altq_subr.c revision 1.1.1.1 1 /* $KAME: altq_subr.c,v 1.8 2000/12/14 08:12:46 thorpej Exp $ */
2
3 /*
4 * Copyright (C) 1997-2000
5 * Sony Computer Science Laboratories Inc. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #ifdef ALTQ
30 #if defined(__FreeBSD__) || defined(__NetBSD__)
31 #include "opt_altq.h"
32 #if (__FreeBSD__ != 2)
33 #include "opt_inet.h"
34 #ifdef __FreeBSD__
35 #include "opt_inet6.h"
36 #endif
37 #endif
38 #endif /* __FreeBSD__ || __NetBSD__ */
39
40 #include <sys/param.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/kernel.h>
48 #include <sys/errno.h>
49 #include <sys/syslog.h>
50 #include <vm/vm.h>
51 #include <sys/sysctl.h>
52 #include <sys/queue.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_types.h>
57
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #ifdef INET6
62 #include <netinet/ip6.h>
63 #endif
64 #include <netinet/tcp.h>
65 #include <netinet/udp.h>
66
67 #include <altq/altq.h>
68 #include <altq/altq_conf.h>
69
70 #ifdef __FreeBSD__
71 #include "opt_cpu.h" /* for FreeBSD-2.2.8 to get i586_ctr_freq */
72 #include <machine/clock.h>
73 #endif
74
75 /*
76 * internal function prototypes
77 */
78 static void tbr_timeout __P((void *));
79 static int extract_ports4 __P((struct mbuf *, struct ip *,
80 struct flowinfo_in *));
81 #ifdef INET6
82 static int extract_ports6 __P((struct mbuf *, struct ip6_hdr *,
83 struct flowinfo_in6 *));
84 #endif
85 static int apply_filter4 __P((u_int32_t, struct flow_filter *,
86 struct flowinfo_in *));
87 static int apply_ppfilter4 __P((u_int32_t, struct flow_filter *,
88 struct flowinfo_in *));
89 #ifdef INET6
90 static int apply_filter6 __P((u_int32_t, struct flow_filter6 *,
91 struct flowinfo_in6 *));
92 #endif
93 static int apply_tosfilter4 __P((u_int32_t, struct flow_filter *,
94 struct flowinfo_in *));
95 static u_long get_filt_handle __P((struct acc_classifier *, int));
96 static struct acc_filter *filth_to_filtp __P((struct acc_classifier *,
97 u_long));
98 static u_int32_t filt2fibmask __P((struct flow_filter *));
99
100 static void ip4f_cache __P((struct ip *, struct flowinfo_in *));
101 static int ip4f_lookup __P((struct ip *, struct flowinfo_in *));
102 static int ip4f_init __P((void));
103 static struct ip4_frag *ip4f_alloc __P((void));
104 static void ip4f_free __P((struct ip4_frag *));
105
106 int (*altq_input) __P((struct mbuf *, int)) = NULL;
107 static int tbr_timer = 0; /* token bucket regulator timer */
108 static struct callout tbr_callout = CALLOUT_INITIALIZER;
109
110 /*
111 * alternate queueing support routines
112 */
113
114 /* look up the queue state by the interface name and the queuing type. */
115 void *
116 altq_lookup(name, type)
117 char *name;
118 int type;
119 {
120 struct ifnet *ifp;
121
122 if ((ifp = ifunit(name)) != NULL) {
123 if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
124 return (ifp->if_snd.altq_disc);
125 }
126
127 return NULL;
128 }
129
130 int
131 altq_attach(ifq, type, discipline, enqueue, dequeue, request, clfier, classify)
132 struct ifaltq *ifq;
133 int type;
134 void *discipline;
135 int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *);
136 struct mbuf *(*dequeue)(struct ifaltq *, int);
137 int (*request)(struct ifaltq *, int, void *);
138 void *clfier;
139 void *(*classify)(void *, struct mbuf *, int);
140 {
141 if (!ALTQ_IS_READY(ifq))
142 return ENXIO;
143 if (ALTQ_IS_ENABLED(ifq))
144 return EBUSY;
145 if (ALTQ_IS_ATTACHED(ifq))
146 return EEXIST;
147 ifq->altq_type = type;
148 ifq->altq_disc = discipline;
149 ifq->altq_enqueue = enqueue;
150 ifq->altq_dequeue = dequeue;
151 ifq->altq_request = request;
152 ifq->altq_clfier = clfier;
153 ifq->altq_classify = classify;
154 ifq->altq_flags &= ALTQF_CANTCHANGE;
155 #ifdef ALTQ_KLD
156 altq_module_incref(type);
157 #endif
158 return 0;
159 }
160
161 int
162 altq_detach(ifq)
163 struct ifaltq *ifq;
164 {
165 if (!ALTQ_IS_READY(ifq))
166 return ENXIO;
167 if (ALTQ_IS_ENABLED(ifq))
168 return EBUSY;
169 if (!ALTQ_IS_ATTACHED(ifq))
170 return (0);
171
172 #ifdef ALTQ_KLD
173 altq_module_declref(ifq->altq_type);
174 #endif
175 ifq->altq_type = ALTQT_NONE;
176 ifq->altq_disc = NULL;
177 ifq->altq_enqueue = NULL;
178 ifq->altq_dequeue = NULL;
179 ifq->altq_request = NULL;
180 ifq->altq_clfier = NULL;
181 ifq->altq_classify = NULL;
182 ifq->altq_flags &= ALTQF_CANTCHANGE;
183 return 0;
184 }
185
186 int
187 altq_enable(ifq)
188 struct ifaltq *ifq;
189 {
190 int s;
191
192 if (!ALTQ_IS_READY(ifq))
193 return ENXIO;
194 if (ALTQ_IS_ENABLED(ifq))
195 return 0;
196
197 s = splimp();
198 IFQ_PURGE(ifq);
199 ASSERT(ifq->ifq_len == 0);
200 ifq->altq_flags |= ALTQF_ENABLED;
201 if (ifq->altq_clfier != NULL)
202 ifq->altq_flags |= ALTQF_CLASSIFY;
203 splx(s);
204
205 return 0;
206 }
207
208 int
209 altq_disable(ifq)
210 struct ifaltq *ifq;
211 {
212 int s;
213
214 if (!ALTQ_IS_ENABLED(ifq))
215 return 0;
216
217 s = splimp();
218 IFQ_PURGE(ifq);
219 ASSERT(ifq->ifq_len == 0);
220 ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
221 splx(s);
222 return 0;
223 }
224
225 void
226 altq_assert(file, line, failedexpr)
227 const char *file, *failedexpr;
228 int line;
229 {
230 (void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
231 failedexpr, file, line);
232 panic("altq assertion");
233 /* NOTREACHED */
234 }
235
236 /*
237 * internal representation of token bucket parameters
238 * rate: byte_per_unittime << 32
239 * (((bits_per_sec) / 8) << 32) / machclk_freq
240 * depth: byte << 32
241 *
242 */
243 #define TBR_SHIFT 32
244 #define TBR_SCALE(x) ((int64_t)(x) << TBR_SHIFT)
245 #define TBR_UNSCALE(x) ((x) >> TBR_SHIFT)
246
247 struct mbuf *
248 tbr_dequeue(ifq, op)
249 struct ifaltq *ifq;
250 int op;
251 {
252 struct tb_regulator *tbr;
253 struct mbuf *m;
254 int64_t interval;
255 u_int64_t now;
256
257 tbr = ifq->altq_tbr;
258 if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
259 /* if this is a remove after poll, bypass tbr check */
260 } else {
261 /* update token only when it is negative */
262 if (tbr->tbr_token <= 0) {
263 now = read_machclk();
264 interval = now - tbr->tbr_last;
265 if (interval >= tbr->tbr_filluptime)
266 tbr->tbr_token = tbr->tbr_depth;
267 else {
268 tbr->tbr_token += interval * tbr->tbr_rate;
269 if (tbr->tbr_token > tbr->tbr_depth)
270 tbr->tbr_token = tbr->tbr_depth;
271 }
272 tbr->tbr_last = now;
273 }
274 /* if token is still negative, don't allow dequeue */
275 if (tbr->tbr_token <= 0)
276 return (NULL);
277 }
278
279 if (ALTQ_IS_ENABLED(ifq))
280 m = (*ifq->altq_dequeue)(ifq, op);
281 else {
282 if (op == ALTDQ_POLL)
283 IF_POLL(ifq, m);
284 else
285 IF_DEQUEUE(ifq, m);
286 }
287
288 if (m != NULL && op == ALTDQ_REMOVE)
289 tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
290 tbr->tbr_lastop = op;
291 return (m);
292 }
293
294 /*
295 * set a token bucket regulator.
296 * if the specified rate is zero, the token bucket regulator is deleted.
297 */
298 int
299 tbr_set(ifq, profile)
300 struct ifaltq *ifq;
301 struct tb_profile *profile;
302 {
303 struct tb_regulator *tbr, *otbr;
304
305 if (machclk_freq == 0)
306 init_machclk();
307 if (machclk_freq == 0) {
308 printf("tbr_set: no cpu clock available!\n");
309 return (ENXIO);
310 }
311
312 if (profile->rate == 0) {
313 /* delete this tbr */
314 if ((tbr = ifq->altq_tbr) == NULL)
315 return (ENOENT);
316 ifq->altq_tbr = NULL;
317 FREE(tbr, M_DEVBUF);
318 return (0);
319 }
320
321 MALLOC(tbr, struct tb_regulator *, sizeof(struct tb_regulator),
322 M_DEVBUF, M_WAITOK);
323 if (tbr == NULL)
324 return (ENOMEM);
325 bzero(tbr, sizeof(struct tb_regulator));
326
327 tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
328 tbr->tbr_depth = TBR_SCALE(profile->depth);
329 if (tbr->tbr_rate > 0)
330 tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
331 else
332 tbr->tbr_filluptime = 0xffffffffffffffffLL;
333 tbr->tbr_token = tbr->tbr_depth;
334 tbr->tbr_last = read_machclk();
335 tbr->tbr_lastop = ALTDQ_REMOVE;
336
337 otbr = ifq->altq_tbr;
338 ifq->altq_tbr = tbr; /* set the new tbr */
339
340 if (otbr != NULL)
341 FREE(otbr, M_DEVBUF);
342 else {
343 if (tbr_timer == 0) {
344 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
345 tbr_timer = 1;
346 }
347 }
348 return (0);
349 }
350
351 /*
352 * tbr_timeout goes through the interface list, and kicks the drivers
353 * if necessary.
354 */
355 static void
356 tbr_timeout(arg)
357 void *arg;
358 {
359 struct ifnet *ifp;
360 int active, s;
361
362 active = 0;
363 s = splimp();
364 #ifdef __FreeBSD__
365 #if (__FreeBSD_version < 300000)
366 for (ifp = ifnet; ifp; ifp = ifp->if_next)
367 #else
368 for (ifp = ifnet.tqh_first; ifp != NULL; ifp = ifp->if_link.tqe_next)
369 #endif
370 #else /* !FreeBSD */
371 for (ifp = ifnet.tqh_first; ifp != NULL; ifp = ifp->if_list.tqe_next)
372 #endif
373 {
374 if (!TBR_IS_ENABLED(&ifp->if_snd))
375 continue;
376 active++;
377 if (!IFQ_IS_EMPTY(&ifp->if_snd) && ifp->if_start != NULL)
378 (*ifp->if_start)(ifp);
379 }
380 splx(s);
381 if (active > 0)
382 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
383 else
384 tbr_timer = 0; /* don't need tbr_timer anymore */
385 #if defined(__alpha__) && !defined(ALTQ_NOPCC)
386 {
387 /*
388 * XXX read out the machine dependent clock once a second
389 * to detect counter wrap-around.
390 */
391 static u_int cnt;
392
393 if (++cnt >= hz) {
394 (void)read_machclk();
395 cnt = 0;
396 }
397 }
398 #endif /* __alpha__ && !ALTQ_NOPCC */
399 }
400
401 /*
402 * get token bucket regulator profile
403 */
404 int
405 tbr_get(ifq, profile)
406 struct ifaltq *ifq;
407 struct tb_profile *profile;
408 {
409 struct tb_regulator *tbr;
410
411 if ((tbr = ifq->altq_tbr) == NULL) {
412 profile->rate = 0;
413 profile->depth = 0;
414 } else {
415 profile->rate =
416 (u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq);
417 profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth);
418 }
419 return (0);
420 }
421
422
423 #ifndef IPPROTO_ESP
424 #define IPPROTO_ESP 50 /* encapsulating security payload */
425 #endif
426 #ifndef IPPROTO_AH
427 #define IPPROTO_AH 51 /* authentication header */
428 #endif
429
430 /*
431 * extract flow information from a given packet.
432 * filt_mask shows flowinfo fields required.
433 * we assume the ip header is in one mbuf, and addresses and ports are
434 * in network byte order.
435 */
436 int
437 altq_extractflow(m, af, flow, filt_bmask)
438 struct mbuf *m;
439 int af;
440 struct flowinfo *flow;
441 u_int32_t filt_bmask;
442 {
443
444 switch (af) {
445 case PF_INET: {
446 struct flowinfo_in *fin;
447 struct ip *ip;
448
449 ip = mtod(m, struct ip *);
450
451 if (ip->ip_v != 4)
452 break;
453
454 fin = (struct flowinfo_in *)flow;
455 fin->fi_len = sizeof(struct flowinfo_in);
456 fin->fi_family = AF_INET;
457
458 fin->fi_proto = ip->ip_p;
459 fin->fi_tos = ip->ip_tos;
460
461 fin->fi_src.s_addr = ip->ip_src.s_addr;
462 fin->fi_dst.s_addr = ip->ip_dst.s_addr;
463
464 if (filt_bmask & FIMB4_PORTS)
465 /* if port info is required, extract port numbers */
466 extract_ports4(m, ip, fin);
467 else {
468 fin->fi_sport = 0;
469 fin->fi_dport = 0;
470 fin->fi_gpi = 0;
471 }
472 return (1);
473 }
474
475 #ifdef INET6
476 case PF_INET6: {
477 struct flowinfo_in6 *fin6;
478 struct ip6_hdr *ip6;
479
480 ip6 = mtod(m, struct ip6_hdr *);
481 /* should we check the ip version? */
482
483 fin6 = (struct flowinfo_in6 *)flow;
484 fin6->fi6_len = sizeof(struct flowinfo_in6);
485 fin6->fi6_family = AF_INET6;
486
487 fin6->fi6_proto = ip6->ip6_nxt;
488 fin6->fi6_tclass = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
489
490 fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
491 fin6->fi6_src = ip6->ip6_src;
492 fin6->fi6_dst = ip6->ip6_dst;
493
494 if ((filt_bmask & FIMB6_PORTS) ||
495 ((filt_bmask & FIMB6_PROTO)
496 && ip6->ip6_nxt > IPPROTO_IPV6))
497 /*
498 * if port info is required, or proto is required
499 * but there are option headers, extract port
500 * and protocol numbers.
501 */
502 extract_ports6(m, ip6, fin6);
503 else {
504 fin6->fi6_sport = 0;
505 fin6->fi6_dport = 0;
506 fin6->fi6_gpi = 0;
507 }
508 return (1);
509 }
510 #endif /* INET6 */
511
512 default:
513 break;
514 }
515
516 /* failed */
517 flow->fi_len = sizeof(struct flowinfo);
518 flow->fi_family = AF_UNSPEC;
519 return (0);
520 }
521
522 /*
523 * helper routine to extract port numbers
524 */
525 /* structure for ipsec and ipv6 option header template */
526 struct _opt6 {
527 u_int8_t opt6_nxt; /* next header */
528 u_int8_t opt6_hlen; /* header extension length */
529 u_int16_t _pad;
530 u_int32_t ah_spi; /* security parameter index
531 for authentication header */
532 };
533
534 /*
535 * extract port numbers from a ipv4 packet.
536 */
537 static int
538 extract_ports4(m, ip, fin)
539 struct mbuf *m;
540 struct ip *ip;
541 struct flowinfo_in *fin;
542 {
543 struct mbuf *m0;
544 u_short ip_off;
545 u_int8_t proto;
546 int off;
547
548 fin->fi_sport = 0;
549 fin->fi_dport = 0;
550 fin->fi_gpi = 0;
551
552 ip_off = ntohs(ip->ip_off);
553 /* if it is a fragment, try cached fragment info */
554 if (ip_off & IP_OFFMASK) {
555 ip4f_lookup(ip, fin);
556 return (1);
557 }
558
559 /* locate the mbuf containing the protocol header */
560 for (m0 = m; m0 != NULL; m0 = m0->m_next)
561 if (((caddr_t)ip >= m0->m_data) &&
562 ((caddr_t)ip < m0->m_data + m0->m_len))
563 break;
564 if (m0 == NULL) {
565 #ifdef ALTQ_DEBUG
566 printf("extract_ports4: can't locate header! ip=%p\n", ip);
567 #endif
568 return (0);
569 }
570 off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
571 proto = ip->ip_p;
572
573 #ifdef ALTQ_IPSEC
574 again:
575 #endif
576 while (off >= m0->m_len) {
577 off -= m0->m_len;
578 m0 = m0->m_next;
579 }
580 ASSERT(m0->m_len >= off + 4);
581
582 switch (proto) {
583 case IPPROTO_TCP:
584 case IPPROTO_UDP: {
585 struct udphdr *udp;
586
587 udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
588 fin->fi_sport = udp->uh_sport;
589 fin->fi_dport = udp->uh_dport;
590 fin->fi_proto = proto;
591 }
592 break;
593
594 #ifdef ALTQ_IPSEC
595 case IPPROTO_ESP:
596 if (fin->fi_gpi == 0){
597 u_int32_t *gpi;
598
599 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
600 fin->fi_gpi = *gpi;
601 }
602 fin->fi_proto = proto;
603 break;
604
605 case IPPROTO_AH: {
606 /* get next header and header length */
607 struct _opt6 *opt6;
608
609 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
610 proto = opt6->opt6_nxt;
611 off += 8 + (opt6->opt6_hlen * 4);
612 if (fin->fi_gpi == 0)
613 fin->fi_gpi = opt6->ah_spi;
614 }
615 /* goto the next header */
616 goto again;
617 #endif /* ALTQ_IPSEC */
618
619 default:
620 fin->fi_proto = proto;
621 return (0);
622 }
623
624 /* if this is a first fragment, cache it. */
625 if (ip_off & IP_MF)
626 ip4f_cache(ip, fin);
627
628 return (1);
629 }
630
631 #ifdef INET6
632 static int
633 extract_ports6(m, ip6, fin6)
634 struct mbuf *m;
635 struct ip6_hdr *ip6;
636 struct flowinfo_in6 *fin6;
637 {
638 struct mbuf *m0;
639 int off;
640 u_int8_t proto;
641
642 fin6->fi6_gpi = 0;
643 fin6->fi6_sport = 0;
644 fin6->fi6_dport = 0;
645
646 /* locate the mbuf containing the protocol header */
647 for (m0 = m; m0 != NULL; m0 = m0->m_next)
648 if (((caddr_t)ip6 >= m0->m_data) &&
649 ((caddr_t)ip6 < m0->m_data + m0->m_len))
650 break;
651 if (m0 == NULL) {
652 #ifdef ALTQ_DEBUG
653 printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
654 #endif
655 return (0);
656 }
657 off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
658
659 proto = ip6->ip6_nxt;
660 do {
661 while (off >= m0->m_len) {
662 off -= m0->m_len;
663 m0 = m0->m_next;
664 }
665 ASSERT(m0->m_len >= off + 4);
666
667 switch (proto) {
668 case IPPROTO_TCP:
669 case IPPROTO_UDP: {
670 struct udphdr *udp;
671
672 udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
673 fin6->fi6_sport = udp->uh_sport;
674 fin6->fi6_dport = udp->uh_dport;
675 fin6->fi6_proto = proto;
676 }
677 return (1);
678
679 case IPPROTO_ESP:
680 if (fin6->fi6_gpi == 0) {
681 u_int32_t *gpi;
682
683 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
684 fin6->fi6_gpi = *gpi;
685 }
686 fin6->fi6_proto = proto;
687 return (1);
688
689 case IPPROTO_AH: {
690 /* get next header and header length */
691 struct _opt6 *opt6;
692
693 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
694 if (fin6->fi6_gpi == 0)
695 fin6->fi6_gpi = opt6->ah_spi;
696 proto = opt6->opt6_nxt;
697 off += 8 + (opt6->opt6_hlen * 4);
698 /* goto the next header */
699 break;
700 }
701
702 case IPPROTO_HOPOPTS:
703 case IPPROTO_ROUTING:
704 case IPPROTO_DSTOPTS: {
705 /* get next header and header length */
706 struct _opt6 *opt6;
707
708 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
709 proto = opt6->opt6_nxt;
710 off += (opt6->opt6_hlen + 1) * 8;
711 /* goto the next header */
712 break;
713 }
714
715 case IPPROTO_FRAGMENT:
716 /* ipv6 fragmentations are not supported yet */
717 default:
718 fin6->fi6_proto = proto;
719 return (0);
720 }
721 } while (1);
722 /*NOTREACHED*/
723 }
724 #endif /* INET6 */
725
726 /*
727 * altq common classifier
728 */
729 int
730 acc_add_filter(classifier, filter, class, phandle)
731 struct acc_classifier *classifier;
732 struct flow_filter *filter;
733 void *class;
734 u_long *phandle;
735 {
736 struct acc_filter *afp, *prev, *tmp;
737 int i, s;
738
739 #ifdef INET6
740 if (filter->ff_flow.fi_family != AF_INET &&
741 filter->ff_flow.fi_family != AF_INET6)
742 return (EINVAL);
743 #else
744 if (filter->ff_flow.fi_family != AF_INET)
745 return (EINVAL);
746 #endif
747
748 MALLOC(afp, struct acc_filter *, sizeof(struct acc_filter),
749 M_DEVBUF, M_WAITOK);
750 if (afp == NULL)
751 return (ENOMEM);
752 bzero(afp, sizeof(struct acc_filter));
753
754 afp->f_filter = *filter;
755 afp->f_class = class;
756
757 i = ACC_WILDCARD_INDEX;
758 if (filter->ff_flow.fi_family == AF_INET) {
759 struct flow_filter *filter4 = &afp->f_filter;
760
761 /*
762 * if address is 0, it's a wildcard. if address mask
763 * isn't set, use full mask.
764 */
765 if (filter4->ff_flow.fi_dst.s_addr == 0)
766 filter4->ff_mask.mask_dst.s_addr = 0;
767 else if (filter4->ff_mask.mask_dst.s_addr == 0)
768 filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
769 if (filter4->ff_flow.fi_src.s_addr == 0)
770 filter4->ff_mask.mask_src.s_addr = 0;
771 else if (filter4->ff_mask.mask_src.s_addr == 0)
772 filter4->ff_mask.mask_src.s_addr = 0xffffffff;
773
774 /* clear extra bits in addresses */
775 filter4->ff_flow.fi_dst.s_addr &=
776 filter4->ff_mask.mask_dst.s_addr;
777 filter4->ff_flow.fi_src.s_addr &=
778 filter4->ff_mask.mask_src.s_addr;
779
780 /*
781 * if dst address is a wildcard, use hash-entry
782 * ACC_WILDCARD_INDEX.
783 */
784 if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
785 i = ACC_WILDCARD_INDEX;
786 else
787 i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
788 }
789 #ifdef INET6
790 else if (filter->ff_flow.fi_family == AF_INET6) {
791 struct flow_filter6 *filter6 =
792 (struct flow_filter6 *)&afp->f_filter;
793 #ifndef IN6MASK0 /* taken from kame ipv6 */
794 #define IN6MASK0 {{{ 0, 0, 0, 0 }}}
795 #define IN6MASK128 {{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
796 const struct in6_addr in6mask0 = IN6MASK0;
797 const struct in6_addr in6mask128 = IN6MASK128;
798 #endif
799
800 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
801 filter6->ff_mask6.mask6_dst = in6mask0;
802 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
803 filter6->ff_mask6.mask6_dst = in6mask128;
804 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
805 filter6->ff_mask6.mask6_src = in6mask0;
806 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
807 filter6->ff_mask6.mask6_src = in6mask128;
808
809 /* clear extra bits in addresses */
810 for (i = 0; i < 16; i++)
811 filter6->ff_flow6.fi6_dst.s6_addr[i] &=
812 filter6->ff_mask6.mask6_dst.s6_addr[i];
813 for (i = 0; i < 16; i++)
814 filter6->ff_flow6.fi6_src.s6_addr[i] &=
815 filter6->ff_mask6.mask6_src.s6_addr[i];
816
817 if (filter6->ff_flow6.fi6_flowlabel == 0)
818 i = ACC_WILDCARD_INDEX;
819 else
820 i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
821 }
822 #endif /* INET6 */
823
824 afp->f_handle = get_filt_handle(classifier, i);
825
826 /* update filter bitmask */
827 afp->f_fbmask = filt2fibmask(filter);
828 classifier->acc_fbmask |= afp->f_fbmask;
829
830 /*
831 * add this filter to the filter list.
832 * filters are ordered from the highest rule number.
833 */
834 s = splimp();
835 prev = NULL;
836 LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
837 if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
838 prev = tmp;
839 else
840 break;
841 }
842 if (prev == NULL)
843 LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
844 else
845 LIST_INSERT_AFTER(prev, afp, f_chain);
846 splx(s);
847
848 *phandle = afp->f_handle;
849 return (0);
850 }
851
852 int
853 acc_delete_filter(classifier, handle)
854 struct acc_classifier *classifier;
855 u_long handle;
856 {
857 struct acc_filter *afp;
858 int s;
859
860 if ((afp = filth_to_filtp(classifier, handle)) == NULL)
861 return (EINVAL);
862
863 s = splimp();
864 LIST_REMOVE(afp, f_chain);
865 splx(s);
866
867 FREE(afp, M_DEVBUF);
868
869 /* todo: update filt_bmask */
870
871 return (0);
872 }
873
874 /*
875 * delete filters referencing to the specified class.
876 * if the all flag is not 0, delete all the filters.
877 */
878 int
879 acc_discard_filters(classifier, class, all)
880 struct acc_classifier *classifier;
881 void *class;
882 int all;
883 {
884 struct acc_filter *afp;
885 int i, s;
886
887 s = splimp();
888 for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
889 do {
890 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
891 if (all || afp->f_class == class) {
892 LIST_REMOVE(afp, f_chain);
893 FREE(afp, M_DEVBUF);
894 /* start again from the head */
895 break;
896 }
897 } while (afp != NULL);
898 }
899 splx(s);
900
901 if (all)
902 classifier->acc_fbmask = 0;
903
904 return (0);
905 }
906
907 void *
908 acc_classify(clfier, m, af)
909 void *clfier;
910 struct mbuf *m;
911 int af;
912 {
913 struct acc_classifier *classifier;
914 struct flowinfo flow;
915 struct acc_filter *afp;
916 int i;
917
918 classifier = (struct acc_classifier *)clfier;
919 altq_extractflow(m, af, &flow, classifier->acc_fbmask);
920
921 if (flow.fi_family == AF_INET) {
922 struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
923
924 if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
925 /* only tos is used */
926 LIST_FOREACH(afp,
927 &classifier->acc_filters[ACC_WILDCARD_INDEX],
928 f_chain)
929 if (apply_tosfilter4(afp->f_fbmask,
930 &afp->f_filter, fp))
931 /* filter matched */
932 return (afp->f_class);
933 } else if ((classifier->acc_fbmask &
934 (~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
935 == 0) {
936 /* only proto and ports are used */
937 LIST_FOREACH(afp,
938 &classifier->acc_filters[ACC_WILDCARD_INDEX],
939 f_chain)
940 if (apply_ppfilter4(afp->f_fbmask,
941 &afp->f_filter, fp))
942 /* filter matched */
943 return (afp->f_class);
944 } else {
945 /* get the filter hash entry from its dest address */
946 i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
947 do {
948 /*
949 * go through this loop twice. first for dst
950 * hash, second for wildcards.
951 */
952 LIST_FOREACH(afp, &classifier->acc_filters[i],
953 f_chain)
954 if (apply_filter4(afp->f_fbmask,
955 &afp->f_filter, fp))
956 /* filter matched */
957 return (afp->f_class);
958
959 /*
960 * check again for filters with a dst addr
961 * wildcard.
962 * (daddr == 0 || dmask != 0xffffffff).
963 */
964 if (i != ACC_WILDCARD_INDEX)
965 i = ACC_WILDCARD_INDEX;
966 else
967 break;
968 } while (1);
969 }
970 }
971 #ifdef INET6
972 else if (flow.fi_family == AF_INET6) {
973 struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
974
975 /* get the filter hash entry from its flow ID */
976 if (fp6->fi6_flowlabel != 0)
977 i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
978 else
979 /* flowlable can be zero */
980 i = ACC_WILDCARD_INDEX;
981
982 /* go through this loop twice. first for flow hash, second
983 for wildcards. */
984 do {
985 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
986 if (apply_filter6(afp->f_fbmask,
987 (struct flow_filter6 *)&afp->f_filter,
988 fp6))
989 /* filter matched */
990 return (afp->f_class);
991
992 /*
993 * check again for filters with a wildcard.
994 */
995 if (i != ACC_WILDCARD_INDEX)
996 i = ACC_WILDCARD_INDEX;
997 else
998 break;
999 } while (1);
1000 }
1001 #endif /* INET6 */
1002
1003 /* no filter matched */
1004 return (NULL);
1005 }
1006
1007 static int
1008 apply_filter4(fbmask, filt, pkt)
1009 u_int32_t fbmask;
1010 struct flow_filter *filt;
1011 struct flowinfo_in *pkt;
1012 {
1013 if (filt->ff_flow.fi_family != AF_INET)
1014 return (0);
1015 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1016 return (0);
1017 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1018 return (0);
1019 if ((fbmask & FIMB4_DADDR) &&
1020 filt->ff_flow.fi_dst.s_addr !=
1021 (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
1022 return (0);
1023 if ((fbmask & FIMB4_SADDR) &&
1024 filt->ff_flow.fi_src.s_addr !=
1025 (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
1026 return (0);
1027 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1028 return (0);
1029 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1030 (pkt->fi_tos & filt->ff_mask.mask_tos))
1031 return (0);
1032 if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
1033 return (0);
1034 /* match */
1035 return (1);
1036 }
1037
1038 /*
1039 * filter matching function optimized for a common case that checks
1040 * only protocol and port numbers
1041 */
1042 static int
1043 apply_ppfilter4(fbmask, filt, pkt)
1044 u_int32_t fbmask;
1045 struct flow_filter *filt;
1046 struct flowinfo_in *pkt;
1047 {
1048 if (filt->ff_flow.fi_family != AF_INET)
1049 return (0);
1050 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1051 return (0);
1052 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1053 return (0);
1054 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1055 return (0);
1056 /* match */
1057 return (1);
1058 }
1059
1060 /*
1061 * filter matching function only for tos field.
1062 */
1063 static int
1064 apply_tosfilter4(fbmask, filt, pkt)
1065 u_int32_t fbmask;
1066 struct flow_filter *filt;
1067 struct flowinfo_in *pkt;
1068 {
1069 if (filt->ff_flow.fi_family != AF_INET)
1070 return (0);
1071 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1072 (pkt->fi_tos & filt->ff_mask.mask_tos))
1073 return (0);
1074 /* match */
1075 return (1);
1076 }
1077
1078 #ifdef INET6
1079 static int
1080 apply_filter6(fbmask, filt, pkt)
1081 u_int32_t fbmask;
1082 struct flow_filter6 *filt;
1083 struct flowinfo_in6 *pkt;
1084 {
1085 int i;
1086
1087 if (filt->ff_flow6.fi6_family != AF_INET6)
1088 return (0);
1089 if ((fbmask & FIMB6_FLABEL) &&
1090 filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
1091 return (0);
1092 if ((fbmask & FIMB6_PROTO) &&
1093 filt->ff_flow6.fi6_proto != pkt->fi6_proto)
1094 return (0);
1095 if ((fbmask & FIMB6_SPORT) &&
1096 filt->ff_flow6.fi6_sport != pkt->fi6_sport)
1097 return (0);
1098 if ((fbmask & FIMB6_DPORT) &&
1099 filt->ff_flow6.fi6_dport != pkt->fi6_dport)
1100 return (0);
1101 if (fbmask & FIMB6_SADDR) {
1102 for (i = 0; i < 4; i++)
1103 if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
1104 (pkt->fi6_src.s6_addr32[i] &
1105 filt->ff_mask6.mask6_src.s6_addr32[i]))
1106 return (0);
1107 }
1108 if (fbmask & FIMB6_DADDR) {
1109 for (i = 0; i < 4; i++)
1110 if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
1111 (pkt->fi6_dst.s6_addr32[i] &
1112 filt->ff_mask6.mask6_dst.s6_addr32[i]))
1113 return (0);
1114 }
1115 if ((fbmask & FIMB6_TCLASS) &&
1116 filt->ff_flow6.fi6_tclass !=
1117 (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
1118 return (0);
1119 if ((fbmask & FIMB6_GPI) &&
1120 filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
1121 return (0);
1122 /* match */
1123 return (1);
1124 }
1125 #endif /* INET6 */
1126
1127 /*
1128 * filter handle:
1129 * bit 20-28: index to the filter hash table
1130 * bit 0-19: unique id in the hash bucket.
1131 */
1132 static u_long
1133 get_filt_handle(classifier, i)
1134 struct acc_classifier *classifier;
1135 int i;
1136 {
1137 static u_long handle_number = 1;
1138 u_long handle;
1139 struct acc_filter *afp;
1140
1141 while (1) {
1142 handle = handle_number++ & 0x000fffff;
1143
1144 if (LIST_EMPTY(&classifier->acc_filters[i]))
1145 break;
1146
1147 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1148 if ((afp->f_handle & 0x000fffff) == handle)
1149 break;
1150 if (afp == NULL)
1151 break;
1152 /* this handle is already used, try again */
1153 }
1154
1155 return ((i << 20) | handle);
1156 }
1157
1158 /* convert filter handle to filter pointer */
1159 static struct acc_filter *
1160 filth_to_filtp(classifier, handle)
1161 struct acc_classifier *classifier;
1162 u_long handle;
1163 {
1164 struct acc_filter *afp;
1165 int i;
1166
1167 i = ACC_GET_HINDEX(handle);
1168
1169 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1170 if (afp->f_handle == handle)
1171 return (afp);
1172
1173 return (NULL);
1174 }
1175
1176 /* create flowinfo bitmask */
1177 static u_int32_t
1178 filt2fibmask(filt)
1179 struct flow_filter *filt;
1180 {
1181 u_int32_t mask = 0;
1182 #ifdef INET6
1183 struct flow_filter6 *filt6;
1184 #endif
1185
1186 switch (filt->ff_flow.fi_family) {
1187 case AF_INET:
1188 if (filt->ff_flow.fi_proto != 0)
1189 mask |= FIMB4_PROTO;
1190 if (filt->ff_flow.fi_tos != 0)
1191 mask |= FIMB4_TOS;
1192 if (filt->ff_flow.fi_dst.s_addr != 0)
1193 mask |= FIMB4_DADDR;
1194 if (filt->ff_flow.fi_src.s_addr != 0)
1195 mask |= FIMB4_SADDR;
1196 if (filt->ff_flow.fi_sport != 0)
1197 mask |= FIMB4_SPORT;
1198 if (filt->ff_flow.fi_dport != 0)
1199 mask |= FIMB4_DPORT;
1200 if (filt->ff_flow.fi_gpi != 0)
1201 mask |= FIMB4_GPI;
1202 break;
1203 #ifdef INET6
1204 case AF_INET6:
1205 filt6 = (struct flow_filter6 *)filt;
1206
1207 if (filt6->ff_flow6.fi6_proto != 0)
1208 mask |= FIMB6_PROTO;
1209 if (filt6->ff_flow6.fi6_tclass != 0)
1210 mask |= FIMB6_TCLASS;
1211 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
1212 mask |= FIMB6_DADDR;
1213 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
1214 mask |= FIMB6_SADDR;
1215 if (filt6->ff_flow6.fi6_sport != 0)
1216 mask |= FIMB6_SPORT;
1217 if (filt6->ff_flow6.fi6_dport != 0)
1218 mask |= FIMB6_DPORT;
1219 if (filt6->ff_flow6.fi6_gpi != 0)
1220 mask |= FIMB6_GPI;
1221 if (filt6->ff_flow6.fi6_flowlabel != 0)
1222 mask |= FIMB6_FLABEL;
1223 break;
1224 #endif /* INET6 */
1225 }
1226 return (mask);
1227 }
1228
1229
1230 /*
1231 * helper functions to handle IPv4 fragments.
1232 * currently only in-sequence fragments are handled.
1233 * - fragment info is cached in a LRU list.
1234 * - when a first fragment is found, cache its flow info.
1235 * - when a non-first fragment is found, lookup the cache.
1236 */
1237
1238 struct ip4_frag {
1239 TAILQ_ENTRY(ip4_frag) ip4f_chain;
1240 char ip4f_valid;
1241 u_short ip4f_id;
1242 struct flowinfo_in ip4f_info;
1243 };
1244
1245 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
1246
1247 #define IP4F_TABSIZE 16 /* IPv4 fragment cache size */
1248
1249
1250 static void
1251 ip4f_cache(ip, fin)
1252 struct ip *ip;
1253 struct flowinfo_in *fin;
1254 {
1255 struct ip4_frag *fp;
1256
1257 if (TAILQ_EMPTY(&ip4f_list)) {
1258 /* first time call, allocate fragment cache entries. */
1259 if (ip4f_init() < 0)
1260 /* allocation failed! */
1261 return;
1262 }
1263
1264 fp = ip4f_alloc();
1265 fp->ip4f_id = ip->ip_id;
1266
1267 /* save port numbers */
1268 fp->ip4f_info.fi_sport = fin->fi_sport;
1269 fp->ip4f_info.fi_dport = fin->fi_dport;
1270 fp->ip4f_info.fi_gpi = fin->fi_gpi;
1271 }
1272
1273 static int
1274 ip4f_lookup(ip, fin)
1275 struct ip *ip;
1276 struct flowinfo_in *fin;
1277 {
1278 struct ip4_frag *fp;
1279
1280 for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
1281 fp = TAILQ_NEXT(fp, ip4f_chain))
1282 if (ip->ip_id == fp->ip4f_id &&
1283 ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
1284 ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
1285 ip->ip_p == fp->ip4f_info.fi_proto) {
1286
1287 /* found the matching entry */
1288 fin->fi_sport = fp->ip4f_info.fi_sport;
1289 fin->fi_dport = fp->ip4f_info.fi_dport;
1290 fin->fi_gpi = fp->ip4f_info.fi_gpi;
1291
1292 if ((ntohs(ip->ip_off) & IP_MF) == 0)
1293 /* this is the last fragment,
1294 release the entry. */
1295 ip4f_free(fp);
1296
1297 return (1);
1298 }
1299
1300 /* no matching entry found */
1301 return (0);
1302 }
1303
1304 static int
1305 ip4f_init(void)
1306 {
1307 struct ip4_frag *fp;
1308 int i;
1309
1310 TAILQ_INIT(&ip4f_list);
1311 for (i=0; i<IP4F_TABSIZE; i++) {
1312 MALLOC(fp, struct ip4_frag *, sizeof(struct ip4_frag),
1313 M_DEVBUF, M_NOWAIT);
1314 if (fp == NULL) {
1315 printf("ip4f_init: can't alloc %dth entry!\n", i);
1316 if (i == 0)
1317 return (-1);
1318 return (0);
1319 }
1320 fp->ip4f_valid = 0;
1321 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1322 }
1323 return (0);
1324 }
1325
1326 static struct ip4_frag *
1327 ip4f_alloc(void)
1328 {
1329 struct ip4_frag *fp;
1330
1331 /* reclaim an entry at the tail, put it at the head */
1332 fp = TAILQ_LAST(&ip4f_list, ip4f_list);
1333 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1334 fp->ip4f_valid = 1;
1335 TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
1336 return (fp);
1337 }
1338
1339 static void
1340 ip4f_free(fp)
1341 struct ip4_frag *fp;
1342 {
1343 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1344 fp->ip4f_valid = 0;
1345 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1346 }
1347
1348 /*
1349 * read and write diffserv field in IPv4 or IPv6 header
1350 */
1351 u_int8_t
1352 read_dsfield(m, pktattr)
1353 struct mbuf *m;
1354 struct altq_pktattr *pktattr;
1355 {
1356 struct mbuf *m0;
1357 u_int8_t ds_field = 0;
1358
1359 if (pktattr == NULL ||
1360 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
1361 return ((u_int8_t)0);
1362
1363 /* verify that pattr_hdr is within the mbuf data */
1364 for (m0 = m; m0 != NULL; m0 = m0->m_next)
1365 if ((pktattr->pattr_hdr >= m0->m_data) &&
1366 (pktattr->pattr_hdr < m0->m_data + m0->m_len))
1367 break;
1368 if (m0 == NULL) {
1369 /* ick, pattr_hdr is stale */
1370 pktattr->pattr_af = AF_UNSPEC;
1371 #ifdef ALTQ_DEBUG
1372 printf("read_dsfield: can't locate header!\n");
1373 #endif
1374 return ((u_int8_t)0);
1375 }
1376
1377 if (pktattr->pattr_af == AF_INET) {
1378 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
1379
1380 if (ip->ip_v != 4)
1381 return ((u_int8_t)0); /* version mismatch! */
1382 ds_field = ip->ip_tos;
1383 }
1384 #ifdef INET6
1385 else if (pktattr->pattr_af == AF_INET6) {
1386 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
1387 u_int32_t flowlabel;
1388
1389 flowlabel = ntohl(ip6->ip6_flow);
1390 if ((flowlabel >> 28) != 6)
1391 return ((u_int8_t)0); /* version mismatch! */
1392 ds_field = (flowlabel >> 20) & 0xff;
1393 }
1394 #endif
1395 return (ds_field);
1396 }
1397
1398 void
1399 write_dsfield(m, pktattr, dsfield)
1400 struct mbuf *m;
1401 struct altq_pktattr *pktattr;
1402 u_int8_t dsfield;
1403 {
1404 struct mbuf *m0;
1405
1406 if (pktattr == NULL ||
1407 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
1408 return;
1409
1410 /* verify that pattr_hdr is within the mbuf data */
1411 for (m0 = m; m0 != NULL; m0 = m0->m_next)
1412 if ((pktattr->pattr_hdr >= m0->m_data) &&
1413 (pktattr->pattr_hdr < m0->m_data + m0->m_len))
1414 break;
1415 if (m0 == NULL) {
1416 /* ick, pattr_hdr is stale */
1417 pktattr->pattr_af = AF_UNSPEC;
1418 #ifdef ALTQ_DEBUG
1419 printf("write_dsfield: can't locate header!\n");
1420 #endif
1421 return;
1422 }
1423
1424 if (pktattr->pattr_af == AF_INET) {
1425 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
1426 u_int8_t old;
1427 int32_t sum;
1428
1429 if (ip->ip_v != 4)
1430 return; /* version mismatch! */
1431 old = ip->ip_tos;
1432 dsfield |= old & 3; /* leave CU bits */
1433 if (old == dsfield)
1434 return;
1435 ip->ip_tos = dsfield;
1436 /*
1437 * update checksum (from RFC1624)
1438 * HC' = ~(~HC + ~m + m')
1439 */
1440 sum = ~ntohs(ip->ip_sum) & 0xffff;
1441 sum += 0xff00 + (~old & 0xff) + dsfield;
1442 sum = (sum >> 16) + (sum & 0xffff);
1443 sum += (sum >> 16); /* add carry */
1444
1445 ip->ip_sum = htons(~sum & 0xffff);
1446 }
1447 #ifdef INET6
1448 else if (pktattr->pattr_af == AF_INET6) {
1449 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
1450 u_int32_t flowlabel;
1451
1452 flowlabel = ntohl(ip6->ip6_flow);
1453 if ((flowlabel >> 28) != 6)
1454 return; /* version mismatch! */
1455 flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
1456 ip6->ip6_flow = htonl(flowlabel);
1457 }
1458 #endif
1459 return;
1460 }
1461
1462
1463 /*
1464 * high resolution clock support taking advantage of a machine dependent
1465 * high resolution time counter (e.g., timestamp counter of intel pentium).
1466 * we assume
1467 * - 64-bit-long monotonically-increasing counter
1468 * - frequency range is 100M-4GHz (CPU speed)
1469 */
1470 u_int32_t machclk_freq = 0;
1471 u_int32_t machclk_per_tick = 0;
1472
1473 #if (defined(__i386__) || defined(__alpha__)) && !defined(ALTQ_NOPCC)
1474 #ifdef __FreeBSD__
1475 /* freebsd makes clock frequency accessible */
1476 #ifdef __alpha__
1477 extern u_int32_t cycles_per_sec; /* alpha cpu clock frequency */
1478 #endif
1479 void
1480 init_machclk(void)
1481 {
1482 #if defined(__i386__)
1483 #if (__FreeBSD_version > 300000)
1484 machclk_freq = tsc_freq;
1485 #else
1486 machclk_freq = i586_ctr_freq;
1487 #endif
1488 #elif defined(__alpha__)
1489 machclk_freq = cycles_per_sec;
1490 #endif /* __alpha__ */
1491 machclk_per_tick = machclk_freq / hz;
1492 }
1493 #else /* !__FreeBSD__ */
1494 /*
1495 * measure Pentium TSC or Alpha PCC clock frequency
1496 */
1497 void
1498 init_machclk(void)
1499 {
1500 static int wait;
1501 struct timeval tv_start, tv_end;
1502 u_int64_t start, end, diff;
1503 int timo;
1504
1505 microtime(&tv_start);
1506 start = read_machclk();
1507 timo = hz; /* 1 sec */
1508 (void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
1509 microtime(&tv_end);
1510 end = read_machclk();
1511 diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
1512 + tv_end.tv_usec - tv_start.tv_usec;
1513 if (diff != 0)
1514 machclk_freq = (u_int)((end - start) * 1000000 / diff);
1515 machclk_per_tick = machclk_freq / hz;
1516
1517 printf("altq: CPU clock: %uHz\n", machclk_freq);
1518 }
1519 #endif /* !__FreeBSD__ */
1520 #ifdef __alpha__
1521 /*
1522 * make a 64bit counter value out of the 32bit alpha processor cycle counter.
1523 * read_machclk must be called within a half of its wrap-around cycle
1524 * (about 5 sec for 400MHz cpu) to properly detect a counter wrap-around.
1525 * tbr_timeout calls read_machclk once a second.
1526 */
1527 u_int64_t
1528 read_machclk(void)
1529 {
1530 static u_int32_t last_pcc, upper;
1531 u_int32_t pcc;
1532
1533 pcc = (u_int32_t)alpha_rpcc();
1534 if (pcc <= last_pcc)
1535 upper++;
1536 last_pcc = pcc;
1537 return (((u_int64_t)upper << 32) + pcc);
1538 }
1539 #endif /* __alpha__ */
1540 #else /* !i386 && !alpha */
1541 /* use microtime() for now */
1542 void
1543 init_machclk(void)
1544 {
1545 machclk_freq = 1000000 << MACHCLK_SHIFT;
1546 machclk_per_tick = machclk_freq / hz;
1547 printf("altq: emulate %uHz cpu clock\n", machclk_freq);
1548 }
1549 #endif /* !i386 && !alpha */
1550
1551 #endif /* ALTQ */
1552