pk = k->k_next;
1492 free(k);
1493 continue;
1494 }
1495
1496 if (k->k_state & KS_DEL_ADD)
1497 kern_ioctl(k, RTM_DELETE, 0);
1498
1499 if (k->k_state & KS_ADD) {
1500 kern_ioctl(k, RTM_ADD,
1501 ((0 != (k->k_state & (KS_GATEWAY
1502 | KS_DYNAMIC)))
1503 ? RTF_GATEWAY : 0));
1504 } else if (k->k_state & KS_CHANGE) {
1505 kern_ioctl(k, RTM_CHANGE,
1506 ((0 != (k->k_state & (KS_GATEWAY
1507 | KS_DYNAMIC)))
1508 ? RTF_GATEWAY : 0));
1509 }
1510 k->k_state &= ~(KS_ADD|KS_CHANGE|KS_DEL_ADD);
1511
1512 /* Mark this route to be deleted in the next cycle.
1513 * This deletes routes that disappear from the
1514 * daemon table, since the normal aging code
1515 * will clear the bit for routes that have not
1516 * disappeared from the daemon table.
1517 */
1518 k->k_state |= KS_DELETE;
1519 pk = &k->k_next;
1520 }
1521 }
1522 }
1523
1524
1525 /* Delete a static route in the image of the kernel table.
1526 */
1527 void
1528 del_static(naddr dst,
1529 naddr mask,
1530 naddr gate,
1531 int gone)
1532 {
1533 struct khash *k;
1534 struct rt_entry *rt;
1535
1536 /* Just mark it in the table to be deleted next time the kernel
1537 * table is updated.
1538 * If it has already been deleted, mark it as such, and set its
1539 * keep-timer so that it will not be deleted again for a while.
1540 * This lets the operator delete a route added by the daemon
1541 * and add a replacement.
1542 */
1543 k = kern_find(dst, mask, 0);
1544 if (k != 0 && (gate == 0 || k->k_gate == gate)) {
1545 k->k_state &= ~(KS_STATIC | KS_DYNAMIC | KS_CHECK);
1546 k->k_state |= KS_DELETE;
1547 if (gone) {
1548 k->k_state |= KS_DELETED;
1549 k->k_keep = now.tv_sec + K_KEEP_LIM;
1550 }
1551 }
1552
1553 rt = rtget(dst, mask);
1554 if (rt != 0 && (rt->rt_state & RS_STATIC))
1555 rtbad(rt);
1556 }
1557
1558
1559 /* Delete all routes generated from ICMP Redirects that use a given gateway,
1560 * as well as old redirected routes.
1561 */
1562 void
1563 del_redirects(naddr bad_gate,
1564 time_t old)
1565 {
1566 int i;
1567 struct khash *k;
1568
1569
1570 for (i = 0; i < KHASH_SIZE; i++) {
1571 for (k = khash_bins[i]; k != 0; k = k->k_next) {
1572 if (!(k->k_state & KS_DYNAMIC)
1573 || (k->k_state & KS_STATIC))
1574 continue;
1575
1576 if (k->k_gate != bad_gate
1577 && k->k_redirect_time > old
1578 && !supplier)
1579 continue;
1580
1581 k->k_state |= KS_DELETE;
1582 k->k_state &= ~KS_DYNAMIC;
1583 need_kern.tv_sec = now.tv_sec;
1584 trace_act("mark redirected %s --> %s for deletion",
1585 addrname(k->k_dst, k->k_mask, 0),
1586 naddr_ntoa(k->k_gate));
1587 }
1588 }
1589 }
1590
1591
1592 /* Start the daemon tables.
1593 */
1594 extern int max_keylen;
1595
1596 void
1597 rtinit(void)
1598 {
1599 int i;
1600 struct ag_info *ag;
1601
1602 /* Initialize the radix trees */
1603 max_keylen = sizeof(struct sockaddr_in);
1604 rn_init();
1605 rn_inithead((void**)&rhead, 32);
1606
1607 /* mark all of the slots in the table free */
1608 ag_avail = ag_slots;
1609 for (ag = ag_slots, i = 1; i < NUM_AG_SLOTS; i++) {
1610 ag->ag_fine = ag+1;
1611 ag++;
1612 }
1613 }
1614
1615
1616 #ifdef _HAVE_SIN_LEN
1617 static struct sockaddr_in dst_sock = {sizeof(dst_sock), AF_INET};
1618 static struct sockaddr_in mask_sock = {sizeof(mask_sock), AF_INET};
1619 #else
1620 static struct sockaddr_in_new dst_sock = {_SIN_ADDR_SIZE, AF_INET};
1621 static struct sockaddr_in_new mask_sock = {_SIN_ADDR_SIZE, AF_INET};
1622 #endif
1623
1624
1625 void
1626 set_need_flash(void)
1627 {
1628 if (!need_flash) {
1629 need_flash = 1;
1630 /* Do not send the flash update immediately. Wait a little
1631 * while to hear from other routers.
1632 */
1633 no_flash.tv_sec = now.tv_sec + MIN_WAITTIME;
1634 }
1635 }
1636
1637
1638 /* Get a particular routing table entry
1639 */
1640 struct rt_entry *
1641 rtget(naddr dst, naddr mask)
1642 {
1643 struct rt_entry *rt;
1644
1645 dst_sock.sin_addr.s_addr = dst;
1646 mask_sock.sin_addr.s_addr = mask;
1647 masktrim(&mask_sock);
1648 rt = (struct rt_entry *)rhead->rnh_lookup(&dst_sock,&mask_sock,rhead);
1649 if (!rt
1650 || rt->rt_dst != dst
1651 || rt->rt_mask != mask)
1652 return 0;
1653
1654 return rt;
1655 }
1656
1657
1658 /* Find a route to dst as the kernel would.
1659 */
1660 struct rt_entry *
1661 rtfind(naddr dst)
1662 {
1663 dst_sock.sin_addr.s_addr = dst;
1664 return (struct rt_entry *)rhead->rnh_matchaddr(&dst_sock, rhead);
1665 }
1666
1667
1668 /* add a route to the table
1669 */
1670 void
1671 rtadd(naddr dst,
1672 naddr mask,
1673 u_int state, /* rt_state for the entry */
1674 struct rt_spare *new)
1675 {
1676 struct rt_entry *rt;
1677 naddr smask;
1678 int i;
1679 struct rt_spare *rts;
1680
1681 rt = (struct rt_entry *)rtmalloc(sizeof (*rt), "rtadd");
1682 memset(rt, 0, sizeof(*rt));
1683 for (rts = rt->rt_spares, i = NUM_SPARES; i != 0; i--, rts++)
1684 rts->rts_metric = HOPCNT_INFINITY;
1685
1686 rt->rt_nodes->rn_key = (caddr_t)&rt->rt_dst_sock;
1687 rt->rt_dst = dst;
1688 rt->rt_dst_sock.sin_family = AF_INET;
1689 #ifdef _HAVE_SIN_LEN
1690 rt->rt_dst_sock.sin_len = dst_sock.sin_len;
1691 #endif
1692 if (mask != HOST_MASK) {
1693 smask = std_mask(dst);
1694 if ((smask & ~mask) == 0 && mask > smask)
1695 state |= RS_SUBNET;
1696 }
1697 mask_sock.sin_addr.s_addr = mask;
1698 masktrim(&mask_sock);
1699 rt->rt_mask = mask;
1700 rt->rt_state = state;
1701 rt->rt_spares[0] = *new;
1702 rt->rt_time = now.tv_sec;
1703 rt->rt_poison_metric = HOPCNT_INFINITY;
1704 rt->rt_seqno = update_seqno;
1705
1706 if (++total_routes == MAX_ROUTES)
1707 msglog("have maximum (%d) routes", total_routes);
1708 if (TRACEACTIONS)
1709 trace_add_del("Add", rt);
1710
1711 need_kern.tv_sec = now.tv_sec;
1712 set_need_flash();
1713
1714 if (0 == rhead->rnh_addaddr(&rt->rt_dst_sock, &mask_sock,
1715 rhead, rt->rt_nodes)) {
1716 msglog("rnh_addaddr() failed for %s mask=%#lx",
1717 naddr_ntoa(dst), mask);
1718 }
1719 }
1720
1721
1722 /* notice a changed route
1723 */
1724 void
1725 rtchange(struct rt_entry *rt,
1726 u_int state, /* new state bits */
1727 struct rt_spare *new,
1728 char *label)
1729 {
1730 if (rt->rt_metric != new->rts_metric) {
1731 /* Fix the kernel immediately if it seems the route
1732 * has gone bad, since there may be a working route that
1733 * aggregates this route.
1734 */
1735 if (new->rts_metric == HOPCNT_INFINITY) {
1736 need_kern.tv_sec = now.tv_sec;
1737 if (new->rts_time >= now.tv_sec - EXPIRE_TIME)
1738 new->rts_time = now.tv_sec - EXPIRE_TIME;
1739 }
1740 rt->rt_seqno = update_seqno;
1741 set_need_flash();
1742 }
1743
1744 if (rt->rt_gate != new->rts_gate) {
1745 need_kern.tv_sec = now.tv_sec;
1746 rt->rt_seqno = update_seqno;
1747 set_need_flash();
1748 }
1749
1750 state |= (rt->rt_state & RS_SUBNET);
1751
1752 /* Keep various things from deciding ageless routes are stale.
1753 */
1754 if (!AGE_RT(state, new->rts_ifp))
1755 new->rts_time = now.tv_sec;
1756
1757 if (TRACEACTIONS)
1758 trace_change(rt, state, new,
1759 label ? label : "Chg ");
1760
1761 rt->rt_state = state;
1762 rt->rt_spares[0] = *new;
1763 }
1764
1765
1766 /* check for a better route among the spares
1767 */
1768 static struct rt_spare *
1769 rts_better(struct rt_entry *rt)
1770 {
1771 struct rt_spare *rts, *rts1;
1772 int i;
1773
1774 /* find the best alternative among the spares */
1775 rts = rt->rt_spares+1;
1776 for (i = NUM_SPARES, rts1 = rts+1; i > 2; i--, rts1++) {
1777 if (BETTER_LINK(rt,rts1,rts))
1778 rts = rts1;
1779 }
1780
1781 return rts;
1782 }
1783
1784
1785 /* switch to a backup route
1786 */
1787 void
1788 rtswitch(struct rt_entry *rt,
1789 struct rt_spare *rts)
1790 {
1791 struct rt_spare swap;
1792 char label[10];
1793
1794
1795 /* Do not change permanent routes */
1796 if (0 != (rt->rt_state & (RS_MHOME | RS_STATIC | RS_RDISC
1797 | RS_NET_SYN | RS_IF)))
1798 return;
1799
1800 /* find the best alternative among the spares */
1801 if (rts == 0)
1802 rts = rts_better(rt);
1803
1804 /* Do not bother if it is not worthwhile.
1805 */
1806 if (!BETTER_LINK(rt, rts, rt->rt_spares))
1807 return;
1808
1809 swap = rt->rt_spares[0];
1810 (void)sprintf(label, "Use #%d", (int)(rts - rt->rt_spares));
1811 rtchange(rt, rt->rt_state & ~(RS_NET_SYN | RS_RDISC), rts, label);
1812 if (swap.rts_metric == HOPCNT_INFINITY) {
1813 *rts = rts_empty;
1814 } else {
1815 *rts = swap;
1816 }
1817 }
1818
1819
1820 void
1821 rtdelete(struct rt_entry *rt)
1822 {
1823 struct khash *k;
1824
1825
1826 if (TRACEACTIONS)
1827 trace_add_del("Del", rt);
1828
1829 k = kern_find(rt->rt_dst, rt->rt_mask, 0);
1830 if (k != 0) {
1831 k->k_state |= KS_DELETE;
1832 need_kern.tv_sec = now.tv_sec;
1833 }
1834
1835 dst_sock.sin_addr.s_addr = rt->rt_dst;
1836 mask_sock.sin_addr.s_addr = rt->rt_mask;
1837 masktrim(&mask_sock);
1838 if (rt != (struct rt_entry *)rhead->rnh_deladdr(&dst_sock, &mask_sock,
1839 rhead)) {
1840 msglog("rnh_deladdr() failed");
1841 } else {
1842 free(rt);
1843 total_routes--;
1844 }
1845 }
1846
1847
1848 void
1849 rts_delete(struct rt_entry *rt,
1850 struct rt_spare *rts)
1851 {
1852 trace_upslot(rt, rts, &rts_empty);
1853 *rts = rts_empty;
1854 }
1855
1856
1857 /* Get rid of a bad route, and try to switch to a replacement.
1858 */
1859 void
1860 rtbad(struct rt_entry *rt)
1861 {
1862 struct rt_spare new;
1863
1864 /* Poison the route */
1865 new = rt->rt_spares[0];
1866 new.rts_metric = HOPCNT_INFINITY;
1867 rtchange(rt, rt->rt_state & ~(RS_IF | RS_LOCAL | RS_STATIC), &new, 0);
1868 rtswitch(rt, 0);
1869 }
1870
1871
1872 /* Junk a RS_NET_SYN or RS_LOCAL route,
1873 * unless it is needed by another interface.
1874 */
1875 void
1876 rtbad_sub(struct rt_entry *rt)
1877 {
1878 struct interface *ifp, *ifp1;
1879 struct intnet *intnetp;
1880 u_int state;
1881
1882
1883 ifp1 = 0;
1884 state = 0;
1885
1886 if (rt->rt_state & RS_LOCAL) {
1887 /* Is this the route through loopback for the interface?
1888 * If so, see if it is used by any other interfaces, such
1889 * as a point-to-point interface with the same local address.
1890 */
1891 for (ifp = ifnet; ifp != 0; ifp = ifp->int_next) {
1892 /* Retain it if another interface needs it.
1893 */
1894 if (ifp->int_addr == rt->rt_ifp->int_addr) {
1895 state |= RS_LOCAL;
1896 ifp1 = ifp;
1897 break;
1898 }
1899 }
1900
1901 }
1902
1903 if (!(state & RS_LOCAL)) {
1904 /* Retain RIPv1 logical network route if there is another
1905 * interface that justifies it.
1906 */
1907 if (rt->rt_state & RS_NET_SYN) {
1908 for (ifp = ifnet; ifp != 0; ifp = ifp->int_next) {
1909 if ((ifp->int_state & IS_NEED_NET_SYN)
1910 && rt->rt_mask == ifp->int_std_mask
1911 && rt->rt_dst == ifp->int_std_addr) {
1912 state |= RS_NET_SYN;
1913 ifp1 = ifp;
1914 break;
1915 }
1916 }
1917 }
1918
1919 /* or if there is an authority route that needs it. */
1920 for (intnetp = intnets;
1921 intnetp != 0;
1922 intnetp = intnetp->intnet_next) {
1923 if (intnetp->intnet_addr == rt->rt_dst
1924 && intnetp->intnet_mask == rt->rt_mask) {
1925 state |= (RS_NET_SYN | RS_NET_INT);
1926 break;
1927 }
1928 }
1929 }
1930
1931 if (ifp1 != 0 || (state & RS_NET_SYN)) {
1932 struct rt_spare new = rt->rt_spares[0];
1933 new.rts_ifp = ifp1;
1934 rtchange(rt, ((rt->rt_state & ~(RS_NET_SYN|RS_LOCAL)) | state),
1935 &new, 0);
1936 } else {
1937 rtbad(rt);
1938 }
1939 }
1940
1941
1942 /* Called while walking the table looking for sick interfaces
1943 * or after a time change.
1944 */
1945 /* ARGSUSED */
1946 int
1947 walk_bad(struct radix_node *rn,
1948 struct walkarg *argp UNUSED)
1949 {
1950 #define RT ((struct rt_entry *)rn)
1951 struct rt_spare *rts;
1952 int i;
1953
1954
1955 /* fix any spare routes through the interface
1956 */
1957 rts = RT->rt_spares;
1958 for (i = NUM_SPARES; i != 1; i--) {
1959 rts++;
1960 if (rts->rts_metric < HOPCNT_INFINITY
1961 && (rts->rts_ifp == 0
1962 || (rts->rts_ifp->int_state & IS_BROKE)))
1963 rts_delete(RT, rts);
1964 }
1965
1966 /* Deal with the main route
1967 */
1968 /* finished if it has been handled before or if its interface is ok
1969 */
1970 if (RT->rt_ifp == 0 || !(RT->rt_ifp->int_state & IS_BROKE))
1971 return 0;
1972
1973 /* Bad routes for other than interfaces are easy.
1974 */
1975 if (0 == (RT->rt_state & (RS_IF | RS_NET_SYN | RS_LOCAL))) {
1976 rtbad(RT);
1977 return 0;
1978 }
1979
1980 rtbad_sub(RT);
1981 return 0;
1982 #undef RT
1983 }
1984
1985
1986 /* Check the age of an individual route.
1987 */
1988 /* ARGSUSED */
1989 static int
1990 walk_age(struct radix_node *rn,
1991 struct walkarg *argp UNUSED)
1992 {
1993 #define RT ((struct rt_entry *)rn)
1994 struct interface *ifp;
1995 struct rt_spare *rts;
1996 int i;
1997
1998
1999 /* age all of the spare routes, including the primary route
2000 * currently in use
2001 */
2002 rts = RT->rt_spares;
2003 for (i = NUM_SPARES; i != 0; i--, rts++) {
2004
2005 ifp = rts->rts_ifp;
2006 if (i == NUM_SPARES) {
2007 if (!AGE_RT(RT->rt_state, ifp)) {
2008 /* Keep various things from deciding ageless
2009 * routes are stale
2010 */
2011 rts->rts_time = now.tv_sec;
2012 continue;
2013 }
2014
2015 /* forget RIP routes after RIP has been turned off.
2016 */
2017 if (rip_sock < 0) {
2018 rtdelete(RT);
2019 return 0;
2020 }
2021 }
2022
2023 /* age failing routes
2024 */
2025 if (age_bad_gate == rts->rts_gate
2026 && rts->rts_time >= now_stale) {
2027 rts->rts_time -= SUPPLY_INTERVAL;
2028 }
2029
2030 /* trash the spare routes when they go bad */
2031 if (rts->rts_metric < HOPCNT_INFINITY
2032 && now_garbage > rts->rts_time
2033 && i != NUM_SPARES)
2034 rts_delete(RT, rts);
2035 }
2036
2037
2038 /* finished if the active route is still fresh */
2039 if (now_stale <= RT->rt_time)
2040 return 0;
2041
2042 /* try to switch to an alternative */
2043 rtswitch(RT, 0);
2044
2045 /* Delete a dead route after it has been publically mourned. */
2046 if (now_garbage > RT->rt_time) {
2047 rtdelete(RT);
2048 return 0;
2049 }
2050
2051 /* Start poisoning a bad route before deleting it. */
2052 if (now.tv_sec - RT->rt_time > EXPIRE_TIME) {
2053 struct rt_spare new = RT->rt_spares[0];
2054 new.rts_metric = HOPCNT_INFINITY;
2055 rtchange(RT, RT->rt_state, &new, 0);
2056 }
2057 return 0;
2058 }
2059
2060
2061 /* Watch for dead routes and interfaces.
2062 */
2063 void
2064 age(naddr bad_gate)
2065 {
2066 struct interface *ifp;
2067 int need_query = 0;
2068
2069 /* If not listening to RIP, there is no need to age the routes in
2070 * the table.
2071 */
2072 age_timer.tv_sec = (now.tv_sec
2073 + ((rip_sock < 0) ? NEVER : SUPPLY_INTERVAL));
2074
2075 /* Check for dead IS_REMOTE interfaces by timing their
2076 * transmissions.
2077 */
2078 for (ifp = ifnet; ifp; ifp = ifp->int_next) {
2079 if (!(ifp->int_state & IS_REMOTE))
2080 continue;
2081
2082 /* ignore unreachable remote interfaces */
2083 if (!check_remote(ifp))
2084 continue;
2085
2086 /* Restore remote interface that has become reachable
2087 */
2088 if (ifp->int_state & IS_BROKE)
2089 if_ok(ifp, "remote ");
2090
2091 if (ifp->int_act_time != NEVER
2092 && now.tv_sec - ifp->int_act_time > EXPIRE_TIME) {
2093 msglog("remote interface %s to %s timed out after"
2094 " %ld:%ld",
2095 ifp->int_name,
2096 naddr_ntoa(ifp->int_dstaddr),
2097 (now.tv_sec - ifp->int_act_time)/60,
2098 (now.tv_sec - ifp->int_act_time)%60);
2099 if_sick(ifp);
2100 }
2101
2102 /* If we have not heard from the other router
2103 * recently, ask it.
2104 */
2105 if (now.tv_sec >= ifp->int_query_time) {
2106 ifp->int_query_time = NEVER;
2107 need_query = 1;
2108 }
2109 }
2110
2111 /* Age routes. */
2112 age_bad_gate = bad_gate;
2113 (void)rn_walktree(rhead, walk_age, 0);
2114
2115 /* delete old redirected routes to keep the kernel table small
2116 * and prevent blackholes
2117 */
2118 del_redirects(bad_gate, now.tv_sec-STALE_TIME);
2119
2120 /* Update the kernel routing table. */
2121 fix_kern();
2122
2123 /* poke reticent remote gateways */
2124 if (need_query)
2125 rip_query();
2126 }
2127