Home | History | Annotate | Line # | Download | only in altq
      1  1.15    andvar /*	$NetBSD: altq_jobs.c,v 1.15 2025/08/18 20:59:56 andvar Exp $	*/
      2   1.2     peter /*	$KAME: altq_jobs.c,v 1.11 2005/04/13 03:44:25 suz Exp $	*/
      3   1.2     peter /*
      4   1.2     peter  * Copyright (c) 2001, the Rector and Board of Visitors of the
      5   1.2     peter  * University of Virginia.
      6   1.2     peter  * All rights reserved.
      7   1.2     peter  *
      8   1.2     peter  * Redistribution and use in source and binary forms,
      9   1.2     peter  * with or without modification, are permitted provided
     10   1.2     peter  * that the following conditions are met:
     11   1.2     peter  *
     12   1.2     peter  * Redistributions of source code must retain the above
     13   1.2     peter  * copyright notice, this list of conditions and the following
     14   1.2     peter  * disclaimer.
     15   1.2     peter  *
     16   1.2     peter  * Redistributions in binary form must reproduce the above
     17   1.2     peter  * copyright notice, this list of conditions and the following
     18   1.2     peter  * disclaimer in the documentation and/or other materials provided
     19   1.2     peter  * with the distribution.
     20   1.2     peter  *
     21   1.2     peter  * Neither the name of the University of Virginia nor the names
     22   1.2     peter  * of its contributors may be used to endorse or promote products
     23   1.2     peter  * derived from this software without specific prior written
     24   1.2     peter  * permission.
     25   1.2     peter  *
     26   1.2     peter  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
     27   1.2     peter  * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
     28   1.2     peter  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     29   1.2     peter  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     30   1.2     peter  * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
     31   1.2     peter  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     32   1.2     peter  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     33   1.2     peter  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     34   1.2     peter  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     35   1.2     peter  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36   1.2     peter  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
     37   1.2     peter  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     38   1.2     peter  * THE POSSIBILITY OF SUCH DAMAGE.
     39   1.2     peter  */
     40   1.2     peter /*
     41   1.2     peter  * JoBS - altq prototype implementation
     42   1.2     peter  *
     43   1.2     peter  * Author: Nicolas Christin <nicolas (at) cs.virginia.edu>
     44   1.2     peter  *
     45   1.2     peter  * JoBS algorithms originally devised and proposed by
     46   1.2     peter  * Nicolas Christin and Jorg Liebeherr.
     47   1.2     peter  * Grateful acknowledgments to Tarek Abdelzaher for his help and
     48   1.2     peter  * comments, and to Kenjiro Cho for some helpful advice.
     49   1.2     peter  * Contributed by the Multimedia Networks Group at the University
     50   1.2     peter  * of Virginia.
     51   1.2     peter  *
     52   1.2     peter  * Papers and additional info can be found at
     53   1.2     peter  * http://qosbox.cs.virginia.edu
     54   1.2     peter  *
     55   1.2     peter  */
     56   1.2     peter 
     57   1.2     peter /*
     58   1.2     peter  * JoBS queue
     59   1.2     peter  */
     60   1.2     peter 
     61   1.2     peter #include <sys/cdefs.h>
     62  1.15    andvar __KERNEL_RCSID(0, "$NetBSD: altq_jobs.c,v 1.15 2025/08/18 20:59:56 andvar Exp $");
     63   1.2     peter 
     64   1.2     peter #ifdef _KERNEL_OPT
     65   1.2     peter #include "opt_altq.h"
     66   1.2     peter #include "opt_inet.h"
     67   1.2     peter #endif
     68   1.2     peter 
     69   1.2     peter #ifdef ALTQ_JOBS  /* jobs is enabled by ALTQ_JOBS option in opt_altq.h */
     70   1.2     peter 
     71   1.2     peter #include <sys/param.h>
     72   1.2     peter #include <sys/malloc.h>
     73   1.2     peter #include <sys/mbuf.h>
     74   1.2     peter #include <sys/socket.h>
     75   1.2     peter #include <sys/sockio.h>
     76   1.2     peter #include <sys/systm.h>
     77   1.2     peter #include <sys/proc.h>
     78   1.2     peter #include <sys/errno.h>
     79   1.2     peter #include <sys/kernel.h>
     80   1.2     peter #include <sys/queue.h>
     81   1.2     peter #include <sys/kauth.h>
     82   1.2     peter 
     83   1.2     peter #ifdef __FreeBSD__
     84   1.2     peter #include <sys/limits.h>
     85   1.2     peter #endif
     86   1.2     peter 
     87   1.2     peter #include <net/if.h>
     88   1.2     peter #include <net/if_types.h>
     89   1.2     peter 
     90   1.2     peter #include <altq/altq.h>
     91   1.2     peter #include <altq/altq_conf.h>
     92   1.2     peter #include <altq/altq_jobs.h>
     93   1.2     peter 
     94   1.2     peter #ifdef ALTQ3_COMPAT
     95   1.2     peter /*
     96   1.2     peter  * function prototypes
     97   1.2     peter  */
     98   1.2     peter static struct jobs_if *jobs_attach(struct ifaltq *, u_int, u_int, u_int);
     99   1.8  christos static void jobs_detach(struct jobs_if *);
    100   1.2     peter static int jobs_clear_interface(struct jobs_if *);
    101   1.2     peter static int jobs_request(struct ifaltq *, int, void *);
    102   1.2     peter static void jobs_purge(struct jobs_if *);
    103   1.2     peter static struct jobs_class *jobs_class_create(struct jobs_if *,
    104   1.2     peter     int, int64_t, int64_t, int64_t, int64_t, int64_t, int);
    105   1.2     peter static int jobs_class_destroy(struct jobs_class *);
    106   1.9  knakahar static int jobs_enqueue(struct ifaltq *, struct mbuf *);
    107   1.2     peter static struct mbuf *jobs_dequeue(struct ifaltq *, int);
    108   1.2     peter 
    109   1.2     peter static int jobs_addq(struct jobs_class *, struct mbuf *, struct jobs_if*);
    110   1.2     peter static struct mbuf *jobs_getq(struct jobs_class *);
    111   1.2     peter static struct mbuf *jobs_pollq(struct jobs_class *);
    112   1.2     peter static void jobs_purgeq(struct jobs_class *);
    113   1.2     peter 
    114   1.2     peter static int jobscmd_if_attach(struct jobs_attach *);
    115   1.2     peter static int jobscmd_if_detach(struct jobs_interface *);
    116   1.2     peter static int jobscmd_add_class(struct jobs_add_class *);
    117   1.2     peter static int jobscmd_delete_class(struct jobs_delete_class *);
    118   1.2     peter static int jobscmd_modify_class(struct jobs_modify_class *);
    119   1.2     peter static int jobscmd_add_filter(struct jobs_add_filter *);
    120   1.2     peter static int jobscmd_delete_filter(struct jobs_delete_filter *);
    121   1.2     peter static int jobscmd_class_stats(struct jobs_class_stats *);
    122   1.2     peter static void get_class_stats(struct class_stats *, struct jobs_class *);
    123   1.2     peter static struct jobs_class *clh_to_clp(struct jobs_if *, u_long);
    124   1.2     peter static u_long clp_to_clh(struct jobs_class *);
    125   1.2     peter 
    126   1.2     peter static TSLIST *tslist_alloc(void);
    127   1.2     peter static void tslist_destroy(struct jobs_class *);
    128   1.2     peter static int tslist_enqueue(struct jobs_class *, u_int64_t);
    129   1.2     peter static void tslist_dequeue(struct jobs_class *);
    130   1.2     peter static void tslist_drop(struct jobs_class *);
    131   1.2     peter 
    132   1.2     peter static int enforce_wc(struct jobs_if *);
    133   1.2     peter static int64_t* adjust_rates_rdc(struct jobs_if *);
    134   1.2     peter static int64_t* assign_rate_drops_adc(struct jobs_if *);
    135   1.2     peter static int64_t* update_error(struct jobs_if *);
    136   1.2     peter static int min_rates_adc(struct jobs_if *);
    137   1.2     peter static int64_t proj_delay(struct jobs_if *, int);
    138   1.2     peter static int pick_dropped_rlc(struct jobs_if *);
    139   1.2     peter 
    140   1.2     peter altqdev_decl(jobs);
    141   1.2     peter 
    142   1.2     peter /* jif_list keeps all jobs_if's allocated. */
    143   1.2     peter static struct jobs_if *jif_list = NULL;
    144   1.2     peter 
    145   1.2     peter typedef unsigned long long ull;
    146   1.2     peter 
    147   1.2     peter /* setup functions */
    148   1.2     peter 
    149   1.2     peter static struct jobs_if *
    150   1.2     peter jobs_attach(struct ifaltq *ifq, u_int bandwidth, u_int qlimit, u_int separate)
    151   1.2     peter {
    152   1.2     peter 	struct jobs_if *jif;
    153   1.2     peter 
    154   1.2     peter 	jif = malloc(sizeof(struct jobs_if), M_DEVBUF, M_WAITOK|M_ZERO);
    155   1.2     peter 	if (jif == NULL)
    156  1.14       joe 	        return NULL;
    157   1.2     peter 
    158   1.2     peter 	jif->jif_bandwidth = bandwidth;
    159   1.2     peter 	jif->jif_qlimit = qlimit;
    160   1.2     peter 	jif->jif_separate = separate;
    161   1.2     peter #ifdef ALTQ_DEBUG
    162   1.2     peter 	printf("JoBS bandwidth = %d bps\n", (int)bandwidth);
    163   1.2     peter 	printf("JoBS buffer size = %d pkts [%s]\n",
    164   1.2     peter 	       (int)qlimit, separate?"separate buffers":"shared buffer");
    165   1.2     peter #endif
    166   1.2     peter 	jif->jif_maxpri = -1;
    167   1.2     peter 	jif->jif_ifq = ifq;
    168   1.2     peter 
    169   1.2     peter 	jif->wc_cycles_enqueue = 0;
    170   1.2     peter 	jif->avg_cycles_enqueue = 0;
    171   1.2     peter 	jif->avg_cycles2_enqueue = 0;
    172   1.6    plunky 	jif->bc_cycles_enqueue = ALTQ_INFINITY;
    173   1.2     peter 	jif->wc_cycles_dequeue = 0;
    174   1.2     peter 	jif->avg_cycles_dequeue = 0;
    175   1.2     peter 	jif->avg_cycles2_dequeue = 0;
    176   1.6    plunky 	jif->bc_cycles_dequeue = ALTQ_INFINITY;
    177   1.2     peter 	jif->total_enqueued = 0;
    178   1.2     peter 	jif->total_dequeued = 0;
    179   1.2     peter 
    180   1.2     peter 	/* add this state to the jobs list */
    181   1.2     peter 	jif->jif_next = jif_list;
    182   1.2     peter 	jif_list = jif;
    183   1.2     peter 
    184  1.14       joe 	return jif;
    185   1.2     peter }
    186   1.2     peter 
    187   1.8  christos static void
    188   1.2     peter jobs_detach(struct jobs_if *jif)
    189   1.2     peter {
    190   1.2     peter 	(void)jobs_clear_interface(jif);
    191   1.2     peter 
    192   1.2     peter 	/* remove this interface from the jif list */
    193   1.2     peter 	if (jif_list == jif)
    194   1.2     peter 		jif_list = jif->jif_next;
    195   1.2     peter 	else {
    196   1.2     peter 		struct jobs_if *p;
    197   1.2     peter 
    198   1.2     peter 		for (p = jif_list; p != NULL; p = p->jif_next)
    199   1.2     peter 			if (p->jif_next == jif) {
    200   1.2     peter 				p->jif_next = jif->jif_next;
    201   1.2     peter 				break;
    202   1.2     peter 			}
    203   1.2     peter 		ASSERT(p != NULL);
    204   1.2     peter 	}
    205   1.2     peter 	free(jif, M_DEVBUF);
    206   1.2     peter }
    207   1.2     peter 
    208   1.2     peter /*
    209   1.2     peter  * bring the interface back to the initial state by discarding
    210   1.2     peter  * all the filters and classes.
    211   1.2     peter  */
    212   1.2     peter static int
    213   1.2     peter jobs_clear_interface(struct jobs_if *jif)
    214   1.2     peter {
    215   1.2     peter 	struct jobs_class	*cl;
    216   1.2     peter 	int	pri;
    217   1.2     peter 
    218   1.2     peter 	/* free the filters for this interface */
    219   1.2     peter 	acc_discard_filters(&jif->jif_classifier, NULL, 1);
    220   1.2     peter 
    221   1.2     peter 	/* clear out the classes */
    222   1.2     peter 	for (pri = 0; pri <= jif->jif_maxpri; pri++)
    223   1.2     peter 		if ((cl = jif->jif_classes[pri]) != NULL)
    224   1.2     peter 			jobs_class_destroy(cl);
    225   1.2     peter 
    226  1.14       joe 	return 0;
    227   1.2     peter }
    228   1.2     peter 
    229   1.2     peter static int
    230   1.4  christos jobs_request(struct ifaltq *ifq, int req, void *arg)
    231   1.2     peter {
    232   1.2     peter 	struct jobs_if	*jif = (struct jobs_if *)ifq->altq_disc;
    233   1.2     peter 
    234   1.2     peter 	switch (req) {
    235   1.2     peter 	case ALTRQ_PURGE:
    236   1.2     peter 		jobs_purge(jif);
    237   1.2     peter 		break;
    238   1.2     peter 	}
    239  1.14       joe 	return 0;
    240   1.2     peter }
    241   1.2     peter 
    242   1.2     peter /* discard all the queued packets on the interface */
    243   1.2     peter static void
    244   1.2     peter jobs_purge(struct jobs_if *jif)
    245   1.2     peter {
    246   1.2     peter 	struct jobs_class *cl;
    247   1.2     peter 	int pri;
    248   1.2     peter 
    249   1.2     peter 	for (pri = 0; pri <= jif->jif_maxpri; pri++) {
    250   1.2     peter 		if ((cl = jif->jif_classes[pri]) != NULL && !qempty(cl->cl_q))
    251   1.2     peter 			jobs_purgeq(cl);
    252   1.2     peter 	}
    253   1.2     peter 	if (ALTQ_IS_ENABLED(jif->jif_ifq))
    254   1.2     peter 		jif->jif_ifq->ifq_len = 0;
    255   1.2     peter }
    256   1.2     peter 
    257   1.2     peter static struct jobs_class *
    258   1.2     peter jobs_class_create(struct jobs_if *jif, int pri, int64_t adc, int64_t rdc,
    259   1.2     peter     int64_t alc, int64_t rlc, int64_t arc, int flags)
    260   1.2     peter {
    261   1.2     peter 	struct jobs_class *cl, *scan1, *scan2;
    262   1.2     peter 	int s;
    263   1.2     peter 	int class_exists1, class_exists2;
    264   1.2     peter 	int i, j;
    265   1.2     peter 	int64_t tmp[JOBS_MAXPRI];
    266   1.2     peter 	u_int64_t now;
    267   1.2     peter 
    268   1.2     peter 	if ((cl = jif->jif_classes[pri]) != NULL) {
    269   1.2     peter 		/* modify the class instead of creating a new one */
    270   1.2     peter 		s = splnet();
    271   1.2     peter 		if (!qempty(cl->cl_q))
    272   1.2     peter 			jobs_purgeq(cl);
    273   1.2     peter 		splx(s);
    274   1.2     peter 	} else {
    275   1.2     peter 		cl = malloc(sizeof(struct jobs_class), M_DEVBUF,
    276   1.2     peter 		    M_WAITOK|M_ZERO);
    277   1.2     peter 		if (cl == NULL)
    278  1.14       joe 			return NULL;
    279   1.2     peter 
    280   1.2     peter 		cl->cl_q = malloc(sizeof(class_queue_t), M_DEVBUF,
    281   1.2     peter 		    M_WAITOK|M_ZERO);
    282   1.2     peter 		if (cl->cl_q == NULL)
    283   1.2     peter 			goto err_ret;
    284   1.2     peter 
    285   1.2     peter 		cl->arv_tm = tslist_alloc();
    286   1.2     peter 		if (cl->arv_tm == NULL)
    287   1.2     peter 			goto err_ret;
    288   1.2     peter 	}
    289   1.2     peter 
    290   1.2     peter 	jif->jif_classes[pri] = cl;
    291   1.2     peter 
    292   1.2     peter 	if (flags & JOCF_DEFAULTCLASS)
    293   1.2     peter 		jif->jif_default = cl;
    294   1.2     peter 
    295   1.2     peter 	qtype(cl->cl_q) = Q_DROPTAIL;
    296   1.2     peter 	qlen(cl->cl_q) = 0;
    297   1.2     peter 	cl->service_rate = 0;
    298   1.2     peter 	cl->min_rate_adc = 0;
    299   1.2     peter 	cl->current_loss = 0;
    300   1.2     peter 	cl->cl_period = 0;
    301   1.2     peter 	PKTCNTR_RESET(&cl->cl_arrival);
    302   1.2     peter 	PKTCNTR_RESET(&cl->cl_rin);
    303   1.2     peter 	PKTCNTR_RESET(&cl->cl_rout);
    304   1.2     peter 	PKTCNTR_RESET(&cl->cl_rout_th);
    305   1.2     peter 	PKTCNTR_RESET(&cl->cl_dropcnt);
    306   1.2     peter 	PKTCNTR_RESET(&cl->st_arrival);
    307   1.2     peter 	PKTCNTR_RESET(&cl->st_rin);
    308   1.2     peter 	PKTCNTR_RESET(&cl->st_rout);
    309   1.2     peter 	PKTCNTR_RESET(&cl->st_dropcnt);
    310   1.2     peter 	cl->st_service_rate = 0;
    311   1.2     peter 	cl->cl_lastdel = 0;
    312   1.2     peter 	cl->cl_avgdel = 0;
    313   1.2     peter 	cl->adc_violations = 0;
    314   1.2     peter 
    315   1.2     peter 	if (adc == -1) {
    316   1.2     peter 		cl->concerned_adc = 0;
    317   1.6    plunky 		adc = ALTQ_INFINITY;
    318   1.2     peter 	} else
    319   1.2     peter 		cl->concerned_adc = 1;
    320   1.2     peter 
    321   1.2     peter 	if (alc == -1) {
    322   1.2     peter 		cl->concerned_alc = 0;
    323   1.6    plunky 		alc = ALTQ_INFINITY;
    324   1.2     peter 	} else
    325   1.2     peter 		cl->concerned_alc = 1;
    326   1.2     peter 
    327   1.2     peter 	if (rdc == -1) {
    328   1.2     peter 		rdc = 0;
    329   1.2     peter 		cl->concerned_rdc = 0;
    330   1.2     peter 	} else
    331   1.2     peter 		cl->concerned_rdc = 1;
    332   1.2     peter 
    333   1.2     peter 	if (rlc == -1) {
    334   1.2     peter 		rlc = 0;
    335   1.2     peter 		cl->concerned_rlc = 0;
    336   1.2     peter 	} else
    337   1.2     peter 		cl->concerned_rlc = 1;
    338   1.2     peter 
    339   1.2     peter 	if (arc == -1) {
    340   1.2     peter 		arc = 0;
    341   1.2     peter 		cl->concerned_arc = 0;
    342   1.2     peter 	} else
    343   1.2     peter 		cl->concerned_arc = 1;
    344   1.2     peter 
    345   1.2     peter 	cl->cl_rdc=rdc;
    346   1.2     peter 
    347   1.2     peter 	if (cl->concerned_adc) {
    348   1.2     peter 		/* adc is given in us, convert it to clock ticks */
    349   1.2     peter 		cl->cl_adc = (u_int64_t)(adc*machclk_freq/GRANULARITY);
    350   1.2     peter 	} else
    351   1.2     peter 		cl->cl_adc = adc;
    352   1.2     peter 
    353   1.2     peter 	if (cl->concerned_arc) {
    354   1.2     peter 		/* arc is given in bps, convert it to internal unit */
    355   1.2     peter 		cl->cl_arc = (u_int64_t)(bps_to_internal(arc));
    356   1.2     peter 	} else
    357   1.2     peter 		cl->cl_arc = arc;
    358   1.2     peter 
    359   1.2     peter 	cl->cl_rlc=rlc;
    360   1.2     peter 	cl->cl_alc=alc;
    361   1.2     peter 	cl->delay_prod_others = 0;
    362   1.2     peter 	cl->loss_prod_others = 0;
    363   1.2     peter 	cl->cl_flags = flags;
    364   1.2     peter 	cl->cl_pri = pri;
    365   1.2     peter 	if (pri > jif->jif_maxpri)
    366   1.2     peter 		jif->jif_maxpri = pri;
    367   1.2     peter 	cl->cl_jif = jif;
    368   1.2     peter 	cl->cl_handle = (u_long)cl;  /* just a pointer to this class */
    369   1.2     peter 
    370   1.2     peter 	/*
    371   1.2     peter 	 * update delay_prod_others and loss_prod_others
    372   1.2     peter 	 * in all classes if needed
    373   1.2     peter 	 */
    374   1.2     peter 
    375   1.2     peter 	if (cl->concerned_rdc) {
    376   1.2     peter 		for (i = 0; i <= jif->jif_maxpri; i++) {
    377   1.2     peter 			scan1 = jif->jif_classes[i];
    378   1.2     peter 			class_exists1 = (scan1 != NULL);
    379   1.2     peter 			if (class_exists1) {
    380   1.2     peter 				tmp[i] = 1;
    381   1.2     peter 				for (j = 0; j <= i-1; j++) {
    382   1.2     peter 					scan2 = jif->jif_classes[j];
    383   1.2     peter 					class_exists2 = (scan2 != NULL);
    384   1.2     peter 					if (class_exists2
    385   1.2     peter 					    && scan2->concerned_rdc)
    386   1.2     peter 						tmp[i] *= scan2->cl_rdc;
    387   1.2     peter 				}
    388   1.2     peter 			} else
    389   1.2     peter 				tmp[i] = 0;
    390   1.2     peter 		}
    391   1.2     peter 
    392   1.2     peter 		for (i = 0; i <= jif->jif_maxpri; i++) {
    393   1.2     peter 			scan1 = jif->jif_classes[i];
    394   1.2     peter 			class_exists1 = (scan1 != NULL);
    395   1.2     peter 			if (class_exists1) {
    396   1.2     peter 				scan1->delay_prod_others = 1;
    397   1.2     peter 				for (j = 0; j <= jif->jif_maxpri; j++) {
    398   1.2     peter 					scan2 = jif->jif_classes[j];
    399   1.2     peter 					class_exists2 = (scan2 != NULL);
    400   1.2     peter 					if (class_exists2 && j != i
    401   1.2     peter 					    && scan2->concerned_rdc)
    402   1.2     peter 						scan1->delay_prod_others *= tmp[j];
    403   1.2     peter 				}
    404   1.2     peter 			}
    405   1.2     peter 		}
    406   1.2     peter 	}
    407   1.2     peter 
    408   1.2     peter 	if (cl->concerned_rlc) {
    409   1.2     peter 		for (i = 0; i <= jif->jif_maxpri; i++) {
    410   1.2     peter 			scan1 = jif->jif_classes[i];
    411   1.2     peter 			class_exists1 = (scan1 != NULL);
    412   1.2     peter 			if (class_exists1) {
    413   1.2     peter 				tmp[i] = 1;
    414   1.2     peter 				for (j = 0; j <= i-1; j++) {
    415   1.2     peter 					scan2 = jif->jif_classes[j];
    416   1.2     peter 					class_exists2 = (scan2 != NULL);
    417   1.2     peter 					if (class_exists2
    418   1.2     peter 					    && scan2->concerned_rlc)
    419   1.2     peter 						tmp[i] *= scan2->cl_rlc;
    420   1.2     peter 				}
    421   1.2     peter 			} else
    422   1.2     peter 				tmp[i] = 0;
    423   1.2     peter 		}
    424   1.2     peter 
    425   1.2     peter 		for (i = 0; i <= jif->jif_maxpri; i++) {
    426   1.2     peter 			scan1 = jif->jif_classes[i];
    427   1.2     peter 			class_exists1 = (scan1 != NULL);
    428   1.2     peter 			if (class_exists1) {
    429   1.2     peter 				scan1->loss_prod_others = 1;
    430   1.2     peter 				for (j = 0; j <= jif->jif_maxpri; j++) {
    431   1.2     peter 					scan2 = jif->jif_classes[j];
    432   1.2     peter 					class_exists2 = (scan2 != NULL);
    433   1.2     peter 					if (class_exists2 && j != i
    434   1.2     peter 					    && scan2->concerned_rlc)
    435   1.2     peter 						scan1->loss_prod_others *= tmp[j];
    436   1.2     peter 				}
    437   1.2     peter 			}
    438   1.2     peter 		}
    439   1.2     peter 	}
    440   1.2     peter 
    441   1.2     peter 	now = read_machclk();
    442   1.2     peter 	cl->idletime = now;
    443  1.14       joe 	return cl;
    444   1.2     peter 
    445   1.2     peter  err_ret:
    446   1.2     peter 	if (cl->cl_q != NULL)
    447   1.2     peter 		free(cl->cl_q, M_DEVBUF);
    448   1.2     peter 	if (cl->arv_tm != NULL)
    449   1.2     peter 		free(cl->arv_tm, M_DEVBUF);
    450   1.2     peter 
    451   1.2     peter 	free(cl, M_DEVBUF);
    452  1.14       joe 	return NULL;
    453   1.2     peter }
    454   1.2     peter 
    455   1.2     peter static int
    456   1.2     peter jobs_class_destroy(struct jobs_class *cl)
    457   1.2     peter {
    458   1.2     peter 	struct jobs_if *jif;
    459   1.2     peter 	int s, pri;
    460   1.2     peter 
    461   1.2     peter 	s = splnet();
    462   1.2     peter 
    463   1.2     peter 	/* delete filters referencing to this class */
    464   1.2     peter 	acc_discard_filters(&cl->cl_jif->jif_classifier, cl, 0);
    465   1.2     peter 
    466   1.2     peter 	if (!qempty(cl->cl_q))
    467   1.2     peter 		jobs_purgeq(cl);
    468   1.2     peter 
    469   1.2     peter 	jif = cl->cl_jif;
    470   1.2     peter 	jif->jif_classes[cl->cl_pri] = NULL;
    471   1.2     peter 	if (jif->jif_maxpri == cl->cl_pri) {
    472   1.2     peter 		for (pri = cl->cl_pri; pri >= 0; pri--)
    473   1.2     peter 			if (jif->jif_classes[pri] != NULL) {
    474   1.2     peter 				jif->jif_maxpri = pri;
    475   1.2     peter 				break;
    476   1.2     peter 			}
    477   1.2     peter 		if (pri < 0)
    478   1.2     peter 			jif->jif_maxpri = -1;
    479   1.2     peter 	}
    480   1.2     peter 	splx(s);
    481   1.2     peter 
    482   1.2     peter 	tslist_destroy(cl);
    483   1.2     peter 	free(cl->cl_q, M_DEVBUF);
    484   1.2     peter 	free(cl, M_DEVBUF);
    485  1.14       joe 	return 0;
    486   1.2     peter }
    487   1.2     peter 
    488   1.2     peter /*
    489   1.2     peter  * jobs_enqueue is an enqueue function to be registered to
    490   1.2     peter  * (*altq_enqueue) in struct ifaltq.
    491   1.2     peter  */
    492   1.2     peter static int
    493   1.9  knakahar jobs_enqueue(struct ifaltq *ifq, struct mbuf *m)
    494   1.2     peter {
    495   1.2     peter 	struct jobs_if	*jif = (struct jobs_if *)ifq->altq_disc;
    496   1.2     peter 	struct jobs_class *cl, *scan;
    497   1.2     peter 	int len;
    498   1.2     peter 	int return_flag;
    499   1.2     peter 	int pri;
    500   1.2     peter 	u_int64_t now;
    501   1.2     peter 	u_int64_t old_arv;
    502   1.2     peter 	int64_t* delta_rate;
    503   1.2     peter 	u_int64_t tstamp1, tstamp2, cycles; /* used for benchmarking only */
    504   1.2     peter 
    505   1.2     peter 	jif->total_enqueued++;
    506   1.2     peter 	now = read_machclk();
    507   1.2     peter 	tstamp1 = now;
    508   1.2     peter 
    509   1.2     peter 	return_flag = 0;
    510   1.2     peter 
    511   1.2     peter 	/* proceed with packet enqueuing */
    512   1.2     peter 
    513   1.2     peter 	if (IFQ_IS_EMPTY(ifq)) {
    514   1.2     peter 		for (pri=0; pri <= jif->jif_maxpri; pri++) {
    515   1.2     peter 			scan = jif->jif_classes[pri];
    516   1.2     peter 			if (scan != NULL) {
    517   1.2     peter 				/*
    518   1.2     peter 				 * reset all quantities, except:
    519   1.2     peter 				 * average delay, number of violations
    520   1.2     peter 				 */
    521   1.2     peter 				PKTCNTR_RESET(&scan->cl_rin);
    522   1.2     peter 				PKTCNTR_RESET(&scan->cl_rout);
    523   1.2     peter 				PKTCNTR_RESET(&scan->cl_rout_th);
    524   1.2     peter 				PKTCNTR_RESET(&scan->cl_arrival);
    525   1.2     peter 				PKTCNTR_RESET(&scan->cl_dropcnt);
    526   1.2     peter 				scan->cl_lastdel = 0;
    527   1.2     peter 				scan->current_loss = 0;
    528   1.2     peter 				scan->service_rate = 0;
    529   1.2     peter 				scan->idletime = now;
    530   1.2     peter 				scan->cl_last_rate_update = now;
    531   1.2     peter 			}
    532   1.2     peter 		}
    533   1.2     peter 	}
    534   1.2     peter 
    535   1.2     peter 	/* grab class set by classifier */
    536   1.9  knakahar 	if ((cl = m->m_pkthdr.pattr_class) == NULL)
    537   1.2     peter 		cl = jif->jif_default;
    538   1.2     peter 
    539   1.2     peter 	len = m_pktlen(m);
    540   1.2     peter 	old_arv = cl->cl_arrival.bytes;
    541   1.2     peter 	PKTCNTR_ADD(&cl->cl_arrival, (int)len);
    542   1.2     peter 	PKTCNTR_ADD(&cl->cl_rin, (int)len);
    543   1.2     peter 	PKTCNTR_ADD(&cl->st_arrival, (int)len);
    544   1.2     peter 	PKTCNTR_ADD(&cl->st_rin, (int)len);
    545   1.2     peter 
    546   1.2     peter 	if (cl->cl_arrival.bytes < old_arv) {
    547   1.2     peter 		/* deals w/ overflow */
    548   1.2     peter 		for (pri=0; pri <= jif->jif_maxpri; pri++) {
    549   1.2     peter 			scan = jif->jif_classes[pri];
    550   1.2     peter 			if (scan != NULL) {
    551   1.2     peter 				/*
    552   1.2     peter 				 * reset all quantities, except:
    553   1.2     peter 				 * average delay, number of violations
    554   1.2     peter 				 */
    555   1.2     peter 				PKTCNTR_RESET(&scan->cl_rin);
    556   1.2     peter 				PKTCNTR_RESET(&scan->cl_rout);
    557   1.2     peter 				PKTCNTR_RESET(&scan->cl_rout_th);
    558   1.2     peter 				PKTCNTR_RESET(&scan->cl_arrival);
    559   1.2     peter 				PKTCNTR_RESET(&scan->cl_dropcnt);
    560   1.2     peter 				scan->current_loss = 0;
    561   1.2     peter 				scan->service_rate = 0;
    562   1.2     peter 				scan->idletime = now;
    563   1.2     peter 				scan->cl_last_rate_update = now;
    564   1.2     peter 			}
    565   1.2     peter 		}
    566   1.2     peter 		PKTCNTR_ADD(&cl->cl_arrival, (int)len);
    567   1.2     peter 		PKTCNTR_ADD(&cl->cl_rin, (int)len);
    568   1.2     peter 	}
    569   1.2     peter 
    570   1.2     peter 	if (cl->cl_arrival.bytes > cl->cl_rin.bytes)
    571   1.2     peter 		cl->current_loss =
    572   1.2     peter 		    ((cl->cl_arrival.bytes - cl->cl_rin.bytes) << SCALE_LOSS)
    573   1.2     peter 		    / cl->cl_arrival.bytes;
    574   1.2     peter 	else
    575   1.2     peter 		cl->current_loss = 0;
    576   1.2     peter 
    577   1.2     peter 	/* for MDRR: update theoretical value of the output curve */
    578   1.2     peter 
    579   1.2     peter 	for (pri=0; pri <= jif->jif_maxpri; pri++) {
    580   1.2     peter 		scan = jif->jif_classes[pri];
    581   1.2     peter 		if (scan != NULL) {
    582   1.2     peter 			if (scan->cl_last_rate_update == scan->idletime
    583   1.2     peter 			    || scan->cl_last_rate_update == 0)
    584   1.2     peter 				scan->cl_last_rate_update = now; /* initial case */
    585   1.2     peter 			else
    586   1.2     peter 				scan->cl_rout_th.bytes +=
    587   1.2     peter 				    delay_diff(now, scan->cl_last_rate_update)
    588   1.2     peter 				    * scan->service_rate;
    589   1.2     peter 
    590   1.2     peter 			/*
    591   1.2     peter 			 * we don't really care about packets here
    592   1.2     peter 			 * WARNING: rout_th is SCALED
    593   1.2     peter 			 * (b/c of the service rate)
    594   1.2     peter 			 * for precision, as opposed to rout.
    595   1.2     peter 			 */
    596   1.2     peter 
    597   1.2     peter 			scan->cl_last_rate_update = now;
    598   1.2     peter 		}
    599   1.2     peter 	}
    600   1.2     peter 
    601   1.2     peter 	if (jobs_addq(cl, m, jif) != 0)
    602   1.2     peter 		return_flag = ENOBUFS; /* signals there's a buffer overflow */
    603   1.2     peter 	else
    604   1.2     peter 		IFQ_INC_LEN(ifq);
    605   1.2     peter 
    606   1.2     peter 	/* successfully queued. */
    607   1.2     peter 
    608   1.2     peter 	enforce_wc(jif);
    609   1.2     peter 
    610   1.2     peter 	if (!min_rates_adc(jif)) {
    611   1.2     peter 		delta_rate = assign_rate_drops_adc(jif);
    612   1.2     peter 		if (delta_rate != NULL) {
    613   1.2     peter 			for (pri = 0; pri <= jif->jif_maxpri; pri++)
    614   1.2     peter 			  if ((cl = jif->jif_classes[pri]) != NULL &&
    615   1.2     peter 			      !qempty(cl->cl_q))
    616   1.2     peter 				cl->service_rate += delta_rate[pri];
    617   1.2     peter 			free(delta_rate, M_DEVBUF);
    618   1.2     peter 		}
    619   1.2     peter 	}
    620   1.2     peter 
    621   1.2     peter 	delta_rate = adjust_rates_rdc(jif);
    622   1.2     peter 
    623   1.2     peter 	if (delta_rate != NULL) {
    624   1.2     peter 		for (pri = 0; pri <= jif->jif_maxpri; pri++)
    625   1.2     peter 			if ((cl = jif->jif_classes[pri]) != NULL &&
    626   1.2     peter 			    !qempty(cl->cl_q))
    627   1.2     peter 				cl->service_rate += delta_rate[pri];
    628   1.2     peter 		free(delta_rate, M_DEVBUF);
    629   1.2     peter 	}
    630   1.2     peter 
    631   1.2     peter 	tstamp2 = read_machclk();
    632   1.2     peter 	cycles = delay_diff(tstamp2, tstamp1);
    633   1.2     peter 	if (cycles > jif->wc_cycles_enqueue)
    634   1.2     peter 		jif->wc_cycles_enqueue=cycles;
    635   1.2     peter 	if (cycles < jif->bc_cycles_enqueue)
    636   1.2     peter 		jif->bc_cycles_enqueue=cycles;
    637   1.2     peter 
    638   1.2     peter 	jif->avg_cycles_enqueue += cycles;
    639   1.2     peter 	jif->avg_cycles2_enqueue += cycles * cycles;
    640   1.2     peter 
    641  1.14       joe 	return return_flag;
    642   1.2     peter }
    643   1.2     peter 
    644   1.2     peter /*
    645   1.2     peter  * jobs_dequeue is a dequeue function to be registered to
    646   1.2     peter  * (*altq_dequeue) in struct ifaltq.
    647   1.2     peter  *
    648   1.2     peter  * note: ALTDQ_POLL returns the next packet without removing the packet
    649   1.2     peter  *	from the queue.  ALTDQ_REMOVE is a normal dequeue operation.
    650   1.2     peter  *	ALTDQ_REMOVE must return the same packet if called immediately
    651   1.2     peter  *	after ALTDQ_POLL.
    652   1.2     peter  */
    653   1.2     peter 
    654   1.2     peter static struct mbuf *
    655   1.2     peter jobs_dequeue(struct ifaltq *ifq, int op)
    656   1.2     peter {
    657   1.2     peter 	struct jobs_if	*jif = (struct jobs_if *)ifq->altq_disc;
    658   1.2     peter 	struct jobs_class *cl;
    659   1.2     peter 	struct mbuf *m;
    660   1.2     peter 	int pri;
    661   1.2     peter 	int svc_class;
    662   1.2     peter 	int64_t max_error;
    663   1.2     peter 	int64_t error;
    664   1.2     peter 	u_int64_t now;
    665   1.2     peter 	u_int64_t tstamp1, tstamp2, cycles;
    666   1.2     peter 
    667   1.2     peter 	jif->total_dequeued++;
    668   1.2     peter 
    669   1.2     peter 	now = read_machclk();
    670   1.2     peter 	tstamp1 = now;
    671   1.2     peter 
    672   1.2     peter 	if (IFQ_IS_EMPTY(ifq)) {
    673   1.2     peter 		/* no packet in the queue */
    674   1.2     peter 		for (pri=0; pri <= jif->jif_maxpri; pri++) {
    675   1.2     peter 		  cl = jif->jif_classes[pri];
    676   1.2     peter 		  if (cl != NULL)
    677   1.2     peter 		    cl->idletime = now;
    678   1.2     peter 		}
    679   1.2     peter 
    680   1.2     peter 		tstamp2 = read_machclk();
    681   1.2     peter 		cycles = delay_diff(tstamp2, tstamp1);
    682   1.2     peter 		if (cycles > jif->wc_cycles_dequeue)
    683   1.2     peter 			jif->wc_cycles_dequeue = cycles;
    684   1.2     peter 		if (cycles < jif->bc_cycles_dequeue)
    685   1.2     peter 			jif->bc_cycles_dequeue = cycles;
    686   1.2     peter 
    687   1.2     peter 		jif->avg_cycles_dequeue += cycles;
    688   1.2     peter 		jif->avg_cycles2_dequeue += cycles * cycles;
    689   1.2     peter 
    690  1.14       joe 		return NULL;
    691   1.2     peter 	}
    692   1.2     peter 
    693   1.2     peter 	/*
    694  1.15    andvar 	 * select the class whose actual transmissions are the furthest
    695   1.2     peter 	 * from the promised transmissions
    696   1.2     peter 	 */
    697   1.2     peter 
    698   1.2     peter 	max_error = -1;
    699   1.2     peter 	svc_class = -1;
    700   1.2     peter 
    701   1.2     peter 	for (pri=0; pri <= jif->jif_maxpri; pri++) {
    702   1.2     peter 		if (((cl = jif->jif_classes[pri]) != NULL)
    703   1.2     peter 		    && !qempty(cl->cl_q)) {
    704   1.2     peter 			error = (int64_t)cl->cl_rout_th.bytes
    705   1.2     peter 			    -(int64_t)scale_rate(cl->cl_rout.bytes);
    706   1.2     peter 			if (max_error == -1) {
    707   1.2     peter 				max_error = error;
    708   1.2     peter 				svc_class = pri;
    709   1.2     peter 			} else if (error > max_error) {
    710   1.2     peter 				max_error = error;
    711   1.2     peter 				svc_class = pri;
    712   1.2     peter 			}
    713   1.2     peter 		}
    714   1.2     peter 	}
    715   1.2     peter 
    716   1.2     peter 	if (svc_class != -1)
    717   1.2     peter 		cl = jif->jif_classes[svc_class];
    718   1.2     peter 	else
    719   1.2     peter 		cl = NULL;
    720   1.2     peter 
    721   1.2     peter 	if (op == ALTDQ_POLL) {
    722   1.2     peter 		tstamp2 = read_machclk();
    723   1.2     peter 		cycles = delay_diff(tstamp2, tstamp1);
    724   1.2     peter 		if (cycles > jif->wc_cycles_dequeue)
    725   1.2     peter 			jif->wc_cycles_dequeue = cycles;
    726   1.2     peter 		if (cycles < jif->bc_cycles_dequeue)
    727   1.2     peter 			jif->bc_cycles_dequeue = cycles;
    728   1.2     peter 
    729   1.2     peter 		jif->avg_cycles_dequeue += cycles;
    730   1.2     peter 		jif->avg_cycles2_dequeue += cycles * cycles;
    731   1.2     peter 
    732   1.2     peter 		return (jobs_pollq(cl));
    733   1.2     peter 	}
    734   1.2     peter 
    735   1.2     peter 	if (cl != NULL)
    736   1.2     peter 		m = jobs_getq(cl);
    737   1.2     peter 	else
    738   1.2     peter 		m = NULL;
    739   1.2     peter 
    740   1.2     peter 	if (m != NULL) {
    741   1.2     peter 		IFQ_DEC_LEN(ifq);
    742   1.2     peter 		if (qempty(cl->cl_q))
    743   1.2     peter 			cl->cl_period++;
    744   1.2     peter 
    745   1.2     peter 		cl->cl_lastdel = (u_int64_t)delay_diff(now,
    746   1.2     peter 		    tslist_first(cl->arv_tm)->timestamp);
    747   1.2     peter 		if (cl->concerned_adc
    748   1.2     peter 		    && (int64_t)cl->cl_lastdel > cl->cl_adc)
    749   1.2     peter 			cl->adc_violations++;
    750   1.2     peter 		cl->cl_avgdel  += ticks_to_secs(GRANULARITY*cl->cl_lastdel);
    751   1.2     peter 
    752   1.2     peter 		PKTCNTR_ADD(&cl->cl_rout, m_pktlen(m));
    753   1.2     peter 		PKTCNTR_ADD(&cl->st_rout, m_pktlen(m));
    754   1.2     peter 	}
    755   1.2     peter 	if (cl != NULL)
    756   1.2     peter 		tslist_dequeue(cl);		/* dequeue the timestamp */
    757   1.2     peter 
    758   1.2     peter 	tstamp2 = read_machclk();
    759   1.2     peter 	cycles = delay_diff(tstamp2, tstamp1);
    760   1.2     peter 	if (cycles > jif->wc_cycles_dequeue)
    761   1.2     peter 		jif->wc_cycles_dequeue = cycles;
    762   1.2     peter 	if (cycles < jif->bc_cycles_dequeue)
    763   1.2     peter 		jif->bc_cycles_dequeue = cycles;
    764   1.2     peter 
    765   1.2     peter 	jif->avg_cycles_dequeue += cycles;
    766   1.2     peter 	jif->avg_cycles2_dequeue += cycles * cycles;
    767   1.2     peter 
    768  1.14       joe 	return m;
    769   1.2     peter }
    770   1.2     peter 
    771   1.2     peter static int
    772   1.2     peter jobs_addq(struct jobs_class *cl, struct mbuf *m, struct jobs_if *jif)
    773   1.2     peter {
    774   1.2     peter 	int victim;
    775   1.2     peter 	u_int64_t len;
    776   1.2     peter 	u_int64_t now;
    777   1.2     peter 	struct jobs_class* victim_class;
    778   1.2     peter 
    779   1.2     peter 	victim = -1;
    780   1.2     peter 	victim_class = NULL;
    781   1.2     peter 	len = 0;
    782   1.2     peter 
    783   1.2     peter 	now = read_machclk();
    784   1.2     peter 
    785   1.2     peter 	if (jif->jif_separate && qlen(cl->cl_q) >= jif->jif_qlimit) {
    786   1.2     peter 		/*
    787   1.2     peter 		 * separate buffers: no guarantees on packet drops
    788   1.2     peter 		 * can be offered
    789   1.2     peter 		 * thus we drop the incoming packet
    790   1.2     peter 		 */
    791   1.2     peter 		len = (u_int64_t)m_pktlen(m);
    792   1.2     peter 		PKTCNTR_ADD(&cl->cl_dropcnt, (int)len);
    793   1.2     peter 		PKTCNTR_SUB(&cl->cl_rin, (int)len);
    794   1.2     peter 		PKTCNTR_ADD(&cl->st_dropcnt, (int)len);
    795   1.2     peter 		PKTCNTR_SUB(&cl->st_rin, (int)len);
    796   1.2     peter 		cl->current_loss += (len << SCALE_LOSS)
    797   1.2     peter 		    /cl->cl_arrival.bytes;
    798   1.2     peter 		m_freem(m);
    799   1.2     peter 		return (-1);
    800   1.2     peter 
    801   1.2     peter 	} else if (!jif->jif_separate
    802   1.2     peter 		   && jif->jif_ifq->ifq_len >= jif->jif_qlimit) {
    803   1.2     peter 		/* shared buffer: supports guarantees on losses */
    804   1.2     peter 		if (!cl->concerned_rlc) {
    805   1.2     peter 			if (!cl->concerned_alc) {
    806   1.2     peter 				/*
    807   1.2     peter 				 * no ALC, no RLC on this class:
    808   1.2     peter 				 * drop the incoming packet
    809   1.2     peter 				 */
    810   1.2     peter 				len = (u_int64_t)m_pktlen(m);
    811   1.2     peter 				PKTCNTR_ADD(&cl->cl_dropcnt, (int)len);
    812   1.2     peter 				PKTCNTR_SUB(&cl->cl_rin, (int)len);
    813   1.2     peter 				PKTCNTR_ADD(&cl->st_dropcnt, (int)len);
    814   1.2     peter 				PKTCNTR_SUB(&cl->st_rin, (int)len);
    815   1.2     peter 				cl->current_loss += (len << SCALE_LOSS)/cl->cl_arrival.bytes;
    816   1.2     peter 				m_freem(m);
    817   1.2     peter 				return (-1);
    818   1.2     peter 			} else {
    819   1.2     peter 				/*
    820   1.2     peter 				 * no RLC, but an ALC:
    821   1.2     peter 				 * drop the incoming packet if possible
    822   1.2     peter 				 */
    823   1.2     peter 				len = (u_int64_t)m_pktlen(m);
    824   1.2     peter 				if (cl->current_loss + (len << SCALE_LOSS)
    825   1.2     peter 				    / cl->cl_arrival.bytes <= cl->cl_alc) {
    826   1.2     peter 					PKTCNTR_ADD(&cl->cl_dropcnt, (int)len);
    827   1.2     peter 					PKTCNTR_SUB(&cl->cl_rin, (int)len);
    828   1.2     peter 					PKTCNTR_ADD(&cl->st_dropcnt, (int)len);
    829   1.2     peter 					PKTCNTR_SUB(&cl->st_rin, (int)len);
    830   1.2     peter 					cl->current_loss += (len << SCALE_LOSS)/cl->cl_arrival.bytes;
    831   1.2     peter 					m_freem(m);
    832   1.2     peter 					return (-1);
    833   1.2     peter 				} else {
    834   1.2     peter 					/*
    835   1.2     peter 					 * the ALC would be violated:
    836   1.2     peter 					 * pick another class
    837   1.2     peter 					 */
    838   1.2     peter 					_addq(cl->cl_q, m);
    839   1.2     peter 					tslist_enqueue(cl, now);
    840   1.2     peter 
    841   1.2     peter 					victim = pick_dropped_rlc(jif);
    842   1.2     peter 
    843   1.2     peter 					if (victim == -1) {
    844   1.2     peter 						/*
    845   1.2     peter 						 * something went wrong
    846   1.2     peter 						 * let us discard
    847   1.2     peter 						 * the incoming packet,
    848   1.2     peter 						 * regardless of what
    849   1.2     peter 						 * may happen...
    850   1.2     peter 						 */
    851   1.2     peter 						victim_class = cl;
    852   1.2     peter 					} else
    853   1.2     peter 						victim_class = jif->jif_classes[victim];
    854   1.2     peter 
    855   1.2     peter 					if (victim_class != NULL) {
    856   1.2     peter 						/*
    857   1.2     peter 						 * test for safety
    858   1.2     peter 						 * purposes...
    859   1.2     peter 						 * it must be true
    860   1.2     peter 						 */
    861   1.2     peter 						m = _getq_tail(victim_class->cl_q);
    862   1.2     peter 						len = (u_int64_t)m_pktlen(m);
    863   1.2     peter 						PKTCNTR_ADD(&victim_class->cl_dropcnt, (int)len);
    864   1.2     peter 						PKTCNTR_SUB(&victim_class->cl_rin, (int)len);
    865   1.2     peter 						PKTCNTR_ADD(&victim_class->st_dropcnt, (int)len);
    866   1.2     peter 						PKTCNTR_SUB(&victim_class->st_rin, (int)len);
    867   1.2     peter 						victim_class->current_loss += (len << SCALE_LOSS)/victim_class->cl_arrival.bytes;
    868   1.2     peter 						m_freem(m); /* the packet is trashed here */
    869   1.2     peter 						tslist_drop(victim_class); /* and its timestamp as well */
    870   1.2     peter 					}
    871   1.2     peter 					return (-1);
    872   1.2     peter 				}
    873   1.2     peter 			}
    874   1.2     peter 		} else {
    875   1.2     peter 			/*
    876   1.2     peter 			 * RLC on that class:
    877   1.2     peter 			 * pick class according to RLCs
    878   1.2     peter 			 */
    879   1.2     peter 			_addq(cl->cl_q, m);
    880   1.2     peter 			tslist_enqueue(cl, now);
    881   1.2     peter 
    882   1.2     peter 			victim = pick_dropped_rlc(jif);
    883   1.2     peter 			if (victim == -1) {
    884   1.2     peter 				/*
    885   1.2     peter 				 * something went wrong
    886   1.2     peter 				 * let us discard the incoming packet,
    887   1.2     peter 				 * regardless of what may happen...
    888   1.2     peter 				 */
    889   1.2     peter 				victim_class = cl;
    890   1.2     peter 			} else
    891   1.2     peter 				victim_class = jif->jif_classes[victim];
    892   1.2     peter 
    893   1.2     peter 			if (victim_class != NULL) {
    894   1.2     peter 				/*
    895   1.2     peter 				 * test for safety purposes...
    896   1.2     peter 				 * it must be true
    897   1.2     peter 				 */
    898   1.2     peter 				m = _getq_tail(victim_class->cl_q);
    899   1.2     peter 				len = (u_int64_t)m_pktlen(m);
    900   1.2     peter 				PKTCNTR_ADD(&victim_class->cl_dropcnt, (int)len);
    901   1.2     peter 				PKTCNTR_SUB(&victim_class->cl_rin, (int)len);
    902   1.2     peter 				PKTCNTR_ADD(&victim_class->st_dropcnt, (int)len);
    903   1.2     peter 				PKTCNTR_SUB(&victim_class->st_rin, (int)len);
    904   1.2     peter 				victim_class->current_loss += (len << SCALE_LOSS)/victim_class->cl_arrival.bytes;
    905   1.2     peter 				m_freem(m); /* the packet is trashed here */
    906   1.2     peter 				tslist_drop(victim_class); /* and its timestamp as well */
    907   1.2     peter 			}
    908  1.14       joe 			return -1;
    909   1.2     peter 		}
    910   1.2     peter 	}
    911   1.2     peter 	/* else: no drop */
    912   1.2     peter 
    913   1.2     peter 	_addq(cl->cl_q, m);
    914   1.2     peter 	tslist_enqueue(cl, now);
    915   1.2     peter 
    916  1.14       joe 	return 0;
    917   1.2     peter }
    918   1.2     peter 
    919   1.2     peter static struct mbuf *
    920   1.2     peter jobs_getq(struct jobs_class *cl)
    921   1.2     peter {
    922   1.2     peter 	return _getq(cl->cl_q);
    923   1.2     peter }
    924   1.2     peter 
    925   1.2     peter static struct mbuf *
    926   1.2     peter jobs_pollq(struct jobs_class *cl)
    927   1.2     peter {
    928   1.2     peter 	return qhead(cl->cl_q);
    929   1.2     peter }
    930   1.2     peter 
    931   1.2     peter static void
    932   1.2     peter jobs_purgeq(struct jobs_class *cl)
    933   1.2     peter {
    934   1.2     peter 	struct mbuf *m;
    935   1.2     peter 
    936   1.2     peter 	if (qempty(cl->cl_q))
    937   1.2     peter 		return;
    938   1.2     peter 
    939   1.2     peter 	while ((m = _getq(cl->cl_q)) != NULL) {
    940   1.2     peter 		PKTCNTR_ADD(&cl->cl_dropcnt, m_pktlen(m));
    941   1.2     peter 		PKTCNTR_ADD(&cl->st_dropcnt, m_pktlen(m));
    942   1.2     peter 		m_freem(m);
    943   1.2     peter 		tslist_drop(cl);
    944   1.2     peter 	}
    945   1.2     peter 	ASSERT(qlen(cl->cl_q) == 0);
    946   1.2     peter }
    947   1.2     peter 
    948   1.2     peter /*
    949   1.2     peter  * timestamp list support routines
    950   1.2     peter  *
    951   1.2     peter  * this implementation has been revamped and
    952   1.2     peter  * now uses a TAILQ structure.
    953   1.2     peter  * timestamp list holds class timestamps
    954   1.2     peter  * there is one timestamp list per class.
    955   1.2     peter  */
    956   1.2     peter static TSLIST *
    957   1.2     peter tslist_alloc(void)
    958   1.2     peter {
    959   1.2     peter 	TSLIST *list_init;
    960   1.2     peter 
    961   1.2     peter 	list_init = malloc(sizeof(TSLIST), M_DEVBUF, M_WAITOK);
    962   1.2     peter 	TAILQ_INIT(list_init);
    963  1.14       joe 	return list_init;
    964   1.2     peter }
    965   1.2     peter 
    966   1.2     peter static void
    967   1.2     peter tslist_destroy(struct jobs_class *cl)
    968   1.2     peter {
    969   1.2     peter 	while (tslist_first(cl->arv_tm) != NULL)
    970   1.2     peter 		tslist_dequeue(cl);
    971   1.2     peter 
    972   1.2     peter 	free(cl->arv_tm, M_DEVBUF);
    973   1.2     peter }
    974   1.2     peter 
    975   1.2     peter static int
    976   1.2     peter tslist_enqueue(struct jobs_class *cl, u_int64_t arv)
    977   1.2     peter {
    978   1.2     peter 	TSENTRY *pushed;
    979   1.2     peter 	pushed = malloc(sizeof(TSENTRY), M_DEVBUF, M_WAITOK);
    980   1.2     peter 	if (pushed == NULL)
    981  1.14       joe 		return 0;
    982   1.2     peter 
    983   1.2     peter 	pushed->timestamp = arv;
    984   1.2     peter 	TAILQ_INSERT_TAIL(cl->arv_tm, pushed, ts_list);
    985  1.14       joe 	return 1;
    986   1.2     peter }
    987   1.2     peter 
    988   1.2     peter static void
    989   1.2     peter tslist_dequeue(struct jobs_class *cl)
    990   1.2     peter {
    991   1.2     peter 	TSENTRY *popped;
    992   1.2     peter 	popped = tslist_first(cl->arv_tm);
    993   1.2     peter 	if (popped != NULL) {
    994   1.2     peter 		  TAILQ_REMOVE(cl->arv_tm, popped, ts_list);
    995   1.2     peter 		  free(popped, M_DEVBUF);
    996   1.2     peter 	}
    997   1.2     peter 	return;
    998   1.2     peter }
    999   1.2     peter 
   1000   1.2     peter static void
   1001   1.2     peter tslist_drop(struct jobs_class *cl)
   1002   1.2     peter {
   1003   1.2     peter 	TSENTRY *popped;
   1004   1.2     peter 	popped = tslist_last(cl->arv_tm);
   1005   1.2     peter 	if (popped != NULL) {
   1006   1.2     peter 		  TAILQ_REMOVE(cl->arv_tm, popped, ts_list);
   1007   1.2     peter 		  free(popped, M_DEVBUF);
   1008   1.2     peter 	}
   1009   1.2     peter 	return;
   1010   1.2     peter }
   1011   1.2     peter 
   1012   1.2     peter /*
   1013   1.2     peter  * rate allocation support routines
   1014   1.2     peter  */
   1015   1.2     peter /*
   1016   1.2     peter  * enforce_wc: enforce that backlogged classes have non-zero
   1017   1.2     peter  * service rate, and that non-backlogged classes have zero
   1018   1.2     peter  * service rate.
   1019   1.2     peter  */
   1020   1.2     peter 
   1021   1.2     peter static int
   1022   1.2     peter enforce_wc(struct jobs_if *jif)
   1023   1.2     peter {
   1024   1.2     peter 	struct jobs_class *cl;
   1025   1.2     peter 
   1026   1.2     peter 	int64_t active_classes;
   1027   1.2     peter 	int pri;
   1028   1.2     peter 	int is_backlogged, class_exists, updated;
   1029   1.2     peter 
   1030   1.2     peter 	updated = 0;
   1031   1.2     peter 	active_classes = 0;
   1032   1.2     peter 
   1033   1.2     peter 	for (pri = 0; pri <= jif->jif_maxpri; pri++) {
   1034   1.2     peter 		cl = jif->jif_classes[pri];
   1035   1.2     peter 		class_exists = (cl != NULL);
   1036   1.2     peter 		is_backlogged = (class_exists && !qempty(cl->cl_q));
   1037   1.2     peter 
   1038   1.2     peter 		if (is_backlogged)
   1039   1.2     peter 			active_classes++;
   1040   1.2     peter 		if ((is_backlogged && cl->service_rate <= 0)
   1041   1.2     peter 		    ||(class_exists
   1042   1.2     peter 		       && !is_backlogged && cl->service_rate > 0))
   1043   1.2     peter 			updated = 1;
   1044   1.2     peter 	}
   1045   1.2     peter 
   1046   1.2     peter 	if (updated) {
   1047   1.2     peter 		for (pri = 0; pri <= jif->jif_maxpri; pri++) {
   1048   1.2     peter 			cl = jif->jif_classes[pri];
   1049   1.2     peter 			class_exists = (cl != NULL);
   1050   1.2     peter 			is_backlogged = (class_exists && !qempty(cl->cl_q));
   1051   1.2     peter 
   1052   1.2     peter 			if (class_exists && !is_backlogged)
   1053   1.2     peter 				cl->service_rate = 0;
   1054   1.2     peter 			else if (is_backlogged)
   1055   1.2     peter 				cl->service_rate = (int64_t)(bps_to_internal((u_int64_t)jif->jif_bandwidth)/active_classes);
   1056   1.2     peter 		}
   1057   1.2     peter 	}
   1058   1.2     peter 
   1059   1.2     peter 	return (updated);
   1060   1.2     peter }
   1061   1.2     peter 
   1062   1.2     peter /*
   1063   1.2     peter  * adjust_rates_rdc: compute the service rates adjustments
   1064   1.2     peter  * needed to realize the desired proportional delay differentiation.
   1065   1.2     peter  * essentially, the rate adjustement delta_rate = prop_control*error,
   1066   1.2     peter  * where error is the difference between the measured "weighted"
   1067   1.2     peter  * delay and the mean of the weighted delays. see paper for more
   1068   1.2     peter  * information.
   1069   1.2     peter  * prop_control has slightly changed since the INFOCOM paper,
   1070   1.2     peter  * this condition seems to provide better results.
   1071   1.2     peter  */
   1072   1.2     peter 
   1073   1.2     peter static int64_t *
   1074   1.2     peter adjust_rates_rdc(struct jobs_if *jif)
   1075   1.2     peter {
   1076   1.2     peter 	int64_t *result;
   1077   1.2     peter 	int64_t credit, available, lower_bound, upper_bound;
   1078   1.2     peter 	int64_t bk;
   1079   1.2     peter 	int i, j;
   1080   1.2     peter 	int rdc_classes, active_classes;
   1081   1.2     peter 	int class_exists, is_backlogged;
   1082   1.2     peter 	struct jobs_class *cl;
   1083   1.2     peter 	int64_t *error;
   1084   1.2     peter 	int64_t prop_control;
   1085   1.2     peter 	u_int64_t max_prod;
   1086   1.2     peter 	u_int64_t min_share;
   1087   1.2     peter 	u_int64_t max_avg_pkt_size;
   1088   1.2     peter 
   1089   1.2     peter 	/*
   1090   1.2     peter 	 * min_share is scaled
   1091   1.2     peter 	 * to avoid dealing with doubles
   1092   1.2     peter 	 */
   1093   1.2     peter 	active_classes = 0;
   1094   1.2     peter 	rdc_classes = 0;
   1095   1.2     peter 	max_prod = 0;
   1096   1.2     peter 	max_avg_pkt_size = 0;
   1097   1.2     peter 
   1098   1.2     peter 	upper_bound = (int64_t)jif->jif_bandwidth;
   1099   1.2     peter 
   1100   1.2     peter 	for (i = 0; i <= jif->jif_maxpri; i++) {
   1101   1.2     peter 		cl = jif->jif_classes[i];
   1102   1.2     peter 		class_exists = (cl != NULL);
   1103   1.2     peter 		is_backlogged = (class_exists && !qempty(cl->cl_q));
   1104   1.2     peter 		if (is_backlogged) {
   1105   1.2     peter 			active_classes++;
   1106   1.2     peter 			if (cl->concerned_rdc)
   1107   1.2     peter 				rdc_classes++;
   1108   1.2     peter 			else
   1109   1.2     peter 				upper_bound -=
   1110   1.2     peter 				    internal_to_bps(cl->service_rate);
   1111   1.2     peter 		}
   1112   1.2     peter 	}
   1113   1.2     peter 
   1114   1.2     peter 	result = malloc((jif->jif_maxpri+1)*sizeof(int64_t),
   1115   1.2     peter 	    M_DEVBUF, M_WAITOK);
   1116   1.2     peter 
   1117   1.2     peter 	if (result == NULL)
   1118   1.2     peter 		return NULL;
   1119   1.2     peter 
   1120   1.2     peter 	for (i = 0; i <= jif->jif_maxpri; i++)
   1121   1.2     peter 		result[i] = 0;
   1122   1.2     peter 
   1123   1.2     peter 	if (upper_bound <= 0 || rdc_classes == 0)
   1124   1.2     peter 		return result;
   1125   1.2     peter 
   1126   1.2     peter 	credit = 0;
   1127   1.2     peter 	lower_bound = 0;
   1128   1.2     peter 	min_share = ((u_int64_t)1 << SCALE_SHARE);
   1129   1.2     peter 	bk = 0;
   1130   1.2     peter 
   1131   1.2     peter 	for (i = 0; i <= jif->jif_maxpri; i++) {
   1132   1.2     peter 		cl = jif->jif_classes[i];
   1133   1.2     peter 		class_exists = (cl != NULL);
   1134   1.2     peter 		is_backlogged = (class_exists && !qempty(cl->cl_q));
   1135   1.2     peter 		if (is_backlogged && cl->concerned_rdc)
   1136   1.2     peter 			bk += cl->cl_rin.bytes;
   1137   1.2     peter 	}
   1138   1.2     peter 
   1139   1.2     peter 	if (bk == 0)
   1140  1.14       joe 		return result;
   1141   1.2     peter 
   1142   1.2     peter 	for (i = 0; i <= jif->jif_maxpri; i++) {
   1143   1.2     peter 		cl = jif->jif_classes[i];
   1144   1.2     peter 		class_exists = (cl != NULL);
   1145   1.2     peter 		is_backlogged = (class_exists && !qempty(cl->cl_q));
   1146   1.2     peter 		if (is_backlogged
   1147   1.2     peter 		    && (cl->cl_rin.bytes << SCALE_SHARE)/bk < min_share)
   1148   1.2     peter 			min_share = (cl->cl_rin.bytes << SCALE_SHARE)/bk;
   1149   1.2     peter 		if (is_backlogged && cl->concerned_rdc
   1150   1.2     peter 		    && cl->delay_prod_others > max_prod)
   1151   1.2     peter 			max_prod = cl->delay_prod_others;
   1152   1.2     peter 
   1153   1.2     peter 		if (is_backlogged && cl->concerned_rdc
   1154   1.2     peter 		    && cl->cl_rin.bytes > max_avg_pkt_size*cl->cl_rin.packets)
   1155   1.2     peter 			max_avg_pkt_size = (u_int64_t)((u_int)cl->cl_rin.bytes/(u_int)cl->cl_rin.packets);
   1156   1.2     peter 	}
   1157   1.2     peter 
   1158   1.2     peter 	error = update_error(jif);
   1159   1.2     peter 	if (!error)
   1160   1.7  riastrad 		goto fail;
   1161   1.2     peter 
   1162   1.2     peter 	prop_control = (upper_bound*upper_bound*min_share)
   1163   1.2     peter 	    /(max_prod*(max_avg_pkt_size << 2));
   1164   1.2     peter 
   1165   1.2     peter 	prop_control = bps_to_internal(ticks_to_secs(prop_control)); /* in BT-1 */
   1166   1.2     peter 
   1167   1.2     peter 	credit = 0;
   1168   1.2     peter 	for (i = 0; i <= jif->jif_maxpri; i++) {
   1169   1.2     peter 		cl = jif->jif_classes[i];
   1170   1.2     peter 		class_exists = (cl != NULL);
   1171   1.2     peter 		is_backlogged = (class_exists && !qempty(cl->cl_q));
   1172   1.2     peter 		if (is_backlogged && cl->concerned_rdc) {
   1173   1.2     peter 			result[i] = -prop_control*error[i]; /* in BT-1 */
   1174   1.2     peter 			result[i] >>= (SCALE_SHARE);
   1175   1.2     peter 		}
   1176   1.2     peter 	}
   1177   1.2     peter 
   1178   1.2     peter 	free(error, M_DEVBUF); /* we don't need these anymore */
   1179   1.2     peter 
   1180   1.2     peter 	/* saturation */
   1181   1.2     peter 
   1182   1.2     peter 	for (i = 0; i <= jif->jif_maxpri; i++) {
   1183   1.2     peter 		cl = jif->jif_classes[i];
   1184   1.2     peter 		class_exists = (cl != NULL);
   1185   1.2     peter 		is_backlogged = (class_exists && !qempty(cl->cl_q));
   1186   1.2     peter 
   1187   1.2     peter 		if (is_backlogged && cl->concerned_rdc)
   1188   1.2     peter 			lower_bound += cl->min_rate_adc;
   1189   1.2     peter 		/*
   1190   1.2     peter 		 * note: if there's no ADC or ARC on cl,
   1191   1.2     peter 		 * this is equal to zero, which is fine
   1192   1.2     peter 		 */
   1193   1.2     peter 	}
   1194   1.2     peter 
   1195   1.2     peter 	for (i = 0; i <= jif->jif_maxpri; i++) {
   1196   1.2     peter 		cl = jif->jif_classes[i];
   1197   1.2     peter 		class_exists = (cl != NULL);
   1198   1.2     peter 		is_backlogged = (class_exists && !qempty(cl->cl_q));
   1199   1.2     peter 
   1200   1.2     peter 		if (is_backlogged && cl->concerned_rdc
   1201   1.2     peter 		    && result[i] + cl->service_rate > upper_bound) {
   1202   1.2     peter 			for (j = 0; j <= jif->jif_maxpri; j++) {
   1203   1.2     peter 				cl = jif->jif_classes[j];
   1204   1.2     peter 				class_exists = (cl != NULL);
   1205   1.2     peter 				is_backlogged = (class_exists
   1206   1.2     peter 						 && !qempty(cl->cl_q));
   1207   1.2     peter 				if (is_backlogged && cl->concerned_rdc) {
   1208   1.2     peter 					if (j == i)
   1209   1.2     peter 						result[j] = upper_bound
   1210   1.2     peter 						    -cl->service_rate
   1211   1.2     peter 						    + cl->min_rate_adc
   1212   1.2     peter 						    - lower_bound;
   1213   1.2     peter 					else
   1214   1.2     peter 						result[j] =
   1215   1.2     peter 						    -cl->service_rate
   1216   1.2     peter 						    +cl->min_rate_adc;
   1217   1.2     peter 				}
   1218   1.2     peter 			}
   1219   1.2     peter 			return result;
   1220   1.2     peter 		}
   1221   1.2     peter 
   1222   1.2     peter 		cl = jif->jif_classes[i];
   1223   1.2     peter 		/* do this again since it may have been modified */
   1224   1.2     peter 		class_exists = (cl != NULL);
   1225   1.2     peter 		is_backlogged = (class_exists && !qempty(cl->cl_q));
   1226   1.2     peter 
   1227   1.2     peter 		if (is_backlogged && cl->concerned_rdc
   1228   1.2     peter 		    && result[i] + cl->service_rate < cl->min_rate_adc) {
   1229   1.2     peter 			credit += cl->service_rate+result[i]
   1230   1.2     peter 			    -cl->min_rate_adc;
   1231   1.2     peter 			/* "credit" is in fact a negative number */
   1232   1.2     peter 			result[i] = -cl->service_rate+cl->min_rate_adc;
   1233   1.2     peter 		}
   1234   1.2     peter 	}
   1235   1.2     peter 
   1236   1.2     peter 	for (i = jif->jif_maxpri; (i >= 0 && credit < 0); i--) {
   1237   1.2     peter 		cl = jif->jif_classes[i];
   1238   1.2     peter 		class_exists = (cl != NULL);
   1239   1.2     peter 		is_backlogged = (class_exists && !qempty(cl->cl_q));
   1240   1.2     peter 
   1241   1.2     peter 		if (is_backlogged && cl->concerned_rdc) {
   1242   1.2     peter 			available = result[i]
   1243   1.2     peter 			    + cl->service_rate-cl->min_rate_adc;
   1244   1.2     peter 			if (available >= -credit) {
   1245   1.2     peter 				result[i] += credit;
   1246   1.2     peter 				credit = 0;
   1247   1.2     peter 			} else {
   1248   1.2     peter 				result[i] -= available;
   1249   1.2     peter 				credit += available;
   1250   1.2     peter 			}
   1251   1.2     peter 		}
   1252   1.2     peter 	}
   1253   1.2     peter 	return result;
   1254   1.7  riastrad 
   1255   1.7  riastrad fail:	free(result, M_DEVBUF);
   1256   1.7  riastrad 	return NULL;
   1257   1.2     peter }
   1258   1.2     peter 
   1259   1.2     peter /*
   1260   1.2     peter  * assign_rate_drops_adc: returns the adjustment needed to
   1261   1.2     peter  * the service rates to meet the absolute delay/rate constraints
   1262   1.2     peter  * (delay/throughput bounds) and drops traffic if need be.
   1263   1.2     peter  * see tech. report UVA/T.R. CS-2000-24/CS-2001-21 for more info.
   1264   1.2     peter  */
   1265   1.2     peter 
   1266   1.2     peter static int64_t *
   1267   1.2     peter assign_rate_drops_adc(struct jobs_if *jif)
   1268   1.2     peter {
   1269   1.2     peter 	int64_t *result;
   1270   1.2     peter 	int class_exists, is_backlogged;
   1271   1.2     peter 	struct jobs_class *cl;
   1272   1.2     peter 
   1273   1.2     peter 	int64_t *c, *n, *k;
   1274   1.2     peter 	int64_t *available;
   1275   1.2     peter 
   1276   1.2     peter 	int lowest, highest;
   1277   1.2     peter 	int keep_going;
   1278   1.2     peter 	int i;
   1279   1.2     peter 	u_int64_t now, oldest_arv;
   1280   1.2     peter 	int64_t	remaining_time;
   1281   1.2     peter 	struct mbuf* pkt;
   1282   1.2     peter 	u_int64_t len;
   1283   1.2     peter 
   1284   1.2     peter 	now = read_machclk();
   1285   1.2     peter 	oldest_arv = now;
   1286   1.2     peter 
   1287   1.2     peter 	result = malloc((jif->jif_maxpri+1)*sizeof(int64_t), M_DEVBUF, M_WAITOK);
   1288   1.2     peter 	if (result == NULL)
   1289   1.7  riastrad 		goto fail0;
   1290   1.2     peter 	c = malloc((jif->jif_maxpri+1)*sizeof(u_int64_t), M_DEVBUF, M_WAITOK);
   1291   1.2     peter 	if (c == NULL)
   1292   1.7  riastrad 		goto fail1;
   1293   1.2     peter 	n = malloc((jif->jif_maxpri+1)*sizeof(u_int64_t), M_DEVBUF, M_WAITOK);
   1294   1.2     peter 	if (n == NULL)
   1295   1.7  riastrad 		goto fail2;
   1296   1.2     peter 	k = malloc((jif->jif_maxpri+1)*sizeof(u_int64_t), M_DEVBUF, M_WAITOK);
   1297   1.2     peter 	if (k == NULL)
   1298   1.7  riastrad 		goto fail3;
   1299   1.2     peter 	available = malloc((jif->jif_maxpri+1)*sizeof(int64_t), M_DEVBUF, M_WAITOK);
   1300   1.2     peter 	if (available == NULL)
   1301   1.7  riastrad 		goto fail4;
   1302   1.2     peter 
   1303   1.2     peter 	for (i = 0; i <= jif->jif_maxpri; i++)
   1304   1.2     peter 		result[i] = 0;
   1305   1.2     peter 
   1306   1.2     peter 	keep_going = 1;
   1307   1.2     peter 
   1308   1.2     peter 	for (i = 0; i <= jif->jif_maxpri; i++) {
   1309   1.2     peter 		cl = jif->jif_classes[i];
   1310   1.2     peter 		class_exists = (cl != NULL);
   1311   1.2     peter 		is_backlogged = (class_exists && !qempty(cl->cl_q));
   1312   1.2     peter 
   1313   1.2     peter 		if (is_backlogged) {
   1314   1.2     peter 			if (cl->concerned_adc) {
   1315   1.2     peter 				/*
   1316   1.2     peter 				 * get the arrival time of the oldest
   1317   1.2     peter 				 * class-i packet
   1318   1.2     peter 				 */
   1319   1.2     peter 				if (tslist_first(cl->arv_tm) == NULL)
   1320   1.2     peter 					oldest_arv = now; /* NOTREACHED */
   1321   1.2     peter 				else
   1322   1.2     peter 					oldest_arv = (tslist_first(cl->arv_tm))->timestamp;
   1323   1.2     peter 
   1324   1.2     peter 				n[i] = cl->service_rate;
   1325   1.2     peter 				k[i] = scale_rate((int64_t)(cl->cl_rin.bytes - cl->cl_rout.bytes));
   1326   1.2     peter 
   1327   1.2     peter 				remaining_time = cl->cl_adc
   1328   1.2     peter 				    - (int64_t)delay_diff(now, oldest_arv);
   1329   1.2     peter 				if (remaining_time > 0) {
   1330   1.2     peter 					c[i] = remaining_time;
   1331   1.2     peter 					/*
   1332   1.2     peter 					 * c is the remaining time before
   1333   1.2     peter 					 * the deadline is violated
   1334   1.2     peter 					 * (in ticks)
   1335   1.2     peter 					 */
   1336   1.2     peter 					available[i] = n[i]-k[i]/c[i];
   1337   1.2     peter 				} else {
   1338   1.2     peter 					/*
   1339   1.2     peter 					 * deadline has passed...
   1340   1.2     peter 					 * we allocate the whole link
   1341   1.2     peter 					 * capacity to hopefully
   1342   1.2     peter 					 * solve the problem
   1343   1.2     peter 					 */
   1344   1.2     peter 					c[i] = 0;
   1345   1.2     peter 					available[i] = -((int64_t)bps_to_internal((u_int64_t)jif->jif_bandwidth));
   1346   1.2     peter 				}
   1347   1.2     peter 				if (cl->concerned_arc) {
   1348   1.2     peter 					/*
   1349   1.2     peter 					 * there's an ARC in addition
   1350   1.2     peter 					 * to the ADC
   1351   1.2     peter 					 */
   1352   1.2     peter 					if (n[i] - cl->cl_arc < available[i])
   1353   1.2     peter 						available[i] = n[i]
   1354   1.2     peter 						    - cl->cl_arc;
   1355   1.2     peter 				}
   1356   1.2     peter 			} else if (cl->concerned_arc) {
   1357   1.2     peter 				/*
   1358   1.2     peter 				 * backlogged, concerned by ARC
   1359   1.2     peter 				 * but not by ADC
   1360   1.2     peter 				 */
   1361   1.2     peter 				n[i] = cl->service_rate;
   1362   1.2     peter 				available[i] = n[i] - cl->cl_arc;
   1363   1.2     peter 			} else {
   1364   1.2     peter 				/*
   1365   1.2     peter 				 * backlogged but not concerned by ADC
   1366   1.2     peter 				 * or ARC -> can give everything
   1367   1.2     peter 				 */
   1368   1.2     peter 				n[i] = cl->service_rate;
   1369   1.2     peter 				available[i] = n[i];
   1370   1.2     peter 			}
   1371   1.2     peter 		} else {
   1372   1.2     peter 			/* not backlogged */
   1373   1.2     peter 			n[i] = 0;
   1374   1.2     peter 			k[i] = 0;
   1375   1.2     peter 			c[i] = 0;
   1376   1.2     peter 			if (class_exists)
   1377   1.2     peter 				available[i] = cl->service_rate;
   1378   1.2     peter 			else
   1379   1.2     peter 				available[i] = 0;
   1380   1.2     peter 		}
   1381   1.2     peter 	}
   1382   1.2     peter 
   1383   1.2     peter 	/* step 1: adjust rates (greedy algorithm) */
   1384   1.2     peter 
   1385   1.2     peter 	highest = 0;
   1386   1.2     peter 	lowest  = jif->jif_maxpri;
   1387   1.2     peter 
   1388   1.2     peter 	while (highest < jif->jif_maxpri+1 && available[highest] >= 0)
   1389   1.2     peter 		highest++; /* which is the highest class that needs more service? */
   1390   1.2     peter 	while (lowest > 0 && available[lowest] <= 0)
   1391   1.2     peter 		lowest--;  /* which is the lowest class that needs less service? */
   1392   1.2     peter 
   1393   1.2     peter 	while (highest != jif->jif_maxpri+1 && lowest != -1) {
   1394   1.2     peter 		/* give the excess service from lowest to highest */
   1395   1.2     peter 		if (available[lowest]+available[highest] > 0) {
   1396   1.2     peter 			/*
   1397   1.2     peter 			 * still some "credit" left
   1398   1.2     peter 			 * give all that is needed by "highest"
   1399   1.2     peter 			 */
   1400   1.2     peter 			n[lowest]  += available[highest];
   1401   1.2     peter 			n[highest] -= available[highest];
   1402   1.2     peter 			available[lowest]  += available[highest];
   1403   1.2     peter 			available[highest] = 0;
   1404   1.2     peter 
   1405   1.2     peter 			while (highest < jif->jif_maxpri+1
   1406   1.2     peter 			       && available[highest] >= 0)
   1407   1.2     peter 				highest++;  /* which is the highest class that needs more service now? */
   1408   1.2     peter 
   1409   1.2     peter 		} else if (available[lowest]+available[highest] == 0) {
   1410   1.2     peter 			/* no more credit left but it's fine */
   1411   1.2     peter 			n[lowest]  += available[highest];
   1412   1.2     peter 			n[highest] -= available[highest];
   1413   1.2     peter 			available[highest] = 0;
   1414   1.2     peter 			available[lowest]  = 0;
   1415   1.2     peter 
   1416   1.2     peter 			while (highest < jif->jif_maxpri+1
   1417   1.2     peter 			       && available[highest] >= 0)
   1418   1.2     peter 				highest++;  /* which is the highest class that needs more service? */
   1419   1.2     peter 			while (lowest >= 0 && available[lowest] <= 0)
   1420   1.2     peter 				lowest--;   /* which is the lowest class that needs less service? */
   1421   1.2     peter 
   1422   1.2     peter 		} else if (available[lowest]+available[highest] < 0) {
   1423   1.2     peter 			/*
   1424   1.2     peter 			 * no more credit left and we need to switch
   1425   1.2     peter 			 * to another class
   1426   1.2     peter 			 */
   1427   1.2     peter 			n[lowest]  -= available[lowest];
   1428   1.2     peter 			n[highest] += available[lowest];
   1429   1.2     peter 			available[highest] += available[lowest];
   1430   1.2     peter 			available[lowest]  = 0;
   1431   1.2     peter 
   1432   1.2     peter 			while ((lowest >= 0)&&(available[lowest] <= 0))
   1433   1.2     peter 				lowest--;  /* which is the lowest class that needs less service? */
   1434   1.2     peter 		}
   1435   1.2     peter 	}
   1436   1.2     peter 
   1437   1.2     peter 	for (i = 0; i <= jif->jif_maxpri; i++) {
   1438   1.2     peter 		cl = jif->jif_classes[i];
   1439   1.2     peter 		class_exists = (cl != NULL);
   1440   1.2     peter 		is_backlogged = (class_exists && !qempty(cl->cl_q));
   1441   1.2     peter 		if (is_backlogged) {
   1442   1.2     peter 			result[i] = n[i] - cl->service_rate;
   1443   1.2     peter 		} else {
   1444   1.2     peter 			if (class_exists)
   1445   1.2     peter 				result[i] = - cl->service_rate;
   1446   1.2     peter 			else
   1447   1.2     peter 				result[i] = 0;
   1448   1.2     peter 		}
   1449   1.2     peter 	}
   1450   1.2     peter 
   1451   1.2     peter 	/* step 2: adjust drops (for ADC) */
   1452   1.2     peter 
   1453   1.2     peter 	if (highest != jif->jif_maxpri+1) {
   1454   1.2     peter 		/* some class(es) still need(s) additional service */
   1455   1.2     peter 		for (i = 0; i <= jif->jif_maxpri; i++) {
   1456   1.2     peter 			cl = jif->jif_classes[i];
   1457   1.2     peter 			class_exists = (cl != NULL);
   1458   1.2     peter 			is_backlogged = (class_exists
   1459   1.2     peter 					 && !qempty(cl->cl_q));
   1460   1.2     peter 			if (is_backlogged && available[i] < 0) {
   1461   1.2     peter 				if (cl->concerned_adc) {
   1462   1.2     peter 					k[i] = c[i]*n[i];
   1463   1.2     peter 					while (keep_going && scale_rate((int64_t)(cl->cl_rin.bytes-cl->cl_rout.bytes)) > k[i]) {
   1464   1.2     peter 						pkt = qtail(cl->cl_q);
   1465   1.2     peter 						if (pkt != NULL) {
   1466   1.2     peter 							/* "safeguard" test (a packet SHOULD be in there) */
   1467   1.2     peter 							len = (u_int64_t)m_pktlen(pkt);
   1468   1.2     peter 							/* access packet at the tail */
   1469   1.2     peter 							if (cl->concerned_alc
   1470   1.2     peter 							    && cl->current_loss+(len << SCALE_LOSS)/cl->cl_arrival.bytes > cl->cl_alc) {
   1471   1.2     peter 								keep_going = 0; /* relax ADC in favor of ALC */
   1472   1.2     peter 							} else {
   1473   1.2     peter 								/* drop packet at the tail of the class-i queue, update values */
   1474   1.2     peter 								pkt = _getq_tail(cl->cl_q);
   1475   1.2     peter 								len = (u_int64_t)m_pktlen(pkt);
   1476   1.2     peter 								PKTCNTR_ADD(&cl->cl_dropcnt, (int)len);
   1477   1.2     peter 								PKTCNTR_SUB(&cl->cl_rin, (int)len);
   1478   1.2     peter 								PKTCNTR_ADD(&cl->st_dropcnt, (int)len);
   1479   1.2     peter 								PKTCNTR_SUB(&cl->st_rin, (int)len);
   1480   1.2     peter 								cl->current_loss += (len << SCALE_LOSS)/cl->cl_arrival.bytes;
   1481   1.2     peter 								m_freem(pkt); /* the packet is trashed here */
   1482   1.2     peter 								tslist_drop(cl);
   1483   1.2     peter 								IFQ_DEC_LEN(cl->cl_jif->jif_ifq);
   1484   1.2     peter 							}
   1485   1.2     peter 						} else
   1486   1.2     peter 							keep_going = 0; /* NOTREACHED */
   1487   1.2     peter 					}
   1488   1.2     peter 					k[i] = scale_rate((int64_t)(cl->cl_rin.bytes-cl->cl_rout.bytes));
   1489   1.2     peter 				}
   1490   1.2     peter 				/*
   1491   1.2     peter 				 * n[i] is the max rate we can give.
   1492   1.2     peter 				 * the above drops as much as possible
   1493   1.2     peter 				 * to respect a delay bound.
   1494   1.2     peter 				 * for throughput bounds,
   1495   1.2     peter 				 * there's nothing that can be done
   1496   1.2     peter 				 * after the greedy reallocation.
   1497   1.2     peter 				 */
   1498   1.2     peter 			}
   1499   1.2     peter 		}
   1500   1.2     peter 	}
   1501   1.2     peter 
   1502   1.2     peter 	/* update the values of min_rate_adc */
   1503   1.2     peter 	for (i = 0; i <= jif->jif_maxpri; i++) {
   1504   1.2     peter 		cl = jif->jif_classes[i];
   1505   1.2     peter 		class_exists = (cl != NULL);
   1506   1.2     peter 		is_backlogged = (class_exists && !qempty(cl->cl_q));
   1507   1.2     peter 		if (is_backlogged && cl->concerned_adc) {
   1508   1.2     peter 			if (c[i] != 0) {
   1509   1.2     peter 				if (cl->concerned_adc
   1510   1.2     peter 				    && !cl->concerned_arc)
   1511   1.2     peter 					cl->min_rate_adc = k[i]/c[i];
   1512   1.2     peter 				else
   1513   1.2     peter 					cl->min_rate_adc = n[i];
   1514   1.2     peter 			} else
   1515   1.2     peter 				cl->min_rate_adc = (int64_t)bps_to_internal((u_int64_t)jif->jif_bandwidth);
   1516   1.2     peter 		} else if (is_backlogged && cl->concerned_arc)
   1517   1.2     peter 			cl->min_rate_adc = n[i]; /* the best we can give */
   1518   1.2     peter 		else {
   1519   1.2     peter 			if (class_exists)
   1520   1.2     peter 				cl->min_rate_adc = 0;
   1521   1.2     peter 		}
   1522   1.2     peter 	}
   1523   1.2     peter 
   1524   1.2     peter 	free(c, M_DEVBUF);
   1525   1.2     peter 	free(n, M_DEVBUF);
   1526   1.2     peter 	free(k, M_DEVBUF);
   1527   1.2     peter 	free(available, M_DEVBUF);
   1528   1.2     peter 
   1529  1.14       joe 	return result;
   1530   1.7  riastrad 
   1531   1.7  riastrad fail5: __unused
   1532   1.7  riastrad 	free(available, M_DEVBUF);
   1533   1.7  riastrad fail4:	free(k, M_DEVBUF);
   1534   1.7  riastrad fail3:	free(n, M_DEVBUF);
   1535   1.7  riastrad fail2:	free(c, M_DEVBUF);
   1536   1.7  riastrad fail1:	free(result, M_DEVBUF);
   1537   1.7  riastrad fail0:	return NULL;
   1538   1.2     peter }
   1539   1.2     peter 
   1540   1.2     peter /*
   1541   1.2     peter  * update_error: returns the difference between the mean weighted
   1542   1.2     peter  * delay and the weighted delay for each class. if proportional
   1543   1.2     peter  * delay differentiation is perfectly achieved, it should return
   1544   1.2     peter  * zero for each class.
   1545   1.2     peter  */
   1546   1.2     peter static int64_t *
   1547   1.2     peter update_error(struct jobs_if *jif)
   1548   1.2     peter {
   1549   1.2     peter 	int i;
   1550  1.10  dholland 	int active_classes;
   1551   1.2     peter 	u_int64_t mean_weighted_delay;
   1552   1.2     peter 	u_int64_t delays[JOBS_MAXPRI];
   1553   1.2     peter 	int64_t* error;
   1554   1.2     peter 	int class_exists, is_backlogged;
   1555   1.2     peter 	struct jobs_class *cl;
   1556   1.2     peter 
   1557   1.2     peter 	error = malloc(sizeof(int64_t)*(jif->jif_maxpri+1), M_DEVBUF,
   1558   1.2     peter 	    M_WAITOK|M_ZERO);
   1559   1.2     peter 
   1560   1.2     peter 	if (error == NULL)
   1561   1.2     peter 		return NULL;
   1562   1.2     peter 
   1563   1.2     peter 	mean_weighted_delay = 0;
   1564   1.2     peter 	active_classes = 0;
   1565   1.2     peter 
   1566   1.2     peter 	for (i = 0; i <= jif->jif_maxpri; i++) {
   1567   1.2     peter 		cl = jif->jif_classes[i];
   1568   1.2     peter 		class_exists = (cl != NULL);
   1569   1.2     peter 		is_backlogged = (class_exists && !qempty(cl->cl_q));
   1570   1.2     peter 
   1571   1.2     peter 		if (is_backlogged) {
   1572   1.2     peter 			if (cl->concerned_rdc) {
   1573   1.2     peter 				delays[i] = proj_delay(jif, i);
   1574   1.2     peter 				mean_weighted_delay += cl->delay_prod_others*delays[i];
   1575   1.2     peter 				active_classes ++;
   1576   1.2     peter 			}
   1577   1.2     peter 		}
   1578   1.2     peter 	}
   1579   1.2     peter 
   1580   1.2     peter 	if (active_classes == 0)
   1581   1.2     peter 		return error;
   1582   1.2     peter 	else
   1583   1.2     peter 		mean_weighted_delay /= active_classes;
   1584   1.2     peter 
   1585   1.2     peter 	for (i = 0; i <= jif->jif_maxpri; i++) {
   1586   1.2     peter 		cl = jif->jif_classes[i];
   1587   1.2     peter 		class_exists = (cl != NULL);
   1588   1.2     peter 		is_backlogged = (class_exists && !qempty(cl->cl_q));
   1589   1.2     peter 
   1590   1.2     peter 		if (is_backlogged && cl->concerned_rdc)
   1591   1.2     peter 			error[i] = ((int64_t)mean_weighted_delay)-((int64_t)cl->delay_prod_others*delays[i]);
   1592   1.2     peter 		else
   1593   1.2     peter 			error[i] = 0; /*
   1594   1.2     peter 				       * either the class isn't concerned,
   1595   1.2     peter 				       * or it's not backlogged.
   1596   1.2     peter 				       * in any case, the rate shouldn't
   1597   1.2     peter 				       * be adjusted.
   1598   1.2     peter 				       */
   1599   1.2     peter 	}
   1600   1.2     peter 	return error;
   1601   1.2     peter }
   1602   1.2     peter 
   1603   1.2     peter /*
   1604   1.2     peter  * min_rates_adc: computes the minimum service rates needed in
   1605   1.2     peter  * each class to meet the absolute delay bounds. if, for any
   1606   1.2     peter  * class i, the current service rate of class i is less than
   1607   1.2     peter  * the computed minimum service rate, this function returns
   1608   1.2     peter  * false, true otherwise.
   1609   1.2     peter  */
   1610   1.2     peter static int
   1611   1.2     peter min_rates_adc(struct jobs_if *jif)
   1612   1.2     peter {
   1613   1.2     peter 	int result;
   1614   1.2     peter 	int i;
   1615   1.2     peter 	int class_exists, is_backlogged;
   1616   1.2     peter 	int64_t remaining_time;
   1617   1.2     peter 	struct jobs_class *cl;
   1618   1.2     peter 	result = 1;
   1619   1.2     peter 
   1620   1.2     peter 	for (i = 0; i <= jif->jif_maxpri; i++) {
   1621   1.2     peter 		cl = jif->jif_classes[i];
   1622   1.2     peter 		class_exists = (cl != NULL);
   1623   1.2     peter 		is_backlogged = (class_exists && !qempty(cl->cl_q));
   1624   1.2     peter 		if (is_backlogged && cl->concerned_adc) {
   1625   1.2     peter 			remaining_time = cl->cl_adc - proj_delay(jif, i);
   1626   1.2     peter 			if (remaining_time > 0 ) {
   1627   1.2     peter 				/* min rate needed for ADC */
   1628   1.2     peter 				cl->min_rate_adc = scale_rate((int64_t)(cl->cl_rin.bytes-cl->cl_rout.bytes))/remaining_time;
   1629   1.2     peter 				if (cl->concerned_arc
   1630   1.2     peter 				    && cl->cl_arc > cl->min_rate_adc) {
   1631   1.2     peter 					/* min rate needed for ADC + ARC */
   1632   1.2     peter 					cl->min_rate_adc = cl->cl_arc;
   1633   1.2     peter 				}
   1634   1.2     peter 			} else {
   1635   1.2     peter 				/* the deadline has been exceeded: give the whole link capacity to hopefully fix the situation */
   1636   1.2     peter 				cl->min_rate_adc = (int64_t)bps_to_internal((u_int64_t)jif->jif_bandwidth);
   1637   1.2     peter 			}
   1638   1.2     peter       		} else if (is_backlogged && cl->concerned_arc)
   1639   1.2     peter 			cl->min_rate_adc = cl->cl_arc; 			/* no ADC, an ARC */
   1640   1.2     peter 		else if (class_exists)
   1641   1.2     peter 			cl->min_rate_adc = 0;	/*
   1642   1.2     peter 						 * either the class is not
   1643   1.2     peter 						 * backlogged
   1644   1.2     peter 						 * or there is no ADC and
   1645   1.2     peter 						 * no ARC
   1646   1.2     peter 						 */
   1647   1.2     peter 		if (is_backlogged && cl->min_rate_adc > cl->service_rate)
   1648   1.2     peter 			result = 0;
   1649   1.2     peter 	}
   1650   1.2     peter 
   1651   1.2     peter 	return result;
   1652   1.2     peter }
   1653   1.2     peter 
   1654   1.2     peter /*
   1655   1.2     peter  * proj_delay: computes the difference between the current time
   1656   1.2     peter  * and the time the oldest class-i packet still in the class-i
   1657   1.2     peter  * queue i arrived in the system.
   1658   1.2     peter  */
   1659   1.2     peter static int64_t
   1660   1.2     peter proj_delay(struct jobs_if *jif, int i)
   1661   1.2     peter {
   1662   1.2     peter 	u_int64_t now;
   1663   1.2     peter 	int class_exists, is_backlogged;
   1664   1.2     peter 	struct jobs_class *cl;
   1665   1.2     peter 
   1666   1.2     peter 	now = read_machclk();
   1667   1.2     peter 	cl = jif->jif_classes[i];
   1668   1.2     peter 	class_exists = (cl != NULL);
   1669   1.2     peter 	is_backlogged = (class_exists && !qempty(cl->cl_q));
   1670   1.2     peter 
   1671   1.2     peter 	if (is_backlogged)
   1672   1.2     peter 		return ((int64_t)delay_diff(now, tslist_first(cl->arv_tm)->timestamp));
   1673   1.2     peter 
   1674  1.14       joe 	return 0; /* NOTREACHED */
   1675   1.2     peter }
   1676   1.2     peter 
   1677   1.2     peter /*
   1678   1.2     peter  * pick_dropped_rlc: returns the class index of the class to be
   1679   1.2     peter  * dropped for meeting the relative loss constraints.
   1680   1.2     peter  */
   1681   1.2     peter static int
   1682   1.2     peter pick_dropped_rlc(struct jobs_if *jif)
   1683   1.2     peter {
   1684   1.2     peter 	int64_t mean;
   1685   1.2     peter 	int64_t* loss_error;
   1686  1.10  dholland 	int i, active_classes;
   1687   1.2     peter 	int class_exists, is_backlogged;
   1688   1.2     peter 	int class_dropped;
   1689   1.2     peter 	int64_t max_error;
   1690   1.2     peter 	int64_t max_alc;
   1691   1.2     peter 	struct mbuf* pkt;
   1692   1.2     peter 	struct jobs_class *cl;
   1693   1.2     peter 	u_int64_t len;
   1694   1.2     peter 
   1695   1.2     peter 	loss_error = malloc(sizeof(int64_t)*(jif->jif_maxpri+1),
   1696   1.2     peter 	    M_DEVBUF, M_WAITOK);
   1697   1.2     peter 
   1698   1.2     peter 	if (loss_error == NULL)
   1699   1.2     peter 		return -1;
   1700   1.2     peter 
   1701   1.2     peter 	class_dropped = -1;
   1702   1.2     peter 	max_error = 0;
   1703   1.2     peter 	mean = 0;
   1704   1.2     peter 	active_classes = 0;
   1705   1.2     peter 
   1706   1.2     peter 	for (i = 0; i <= jif->jif_maxpri; i++) {
   1707   1.2     peter 		cl = jif->jif_classes[i];
   1708   1.2     peter 		class_exists = (cl != NULL);
   1709   1.2     peter 		is_backlogged = (class_exists && !qempty(cl->cl_q));
   1710   1.2     peter 		if (is_backlogged) {
   1711   1.2     peter 			if (cl->concerned_rlc) {
   1712   1.2     peter 				mean += cl->loss_prod_others
   1713   1.2     peter 				    * cl->current_loss;
   1714   1.2     peter 				active_classes++;
   1715   1.2     peter 			}
   1716   1.2     peter 		}
   1717   1.2     peter 	}
   1718   1.2     peter 
   1719   1.2     peter 	if (active_classes > 0)
   1720   1.2     peter 		mean /= active_classes;
   1721   1.2     peter 
   1722   1.2     peter 	if (active_classes == 0)
   1723   1.2     peter 		class_dropped = JOBS_MAXPRI+1; /*
   1724   1.2     peter 						* no classes are concerned
   1725   1.2     peter 						* by RLCs (JOBS_MAXPRI+1
   1726   1.2     peter 						* means "ignore RLC" here)
   1727   1.2     peter 						*/
   1728   1.2     peter 	else {
   1729   1.2     peter 		for (i = 0; i <= jif->jif_maxpri; i++) {
   1730   1.2     peter 			cl = jif->jif_classes[i];
   1731   1.2     peter 			class_exists = (cl != NULL);
   1732   1.2     peter 			is_backlogged = (class_exists
   1733   1.2     peter 					 && !qempty(cl->cl_q));
   1734   1.2     peter 
   1735   1.2     peter 			if ((is_backlogged)&&(cl->cl_rlc))
   1736   1.2     peter 				loss_error[i]=cl->loss_prod_others
   1737   1.2     peter 				    *cl->current_loss-mean;
   1738   1.2     peter 			else
   1739   1.6    plunky 				loss_error[i] = ALTQ_INFINITY;
   1740   1.2     peter 		}
   1741   1.2     peter 
   1742   1.2     peter 		for (i = 0; i <= jif->jif_maxpri; i++) {
   1743   1.2     peter 			cl = jif->jif_classes[i];
   1744   1.2     peter 			class_exists = (cl != NULL);
   1745   1.2     peter 			is_backlogged = (class_exists
   1746   1.2     peter 					 && !qempty(cl->cl_q));
   1747   1.2     peter 			if (is_backlogged && loss_error[i] <= max_error) {
   1748   1.2     peter 				/*
   1749   1.2     peter 				 * find out which class is the most
   1750   1.2     peter 				 * below the mean.
   1751   1.2     peter 				 * it's the one that needs to be dropped
   1752   1.2     peter 				 * ties are broken in favor of the higher
   1753   1.2     peter 				 * priority classes (i.e., if two classes
   1754   1.2     peter 				 * present the same deviation, the lower
   1755   1.2     peter 				 * priority class will get dropped).
   1756   1.2     peter 				 */
   1757   1.2     peter 				max_error = loss_error[i];
   1758   1.2     peter 				class_dropped = i;
   1759   1.2     peter 			}
   1760   1.2     peter 		}
   1761   1.2     peter 
   1762   1.2     peter 		if (class_dropped != -1) {
   1763   1.2     peter 			cl = jif->jif_classes[class_dropped];
   1764   1.2     peter 			pkt = qtail(cl->cl_q);
   1765   1.2     peter 			if (pkt != NULL) {
   1766   1.2     peter 				/*
   1767   1.2     peter 				 * "safeguard" test (a packet SHOULD be
   1768   1.2     peter 				 * in there)
   1769   1.2     peter 				 */
   1770   1.2     peter 				len = (u_int64_t)m_pktlen(pkt);
   1771   1.2     peter 				/* access packet at the tail */
   1772   1.2     peter 				if (cl->current_loss+(len << SCALE_LOSS)/cl->cl_arrival.bytes > cl->cl_alc) {
   1773   1.2     peter 					/*
   1774   1.2     peter 					 * the class to drop for meeting
   1775   1.2     peter 					 * the RLC will defeat the ALC:
   1776   1.2     peter 					 * ignore RLC.
   1777   1.2     peter 					 */
   1778   1.2     peter 					class_dropped = JOBS_MAXPRI+1;
   1779   1.2     peter 				}
   1780   1.2     peter 			} else
   1781   1.2     peter 				class_dropped = JOBS_MAXPRI+1; /* NOTREACHED */
   1782   1.2     peter 		} else
   1783   1.2     peter 			class_dropped = JOBS_MAXPRI+1;
   1784   1.2     peter 	}
   1785   1.2     peter 
   1786   1.2     peter 	if (class_dropped == JOBS_MAXPRI+1) {
   1787   1.2     peter 		max_alc = -((int64_t)1 << SCALE_LOSS);
   1788   1.2     peter 		for (i = jif->jif_maxpri; i >= 0; i--) {
   1789   1.2     peter 			cl = jif->jif_classes[i];
   1790   1.2     peter 			class_exists = (cl != NULL);
   1791   1.2     peter 			is_backlogged = (class_exists
   1792   1.2     peter 					 && !qempty(cl->cl_q));
   1793   1.2     peter 			if (is_backlogged) {
   1794   1.2     peter 				if (cl->concerned_alc && cl->cl_alc - cl->current_loss > max_alc) {
   1795   1.2     peter 					max_alc = cl->cl_alc-cl->current_loss; /* pick the class which is the furthest from its ALC */
   1796   1.2     peter 					class_dropped = i;
   1797   1.2     peter 				} else if (!cl->concerned_alc && ((int64_t) 1 << SCALE_LOSS)-cl->current_loss > max_alc) {
   1798   1.2     peter 					max_alc = ((int64_t) 1 << SCALE_LOSS)-cl->current_loss;
   1799   1.2     peter 					class_dropped = i;
   1800   1.2     peter 				}
   1801   1.2     peter 			}
   1802   1.2     peter 		}
   1803   1.2     peter 	}
   1804   1.2     peter 
   1805   1.2     peter 	free(loss_error, M_DEVBUF);
   1806   1.2     peter 	return (class_dropped);
   1807   1.2     peter }
   1808   1.2     peter 
   1809   1.2     peter /*
   1810   1.2     peter  * ALTQ binding/setup functions
   1811   1.2     peter  */
   1812   1.2     peter /*
   1813   1.2     peter  * jobs device interface
   1814   1.2     peter  */
   1815   1.2     peter int
   1816   1.4  christos jobsopen(dev_t dev, int flag, int fmt,
   1817   1.4  christos     struct lwp *l)
   1818   1.2     peter {
   1819   1.2     peter 	if (machclk_freq == 0)
   1820   1.2     peter 		init_machclk();
   1821   1.2     peter 
   1822   1.2     peter 	if (machclk_freq == 0) {
   1823   1.2     peter 		printf("jobs: no CPU clock available!\n");
   1824  1.14       joe 		return ENXIO;
   1825   1.2     peter 	}
   1826   1.2     peter 	/* everything will be done when the queueing scheme is attached. */
   1827   1.2     peter 	return 0;
   1828   1.2     peter }
   1829   1.2     peter 
   1830   1.2     peter int
   1831   1.4  christos jobsclose(dev_t dev, int flag, int fmt,
   1832   1.4  christos     struct lwp *l)
   1833   1.2     peter {
   1834   1.2     peter 	struct jobs_if *jif;
   1835   1.2     peter 
   1836   1.2     peter 	while ((jif = jif_list) != NULL) {
   1837   1.2     peter 		/* destroy all */
   1838   1.2     peter 		if (ALTQ_IS_ENABLED(jif->jif_ifq))
   1839   1.2     peter 			altq_disable(jif->jif_ifq);
   1840   1.2     peter 
   1841  1.13       joe 		int error = altq_detach(jif->jif_ifq);
   1842   1.8  christos 		switch (error) {
   1843   1.8  christos 		case 0:
   1844   1.8  christos 		case ENXIO:	/* already disabled */
   1845   1.8  christos 			break;
   1846   1.8  christos 		default:
   1847   1.8  christos 			return error;
   1848   1.8  christos 		}
   1849   1.8  christos 		jobs_detach(jif);
   1850   1.2     peter 	}
   1851   1.2     peter 
   1852  1.13       joe 	return 0;
   1853   1.2     peter }
   1854   1.2     peter 
   1855   1.2     peter int
   1856   1.5  christos jobsioctl(dev_t dev, ioctlcmd_t cmd, void *addr, int flag,
   1857   1.2     peter     struct lwp *l)
   1858   1.2     peter {
   1859   1.2     peter 	struct jobs_if *jif;
   1860   1.2     peter 	struct jobs_interface *ifacep;
   1861   1.2     peter 	int	error = 0;
   1862   1.2     peter 
   1863   1.2     peter 	/* check super-user privilege */
   1864   1.2     peter 	switch (cmd) {
   1865   1.2     peter 	case JOBS_GETSTATS:
   1866   1.2     peter 		break;
   1867   1.2     peter 	default:
   1868  1.12  christos 		if ((error = kauth_authorize_network(l->l_cred,
   1869   1.3      elad 		    KAUTH_NETWORK_ALTQ, KAUTH_REQ_NETWORK_ALTQ_JOBS, NULL,
   1870   1.3      elad 		    NULL, NULL)) != 0)
   1871   1.2     peter 			return (error);
   1872   1.2     peter 		break;
   1873   1.2     peter 	}
   1874   1.2     peter 
   1875   1.2     peter 	switch (cmd) {
   1876   1.2     peter 
   1877   1.2     peter 	case JOBS_IF_ATTACH:
   1878   1.2     peter 		error = jobscmd_if_attach((struct jobs_attach *)addr);
   1879   1.2     peter 		break;
   1880   1.2     peter 
   1881   1.2     peter 	case JOBS_IF_DETACH:
   1882   1.2     peter 		error = jobscmd_if_detach((struct jobs_interface *)addr);
   1883   1.2     peter 		break;
   1884   1.2     peter 
   1885   1.2     peter 	case JOBS_ENABLE:
   1886   1.2     peter 	case JOBS_DISABLE:
   1887   1.2     peter 	case JOBS_CLEAR:
   1888   1.2     peter 		ifacep = (struct jobs_interface *)addr;
   1889   1.2     peter 		if ((jif = altq_lookup(ifacep->jobs_ifname,
   1890   1.2     peter 				       ALTQT_JOBS)) == NULL) {
   1891   1.2     peter 			error = EBADF;
   1892   1.2     peter 			break;
   1893   1.2     peter 		}
   1894   1.2     peter 
   1895   1.2     peter 		switch (cmd) {
   1896   1.2     peter 		case JOBS_ENABLE:
   1897   1.2     peter 			if (jif->jif_default == NULL) {
   1898   1.2     peter #if 1
   1899   1.2     peter 				printf("jobs: no default class\n");
   1900   1.2     peter #endif
   1901   1.2     peter 				error = EINVAL;
   1902   1.2     peter 				break;
   1903   1.2     peter 			}
   1904   1.2     peter 			error = altq_enable(jif->jif_ifq);
   1905   1.2     peter 			break;
   1906   1.2     peter 
   1907   1.2     peter 		case JOBS_DISABLE:
   1908   1.2     peter 			error = altq_disable(jif->jif_ifq);
   1909   1.2     peter 			break;
   1910   1.2     peter 
   1911   1.2     peter 		case JOBS_CLEAR:
   1912   1.2     peter 			jobs_clear_interface(jif);
   1913   1.2     peter 			break;
   1914   1.2     peter 		}
   1915   1.2     peter 		break;
   1916   1.2     peter 
   1917   1.2     peter 		case JOBS_ADD_CLASS:
   1918   1.2     peter 			error = jobscmd_add_class((struct jobs_add_class *)addr);
   1919   1.2     peter 			break;
   1920   1.2     peter 
   1921   1.2     peter 	case JOBS_DEL_CLASS:
   1922   1.2     peter 		error = jobscmd_delete_class((struct jobs_delete_class *)addr);
   1923   1.2     peter 		break;
   1924   1.2     peter 
   1925   1.2     peter 	case JOBS_MOD_CLASS:
   1926   1.2     peter 		error = jobscmd_modify_class((struct jobs_modify_class *)addr);
   1927   1.2     peter 		break;
   1928   1.2     peter 
   1929   1.2     peter 	case JOBS_ADD_FILTER:
   1930   1.2     peter 		error = jobscmd_add_filter((struct jobs_add_filter *)addr);
   1931   1.2     peter 		break;
   1932   1.2     peter 
   1933   1.2     peter 	case JOBS_DEL_FILTER:
   1934   1.2     peter 		error = jobscmd_delete_filter((struct jobs_delete_filter *)addr);
   1935   1.2     peter 		break;
   1936   1.2     peter 
   1937   1.2     peter 	case JOBS_GETSTATS:
   1938   1.2     peter 		error = jobscmd_class_stats((struct jobs_class_stats *)addr);
   1939   1.2     peter 		break;
   1940   1.2     peter 
   1941   1.2     peter 	default:
   1942   1.2     peter 		error = EINVAL;
   1943   1.2     peter 		break;
   1944   1.2     peter 	}
   1945   1.2     peter 	return error;
   1946   1.2     peter }
   1947   1.2     peter 
   1948   1.2     peter static int
   1949   1.2     peter jobscmd_if_attach(struct jobs_attach *ap)
   1950   1.2     peter {
   1951   1.2     peter 	struct jobs_if *jif;
   1952   1.2     peter 	struct ifnet *ifp;
   1953   1.2     peter 	int error;
   1954   1.2     peter 
   1955   1.2     peter 	if ((ifp = ifunit(ap->iface.jobs_ifname)) == NULL)
   1956  1.14       joe 		return ENXIO;
   1957   1.2     peter 	if ((jif = jobs_attach(&ifp->if_snd, ap->bandwidth, ap->qlimit, ap->separate)) == NULL)
   1958  1.14       joe 		return ENOMEM;
   1959   1.2     peter 
   1960   1.2     peter 	/*
   1961   1.2     peter 	 * set JOBS to this ifnet structure.
   1962   1.2     peter 	 */
   1963   1.2     peter 	if ((error = altq_attach(&ifp->if_snd, ALTQT_JOBS, jif,
   1964   1.2     peter 				 jobs_enqueue, jobs_dequeue, jobs_request,
   1965   1.2     peter 				 &jif->jif_classifier, acc_classify)) != 0)
   1966   1.8  christos 		jobs_detach(jif);
   1967   1.2     peter 
   1968  1.14       joe 	return error;
   1969   1.2     peter }
   1970   1.2     peter 
   1971   1.2     peter static int
   1972   1.2     peter jobscmd_if_detach(struct jobs_interface *ap)
   1973   1.2     peter {
   1974   1.2     peter 	struct jobs_if *jif;
   1975   1.2     peter 	int error;
   1976   1.2     peter 
   1977   1.2     peter 	if ((jif = altq_lookup(ap->jobs_ifname, ALTQT_JOBS)) == NULL)
   1978  1.14       joe 		return EBADF;
   1979   1.2     peter 
   1980   1.2     peter 	if (ALTQ_IS_ENABLED(jif->jif_ifq))
   1981   1.2     peter 		altq_disable(jif->jif_ifq);
   1982   1.2     peter 
   1983   1.2     peter 	if ((error = altq_detach(jif->jif_ifq)))
   1984  1.14       joe 		return error;
   1985   1.2     peter 
   1986   1.8  christos 	jobs_detach(jif);
   1987   1.8  christos 	return 0;
   1988   1.2     peter }
   1989   1.2     peter 
   1990   1.2     peter static int
   1991   1.2     peter jobscmd_add_class(struct jobs_add_class *ap)
   1992   1.2     peter {
   1993   1.2     peter 	struct jobs_if *jif;
   1994   1.2     peter 	struct jobs_class *cl;
   1995   1.2     peter 
   1996   1.2     peter 	if ((jif = altq_lookup(ap->iface.jobs_ifname, ALTQT_JOBS)) == NULL)
   1997  1.14       joe 		return EBADF;
   1998   1.2     peter 
   1999   1.2     peter 	if (ap->pri < 0 || ap->pri >= JOBS_MAXPRI)
   2000  1.14       joe 		return EINVAL;
   2001   1.2     peter 
   2002   1.2     peter 	if ((cl = jobs_class_create(jif, ap->pri,
   2003   1.2     peter 				    ap->cl_adc, ap->cl_rdc,
   2004   1.2     peter 				    ap->cl_alc, ap->cl_rlc, ap-> cl_arc,
   2005   1.2     peter 				    ap->flags)) == NULL)
   2006  1.14       joe 		return ENOMEM;
   2007   1.2     peter 
   2008   1.2     peter 	/* return a class handle to the user */
   2009   1.2     peter 	ap->class_handle = clp_to_clh(cl);
   2010  1.14       joe 	return 0;
   2011   1.2     peter }
   2012   1.2     peter 
   2013   1.2     peter static int
   2014   1.2     peter jobscmd_delete_class(struct jobs_delete_class *ap)
   2015   1.2     peter {
   2016   1.2     peter 	struct jobs_if *jif;
   2017   1.2     peter 	struct jobs_class *cl;
   2018   1.2     peter 
   2019   1.2     peter 	if ((jif = altq_lookup(ap->iface.jobs_ifname, ALTQT_JOBS)) == NULL)
   2020  1.14       joe 		return EBADF;
   2021   1.2     peter 
   2022   1.2     peter 	if ((cl = clh_to_clp(jif, ap->class_handle)) == NULL)
   2023  1.14       joe 		return EINVAL;
   2024   1.2     peter 
   2025   1.2     peter 	return jobs_class_destroy(cl);
   2026   1.2     peter }
   2027   1.2     peter 
   2028   1.2     peter static int
   2029   1.2     peter jobscmd_modify_class(struct jobs_modify_class *ap)
   2030   1.2     peter {
   2031   1.2     peter 	struct jobs_if *jif;
   2032   1.2     peter 	struct jobs_class *cl;
   2033   1.2     peter 
   2034   1.2     peter 	if ((jif = altq_lookup(ap->iface.jobs_ifname, ALTQT_JOBS)) == NULL)
   2035  1.14       joe 		return EBADF;
   2036   1.2     peter 
   2037   1.2     peter 	if (ap->pri < 0 || ap->pri >= JOBS_MAXPRI)
   2038  1.14       joe 		return EINVAL;
   2039   1.2     peter 
   2040   1.2     peter 	if ((cl = clh_to_clp(jif, ap->class_handle)) == NULL)
   2041  1.14       joe 		return EINVAL;
   2042   1.2     peter 
   2043   1.2     peter 	/*
   2044   1.2     peter 	 * if priority is changed, move the class to the new priority
   2045   1.2     peter 	 */
   2046   1.2     peter 	if (jif->jif_classes[ap->pri] != cl) {
   2047   1.2     peter 		if (jif->jif_classes[ap->pri] != NULL)
   2048  1.14       joe 			return EEXIST;
   2049   1.2     peter 		jif->jif_classes[cl->cl_pri] = NULL;
   2050   1.2     peter 		jif->jif_classes[ap->pri] = cl;
   2051   1.2     peter 		cl->cl_pri = ap->pri;
   2052   1.2     peter 	}
   2053   1.2     peter 
   2054   1.2     peter 	/* call jobs_class_create to change class parameters */
   2055   1.2     peter 	if ((cl = jobs_class_create(jif, ap->pri,
   2056   1.2     peter 				    ap->cl_adc, ap->cl_rdc,
   2057   1.2     peter 				    ap->cl_alc, ap->cl_rlc, ap->cl_arc,
   2058   1.2     peter 				    ap->flags)) == NULL)
   2059  1.14       joe 		return ENOMEM;
   2060   1.2     peter 	return 0;
   2061   1.2     peter }
   2062   1.2     peter 
   2063   1.2     peter static int
   2064   1.2     peter jobscmd_add_filter(struct jobs_add_filter *ap)
   2065   1.2     peter {
   2066   1.2     peter 	struct jobs_if *jif;
   2067   1.2     peter 	struct jobs_class *cl;
   2068   1.2     peter 
   2069   1.2     peter 	if ((jif = altq_lookup(ap->iface.jobs_ifname, ALTQT_JOBS)) == NULL)
   2070  1.14       joe 		return EBADF;
   2071   1.2     peter 
   2072   1.2     peter 	if ((cl = clh_to_clp(jif, ap->class_handle)) == NULL)
   2073  1.14       joe 		return EINVAL;
   2074   1.2     peter 
   2075   1.2     peter 	return acc_add_filter(&jif->jif_classifier, &ap->filter,
   2076   1.2     peter 			      cl, &ap->filter_handle);
   2077   1.2     peter }
   2078   1.2     peter 
   2079   1.2     peter static int
   2080   1.2     peter jobscmd_delete_filter(struct jobs_delete_filter *ap)
   2081   1.2     peter {
   2082   1.2     peter 	struct jobs_if *jif;
   2083   1.2     peter 
   2084   1.2     peter 	if ((jif = altq_lookup(ap->iface.jobs_ifname, ALTQT_JOBS)) == NULL)
   2085  1.14       joe 		return EBADF;
   2086   1.2     peter 
   2087   1.2     peter 	return acc_delete_filter(&jif->jif_classifier, ap->filter_handle);
   2088   1.2     peter }
   2089   1.2     peter 
   2090   1.2     peter static int
   2091   1.2     peter jobscmd_class_stats(struct jobs_class_stats *ap)
   2092   1.2     peter {
   2093   1.2     peter 	struct jobs_if *jif;
   2094   1.2     peter 	struct jobs_class *cl;
   2095   1.2     peter 	struct class_stats stats, *usp;
   2096   1.2     peter 	int pri, error;
   2097   1.2     peter 
   2098   1.2     peter 	if ((jif = altq_lookup(ap->iface.jobs_ifname, ALTQT_JOBS)) == NULL)
   2099  1.14       joe 		return EBADF;
   2100   1.2     peter 
   2101   1.2     peter 	ap->maxpri = jif->jif_maxpri;
   2102   1.2     peter 
   2103   1.2     peter 	/* then, read the next N classes */
   2104   1.2     peter 	usp = ap->stats;
   2105   1.2     peter 	for (pri = 0; pri <= jif->jif_maxpri; pri++) {
   2106   1.2     peter 		cl = jif->jif_classes[pri];
   2107  1.11  riastrad 		(void)memset(&stats, 0, sizeof(stats));
   2108   1.2     peter 		if (cl != NULL)
   2109   1.2     peter 			get_class_stats(&stats, cl);
   2110   1.5  christos 		if ((error = copyout((void *)&stats, (void *)usp++,
   2111   1.2     peter 				     sizeof(stats))) != 0)
   2112  1.14       joe 			return error;
   2113   1.2     peter 	}
   2114  1.14       joe 	return 0;
   2115   1.2     peter }
   2116   1.2     peter 
   2117   1.2     peter static void
   2118   1.2     peter get_class_stats(struct class_stats *sp, struct jobs_class *cl)
   2119   1.2     peter {
   2120   1.2     peter 	u_int64_t now;
   2121   1.2     peter 	now = read_machclk();
   2122   1.2     peter 
   2123   1.2     peter 	sp->class_handle = clp_to_clh(cl);
   2124   1.2     peter 	sp->qlength = qlen(cl->cl_q);
   2125   1.2     peter 
   2126   1.2     peter 	sp->period = cl->cl_period;
   2127   1.2     peter 	sp->rin = cl->st_rin;
   2128   1.2     peter 	sp->arrival = cl->st_arrival;
   2129   1.2     peter 	sp->arrivalbusy = cl->cl_arrival;
   2130   1.2     peter 	sp->rout = cl->st_rout;
   2131   1.2     peter 	sp->dropcnt = cl->cl_dropcnt;
   2132   1.2     peter 
   2133   1.2     peter 	/*  PKTCNTR_RESET(&cl->st_arrival);*/
   2134   1.2     peter 	PKTCNTR_RESET(&cl->st_rin);
   2135   1.2     peter 	PKTCNTR_RESET(&cl->st_rout);
   2136   1.2     peter 
   2137   1.2     peter 	sp->totallength = cl->cl_jif->jif_ifq->ifq_len;
   2138   1.2     peter 	sp->lastdel = ticks_to_secs(GRANULARITY*cl->cl_lastdel);
   2139   1.2     peter 	sp->avgdel = cl->cl_avgdel;
   2140   1.2     peter 
   2141   1.2     peter 	cl->cl_avgdel = 0;
   2142   1.2     peter 
   2143   1.2     peter 	sp->busylength = ticks_to_secs(1000*delay_diff(now, cl->idletime));
   2144   1.2     peter 	sp->adc_violations = cl->adc_violations;
   2145   1.2     peter 
   2146   1.2     peter 	sp->wc_cycles_enqueue = cl->cl_jif->wc_cycles_enqueue;
   2147   1.2     peter 	sp->wc_cycles_dequeue = cl->cl_jif->wc_cycles_dequeue;
   2148   1.2     peter 	sp->bc_cycles_enqueue = cl->cl_jif->bc_cycles_enqueue;
   2149   1.2     peter 	sp->bc_cycles_dequeue = cl->cl_jif->bc_cycles_dequeue;
   2150   1.2     peter 	sp->avg_cycles_enqueue = cl->cl_jif->avg_cycles_enqueue;
   2151   1.2     peter 	sp->avg_cycles_dequeue = cl->cl_jif->avg_cycles_dequeue;
   2152   1.2     peter 	sp->avg_cycles2_enqueue = cl->cl_jif->avg_cycles2_enqueue;
   2153   1.2     peter 	sp->avg_cycles2_dequeue = cl->cl_jif->avg_cycles2_dequeue;
   2154   1.2     peter 	sp->total_enqueued = cl->cl_jif->total_enqueued;
   2155   1.2     peter 	sp->total_dequeued = cl->cl_jif->total_dequeued;
   2156   1.2     peter }
   2157   1.2     peter 
   2158   1.2     peter /* convert a class handle to the corresponding class pointer */
   2159   1.2     peter static struct jobs_class *
   2160   1.2     peter clh_to_clp(struct jobs_if *jif, u_long chandle)
   2161   1.2     peter {
   2162   1.2     peter 	struct jobs_class *cl;
   2163   1.2     peter 
   2164   1.2     peter 	cl = (struct jobs_class *)chandle;
   2165   1.2     peter 	if (chandle != ALIGN(cl)) {
   2166   1.2     peter #if 1
   2167   1.2     peter 		printf("clh_to_cl: unaligned pointer %p\n", cl);
   2168   1.2     peter #endif
   2169  1.14       joe 		return NULL;
   2170   1.2     peter 	}
   2171   1.2     peter 
   2172   1.2     peter 	if (cl == NULL || cl->cl_handle != chandle || cl->cl_jif != jif)
   2173  1.14       joe 		return NULL;
   2174  1.14       joe 	return cl;
   2175   1.2     peter }
   2176   1.2     peter 
   2177   1.2     peter /* convert a class pointer to the corresponding class handle */
   2178   1.2     peter static u_long
   2179   1.2     peter clp_to_clh(struct jobs_class *cl)
   2180   1.2     peter {
   2181   1.2     peter 	return (cl->cl_handle);
   2182   1.2     peter }
   2183   1.2     peter 
   2184   1.2     peter #ifdef KLD_MODULE
   2185   1.2     peter 
   2186   1.2     peter static struct altqsw jobs_sw =
   2187   1.2     peter 	{"jobs", jobsopen, jobsclose, jobsioctl};
   2188   1.2     peter 
   2189   1.2     peter ALTQ_MODULE(altq_jobs, ALTQT_JOBS, &jobs_sw);
   2190   1.2     peter 
   2191   1.2     peter #endif /* KLD_MODULE */
   2192   1.2     peter 
   2193   1.2     peter #endif /* ALTQ3_COMPAT */
   2194   1.2     peter #endif /* ALTQ_JOBS */
   2195