table.c revision 1.8 1 /* $NetBSD: table.c,v 1.8 1998/10/25 14:56:09 christos Exp $ */
2
3 /*
4 * Copyright (c) 1983, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgment:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 #if !defined(lint) && !defined(sgi) && !defined(__NetBSD__)
37 static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 6/5/93";
38 #elif defined(__NetBSD__)
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: table.c,v 1.8 1998/10/25 14:56:09 christos Exp $");
41 #endif
42
43 #include "defs.h"
44
45 static struct rt_spare *rts_better(struct rt_entry *);
46 static struct rt_spare rts_empty = {0,0,0,HOPCNT_INFINITY,0,0,0};
47
48 void set_need_flash(void);
49 #ifdef _HAVE_SIN_LEN
50 void masktrim(struct sockaddr_in *ap);
51 #else
52 void masktrim(struct sockaddr_in_new *ap);
53 #endif
54
55 struct radix_node_head *rhead; /* root of the radix tree */
56
57 int need_flash = 1; /* flash update needed
58 * start =1 to suppress the 1st
59 */
60
61 struct timeval age_timer; /* next check of old routes */
62 struct timeval need_kern = { /* need to update kernel table */
63 EPOCH+MIN_WAITTIME-1
64 };
65
66 int stopint;
67
68 int total_routes;
69
70 /* zap any old routes through this gateway */
71 naddr age_bad_gate;
72
73
74 /* It is desirable to "aggregate" routes, to combine differing routes of
75 * the same metric and next hop into a common route with a smaller netmask
76 * or to suppress redundant routes, routes that add no information to
77 * routes with smaller netmasks.
78 *
79 * A route is redundant if and only if any and all routes with smaller
80 * but matching netmasks and nets are the same. Since routes are
81 * kept sorted in the radix tree, redundant routes always come second.
82 *
83 * There are two kinds of aggregations. First, two routes of the same bit
84 * mask and differing only in the least significant bit of the network
85 * number can be combined into a single route with a coarser mask.
86 *
87 * Second, a route can be suppressed in favor of another route with a more
88 * coarse mask provided no incompatible routes with intermediate masks
89 * are present. The second kind of aggregation involves suppressing routes.
90 * A route must not be suppressed if an incompatible route exists with
91 * an intermediate mask, since the suppressed route would be covered
92 * by the intermediate.
93 *
94 * This code relies on the radix tree walk encountering routes
95 * sorted first by address, with the smallest address first.
96 */
97
98 struct ag_info ag_slots[NUM_AG_SLOTS], *ag_avail, *ag_corsest, *ag_finest;
99
100 /* #define DEBUG_AG */
101 #ifdef DEBUG_AG
102 #define CHECK_AG() {int acnt = 0; struct ag_info *cag; \
103 for (cag = ag_avail; cag != 0; cag = cag->ag_fine) \
104 acnt++; \
105 for (cag = ag_corsest; cag != 0; cag = cag->ag_fine) \
106 acnt++; \
107 if (acnt != NUM_AG_SLOTS) { \
108 (void)fflush(stderr); \
109 abort(); \
110 } \
111 }
112 #else
113 #define CHECK_AG()
114 #endif
115
116
117 /* Output the contents of an aggregation table slot.
118 * This function must always be immediately followed with the deletion
119 * of the target slot.
120 */
121 static void
122 ag_out(struct ag_info *ag,
123 void (*out)(struct ag_info *))
124 {
125 struct ag_info *ag_cors;
126 naddr bit;
127
128
129 /* Forget it if this route should not be output for split-horizon. */
130 if (ag->ag_state & AGS_SPLIT_HZ)
131 return;
132
133 /* If we output both the even and odd twins, then the immediate parent,
134 * if it is present, is redundant, unless the parent manages to
135 * aggregate into something coarser.
136 * On successive calls, this code detects the even and odd twins,
137 * and marks the parent.
138 *
139 * Note that the order in which the radix tree code emits routes
140 * ensures that the twins are seen before the parent is emitted.
141 */
142 ag_cors = ag->ag_cors;
143 if (ag_cors != 0
144 && ag_cors->ag_mask == ag->ag_mask<<1
145 && ag_cors->ag_dst_h == (ag->ag_dst_h & ag_cors->ag_mask)) {
146 ag_cors->ag_state |= ((ag_cors->ag_dst_h == ag->ag_dst_h)
147 ? AGS_REDUN0
148 : AGS_REDUN1);
149 }
150
151 /* Skip it if this route is itself redundant.
152 *
153 * It is ok to change the contents of the slot here, since it is
154 * always deleted next.
155 */
156 if (ag->ag_state & AGS_REDUN0) {
157 if (ag->ag_state & AGS_REDUN1)
158 return; /* quit if fully redundant */
159 /* make it finer if it is half-redundant */
160 bit = (-ag->ag_mask) >> 1;
161 ag->ag_dst_h |= bit;
162 ag->ag_mask |= bit;
163
164 } else if (ag->ag_state & AGS_REDUN1) {
165 /* make it finer if it is half-redundant */
166 bit = (-ag->ag_mask) >> 1;
167 ag->ag_mask |= bit;
168 }
169 out(ag);
170 }
171
172
173 static void
174 ag_del(struct ag_info *ag)
175 {
176 CHECK_AG();
177
178 if (ag->ag_cors == 0)
179 ag_corsest = ag->ag_fine;
180 else
181 ag->ag_cors->ag_fine = ag->ag_fine;
182
183 if (ag->ag_fine == 0)
184 ag_finest = ag->ag_cors;
185 else
186 ag->ag_fine->ag_cors = ag->ag_cors;
187
188 ag->ag_fine = ag_avail;
189 ag_avail = ag;
190
191 CHECK_AG();
192 }
193
194
195 /* Flush routes waiting for aggregation.
196 * This must not suppress a route unless it is known that among all
197 * routes with coarser masks that match it, the one with the longest
198 * mask is appropriate. This is ensured by scanning the routes
199 * in lexical order, and with the most restrictive mask first
200 * among routes to the same destination.
201 */
202 void
203 ag_flush(naddr lim_dst_h, /* flush routes to here */
204 naddr lim_mask, /* matching this mask */
205 void (*out)(struct ag_info *))
206 {
207 struct ag_info *ag, *ag_cors;
208 naddr dst_h;
209
210
211 for (ag = ag_finest;
212 ag != 0 && ag->ag_mask >= lim_mask;
213 ag = ag_cors) {
214 ag_cors = ag->ag_cors;
215
216 /* work on only the specified routes */
217 dst_h = ag->ag_dst_h;
218 if ((dst_h & lim_mask) != lim_dst_h)
219 continue;
220
221 if (!(ag->ag_state & AGS_SUPPRESS))
222 ag_out(ag, out);
223
224 else for ( ; ; ag_cors = ag_cors->ag_cors) {
225 /* Look for a route that can suppress the
226 * current route */
227 if (ag_cors == 0) {
228 /* failed, so output it and look for
229 * another route to work on
230 */
231 ag_out(ag, out);
232 break;
233 }
234
235 if ((dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h) {
236 /* We found a route with a coarser mask that
237 * aggregates the current target.
238 *
239 * If it has a different next hop, it
240 * cannot replace the target, so output
241 * the target.
242 */
243 if (ag->ag_gate != ag_cors->ag_gate
244 && !(ag->ag_state & AGS_FINE_GATE)
245 && !(ag_cors->ag_state & AGS_CORS_GATE)) {
246 ag_out(ag, out);
247 break;
248 }
249
250 /* If the coarse route has a good enough
251 * metric, it suppresses the target.
252 * If the suppressed target was redundant,
253 * then mark the suppressor redundant.
254 */
255 if (ag_cors->ag_pref <= ag->ag_pref) {
256 if (ag_cors->ag_seqno > ag->ag_seqno)
257 ag_cors->ag_seqno = ag->ag_seqno;
258 if (AG_IS_REDUN(ag->ag_state)
259 && ag_cors->ag_mask==ag->ag_mask<<1) {
260 if (ag_cors->ag_dst_h == dst_h)
261 ag_cors->ag_state |= AGS_REDUN0;
262 else
263 ag_cors->ag_state |= AGS_REDUN1;
264 }
265 if (ag->ag_tag != ag_cors->ag_tag)
266 ag_cors->ag_tag = 0;
267 if (ag->ag_nhop != ag_cors->ag_nhop)
268 ag_cors->ag_nhop = 0;
269 break;
270 }
271 }
272 }
273
274 /* That route has either been output or suppressed */
275 ag_cors = ag->ag_cors;
276 ag_del(ag);
277 }
278
279 CHECK_AG();
280 }
281
282
283 /* Try to aggregate a route with previous routes.
284 */
285 void
286 ag_check(naddr dst,
287 naddr mask,
288 naddr gate,
289 naddr nhop,
290 char metric,
291 char pref,
292 u_int seqno,
293 u_short tag,
294 u_short state,
295 void (*out)(struct ag_info *)) /* output using this */
296 {
297 struct ag_info *ag, *nag, *ag_cors;
298 naddr xaddr;
299 int x;
300
301 NTOHL(dst);
302
303 /* Punt non-contiguous subnet masks.
304 *
305 * (X & -X) contains a single bit if and only if X is a power of 2.
306 * (X + (X & -X)) == 0 if and only if X is a power of 2.
307 */
308 if ((mask & -mask) + mask != 0) {
309 struct ag_info nc_ag;
310
311 nc_ag.ag_dst_h = dst;
312 nc_ag.ag_mask = mask;
313 nc_ag.ag_gate = gate;
314 nc_ag.ag_nhop = nhop;
315 nc_ag.ag_metric = metric;
316 nc_ag.ag_pref = pref;
317 nc_ag.ag_tag = tag;
318 nc_ag.ag_state = state;
319 nc_ag.ag_seqno = seqno;
320 out(&nc_ag);
321 return;
322 }
323
324 /* Search for the right slot in the aggregation table.
325 */
326 ag_cors = 0;
327 ag = ag_corsest;
328 while (ag != 0) {
329 if (ag->ag_mask >= mask)
330 break;
331
332 /* Suppress old routes (i.e. combine with compatible routes
333 * with coarser masks) as we look for the right slot in the
334 * aggregation table for the new route.
335 * A route to an address less than the current destination
336 * will not be affected by the current route or any route
337 * seen hereafter. That means it is safe to suppress it.
338 * This check keeps poor routes (e.g. with large hop counts)
339 * from preventing suppression of finer routes.
340 */
341 if (ag_cors != 0
342 && ag->ag_dst_h < dst
343 && (ag->ag_state & AGS_SUPPRESS)
344 && ag_cors->ag_pref <= ag->ag_pref
345 && (ag->ag_dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h
346 && (ag_cors->ag_gate == ag->ag_gate
347 || (ag->ag_state & AGS_FINE_GATE)
348 || (ag_cors->ag_state & AGS_CORS_GATE))) {
349 if (ag_cors->ag_seqno > ag->ag_seqno)
350 ag_cors->ag_seqno = ag->ag_seqno;
351 /* If the suppressed target was redundant,
352 * then mark the suppressor redundant.
353 */
354 if (AG_IS_REDUN(ag->ag_state)
355 && ag_cors->ag_mask==ag->ag_mask<<1) {
356 if (ag_cors->ag_dst_h == dst)
357 ag_cors->ag_state |= AGS_REDUN0;
358 else
359 ag_cors->ag_state |= AGS_REDUN1;
360 }
361 if (ag->ag_tag != ag_cors->ag_tag)
362 ag_cors->ag_tag = 0;
363 if (ag->ag_nhop != ag_cors->ag_nhop)
364 ag_cors->ag_nhop = 0;
365 ag_del(ag);
366 CHECK_AG();
367 } else {
368 ag_cors = ag;
369 }
370 ag = ag_cors->ag_fine;
371 }
372
373 /* If we find the even/odd twin of the new route, and if the
374 * masks and so forth are equal, we can aggregate them.
375 * We can probably promote one of the pair.
376 *
377 * Since the routes are encountered in lexical order,
378 * the new route must be odd. However, the second or later
379 * times around this loop, it could be the even twin promoted
380 * from the even/odd pair of twins of the finer route.
381 */
382 while (ag != 0
383 && ag->ag_mask == mask
384 && ((ag->ag_dst_h ^ dst) & (mask<<1)) == 0) {
385
386 /* Here we know the target route and the route in the current
387 * slot have the same netmasks and differ by at most the
388 * last bit. They are either for the same destination, or
389 * for an even/odd pair of destinations.
390 */
391 if (ag->ag_dst_h == dst) {
392 /* We have two routes to the same destination.
393 * Routes are encountered in lexical order, so a
394 * route is never promoted until the parent route is
395 * already present. So we know that the new route is
396 * a promoted (or aggregated) pair and the route
397 * already in the slot is the explicit route.
398 *
399 * Prefer the best route if their metrics differ,
400 * or the aggregated one if not, following a sort
401 * of longest-match rule.
402 */
403 if (pref <= ag->ag_pref) {
404 ag->ag_gate = gate;
405 ag->ag_nhop = nhop;
406 ag->ag_tag = tag;
407 ag->ag_metric = metric;
408 ag->ag_pref = pref;
409 x = ag->ag_state;
410 ag->ag_state = state;
411 state = x;
412 }
413
414 /* The sequence number controls flash updating,
415 * and should be the smaller of the two.
416 */
417 if (ag->ag_seqno > seqno)
418 ag->ag_seqno = seqno;
419
420 /* Some bits are set if they are set on either route,
421 * except when the route is for an interface.
422 */
423 if (!(ag->ag_state & AGS_IF))
424 ag->ag_state |= (state & (AGS_AGGREGATE_EITHER
425 | AGS_REDUN0
426 | AGS_REDUN1));
427 return;
428 }
429
430 /* If one of the routes can be promoted and the other can
431 * be suppressed, it may be possible to combine them or
432 * worthwhile to promote one.
433 *
434 * Any route that can be promoted is always
435 * marked to be eligible to be suppressed.
436 */
437 if (!((state & AGS_AGGREGATE)
438 && (ag->ag_state & AGS_SUPPRESS))
439 && !((ag->ag_state & AGS_AGGREGATE)
440 && (state & AGS_SUPPRESS)))
441 break;
442
443 /* A pair of even/odd twin routes can be combined
444 * if either is redundant, or if they are via the
445 * same gateway and have the same metric.
446 */
447 if (AG_IS_REDUN(ag->ag_state)
448 || AG_IS_REDUN(state)
449 || (ag->ag_gate == gate
450 && ag->ag_pref == pref
451 && (state & ag->ag_state & AGS_AGGREGATE) != 0)) {
452
453 /* We have both the even and odd pairs.
454 * Since the routes are encountered in order,
455 * the route in the slot must be the even twin.
456 *
457 * Combine and promote (aggregate) the pair of routes.
458 */
459 if (seqno > ag->ag_seqno)
460 seqno = ag->ag_seqno;
461 if (!AG_IS_REDUN(state))
462 state &= ~AGS_REDUN1;
463 if (AG_IS_REDUN(ag->ag_state))
464 state |= AGS_REDUN0;
465 else
466 state &= ~AGS_REDUN0;
467 state |= (ag->ag_state & AGS_AGGREGATE_EITHER);
468 if (ag->ag_tag != tag)
469 tag = 0;
470 if (ag->ag_nhop != nhop)
471 nhop = 0;
472
473 /* Get rid of the even twin that was already
474 * in the slot.
475 */
476 ag_del(ag);
477
478 } else if (ag->ag_pref >= pref
479 && (ag->ag_state & AGS_AGGREGATE)) {
480 /* If we cannot combine the pair, maybe the route
481 * with the worse metric can be promoted.
482 *
483 * Promote the old, even twin, by giving its slot
484 * in the table to the new, odd twin.
485 */
486 ag->ag_dst_h = dst;
487
488 xaddr = ag->ag_gate;
489 ag->ag_gate = gate;
490 gate = xaddr;
491
492 xaddr = ag->ag_nhop;
493 ag->ag_nhop = nhop;
494 nhop = xaddr;
495
496 x = ag->ag_tag;
497 ag->ag_tag = tag;
498 tag = x;
499
500 /* The promoted route is even-redundant only if the
501 * even twin was fully redundant. It is not
502 * odd-redundant because the odd-twin will still be
503 * in the table.
504 */
505 x = ag->ag_state;
506 if (!AG_IS_REDUN(x))
507 x &= ~AGS_REDUN0;
508 x &= ~AGS_REDUN1;
509 ag->ag_state = state;
510 state = x;
511
512 x = ag->ag_metric;
513 ag->ag_metric = metric;
514 metric = x;
515
516 x = ag->ag_pref;
517 ag->ag_pref = pref;
518 pref = x;
519
520 /* take the newest sequence number */
521 if (seqno >= ag->ag_seqno)
522 seqno = ag->ag_seqno;
523 else
524 ag->ag_seqno = seqno;
525
526 } else {
527 if (!(state & AGS_AGGREGATE))
528 break; /* cannot promote either twin */
529
530 /* Promote the new, odd twin by shaving its
531 * mask and address.
532 * The promoted route is odd-redundant only if the
533 * odd twin was fully redundant. It is not
534 * even-redundant because the even twin is still in
535 * the table.
536 */
537 if (!AG_IS_REDUN(state))
538 state &= ~AGS_REDUN1;
539 state &= ~AGS_REDUN0;
540 if (seqno > ag->ag_seqno)
541 seqno = ag->ag_seqno;
542 else
543 ag->ag_seqno = seqno;
544 }
545
546 mask <<= 1;
547 dst &= mask;
548
549 if (ag_cors == 0) {
550 ag = ag_corsest;
551 break;
552 }
553 ag = ag_cors;
554 ag_cors = ag->ag_cors;
555 }
556
557 /* When we can no longer promote and combine routes,
558 * flush the old route in the target slot. Also flush
559 * any finer routes that we know will never be aggregated by
560 * the new route.
561 *
562 * In case we moved toward coarser masks,
563 * get back where we belong
564 */
565 if (ag != 0
566 && ag->ag_mask < mask) {
567 ag_cors = ag;
568 ag = ag->ag_fine;
569 }
570
571 /* Empty the target slot
572 */
573 if (ag != 0 && ag->ag_mask == mask) {
574 ag_flush(ag->ag_dst_h, ag->ag_mask, out);
575 ag = (ag_cors == 0) ? ag_corsest : ag_cors->ag_fine;
576 }
577
578 #ifdef DEBUG_AG
579 (void)fflush(stderr);
580 if (ag == 0 && ag_cors != ag_finest)
581 abort();
582 if (ag_cors == 0 && ag != ag_corsest)
583 abort();
584 if (ag != 0 && ag->ag_cors != ag_cors)
585 abort();
586 if (ag_cors != 0 && ag_cors->ag_fine != ag)
587 abort();
588 CHECK_AG();
589 #endif
590
591 /* Save the new route on the end of the table.
592 */
593 nag = ag_avail;
594 ag_avail = nag->ag_fine;
595
596 nag->ag_dst_h = dst;
597 nag->ag_mask = mask;
598 nag->ag_gate = gate;
599 nag->ag_nhop = nhop;
600 nag->ag_metric = metric;
601 nag->ag_pref = pref;
602 nag->ag_tag = tag;
603 nag->ag_state = state;
604 nag->ag_seqno = seqno;
605
606 nag->ag_fine = ag;
607 if (ag != 0)
608 ag->ag_cors = nag;
609 else
610 ag_finest = nag;
611 nag->ag_cors = ag_cors;
612 if (ag_cors == 0)
613 ag_corsest = nag;
614 else
615 ag_cors->ag_fine = nag;
616 CHECK_AG();
617 }
618
619
620 static char *
621 rtm_type_name(u_char type)
622 {
623 static char *rtm_types[] = {
624 "RTM_ADD",
625 "RTM_DELETE",
626 "RTM_CHANGE",
627 "RTM_GET",
628 "RTM_LOSING",
629 "RTM_REDIRECT",
630 "RTM_MISS",
631 "RTM_LOCK",
632 "RTM_OLDADD",
633 "RTM_OLDDEL",
634 "RTM_RESOLVE",
635 "RTM_NEWADDR",
636 "RTM_DELADDR",
637 "RTM_IFINFO"
638 };
639 static char name0[10];
640
641
642 if (type > sizeof(rtm_types)/sizeof(rtm_types[0])
643 || type == 0) {
644 sprintf(name0, "RTM type %#x", type);
645 return name0;
646 } else {
647 return rtm_types[type-1];
648 }
649 }
650
651
652 /* Trim a mask in a sockaddr
653 * Produce a length of 0 for an address of 0.
654 * Otherwise produce the index of the first zero byte.
655 */
656 void
657 #ifdef _HAVE_SIN_LEN
658 masktrim(struct sockaddr_in *ap)
659 #else
660 masktrim(struct sockaddr_in_new *ap)
661 #endif
662 {
663 char *cp;
664
665 if (ap->sin_addr.s_addr == 0) {
666 ap->sin_len = 0;
667 return;
668 }
669 cp = (char *)(&ap->sin_addr.s_addr+1);
670 while (*--cp == 0)
671 continue;
672 ap->sin_len = cp - (char*)ap + 1;
673 }
674
675
676 /* Tell the kernel to add, delete or change a route
677 */
678 static void
679 rtioctl(int action, /* RTM_DELETE, etc */
680 naddr dst,
681 naddr gate,
682 naddr mask,
683 int metric,
684 int flags)
685 {
686 struct {
687 struct rt_msghdr w_rtm;
688 struct sockaddr_in w_dst;
689 struct sockaddr_in w_gate;
690 #ifdef _HAVE_SA_LEN
691 struct sockaddr_in w_mask;
692 #else
693 struct sockaddr_in_new w_mask;
694 #endif
695 } w;
696 long cc;
697 # define PAT " %-10s %s metric=%d flags=%#x"
698 # define ARGS rtm_type_name(action), rtname(dst,mask,gate), metric, flags
699
700 again:
701 memset(&w, 0, sizeof(w));
702 w.w_rtm.rtm_msglen = sizeof(w);
703 w.w_rtm.rtm_version = RTM_VERSION;
704 w.w_rtm.rtm_type = action;
705 w.w_rtm.rtm_flags = flags;
706 w.w_rtm.rtm_seq = ++rt_sock_seqno;
707 w.w_rtm.rtm_addrs = RTA_DST|RTA_GATEWAY;
708 if (metric != 0 || action == RTM_CHANGE) {
709 w.w_rtm.rtm_rmx.rmx_hopcount = metric;
710 w.w_rtm.rtm_inits |= RTV_HOPCOUNT;
711 }
712 w.w_dst.sin_family = AF_INET;
713 w.w_dst.sin_addr.s_addr = dst;
714 w.w_gate.sin_family = AF_INET;
715 w.w_gate.sin_addr.s_addr = gate;
716 #ifdef _HAVE_SA_LEN
717 w.w_dst.sin_len = sizeof(w.w_dst);
718 w.w_gate.sin_len = sizeof(w.w_gate);
719 #endif
720 if (mask == HOST_MASK) {
721 w.w_rtm.rtm_flags |= RTF_HOST;
722 w.w_rtm.rtm_msglen -= sizeof(w.w_mask);
723 } else {
724 w.w_rtm.rtm_addrs |= RTA_NETMASK;
725 w.w_mask.sin_addr.s_addr = htonl(mask);
726 #ifdef _HAVE_SA_LEN
727 masktrim(&w.w_mask);
728 if (w.w_mask.sin_len == 0)
729 w.w_mask.sin_len = sizeof(long);
730 w.w_rtm.rtm_msglen -= (sizeof(w.w_mask) - w.w_mask.sin_len);
731 #endif
732 }
733
734 #ifndef NO_INSTALL
735 cc = write(rt_sock, &w, w.w_rtm.rtm_msglen);
736 if (cc < 0) {
737 if (errno == ESRCH
738 && (action == RTM_CHANGE || action == RTM_DELETE)) {
739 trace_act("route disappeared before" PAT, ARGS);
740 if (action == RTM_CHANGE) {
741 action = RTM_ADD;
742 goto again;
743 }
744 return;
745 }
746 msglog("write(rt_sock)" PAT ": %s", ARGS, strerror(errno));
747 return;
748 } else if (cc != w.w_rtm.rtm_msglen) {
749 msglog("write(rt_sock) wrote %d instead of %d for" PAT,
750 cc, w.w_rtm.rtm_msglen, ARGS);
751 return;
752 }
753 #endif
754 if (TRACEKERNEL)
755 trace_misc("write kernel" PAT, ARGS);
756 #undef PAT
757 #undef ARGS
758 }
759
760
761 #define KHASH_SIZE 71 /* should be prime */
762 #define KHASH(a,m) khash_bins[((a) ^ (m)) % KHASH_SIZE]
763 static struct khash {
764 struct khash *k_next;
765 naddr k_dst;
766 naddr k_mask;
767 naddr k_gate;
768 short k_metric;
769 u_short k_state;
770 #define KS_NEW 0x001
771 #define KS_DELETE 0x002 /* need to delete the route */
772 #define KS_ADD 0x004 /* add to the kernel */
773 #define KS_CHANGE 0x008 /* tell kernel to change the route */
774 #define KS_DEL_ADD 0x010 /* delete & add to change the kernel */
775 #define KS_STATIC 0x020 /* Static flag in kernel */
776 #define KS_GATEWAY 0x040 /* G flag in kernel */
777 #define KS_DYNAMIC 0x080 /* result of redirect */
778 #define KS_DELETED 0x100 /* already deleted from kernel */
779 #define KS_CHECK 0x200
780 time_t k_keep;
781 #define K_KEEP_LIM 30
782 time_t k_redirect_time; /* when redirected route 1st seen */
783 } *khash_bins[KHASH_SIZE];
784
785
786 static struct khash*
787 kern_find(naddr dst, naddr mask, struct khash ***ppk)
788 {
789 struct khash *k, **pk;
790
791 for (pk = &KHASH(dst,mask); (k = *pk) != 0; pk = &k->k_next) {
792 if (k->k_dst == dst && k->k_mask == mask)
793 break;
794 }
795 if (ppk != 0)
796 *ppk = pk;
797 return k;
798 }
799
800
801 static struct khash*
802 kern_add(naddr dst, naddr mask)
803 {
804 struct khash *k, **pk;
805
806 k = kern_find(dst, mask, &pk);
807 if (k != 0)
808 return k;
809
810 k = (struct khash *)rtmalloc(sizeof(*k), "kern_add");
811
812 memset(k, 0, sizeof(*k));
813 k->k_dst = dst;
814 k->k_mask = mask;
815 k->k_state = KS_NEW;
816 k->k_keep = now.tv_sec;
817 *pk = k;
818
819 return k;
820 }
821
822
823 /* If a kernel route has a non-zero metric, check that it is still in the
824 * daemon table, and not deleted by interfaces coming and going.
825 */
826 static void
827 kern_check_static(struct khash *k,
828 struct interface *ifp)
829 {
830 struct rt_entry *rt;
831 struct rt_spare new;
832
833 if (k->k_metric == 0)
834 return;
835
836 memset(&new, 0, sizeof(new));
837 new.rts_ifp = ifp;
838 new.rts_gate = k->k_gate;
839 new.rts_router = (ifp != 0) ? ifp->int_addr : loopaddr;
840 new.rts_metric = k->k_metric;
841 new.rts_time = now.tv_sec;
842
843 rt = rtget(k->k_dst, k->k_mask);
844 if (rt != 0) {
845 if (!(rt->rt_state & RS_STATIC))
846 rtchange(rt, rt->rt_state | RS_STATIC, &new, 0);
847 } else {
848 rtadd(k->k_dst, k->k_mask, RS_STATIC, &new);
849 }
850 }
851
852
853 /* operate on a kernel entry
854 */
855 static void
856 kern_ioctl(struct khash *k,
857 int action, /* RTM_DELETE, etc */
858 int flags)
859
860 {
861 switch (action) {
862 case RTM_DELETE:
863 k->k_state &= ~KS_DYNAMIC;
864 if (k->k_state & KS_DELETED)
865 return;
866 k->k_state |= KS_DELETED;
867 break;
868 case RTM_ADD:
869 k->k_state &= ~KS_DELETED;
870 break;
871 case RTM_CHANGE:
872 if (k->k_state & KS_DELETED) {
873 action = RTM_ADD;
874 k->k_state &= ~KS_DELETED;
875 }
876 break;
877 }
878
879 rtioctl(action, k->k_dst, k->k_gate, k->k_mask, k->k_metric, flags);
880 }
881
882
883 /* add a route the kernel told us
884 */
885 static void
886 rtm_add(struct rt_msghdr *rtm,
887 struct rt_addrinfo *info,
888 time_t keep)
889 {
890 struct khash *k;
891 struct interface *ifp;
892 naddr mask;
893
894
895 if (rtm->rtm_flags & RTF_HOST) {
896 mask = HOST_MASK;
897 } else if (INFO_MASK(info) != 0) {
898 mask = ntohl(S_ADDR(INFO_MASK(info)));
899 } else {
900 msglog("ignore %s without mask", rtm_type_name(rtm->rtm_type));
901 return;
902 }
903
904 k = kern_add(S_ADDR(INFO_DST(info)), mask);
905 if (k->k_state & KS_NEW)
906 k->k_keep = now.tv_sec+keep;
907 if (INFO_GATE(info) == 0) {
908 trace_act("note %s without gateway",
909 rtm_type_name(rtm->rtm_type));
910 k->k_metric = HOPCNT_INFINITY;
911 } else if (INFO_GATE(info)->sa_family != AF_INET) {
912 trace_act("note %s with gateway AF=%d",
913 rtm_type_name(rtm->rtm_type),
914 INFO_GATE(info)->sa_family);
915 k->k_metric = HOPCNT_INFINITY;
916 } else {
917 k->k_gate = S_ADDR(INFO_GATE(info));
918 k->k_metric = rtm->rtm_rmx.rmx_hopcount;
919 if (k->k_metric < 0)
920 k->k_metric = 0;
921 else if (k->k_metric > HOPCNT_INFINITY-1)
922 k->k_metric = HOPCNT_INFINITY-1;
923 }
924 k->k_state &= ~(KS_DELETE | KS_ADD | KS_CHANGE | KS_DEL_ADD
925 | KS_DELETED | KS_GATEWAY | KS_STATIC
926 | KS_NEW | KS_CHECK);
927 if (rtm->rtm_flags & RTF_GATEWAY)
928 k->k_state |= KS_GATEWAY;
929 if (rtm->rtm_flags & RTF_STATIC)
930 k->k_state |= KS_STATIC;
931
932 if (0 != (rtm->rtm_flags & (RTF_DYNAMIC | RTF_MODIFIED))) {
933 if (INFO_AUTHOR(info) != 0
934 && INFO_AUTHOR(info)->sa_family == AF_INET)
935 ifp = iflookup(S_ADDR(INFO_AUTHOR(info)));
936 else
937 ifp = 0;
938 if (supplier
939 && (ifp == 0 || !(ifp->int_state & IS_REDIRECT_OK))) {
940 /* Routers are not supposed to listen to redirects,
941 * so delete it if it came via an unknown interface
942 * or the interface does not have special permission.
943 */
944 k->k_state &= ~KS_DYNAMIC;
945 k->k_state |= KS_DELETE;
946 LIM_SEC(need_kern, 0);
947 trace_act("mark for deletion redirected %s --> %s"
948 " via %s",
949 addrname(k->k_dst, k->k_mask, 0),
950 naddr_ntoa(k->k_gate),
951 ifp ? ifp->int_name : "unknown interface");
952 } else {
953 k->k_state |= KS_DYNAMIC;
954 k->k_redirect_time = now.tv_sec;
955 trace_act("accept redirected %s --> %s via %s",
956 addrname(k->k_dst, k->k_mask, 0),
957 naddr_ntoa(k->k_gate),
958 ifp ? ifp->int_name : "unknown interface");
959 }
960 return;
961 }
962
963 /* If it is not a static route, quit until the next comparison
964 * between the kernel and daemon tables, when it will be deleted.
965 */
966 if (!(k->k_state & KS_STATIC)) {
967 k->k_state |= KS_DELETE;
968 LIM_SEC(need_kern, k->k_keep);
969 return;
970 }
971
972 /* Put static routes with real metrics into the daemon table so
973 * they can be advertised.
974 *
975 * Find the interface toward the gateway.
976 */
977 ifp = iflookup(k->k_gate);
978 if (ifp == 0)
979 msglog("static route %s --> %s impossibly lacks ifp",
980 addrname(S_ADDR(INFO_DST(info)), mask, 0),
981 naddr_ntoa(k->k_gate));
982
983 kern_check_static(k, ifp);
984 }
985
986
987 /* deal with packet loss
988 */
989 static void
990 rtm_lose(struct rt_msghdr *rtm,
991 struct rt_addrinfo *info)
992 {
993 if (INFO_GATE(info) == 0
994 || INFO_GATE(info)->sa_family != AF_INET) {
995 trace_act("ignore %s without gateway",
996 rtm_type_name(rtm->rtm_type));
997 return;
998 }
999
1000 if (rdisc_ok)
1001 rdisc_age(S_ADDR(INFO_GATE(info)));
1002 age(S_ADDR(INFO_GATE(info)));
1003 }
1004
1005
1006 /* Make the gateway slot of an info structure point to something
1007 * useful. If it is not already useful, but it specifies an interface,
1008 * then fill in the sockaddr_in provided and point it there.
1009 */
1010 static int
1011 get_info_gate(struct sockaddr **sap,
1012 struct sockaddr_in *sin)
1013 {
1014 struct sockaddr_dl *sdl = (struct sockaddr_dl *)*sap;
1015 struct interface *ifp;
1016
1017 if (sdl == 0)
1018 return 0;
1019 if ((sdl)->sdl_family == AF_INET)
1020 return 1;
1021 if ((sdl)->sdl_family != AF_LINK)
1022 return 0;
1023
1024 ifp = ifwithindex(sdl->sdl_index, 1);
1025 if (ifp == 0)
1026 return 0;
1027
1028 sin->sin_addr.s_addr = ifp->int_addr;
1029 #ifdef _HAVE_SA_LEN
1030 sin->sin_len = sizeof(*sin);
1031 #endif
1032 sin->sin_family = AF_INET;
1033 *sap = (struct sockaddr*)sin;
1034
1035 return 1;
1036 }
1037
1038
1039 /* Clean the kernel table by copying it to the daemon image.
1040 * Eventually the daemon will delete any extra routes.
1041 */
1042 void
1043 flush_kern(void)
1044 {
1045 static char *sysctl_buf;
1046 static size_t sysctl_buf_size = 0;
1047 size_t needed;
1048 int mib[6];
1049 char *next, *lim;
1050 struct rt_msghdr *rtm;
1051 struct sockaddr_in gate_sin;
1052 struct rt_addrinfo info;
1053 int i;
1054 struct khash *k;
1055
1056
1057 for (i = 0; i < KHASH_SIZE; i++) {
1058 for (k = khash_bins[i]; k != 0; k = k->k_next) {
1059 k->k_state |= KS_CHECK;
1060 }
1061 }
1062
1063 mib[0] = CTL_NET;
1064 mib[1] = PF_ROUTE;
1065 mib[2] = 0; /* protocol */
1066 mib[3] = 0; /* wildcard address family */
1067 mib[4] = NET_RT_DUMP;
1068 mib[5] = 0; /* no flags */
1069 for (;;) {
1070 if ((needed = sysctl_buf_size) != 0) {
1071 if (sysctl(mib, 6, sysctl_buf,&needed, 0, 0) >= 0)
1072 break;
1073 if (errno != ENOMEM && errno != EFAULT)
1074 BADERR(1,"flush_kern: sysctl(RT_DUMP)");
1075 free(sysctl_buf);
1076 needed = 0;
1077 }
1078 if (sysctl(mib, 6, 0, &needed, 0, 0) < 0)
1079 BADERR(1,"flush_kern: sysctl(RT_DUMP) estimate");
1080 /* Kludge around the habit of some systems, such as
1081 * BSD/OS 3.1, to not admit how many routes are in the
1082 * kernel, or at least to be quite wrong.
1083 */
1084 needed += 50*(sizeof(*rtm)+5*sizeof(struct sockaddr));
1085 sysctl_buf = rtmalloc(sysctl_buf_size = needed,
1086 "flush_kern sysctl(RT_DUMP)");
1087 }
1088
1089 lim = sysctl_buf + needed;
1090 for (next = sysctl_buf; next < lim; next += rtm->rtm_msglen) {
1091 rtm = (struct rt_msghdr *)next;
1092 if (rtm->rtm_msglen == 0) {
1093 msglog("zero length kernel route at "
1094 " %#x in buffer %#x before %#x",
1095 rtm, sysctl_buf, lim);
1096 break;
1097 }
1098
1099 rt_xaddrs(&info,
1100 (struct sockaddr *)(rtm+1),
1101 (struct sockaddr *)(next + rtm->rtm_msglen),
1102 rtm->rtm_addrs);
1103
1104 if (INFO_DST(&info) == 0
1105 || INFO_DST(&info)->sa_family != AF_INET)
1106 continue;
1107
1108 /* ignore ARP table entries on systems with a merged route
1109 * and ARP table.
1110 */
1111 if (rtm->rtm_flags & RTF_LLINFO)
1112 continue;
1113
1114 /* ignore multicast addresses
1115 */
1116 if (IN_MULTICAST(ntohl(S_ADDR(INFO_DST(&info)))))
1117 continue;
1118
1119 if (!get_info_gate(&INFO_GATE(&info), &gate_sin))
1120 continue;
1121
1122 /* Note static routes and interface routes, and also
1123 * preload the image of the kernel table so that
1124 * we can later clean it, as well as avoid making
1125 * unneeded changes. Keep the old kernel routes for a
1126 * few seconds to allow a RIP or router-discovery
1127 * response to be heard.
1128 */
1129 rtm_add(rtm,&info,MIN_WAITTIME);
1130 }
1131
1132 for (i = 0; i < KHASH_SIZE; i++) {
1133 for (k = khash_bins[i]; k != 0; k = k->k_next) {
1134 if (k->k_state & KS_CHECK) {
1135 msglog("%s --> %s disappeared from kernel",
1136 addrname(k->k_dst, k->k_mask, 0),
1137 naddr_ntoa(k->k_gate));
1138 del_static(k->k_dst, k->k_mask, k->k_gate, 1);
1139 }
1140 }
1141 }
1142 }
1143
1144
1145 /* Listen to announcements from the kernel
1146 */
1147 void
1148 read_rt(void)
1149 {
1150 long cc;
1151 struct interface *ifp;
1152 struct sockaddr_in gate_sin;
1153 naddr mask, gate;
1154 union {
1155 struct {
1156 struct rt_msghdr rtm;
1157 struct sockaddr addrs[RTAX_MAX];
1158 } r;
1159 struct if_msghdr ifm;
1160 } m;
1161 char str[100], *strp;
1162 struct rt_addrinfo info;
1163
1164
1165 for (;;) {
1166 cc = read(rt_sock, &m, sizeof(m));
1167 if (cc <= 0) {
1168 if (cc < 0 && errno != EWOULDBLOCK)
1169 LOGERR("read(rt_sock)");
1170 return;
1171 }
1172
1173 if (m.r.rtm.rtm_version != RTM_VERSION) {
1174 msglog("bogus routing message version %d",
1175 m.r.rtm.rtm_version);
1176 continue;
1177 }
1178
1179 /* Ignore our own results.
1180 */
1181 if (m.r.rtm.rtm_type <= RTM_CHANGE
1182 && m.r.rtm.rtm_pid == mypid) {
1183 static int complained = 0;
1184 if (!complained) {
1185 msglog("receiving our own change messages");
1186 complained = 1;
1187 }
1188 continue;
1189 }
1190
1191 if (m.r.rtm.rtm_type == RTM_IFINFO
1192 || m.r.rtm.rtm_type == RTM_NEWADDR
1193 || m.r.rtm.rtm_type == RTM_DELADDR) {
1194 ifp = ifwithindex(m.ifm.ifm_index,
1195 m.r.rtm.rtm_type != RTM_DELADDR);
1196 if (ifp == 0)
1197 trace_act("note %s with flags %#x"
1198 " for unknown interface index #%d",
1199 rtm_type_name(m.r.rtm.rtm_type),
1200 m.ifm.ifm_flags,
1201 m.ifm.ifm_index);
1202 else
1203 trace_act("note %s with flags %#x for %s",
1204 rtm_type_name(m.r.rtm.rtm_type),
1205 m.ifm.ifm_flags,
1206 ifp->int_name);
1207
1208 /* After being informed of a change to an interface,
1209 * check them all now if the check would otherwise
1210 * be a long time from now, if the interface is
1211 * not known, or if the interface has been turned
1212 * off or on.
1213 */
1214 if (ifinit_timer.tv_sec-now.tv_sec>=CHECK_BAD_INTERVAL
1215 || ifp == 0
1216 || ((ifp->int_if_flags ^ m.ifm.ifm_flags)
1217 & IFF_UP) != 0)
1218 ifinit_timer.tv_sec = now.tv_sec;
1219 continue;
1220 }
1221
1222 strcpy(str, rtm_type_name(m.r.rtm.rtm_type));
1223 strp = &str[strlen(str)];
1224 if (m.r.rtm.rtm_type <= RTM_CHANGE)
1225 strp += sprintf(strp," from pid %d",m.r.rtm.rtm_pid);
1226
1227 rt_xaddrs(&info, m.r.addrs, &m.r.addrs[RTAX_MAX],
1228 m.r.rtm.rtm_addrs);
1229
1230 if (INFO_DST(&info) == 0) {
1231 trace_act("ignore %s without dst", str);
1232 continue;
1233 }
1234
1235 if (INFO_DST(&info)->sa_family != AF_INET) {
1236 trace_act("ignore %s for AF %d", str,
1237 INFO_DST(&info)->sa_family);
1238 continue;
1239 }
1240
1241 mask = ((INFO_MASK(&info) != 0)
1242 ? ntohl(S_ADDR(INFO_MASK(&info)))
1243 : (m.r.rtm.rtm_flags & RTF_HOST)
1244 ? HOST_MASK
1245 : std_mask(S_ADDR(INFO_DST(&info))));
1246
1247 strp += sprintf(strp, ": %s",
1248 addrname(S_ADDR(INFO_DST(&info)), mask, 0));
1249
1250 if (IN_MULTICAST(ntohl(S_ADDR(INFO_DST(&info))))) {
1251 trace_act("ignore multicast %s", str);
1252 continue;
1253 }
1254
1255 if (m.r.rtm.rtm_flags & RTF_LLINFO) {
1256 trace_act("ignore ARP %s", str);
1257 continue;
1258 }
1259
1260 if (get_info_gate(&INFO_GATE(&info), &gate_sin)) {
1261 gate = S_ADDR(INFO_GATE(&info));
1262 strp += sprintf(strp, " --> %s", naddr_ntoa(gate));
1263 } else {
1264 gate = 0;
1265 }
1266
1267 if (INFO_AUTHOR(&info) != 0)
1268 strp += sprintf(strp, " by authority of %s",
1269 saddr_ntoa(INFO_AUTHOR(&info)));
1270
1271 switch (m.r.rtm.rtm_type) {
1272 case RTM_ADD:
1273 case RTM_CHANGE:
1274 case RTM_REDIRECT:
1275 if (m.r.rtm.rtm_errno != 0) {
1276 trace_act("ignore %s with \"%s\" error",
1277 str, strerror(m.r.rtm.rtm_errno));
1278 } else {
1279 trace_act("%s", str);
1280 rtm_add(&m.r.rtm,&info,0);
1281 }
1282 break;
1283
1284 case RTM_DELETE:
1285 if (m.r.rtm.rtm_errno != 0
1286 && m.r.rtm.rtm_errno != ESRCH) {
1287 trace_act("ignore %s with \"%s\" error",
1288 str, strerror(m.r.rtm.rtm_errno));
1289 } else {
1290 trace_act("%s", str);
1291 del_static(S_ADDR(INFO_DST(&info)), mask,
1292 gate, 1);
1293 }
1294 break;
1295
1296 case RTM_LOSING:
1297 trace_act("%s", str);
1298 rtm_lose(&m.r.rtm,&info);
1299 break;
1300
1301 default:
1302 trace_act("ignore %s", str);
1303 break;
1304 }
1305 }
1306 }
1307
1308
1309 /* after aggregating, note routes that belong in the kernel
1310 */
1311 static void
1312 kern_out(struct ag_info *ag)
1313 {
1314 struct khash *k;
1315
1316
1317 /* Do not install bad routes if they are not already present.
1318 * This includes routes that had RS_NET_SYN for interfaces that
1319 * recently died.
1320 */
1321 if (ag->ag_metric == HOPCNT_INFINITY) {
1322 k = kern_find(htonl(ag->ag_dst_h), ag->ag_mask, 0);
1323 if (k == 0)
1324 return;
1325 } else {
1326 k = kern_add(htonl(ag->ag_dst_h), ag->ag_mask);
1327 }
1328
1329 if (k->k_state & KS_NEW) {
1330 /* will need to add new entry to the kernel table */
1331 k->k_state = KS_ADD;
1332 if (ag->ag_state & AGS_GATEWAY)
1333 k->k_state |= KS_GATEWAY;
1334 k->k_gate = ag->ag_gate;
1335 k->k_metric = ag->ag_metric;
1336 return;
1337 }
1338
1339 if (k->k_state & KS_STATIC)
1340 return;
1341
1342 /* modify existing kernel entry if necessary */
1343 if (k->k_gate != ag->ag_gate
1344 || k->k_metric != ag->ag_metric) {
1345 /* Must delete bad interface routes etc. to change them. */
1346 if (k->k_metric == HOPCNT_INFINITY)
1347 k->k_state |= KS_DEL_ADD;
1348 k->k_gate = ag->ag_gate;
1349 k->k_metric = ag->ag_metric;
1350 k->k_state |= KS_CHANGE;
1351 }
1352
1353 /* If the daemon thinks the route should exist, forget
1354 * about any redirections.
1355 * If the daemon thinks the route should exist, eventually
1356 * override manual intervention by the operator.
1357 */
1358 if ((k->k_state & (KS_DYNAMIC | KS_DELETED)) != 0) {
1359 k->k_state &= ~KS_DYNAMIC;
1360 k->k_state |= (KS_ADD | KS_DEL_ADD);
1361 }
1362
1363 if ((k->k_state & KS_GATEWAY)
1364 && !(ag->ag_state & AGS_GATEWAY)) {
1365 k->k_state &= ~KS_GATEWAY;
1366 k->k_state |= (KS_ADD | KS_DEL_ADD);
1367 } else if (!(k->k_state & KS_GATEWAY)
1368 && (ag->ag_state & AGS_GATEWAY)) {
1369 k->k_state |= KS_GATEWAY;
1370 k->k_state |= (KS_ADD | KS_DEL_ADD);
1371 }
1372
1373 /* Deleting-and-adding is necessary to change aspects of a route.
1374 * Just delete instead of deleting and then adding a bad route.
1375 * Otherwise, we want to keep the route in the kernel.
1376 */
1377 if (k->k_metric == HOPCNT_INFINITY
1378 && (k->k_state & KS_DEL_ADD))
1379 k->k_state |= KS_DELETE;
1380 else
1381 k->k_state &= ~KS_DELETE;
1382 #undef RT
1383 }
1384
1385
1386 /* ARGSUSED */
1387 static int
1388 walk_kern(struct radix_node *rn,
1389 struct walkarg *argp)
1390 {
1391 #define RT ((struct rt_entry *)rn)
1392 char metric, pref;
1393 u_int ags = 0;
1394
1395
1396 /* Do not install synthetic routes */
1397 if (RT->rt_state & RS_NET_SYN)
1398 return 0;
1399
1400 if (!(RT->rt_state & RS_IF)) {
1401 /* This is an ordinary route, not for an interface.
1402 */
1403
1404 /* aggregate, ordinary good routes without regard to
1405 * their metric
1406 */
1407 pref = 1;
1408 ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_AGGREGATE);
1409
1410 /* Do not install host routes directly to hosts, to avoid
1411 * interfering with ARP entries in the kernel table.
1412 */
1413 if (RT_ISHOST(RT)
1414 && ntohl(RT->rt_dst) == RT->rt_gate)
1415 return 0;
1416
1417 } else {
1418 /* This is an interface route.
1419 * Do not install routes for "external" remote interfaces.
1420 */
1421 if (RT->rt_ifp != 0 && (RT->rt_ifp->int_state & IS_EXTERNAL))
1422 return 0;
1423
1424 /* Interfaces should override received routes.
1425 */
1426 pref = 0;
1427 ags |= (AGS_IF | AGS_CORS_GATE);
1428
1429 /* If it is not an interface, or an alias for an interface,
1430 * it must be a "gateway."
1431 *
1432 * If it is a "remote" interface, it is also a "gateway" to
1433 * the kernel if is not a alias.
1434 */
1435 if (RT->rt_ifp == 0
1436 || (RT->rt_ifp->int_state & IS_REMOTE))
1437 ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_AGGREGATE);
1438 }
1439
1440 /* If RIP is off and IRDP is on, let the route to the discovered
1441 * route suppress any RIP routes. Eventually the RIP routes
1442 * will time-out and be deleted. This reaches the steady-state
1443 * quicker.
1444 */
1445 if ((RT->rt_state & RS_RDISC) && rip_sock < 0)
1446 ags |= AGS_CORS_GATE;
1447
1448 metric = RT->rt_metric;
1449 if (metric == HOPCNT_INFINITY) {
1450 /* if the route is dead, so try hard to aggregate. */
1451 pref = HOPCNT_INFINITY;
1452 ags |= (AGS_FINE_GATE | AGS_SUPPRESS);
1453 ags &= ~(AGS_IF | AGS_CORS_GATE);
1454 }
1455
1456 ag_check(RT->rt_dst, RT->rt_mask, RT->rt_gate, 0,
1457 metric,pref, 0, 0, ags, kern_out);
1458 return 0;
1459 #undef RT
1460 }
1461
1462
1463 /* Update the kernel table to match the daemon table.
1464 */
1465 static void
1466 fix_kern(void)
1467 {
1468 int i;
1469 struct khash *k, **pk;
1470
1471
1472 need_kern = age_timer;
1473
1474 /* Walk daemon table, updating the copy of the kernel table.
1475 */
1476 (void)rn_walktree(rhead, walk_kern, 0);
1477 ag_flush(0,0,kern_out);
1478
1479 for (i = 0; i < KHASH_SIZE; i++) {
1480 for (pk = &khash_bins[i]; (k = *pk) != 0; ) {
1481 /* Do not touch static routes */
1482 if (k->k_state & KS_STATIC) {
1483 kern_check_static(k,0);
1484 pk = &k->k_next;
1485 continue;
1486 }
1487
1488 /* check hold on routes deleted by the operator */
1489 if (k->k_keep > now.tv_sec) {
1490 /* ensure we check when the hold is over */
1491 LIM_SEC(need_kern, k->k_keep);
1492 /* mark for the next cycle */
1493 k->k_state |= KS_DELETE;
1494 pk = &k->k_next;
1495 continue;
1496 }
1497
1498 if ((k->k_state & KS_DELETE)
1499 && !(k->k_state & KS_DYNAMIC)) {
1500 kern_ioctl(k, RTM_DELETE, 0);
1501 *pk = k->k_next;
1502 free(k);
1503 continue;
1504 }
1505
1506 if (k->k_state & KS_DEL_ADD)
1507 kern_ioctl(k, RTM_DELETE, 0);
1508
1509 if (k->k_state & KS_ADD) {
1510 kern_ioctl(k, RTM_ADD,
1511 ((0 != (k->k_state & (KS_GATEWAY
1512 | KS_DYNAMIC)))
1513 ? RTF_GATEWAY : 0));
1514 } else if (k->k_state & KS_CHANGE) {
1515 kern_ioctl(k, RTM_CHANGE,
1516 ((0 != (k->k_state & (KS_GATEWAY
1517 | KS_DYNAMIC)))
1518 ? RTF_GATEWAY : 0));
1519 }
1520 k->k_state &= ~(KS_ADD|KS_CHANGE|KS_DEL_ADD);
1521
1522 /* Mark this route to be deleted in the next cycle.
1523 * This deletes routes that disappear from the
1524 * daemon table, since the normal aging code
1525 * will clear the bit for routes that have not
1526 * disappeared from the daemon table.
1527 */
1528 k->k_state |= KS_DELETE;
1529 pk = &k->k_next;
1530 }
1531 }
1532 }
1533
1534
1535 /* Delete a static route in the image of the kernel table.
1536 */
1537 void
1538 del_static(naddr dst,
1539 naddr mask,
1540 naddr gate,
1541 int gone)
1542 {
1543 struct khash *k;
1544 struct rt_entry *rt;
1545
1546 /* Just mark it in the table to be deleted next time the kernel
1547 * table is updated.
1548 * If it has already been deleted, mark it as such, and set its
1549 * keep-timer so that it will not be deleted again for a while.
1550 * This lets the operator delete a route added by the daemon
1551 * and add a replacement.
1552 */
1553 k = kern_find(dst, mask, 0);
1554 if (k != 0 && (gate == 0 || k->k_gate == gate)) {
1555 k->k_state &= ~(KS_STATIC | KS_DYNAMIC | KS_CHECK);
1556 k->k_state |= KS_DELETE;
1557 if (gone) {
1558 k->k_state |= KS_DELETED;
1559 k->k_keep = now.tv_sec + K_KEEP_LIM;
1560 }
1561 }
1562
1563 rt = rtget(dst, mask);
1564 if (rt != 0 && (rt->rt_state & RS_STATIC))
1565 rtbad(rt);
1566 }
1567
1568
1569 /* Delete all routes generated from ICMP Redirects that use a given gateway,
1570 * as well as old redirected routes.
1571 */
1572 void
1573 del_redirects(naddr bad_gate,
1574 time_t old)
1575 {
1576 int i;
1577 struct khash *k;
1578
1579
1580 for (i = 0; i < KHASH_SIZE; i++) {
1581 for (k = khash_bins[i]; k != 0; k = k->k_next) {
1582 if (!(k->k_state & KS_DYNAMIC)
1583 || (k->k_state & KS_STATIC))
1584 continue;
1585
1586 if (k->k_gate != bad_gate
1587 && k->k_redirect_time > old
1588 && !supplier)
1589 continue;
1590
1591 k->k_state |= KS_DELETE;
1592 k->k_state &= ~KS_DYNAMIC;
1593 need_kern.tv_sec = now.tv_sec;
1594 trace_act("mark redirected %s --> %s for deletion",
1595 addrname(k->k_dst, k->k_mask, 0),
1596 naddr_ntoa(k->k_gate));
1597 }
1598 }
1599 }
1600
1601
1602 /* Start the daemon tables.
1603 */
1604 void
1605 rtinit(void)
1606 {
1607 extern int max_keylen;
1608 int i;
1609 struct ag_info *ag;
1610
1611 /* Initialize the radix trees */
1612 max_keylen = sizeof(struct sockaddr_in);
1613 rn_init();
1614 rn_inithead((void**)&rhead, 32);
1615
1616 /* mark all of the slots in the table free */
1617 ag_avail = ag_slots;
1618 for (ag = ag_slots, i = 1; i < NUM_AG_SLOTS; i++) {
1619 ag->ag_fine = ag+1;
1620 ag++;
1621 }
1622 }
1623
1624
1625 #ifdef _HAVE_SIN_LEN
1626 static struct sockaddr_in dst_sock = {sizeof(dst_sock), AF_INET};
1627 static struct sockaddr_in mask_sock = {sizeof(mask_sock), AF_INET};
1628 #else
1629 static struct sockaddr_in_new dst_sock = {_SIN_ADDR_SIZE, AF_INET};
1630 static struct sockaddr_in_new mask_sock = {_SIN_ADDR_SIZE, AF_INET};
1631 #endif
1632
1633
1634 void
1635 set_need_flash(void)
1636 {
1637 if (!need_flash) {
1638 need_flash = 1;
1639 /* Do not send the flash update immediately. Wait a little
1640 * while to hear from other routers.
1641 */
1642 no_flash.tv_sec = now.tv_sec + MIN_WAITTIME;
1643 }
1644 }
1645
1646
1647 /* Get a particular routing table entry
1648 */
1649 struct rt_entry *
1650 rtget(naddr dst, naddr mask)
1651 {
1652 struct rt_entry *rt;
1653
1654 dst_sock.sin_addr.s_addr = dst;
1655 mask_sock.sin_addr.s_addr = mask;
1656 masktrim(&mask_sock);
1657 rt = (struct rt_entry *)rhead->rnh_lookup(&dst_sock,&mask_sock,rhead);
1658 if (!rt
1659 || rt->rt_dst != dst
1660 || rt->rt_mask != mask)
1661 return 0;
1662
1663 return rt;
1664 }
1665
1666
1667 /* Find a route to dst as the kernel would.
1668 */
1669 struct rt_entry *
1670 rtfind(naddr dst)
1671 {
1672 dst_sock.sin_addr.s_addr = dst;
1673 return (struct rt_entry *)rhead->rnh_matchaddr(&dst_sock, rhead);
1674 }
1675
1676
1677 /* add a route to the table
1678 */
1679 void
1680 rtadd(naddr dst,
1681 naddr mask,
1682 u_int state, /* rt_state for the entry */
1683 struct rt_spare *new)
1684 {
1685 struct rt_entry *rt;
1686 naddr smask;
1687 int i;
1688 struct rt_spare *rts;
1689
1690 rt = (struct rt_entry *)rtmalloc(sizeof (*rt), "rtadd");
1691 memset(rt, 0, sizeof(*rt));
1692 for (rts = rt->rt_spares, i = NUM_SPARES; i != 0; i--, rts++)
1693 rts->rts_metric = HOPCNT_INFINITY;
1694
1695 rt->rt_nodes->rn_key = (caddr_t)&rt->rt_dst_sock;
1696 rt->rt_dst = dst;
1697 rt->rt_dst_sock.sin_family = AF_INET;
1698 #ifdef _HAVE_SIN_LEN
1699 rt->rt_dst_sock.sin_len = dst_sock.sin_len;
1700 #endif
1701 if (mask != HOST_MASK) {
1702 smask = std_mask(dst);
1703 if ((smask & ~mask) == 0 && mask > smask)
1704 state |= RS_SUBNET;
1705 }
1706 mask_sock.sin_addr.s_addr = mask;
1707 masktrim(&mask_sock);
1708 rt->rt_mask = mask;
1709 rt->rt_state = state;
1710 rt->rt_spares[0] = *new;
1711 rt->rt_time = now.tv_sec;
1712 rt->rt_poison_metric = HOPCNT_INFINITY;
1713 rt->rt_seqno = update_seqno;
1714
1715 if (++total_routes == MAX_ROUTES)
1716 msglog("have maximum (%d) routes", total_routes);
1717 if (TRACEACTIONS)
1718 trace_add_del("Add", rt);
1719
1720 need_kern.tv_sec = now.tv_sec;
1721 set_need_flash();
1722
1723 if (0 == rhead->rnh_addaddr(&rt->rt_dst_sock, &mask_sock,
1724 rhead, rt->rt_nodes)) {
1725 msglog("rnh_addaddr() failed for %s mask=%#x",
1726 naddr_ntoa(dst), mask);
1727 }
1728 }
1729
1730
1731 /* notice a changed route
1732 */
1733 void
1734 rtchange(struct rt_entry *rt,
1735 u_int state, /* new state bits */
1736 struct rt_spare *new,
1737 char *label)
1738 {
1739 if (rt->rt_metric != new->rts_metric) {
1740 /* Fix the kernel immediately if it seems the route
1741 * has gone bad, since there may be a working route that
1742 * aggregates this route.
1743 */
1744 if (new->rts_metric == HOPCNT_INFINITY) {
1745 need_kern.tv_sec = now.tv_sec;
1746 if (new->rts_time >= now.tv_sec - EXPIRE_TIME)
1747 new->rts_time = now.tv_sec - EXPIRE_TIME;
1748 }
1749 rt->rt_seqno = update_seqno;
1750 set_need_flash();
1751 }
1752
1753 if (rt->rt_gate != new->rts_gate) {
1754 need_kern.tv_sec = now.tv_sec;
1755 rt->rt_seqno = update_seqno;
1756 set_need_flash();
1757 }
1758
1759 state |= (rt->rt_state & RS_SUBNET);
1760
1761 /* Keep various things from deciding ageless routes are stale.
1762 */
1763 if (!AGE_RT(state, new->rts_ifp))
1764 new->rts_time = now.tv_sec;
1765
1766 if (TRACEACTIONS)
1767 trace_change(rt, state, new,
1768 label ? label : "Chg ");
1769
1770 rt->rt_state = state;
1771 rt->rt_spares[0] = *new;
1772 }
1773
1774
1775 /* check for a better route among the spares
1776 */
1777 static struct rt_spare *
1778 rts_better(struct rt_entry *rt)
1779 {
1780 struct rt_spare *rts, *rts1;
1781 int i;
1782
1783 /* find the best alternative among the spares */
1784 rts = rt->rt_spares+1;
1785 for (i = NUM_SPARES, rts1 = rts+1; i > 2; i--, rts1++) {
1786 if (BETTER_LINK(rt,rts1,rts))
1787 rts = rts1;
1788 }
1789
1790 return rts;
1791 }
1792
1793
1794 /* switch to a backup route
1795 */
1796 void
1797 rtswitch(struct rt_entry *rt,
1798 struct rt_spare *rts)
1799 {
1800 struct rt_spare swap;
1801 char label[10];
1802
1803
1804 /* Do not change permanent routes */
1805 if (0 != (rt->rt_state & (RS_MHOME | RS_STATIC | RS_RDISC
1806 | RS_NET_SYN | RS_IF)))
1807 return;
1808
1809 /* find the best alternative among the spares */
1810 if (rts == 0)
1811 rts = rts_better(rt);
1812
1813 /* Do not bother if it is not worthwhile.
1814 */
1815 if (!BETTER_LINK(rt, rts, rt->rt_spares))
1816 return;
1817
1818 swap = rt->rt_spares[0];
1819 (void)sprintf(label, "Use #%d", (int)(rts - rt->rt_spares));
1820 rtchange(rt, rt->rt_state & ~(RS_NET_SYN | RS_RDISC), rts, label);
1821 if (swap.rts_metric == HOPCNT_INFINITY) {
1822 *rts = rts_empty;
1823 } else {
1824 *rts = swap;
1825 }
1826 }
1827
1828
1829 void
1830 rtdelete(struct rt_entry *rt)
1831 {
1832 struct khash *k;
1833
1834
1835 if (TRACEACTIONS)
1836 trace_add_del("Del", rt);
1837
1838 k = kern_find(rt->rt_dst, rt->rt_mask, 0);
1839 if (k != 0) {
1840 k->k_state |= KS_DELETE;
1841 need_kern.tv_sec = now.tv_sec;
1842 }
1843
1844 dst_sock.sin_addr.s_addr = rt->rt_dst;
1845 mask_sock.sin_addr.s_addr = rt->rt_mask;
1846 masktrim(&mask_sock);
1847 if (rt != (struct rt_entry *)rhead->rnh_deladdr(&dst_sock, &mask_sock,
1848 rhead)) {
1849 msglog("rnh_deladdr() failed");
1850 } else {
1851 free(rt);
1852 total_routes--;
1853 }
1854 }
1855
1856
1857 void
1858 rts_delete(struct rt_entry *rt,
1859 struct rt_spare *rts)
1860 {
1861 trace_upslot(rt, rts, &rts_empty);
1862 *rts = rts_empty;
1863 }
1864
1865
1866 /* Get rid of a bad route, and try to switch to a replacement.
1867 */
1868 void
1869 rtbad(struct rt_entry *rt)
1870 {
1871 struct rt_spare new;
1872
1873 /* Poison the route */
1874 new = rt->rt_spares[0];
1875 new.rts_metric = HOPCNT_INFINITY;
1876 rtchange(rt, rt->rt_state & ~(RS_IF | RS_LOCAL | RS_STATIC), &new, 0);
1877 rtswitch(rt, 0);
1878 }
1879
1880
1881 /* Junk a RS_NET_SYN or RS_LOCAL route,
1882 * unless it is needed by another interface.
1883 */
1884 void
1885 rtbad_sub(struct rt_entry *rt)
1886 {
1887 struct interface *ifp, *ifp1;
1888 struct intnet *intnetp;
1889 u_int state;
1890
1891
1892 ifp1 = 0;
1893 state = 0;
1894
1895 if (rt->rt_state & RS_LOCAL) {
1896 /* Is this the route through loopback for the interface?
1897 * If so, see if it is used by any other interfaces, such
1898 * as a point-to-point interface with the same local address.
1899 */
1900 for (ifp = ifnet; ifp != 0; ifp = ifp->int_next) {
1901 /* Retain it if another interface needs it.
1902 */
1903 if (ifp->int_addr == rt->rt_ifp->int_addr) {
1904 state |= RS_LOCAL;
1905 ifp1 = ifp;
1906 break;
1907 }
1908 }
1909
1910 }
1911
1912 if (!(state & RS_LOCAL)) {
1913 /* Retain RIPv1 logical network route if there is another
1914 * interface that justifies it.
1915 */
1916 if (rt->rt_state & RS_NET_SYN) {
1917 for (ifp = ifnet; ifp != 0; ifp = ifp->int_next) {
1918 if ((ifp->int_state & IS_NEED_NET_SYN)
1919 && rt->rt_mask == ifp->int_std_mask
1920 && rt->rt_dst == ifp->int_std_addr) {
1921 state |= RS_NET_SYN;
1922 ifp1 = ifp;
1923 break;
1924 }
1925 }
1926 }
1927
1928 /* or if there is an authority route that needs it. */
1929 for (intnetp = intnets;
1930 intnetp != 0;
1931 intnetp = intnetp->intnet_next) {
1932 if (intnetp->intnet_addr == rt->rt_dst
1933 && intnetp->intnet_mask == rt->rt_mask) {
1934 state |= (RS_NET_SYN | RS_NET_INT);
1935 break;
1936 }
1937 }
1938 }
1939
1940 if (ifp1 != 0 || (state & RS_NET_SYN)) {
1941 struct rt_spare new = rt->rt_spares[0];
1942 new.rts_ifp = ifp1;
1943 rtchange(rt, ((rt->rt_state & ~(RS_NET_SYN|RS_LOCAL)) | state),
1944 &new, 0);
1945 } else {
1946 rtbad(rt);
1947 }
1948 }
1949
1950
1951 /* Called while walking the table looking for sick interfaces
1952 * or after a time change.
1953 */
1954 /* ARGSUSED */
1955 int
1956 walk_bad(struct radix_node *rn,
1957 struct walkarg *argp)
1958 {
1959 #define RT ((struct rt_entry *)rn)
1960 struct rt_spare *rts;
1961 int i;
1962
1963
1964 /* fix any spare routes through the interface
1965 */
1966 rts = RT->rt_spares;
1967 for (i = NUM_SPARES; i != 1; i--) {
1968 rts++;
1969 if (rts->rts_metric < HOPCNT_INFINITY
1970 && (rts->rts_ifp == 0
1971 || (rts->rts_ifp->int_state & IS_BROKE)))
1972 rts_delete(RT, rts);
1973 }
1974
1975 /* Deal with the main route
1976 */
1977 /* finished if it has been handled before or if its interface is ok
1978 */
1979 if (RT->rt_ifp == 0 || !(RT->rt_ifp->int_state & IS_BROKE))
1980 return 0;
1981
1982 /* Bad routes for other than interfaces are easy.
1983 */
1984 if (0 == (RT->rt_state & (RS_IF | RS_NET_SYN | RS_LOCAL))) {
1985 rtbad(RT);
1986 return 0;
1987 }
1988
1989 rtbad_sub(RT);
1990 return 0;
1991 #undef RT
1992 }
1993
1994
1995 /* Check the age of an individual route.
1996 */
1997 /* ARGSUSED */
1998 static int
1999 walk_age(struct radix_node *rn,
2000 struct walkarg *argp)
2001 {
2002 #define RT ((struct rt_entry *)rn)
2003 struct interface *ifp;
2004 struct rt_spare *rts;
2005 int i;
2006
2007
2008 /* age all of the spare routes, including the primary route
2009 * currently in use
2010 */
2011 rts = RT->rt_spares;
2012 for (i = NUM_SPARES; i != 0; i--, rts++) {
2013
2014 ifp = rts->rts_ifp;
2015 if (i == NUM_SPARES) {
2016 if (!AGE_RT(RT->rt_state, ifp)) {
2017 /* Keep various things from deciding ageless
2018 * routes are stale
2019 */
2020 rts->rts_time = now.tv_sec;
2021 continue;
2022 }
2023
2024 /* forget RIP routes after RIP has been turned off.
2025 */
2026 if (rip_sock < 0) {
2027 rtdelete(RT);
2028 return 0;
2029 }
2030 }
2031
2032 /* age failing routes
2033 */
2034 if (age_bad_gate == rts->rts_gate
2035 && rts->rts_time >= now_stale) {
2036 rts->rts_time -= SUPPLY_INTERVAL;
2037 }
2038
2039 /* trash the spare routes when they go bad */
2040 if (rts->rts_metric < HOPCNT_INFINITY
2041 && now_garbage > rts->rts_time
2042 && i != NUM_SPARES)
2043 rts_delete(RT, rts);
2044 }
2045
2046
2047 /* finished if the active route is still fresh */
2048 if (now_stale <= RT->rt_time)
2049 return 0;
2050
2051 /* try to switch to an alternative */
2052 rtswitch(RT, 0);
2053
2054 /* Delete a dead route after it has been publically mourned. */
2055 if (now_garbage > RT->rt_time) {
2056 rtdelete(RT);
2057 return 0;
2058 }
2059
2060 /* Start poisoning a bad route before deleting it. */
2061 if (now.tv_sec - RT->rt_time > EXPIRE_TIME) {
2062 struct rt_spare new = RT->rt_spares[0];
2063 new.rts_metric = HOPCNT_INFINITY;
2064 rtchange(RT, RT->rt_state, &new, 0);
2065 }
2066 return 0;
2067 }
2068
2069
2070 /* Watch for dead routes and interfaces.
2071 */
2072 void
2073 age(naddr bad_gate)
2074 {
2075 struct interface *ifp;
2076 int need_query = 0;
2077
2078 /* If not listening to RIP, there is no need to age the routes in
2079 * the table.
2080 */
2081 age_timer.tv_sec = (now.tv_sec
2082 + ((rip_sock < 0) ? NEVER : SUPPLY_INTERVAL));
2083
2084 /* Check for dead IS_REMOTE interfaces by timing their
2085 * transmissions.
2086 */
2087 for (ifp = ifnet; ifp; ifp = ifp->int_next) {
2088 if (!(ifp->int_state & IS_REMOTE))
2089 continue;
2090
2091 /* ignore unreachable remote interfaces */
2092 if (!check_remote(ifp))
2093 continue;
2094
2095 /* Restore remote interface that has become reachable
2096 */
2097 if (ifp->int_state & IS_BROKE)
2098 if_ok(ifp, "remote ");
2099
2100 if (ifp->int_act_time != NEVER
2101 && now.tv_sec - ifp->int_act_time > EXPIRE_TIME) {
2102 msglog("remote interface %s to %s timed out after"
2103 " %d:%d",
2104 ifp->int_name,
2105 naddr_ntoa(ifp->int_dstaddr),
2106 (now.tv_sec - ifp->int_act_time)/60,
2107 (now.tv_sec - ifp->int_act_time)%60);
2108 if_sick(ifp);
2109 }
2110
2111 /* If we have not heard from the other router
2112 * recently, ask it.
2113 */
2114 if (now.tv_sec >= ifp->int_query_time) {
2115 ifp->int_query_time = NEVER;
2116 need_query = 1;
2117 }
2118 }
2119
2120 /* Age routes. */
2121 age_bad_gate = bad_gate;
2122 (void)rn_walktree(rhead, walk_age, 0);
2123
2124 /* delete old redirected routes to keep the kernel table small
2125 * and prevent blackholes
2126 */
2127 del_redirects(bad_gate, now.tv_sec-STALE_TIME);
2128
2129 /* Update the kernel routing table. */
2130 fix_kern();
2131
2132 /* poke reticent remote gateways */
2133 if (need_query)
2134 rip_query();
2135 }
2136