Home | History | Annotate | Line # | Download | only in altq
altq_subr.c revision 1.11.10.1
      1 /*	$NetBSD: altq_subr.c,v 1.11.10.1 2005/03/19 08:32:44 yamt Exp $	*/
      2 /*	$KAME: altq_subr.c,v 1.11 2002/01/11 08:11:49 kjc Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1997-2002
      6  *	Sony Computer Science Laboratories Inc.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: altq_subr.c,v 1.11.10.1 2005/03/19 08:32:44 yamt Exp $");
     32 
     33 #if defined(__FreeBSD__) || defined(__NetBSD__)
     34 #include "opt_altq.h"
     35 #if (__FreeBSD__ != 2)
     36 #include "opt_inet.h"
     37 #ifdef __FreeBSD__
     38 #include "opt_inet6.h"
     39 #endif
     40 #endif
     41 #endif /* __FreeBSD__ || __NetBSD__ */
     42 
     43 #include <sys/param.h>
     44 #include <sys/malloc.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/systm.h>
     47 #include <sys/proc.h>
     48 #include <sys/socket.h>
     49 #include <sys/socketvar.h>
     50 #include <sys/kernel.h>
     51 #include <sys/errno.h>
     52 #include <sys/syslog.h>
     53 #include <sys/sysctl.h>
     54 #include <sys/queue.h>
     55 
     56 #include <net/if.h>
     57 #include <net/if_dl.h>
     58 #include <net/if_types.h>
     59 
     60 #include <netinet/in.h>
     61 #include <netinet/in_systm.h>
     62 #include <netinet/ip.h>
     63 #ifdef INET6
     64 #include <netinet/ip6.h>
     65 #endif
     66 #include <netinet/tcp.h>
     67 #include <netinet/udp.h>
     68 
     69 #include <altq/altq.h>
     70 #include <altq/altq_conf.h>
     71 
     72 /* machine dependent clock related includes */
     73 #ifdef __FreeBSD__
     74 #include "opt_cpu.h"	/* for FreeBSD-2.2.8 to get i586_ctr_freq */
     75 #include <machine/clock.h>
     76 #endif
     77 #if defined(__i386__)
     78 #include <machine/specialreg.h>		/* for CPUID_TSC */
     79 #ifdef __FreeBSD__
     80 #include <machine/md_var.h>		/* for cpu_feature */
     81 #elif defined(__NetBSD__) || defined(__OpenBSD__)
     82 #include <machine/cpu.h>		/* for cpu_feature */
     83 #endif
     84 #endif /* __i386__ */
     85 
     86 /*
     87  * internal function prototypes
     88  */
     89 static void	tbr_timeout __P((void *));
     90 static int 	extract_ports4 __P((struct mbuf *, struct ip *,
     91 				    struct flowinfo_in *));
     92 #ifdef INET6
     93 static int 	extract_ports6 __P((struct mbuf *, struct ip6_hdr *,
     94 				    struct flowinfo_in6 *));
     95 #endif
     96 static int	apply_filter4 __P((u_int32_t, struct flow_filter *,
     97 				   struct flowinfo_in *));
     98 static int	apply_ppfilter4 __P((u_int32_t, struct flow_filter *,
     99 				     struct flowinfo_in *));
    100 #ifdef INET6
    101 static int	apply_filter6 __P((u_int32_t, struct flow_filter6 *,
    102 					   struct flowinfo_in6 *));
    103 #endif
    104 static int	apply_tosfilter4 __P((u_int32_t, struct flow_filter *,
    105 					     struct flowinfo_in *));
    106 static u_long	get_filt_handle __P((struct acc_classifier *, int));
    107 static struct acc_filter *filth_to_filtp __P((struct acc_classifier *,
    108 					      u_long));
    109 static u_int32_t filt2fibmask __P((struct flow_filter *));
    110 
    111 static void 	ip4f_cache __P((struct ip *, struct flowinfo_in *));
    112 static int 	ip4f_lookup __P((struct ip *, struct flowinfo_in *));
    113 static int 	ip4f_init __P((void));
    114 static struct ip4_frag	*ip4f_alloc __P((void));
    115 static void 	ip4f_free __P((struct ip4_frag *));
    116 
    117 int (*altq_input) __P((struct mbuf *, int)) = NULL;
    118 static int tbr_timer = 0;	/* token bucket regulator timer */
    119 static struct callout tbr_callout = CALLOUT_INITIALIZER;
    120 
    121 /*
    122  * alternate queueing support routines
    123  */
    124 
    125 /* look up the queue state by the interface name and the queuing type. */
    126 void *
    127 altq_lookup(name, type)
    128 	char *name;
    129 	int type;
    130 {
    131 	struct ifnet *ifp;
    132 
    133 	if ((ifp = ifunit(name)) != NULL) {
    134 		if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
    135 			return (ifp->if_snd.altq_disc);
    136 	}
    137 
    138 	return NULL;
    139 }
    140 
    141 int
    142 altq_attach(ifq, type, discipline, enqueue, dequeue, request, clfier, classify)
    143 	struct ifaltq *ifq;
    144 	int type;
    145 	void *discipline;
    146 	int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *);
    147 	struct mbuf *(*dequeue)(struct ifaltq *, int);
    148 	int (*request)(struct ifaltq *, int, void *);
    149 	void *clfier;
    150 	void *(*classify)(void *, struct mbuf *, int);
    151 {
    152 	if (!ALTQ_IS_READY(ifq))
    153 		return ENXIO;
    154 	if (ALTQ_IS_ENABLED(ifq))
    155 		return EBUSY;
    156 	if (ALTQ_IS_ATTACHED(ifq))
    157 		return EEXIST;
    158 	ifq->altq_type     = type;
    159 	ifq->altq_disc     = discipline;
    160 	ifq->altq_enqueue  = enqueue;
    161 	ifq->altq_dequeue  = dequeue;
    162 	ifq->altq_request  = request;
    163 	ifq->altq_clfier   = clfier;
    164 	ifq->altq_classify = classify;
    165 	ifq->altq_flags &= ALTQF_CANTCHANGE;
    166 #ifdef ALTQ_KLD
    167 	altq_module_incref(type);
    168 #endif
    169 	return 0;
    170 }
    171 
    172 int
    173 altq_detach(ifq)
    174 	struct ifaltq *ifq;
    175 {
    176 	if (!ALTQ_IS_READY(ifq))
    177 		return ENXIO;
    178 	if (ALTQ_IS_ENABLED(ifq))
    179 		return EBUSY;
    180 	if (!ALTQ_IS_ATTACHED(ifq))
    181 		return (0);
    182 
    183 #ifdef ALTQ_KLD
    184 	altq_module_declref(ifq->altq_type);
    185 #endif
    186 	ifq->altq_type     = ALTQT_NONE;
    187 	ifq->altq_disc     = NULL;
    188 	ifq->altq_enqueue  = NULL;
    189 	ifq->altq_dequeue  = NULL;
    190 	ifq->altq_request  = NULL;
    191 	ifq->altq_clfier   = NULL;
    192 	ifq->altq_classify = NULL;
    193 	ifq->altq_flags &= ALTQF_CANTCHANGE;
    194 	return 0;
    195 }
    196 
    197 int
    198 altq_enable(ifq)
    199 	struct ifaltq *ifq;
    200 {
    201 	int s;
    202 
    203 	if (!ALTQ_IS_READY(ifq))
    204 		return ENXIO;
    205 	if (ALTQ_IS_ENABLED(ifq))
    206 		return 0;
    207 
    208 	s = splnet();
    209 	IFQ_PURGE(ifq);
    210 	ASSERT(ifq->ifq_len == 0);
    211 	ifq->altq_flags |= ALTQF_ENABLED;
    212 	if (ifq->altq_clfier != NULL)
    213 		ifq->altq_flags |= ALTQF_CLASSIFY;
    214 	splx(s);
    215 
    216 	return 0;
    217 }
    218 
    219 int
    220 altq_disable(ifq)
    221 	struct ifaltq *ifq;
    222 {
    223 	int s;
    224 
    225 	if (!ALTQ_IS_ENABLED(ifq))
    226 		return 0;
    227 
    228 	s = splnet();
    229 	IFQ_PURGE(ifq);
    230 	ASSERT(ifq->ifq_len == 0);
    231 	ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
    232 	splx(s);
    233 	return 0;
    234 }
    235 
    236 void
    237 altq_assert(file, line, failedexpr)
    238 	const char *file, *failedexpr;
    239 	int line;
    240 {
    241 	(void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
    242 		     failedexpr, file, line);
    243 	panic("altq assertion");
    244 	/* NOTREACHED */
    245 }
    246 
    247 /*
    248  * internal representation of token bucket parameters
    249  *	rate: 	byte_per_unittime << 32
    250  *		(((bits_per_sec) / 8) << 32) / machclk_freq
    251  *	depth:	byte << 32
    252  *
    253  */
    254 #define	TBR_SHIFT	32
    255 #define	TBR_SCALE(x)	((int64_t)(x) << TBR_SHIFT)
    256 #define	TBR_UNSCALE(x)	((x) >> TBR_SHIFT)
    257 
    258 struct mbuf *
    259 tbr_dequeue(ifq, op)
    260 	struct ifaltq *ifq;
    261 	int op;
    262 {
    263 	struct tb_regulator *tbr;
    264 	struct mbuf *m;
    265 	int64_t interval;
    266 	u_int64_t now;
    267 
    268 	tbr = ifq->altq_tbr;
    269 	if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
    270 		/* if this is a remove after poll, bypass tbr check */
    271 	} else {
    272 		/* update token only when it is negative */
    273 		if (tbr->tbr_token <= 0) {
    274 			now = read_machclk();
    275 			interval = now - tbr->tbr_last;
    276 			if (interval >= tbr->tbr_filluptime)
    277 				tbr->tbr_token = tbr->tbr_depth;
    278 			else {
    279 				tbr->tbr_token += interval * tbr->tbr_rate;
    280 				if (tbr->tbr_token > tbr->tbr_depth)
    281 					tbr->tbr_token = tbr->tbr_depth;
    282 			}
    283 			tbr->tbr_last = now;
    284 		}
    285 		/* if token is still negative, don't allow dequeue */
    286 		if (tbr->tbr_token <= 0)
    287 			return (NULL);
    288 	}
    289 
    290 	if (ALTQ_IS_ENABLED(ifq))
    291 		m = (*ifq->altq_dequeue)(ifq, op);
    292 	else {
    293 		if (op == ALTDQ_POLL)
    294 			IF_POLL(ifq, m);
    295 		else
    296 			IF_DEQUEUE(ifq, m);
    297 	}
    298 
    299 	if (m != NULL && op == ALTDQ_REMOVE)
    300 		tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
    301 	tbr->tbr_lastop = op;
    302 	return (m);
    303 }
    304 
    305 /*
    306  * set a token bucket regulator.
    307  * if the specified rate is zero, the token bucket regulator is deleted.
    308  */
    309 int
    310 tbr_set(ifq, profile)
    311 	struct ifaltq *ifq;
    312 	struct tb_profile *profile;
    313 {
    314 	struct tb_regulator *tbr, *otbr;
    315 
    316 	if (machclk_freq == 0)
    317 		init_machclk();
    318 	if (machclk_freq == 0) {
    319 		printf("tbr_set: no CPU clock available!\n");
    320 		return (ENXIO);
    321 	}
    322 
    323 	if (profile->rate == 0) {
    324 		/* delete this tbr */
    325 		if ((tbr = ifq->altq_tbr) == NULL)
    326 			return (ENOENT);
    327 		ifq->altq_tbr = NULL;
    328 		FREE(tbr, M_DEVBUF);
    329 		return (0);
    330 	}
    331 
    332 	MALLOC(tbr, struct tb_regulator *, sizeof(struct tb_regulator),
    333 	       M_DEVBUF, M_WAITOK);
    334 	if (tbr == NULL)
    335 		return (ENOMEM);
    336 	(void)memset(tbr, 0, sizeof(struct tb_regulator));
    337 
    338 	tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
    339 	tbr->tbr_depth = TBR_SCALE(profile->depth);
    340 	if (tbr->tbr_rate > 0)
    341 		tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
    342 	else
    343 		tbr->tbr_filluptime = 0xffffffffffffffffLL;
    344 	tbr->tbr_token = tbr->tbr_depth;
    345 	tbr->tbr_last = read_machclk();
    346 	tbr->tbr_lastop = ALTDQ_REMOVE;
    347 
    348 	otbr = ifq->altq_tbr;
    349 	ifq->altq_tbr = tbr;	/* set the new tbr */
    350 
    351 	if (otbr != NULL)
    352 		FREE(otbr, M_DEVBUF);
    353 	else {
    354 		if (tbr_timer == 0) {
    355 			CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
    356 			tbr_timer = 1;
    357 		}
    358 	}
    359 	return (0);
    360 }
    361 
    362 /*
    363  * tbr_timeout goes through the interface list, and kicks the drivers
    364  * if necessary.
    365  */
    366 static void
    367 tbr_timeout(arg)
    368 	void *arg;
    369 {
    370 	struct ifnet *ifp;
    371 	int active, s;
    372 
    373 	active = 0;
    374 	s = splnet();
    375 #ifdef __FreeBSD__
    376 #if (__FreeBSD_version < 300000)
    377 	for (ifp = ifnet; ifp; ifp = ifp->if_next)
    378 #else
    379 	for (ifp = ifnet.tqh_first; ifp != NULL; ifp = ifp->if_link.tqe_next)
    380 #endif
    381 #else /* !FreeBSD */
    382 	for (ifp = ifnet.tqh_first; ifp != NULL; ifp = ifp->if_list.tqe_next)
    383 #endif
    384 	{
    385 		if (!TBR_IS_ENABLED(&ifp->if_snd))
    386 			continue;
    387 		active++;
    388 		if (!IFQ_IS_EMPTY(&ifp->if_snd) && ifp->if_start != NULL)
    389 			(*ifp->if_start)(ifp);
    390 	}
    391 	splx(s);
    392 	if (active > 0)
    393 		CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
    394 	else
    395 		tbr_timer = 0;	/* don't need tbr_timer anymore */
    396 #if defined(__alpha__) && !defined(ALTQ_NOPCC)
    397 	{
    398 		/*
    399 		 * XXX read out the machine dependent clock once a second
    400 		 * to detect counter wrap-around.
    401 		 */
    402 		static u_int cnt;
    403 
    404 		if (++cnt >= hz) {
    405 			(void)read_machclk();
    406 			cnt = 0;
    407 		}
    408 	}
    409 #endif /* __alpha__ && !ALTQ_NOPCC */
    410 }
    411 
    412 /*
    413  * get token bucket regulator profile
    414  */
    415 int
    416 tbr_get(ifq, profile)
    417 	struct ifaltq *ifq;
    418 	struct tb_profile *profile;
    419 {
    420 	struct tb_regulator *tbr;
    421 
    422 	if ((tbr = ifq->altq_tbr) == NULL) {
    423 		profile->rate = 0;
    424 		profile->depth = 0;
    425 	} else {
    426 		profile->rate =
    427 		    (u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq);
    428 		profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth);
    429 	}
    430 	return (0);
    431 }
    432 
    433 
    434 #ifndef IPPROTO_ESP
    435 #define	IPPROTO_ESP	50		/* encapsulating security payload */
    436 #endif
    437 #ifndef IPPROTO_AH
    438 #define	IPPROTO_AH	51		/* authentication header */
    439 #endif
    440 
    441 /*
    442  * extract flow information from a given packet.
    443  * filt_mask shows flowinfo fields required.
    444  * we assume the ip header is in one mbuf, and addresses and ports are
    445  * in network byte order.
    446  */
    447 int
    448 altq_extractflow(m, af, flow, filt_bmask)
    449 	struct mbuf *m;
    450 	int af;
    451 	struct flowinfo *flow;
    452 	u_int32_t	filt_bmask;
    453 {
    454 
    455 	switch (af) {
    456 	case PF_INET: {
    457 		struct flowinfo_in *fin;
    458 		struct ip *ip;
    459 
    460 		ip = mtod(m, struct ip *);
    461 
    462 		if (ip->ip_v != 4)
    463 			break;
    464 
    465 		fin = (struct flowinfo_in *)flow;
    466 		fin->fi_len = sizeof(struct flowinfo_in);
    467 		fin->fi_family = AF_INET;
    468 
    469 		fin->fi_proto = ip->ip_p;
    470 		fin->fi_tos = ip->ip_tos;
    471 
    472 		fin->fi_src.s_addr = ip->ip_src.s_addr;
    473 		fin->fi_dst.s_addr = ip->ip_dst.s_addr;
    474 
    475 		if (filt_bmask & FIMB4_PORTS)
    476 			/* if port info is required, extract port numbers */
    477 			extract_ports4(m, ip, fin);
    478 		else {
    479 			fin->fi_sport = 0;
    480 			fin->fi_dport = 0;
    481 			fin->fi_gpi = 0;
    482 		}
    483 		return (1);
    484 	}
    485 
    486 #ifdef INET6
    487 	case PF_INET6: {
    488 		struct flowinfo_in6 *fin6;
    489 		struct ip6_hdr *ip6;
    490 
    491 		ip6 = mtod(m, struct ip6_hdr *);
    492 		/* should we check the ip version? */
    493 
    494 		fin6 = (struct flowinfo_in6 *)flow;
    495 		fin6->fi6_len = sizeof(struct flowinfo_in6);
    496 		fin6->fi6_family = AF_INET6;
    497 
    498 		fin6->fi6_proto = ip6->ip6_nxt;
    499 		fin6->fi6_tclass   = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
    500 
    501 		fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
    502 		fin6->fi6_src = ip6->ip6_src;
    503 		fin6->fi6_dst = ip6->ip6_dst;
    504 
    505 		if ((filt_bmask & FIMB6_PORTS) ||
    506 		    ((filt_bmask & FIMB6_PROTO)
    507 		     && ip6->ip6_nxt > IPPROTO_IPV6))
    508 			/*
    509 			 * if port info is required, or proto is required
    510 			 * but there are option headers, extract port
    511 			 * and protocol numbers.
    512 			 */
    513 			extract_ports6(m, ip6, fin6);
    514 		else {
    515 			fin6->fi6_sport = 0;
    516 			fin6->fi6_dport = 0;
    517 			fin6->fi6_gpi = 0;
    518 		}
    519 		return (1);
    520 	}
    521 #endif /* INET6 */
    522 
    523 	default:
    524 		break;
    525 	}
    526 
    527 	/* failed */
    528 	flow->fi_len = sizeof(struct flowinfo);
    529 	flow->fi_family = AF_UNSPEC;
    530 	return (0);
    531 }
    532 
    533 /*
    534  * helper routine to extract port numbers
    535  */
    536 /* structure for ipsec and ipv6 option header template */
    537 struct _opt6 {
    538 	u_int8_t	opt6_nxt;	/* next header */
    539 	u_int8_t	opt6_hlen;	/* header extension length */
    540 	u_int16_t	_pad;
    541 	u_int32_t	ah_spi;		/* security parameter index
    542 					   for authentication header */
    543 };
    544 
    545 /*
    546  * extract port numbers from a ipv4 packet.
    547  */
    548 static int
    549 extract_ports4(m, ip, fin)
    550 	struct mbuf *m;
    551 	struct ip *ip;
    552 	struct flowinfo_in *fin;
    553 {
    554 	struct mbuf *m0;
    555 	u_short ip_off;
    556 	u_int8_t proto;
    557 	int 	off;
    558 
    559 	fin->fi_sport = 0;
    560 	fin->fi_dport = 0;
    561 	fin->fi_gpi = 0;
    562 
    563 	ip_off = ntohs(ip->ip_off);
    564 	/* if it is a fragment, try cached fragment info */
    565 	if (ip_off & IP_OFFMASK) {
    566 		ip4f_lookup(ip, fin);
    567 		return (1);
    568 	}
    569 
    570 	/* locate the mbuf containing the protocol header */
    571 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
    572 		if (((caddr_t)ip >= m0->m_data) &&
    573 		    ((caddr_t)ip < m0->m_data + m0->m_len))
    574 			break;
    575 	if (m0 == NULL) {
    576 #ifdef ALTQ_DEBUG
    577 		printf("extract_ports4: can't locate header! ip=%p\n", ip);
    578 #endif
    579 		return (0);
    580 	}
    581 	off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
    582 	proto = ip->ip_p;
    583 
    584 #ifdef ALTQ_IPSEC
    585  again:
    586 #endif
    587 	while (off >= m0->m_len) {
    588 		off -= m0->m_len;
    589 		m0 = m0->m_next;
    590 		if (m0 == NULL)
    591 			return (0);  /* bogus ip_hl! */
    592 	}
    593 	if (m0->m_len < off + 4)
    594 		return (0);
    595 
    596 	switch (proto) {
    597 	case IPPROTO_TCP:
    598 	case IPPROTO_UDP: {
    599 		struct udphdr *udp;
    600 
    601 		udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
    602 		fin->fi_sport = udp->uh_sport;
    603 		fin->fi_dport = udp->uh_dport;
    604 		fin->fi_proto = proto;
    605 		}
    606 		break;
    607 
    608 #ifdef ALTQ_IPSEC
    609 	case IPPROTO_ESP:
    610 		if (fin->fi_gpi == 0){
    611 			u_int32_t *gpi;
    612 
    613 			gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
    614 			fin->fi_gpi   = *gpi;
    615 		}
    616 		fin->fi_proto = proto;
    617 		break;
    618 
    619 	case IPPROTO_AH: {
    620 			/* get next header and header length */
    621 			struct _opt6 *opt6;
    622 
    623 			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
    624 			proto = opt6->opt6_nxt;
    625 			off += 8 + (opt6->opt6_hlen * 4);
    626 			if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
    627 				fin->fi_gpi = opt6->ah_spi;
    628 		}
    629 		/* goto the next header */
    630 		goto again;
    631 #endif  /* ALTQ_IPSEC */
    632 
    633 	default:
    634 		fin->fi_proto = proto;
    635 		return (0);
    636 	}
    637 
    638 	/* if this is a first fragment, cache it. */
    639 	if (ip_off & IP_MF)
    640 		ip4f_cache(ip, fin);
    641 
    642 	return (1);
    643 }
    644 
    645 #ifdef INET6
    646 static int
    647 extract_ports6(m, ip6, fin6)
    648 	struct mbuf *m;
    649 	struct ip6_hdr *ip6;
    650 	struct flowinfo_in6 *fin6;
    651 {
    652 	struct mbuf *m0;
    653 	int	off;
    654 	u_int8_t proto;
    655 
    656 	fin6->fi6_gpi   = 0;
    657 	fin6->fi6_sport = 0;
    658 	fin6->fi6_dport = 0;
    659 
    660 	/* locate the mbuf containing the protocol header */
    661 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
    662 		if (((caddr_t)ip6 >= m0->m_data) &&
    663 		    ((caddr_t)ip6 < m0->m_data + m0->m_len))
    664 			break;
    665 	if (m0 == NULL) {
    666 #ifdef ALTQ_DEBUG
    667 		printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
    668 #endif
    669 		return (0);
    670 	}
    671 	off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
    672 
    673 	proto = ip6->ip6_nxt;
    674 	do {
    675 		while (off >= m0->m_len) {
    676 			off -= m0->m_len;
    677 			m0 = m0->m_next;
    678 			if (m0 == NULL)
    679 				return (0);
    680 		}
    681 		if (m0->m_len < off + 4)
    682 			return (0);
    683 
    684 		switch (proto) {
    685 		case IPPROTO_TCP:
    686 		case IPPROTO_UDP: {
    687 			struct udphdr *udp;
    688 
    689 			udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
    690 			fin6->fi6_sport = udp->uh_sport;
    691 			fin6->fi6_dport = udp->uh_dport;
    692 			fin6->fi6_proto = proto;
    693 			}
    694 			return (1);
    695 
    696 		case IPPROTO_ESP:
    697 			if (fin6->fi6_gpi == 0) {
    698 				u_int32_t *gpi;
    699 
    700 				gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
    701 				fin6->fi6_gpi   = *gpi;
    702 			}
    703 			fin6->fi6_proto = proto;
    704 			return (1);
    705 
    706 		case IPPROTO_AH: {
    707 			/* get next header and header length */
    708 			struct _opt6 *opt6;
    709 
    710 			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
    711 			if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
    712 				fin6->fi6_gpi = opt6->ah_spi;
    713 			proto = opt6->opt6_nxt;
    714 			off += 8 + (opt6->opt6_hlen * 4);
    715 			/* goto the next header */
    716 			break;
    717 			}
    718 
    719 		case IPPROTO_HOPOPTS:
    720 		case IPPROTO_ROUTING:
    721 		case IPPROTO_DSTOPTS: {
    722 			/* get next header and header length */
    723 			struct _opt6 *opt6;
    724 
    725 			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
    726 			proto = opt6->opt6_nxt;
    727 			off += (opt6->opt6_hlen + 1) * 8;
    728 			/* goto the next header */
    729 			break;
    730 			}
    731 
    732 		case IPPROTO_FRAGMENT:
    733 			/* ipv6 fragmentations are not supported yet */
    734 		default:
    735 			fin6->fi6_proto = proto;
    736 			return (0);
    737 		}
    738 	} while (1);
    739 	/*NOTREACHED*/
    740 }
    741 #endif /* INET6 */
    742 
    743 /*
    744  * altq common classifier
    745  */
    746 int
    747 acc_add_filter(classifier, filter, class, phandle)
    748 	struct acc_classifier *classifier;
    749 	struct flow_filter *filter;
    750 	void	*class;
    751 	u_long	*phandle;
    752 {
    753 	struct acc_filter *afp, *prev, *tmp;
    754 	int	i, s;
    755 
    756 #ifdef INET6
    757 	if (filter->ff_flow.fi_family != AF_INET &&
    758 	    filter->ff_flow.fi_family != AF_INET6)
    759 		return (EINVAL);
    760 #else
    761 	if (filter->ff_flow.fi_family != AF_INET)
    762 		return (EINVAL);
    763 #endif
    764 
    765 	MALLOC(afp, struct acc_filter *, sizeof(struct acc_filter),
    766 	       M_DEVBUF, M_WAITOK);
    767 	if (afp == NULL)
    768 		return (ENOMEM);
    769 	(void)memset(afp, 0, sizeof(struct acc_filter));
    770 
    771 	afp->f_filter = *filter;
    772 	afp->f_class = class;
    773 
    774 	i = ACC_WILDCARD_INDEX;
    775 	if (filter->ff_flow.fi_family == AF_INET) {
    776 		struct flow_filter *filter4 = &afp->f_filter;
    777 
    778 		/*
    779 		 * if address is 0, it's a wildcard.  if address mask
    780 		 * isn't set, use full mask.
    781 		 */
    782 		if (filter4->ff_flow.fi_dst.s_addr == 0)
    783 			filter4->ff_mask.mask_dst.s_addr = 0;
    784 		else if (filter4->ff_mask.mask_dst.s_addr == 0)
    785 			filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
    786 		if (filter4->ff_flow.fi_src.s_addr == 0)
    787 			filter4->ff_mask.mask_src.s_addr = 0;
    788 		else if (filter4->ff_mask.mask_src.s_addr == 0)
    789 			filter4->ff_mask.mask_src.s_addr = 0xffffffff;
    790 
    791 		/* clear extra bits in addresses  */
    792 		   filter4->ff_flow.fi_dst.s_addr &=
    793 		       filter4->ff_mask.mask_dst.s_addr;
    794 		   filter4->ff_flow.fi_src.s_addr &=
    795 		       filter4->ff_mask.mask_src.s_addr;
    796 
    797 		/*
    798 		 * if dst address is a wildcard, use hash-entry
    799 		 * ACC_WILDCARD_INDEX.
    800 		 */
    801 		if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
    802 			i = ACC_WILDCARD_INDEX;
    803 		else
    804 			i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
    805 	}
    806 #ifdef INET6
    807 	else if (filter->ff_flow.fi_family == AF_INET6) {
    808 		struct flow_filter6 *filter6 =
    809 			(struct flow_filter6 *)&afp->f_filter;
    810 #ifndef IN6MASK0 /* taken from kame ipv6 */
    811 #define	IN6MASK0	{{{ 0, 0, 0, 0 }}}
    812 #define	IN6MASK128	{{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
    813 		const struct in6_addr in6mask0 = IN6MASK0;
    814 		const struct in6_addr in6mask128 = IN6MASK128;
    815 #endif
    816 
    817 		if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
    818 			filter6->ff_mask6.mask6_dst = in6mask0;
    819 		else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
    820 			filter6->ff_mask6.mask6_dst = in6mask128;
    821 		if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
    822 			filter6->ff_mask6.mask6_src = in6mask0;
    823 		else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
    824 			filter6->ff_mask6.mask6_src = in6mask128;
    825 
    826 		/* clear extra bits in addresses  */
    827 		for (i = 0; i < 16; i++)
    828 			filter6->ff_flow6.fi6_dst.s6_addr[i] &=
    829 			    filter6->ff_mask6.mask6_dst.s6_addr[i];
    830 		for (i = 0; i < 16; i++)
    831 			filter6->ff_flow6.fi6_src.s6_addr[i] &=
    832 			    filter6->ff_mask6.mask6_src.s6_addr[i];
    833 
    834 		if (filter6->ff_flow6.fi6_flowlabel == 0)
    835 			i = ACC_WILDCARD_INDEX;
    836 		else
    837 			i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
    838 	}
    839 #endif /* INET6 */
    840 
    841 	afp->f_handle = get_filt_handle(classifier, i);
    842 
    843 	/* update filter bitmask */
    844 	afp->f_fbmask = filt2fibmask(filter);
    845 	classifier->acc_fbmask |= afp->f_fbmask;
    846 
    847 	/*
    848 	 * add this filter to the filter list.
    849 	 * filters are ordered from the highest rule number.
    850 	 */
    851 	s = splnet();
    852 	prev = NULL;
    853 	LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
    854 		if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
    855 			prev = tmp;
    856 		else
    857 			break;
    858 	}
    859 	if (prev == NULL)
    860 		LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
    861 	else
    862 		LIST_INSERT_AFTER(prev, afp, f_chain);
    863 	splx(s);
    864 
    865 	*phandle = afp->f_handle;
    866 	return (0);
    867 }
    868 
    869 int
    870 acc_delete_filter(classifier, handle)
    871 	struct acc_classifier *classifier;
    872 	u_long handle;
    873 {
    874 	struct acc_filter *afp;
    875 	int	s;
    876 
    877 	if ((afp = filth_to_filtp(classifier, handle)) == NULL)
    878 		return (EINVAL);
    879 
    880 	s = splnet();
    881 	LIST_REMOVE(afp, f_chain);
    882 	splx(s);
    883 
    884 	FREE(afp, M_DEVBUF);
    885 
    886 	/* todo: update filt_bmask */
    887 
    888 	return (0);
    889 }
    890 
    891 /*
    892  * delete filters referencing to the specified class.
    893  * if the all flag is not 0, delete all the filters.
    894  */
    895 int
    896 acc_discard_filters(classifier, class, all)
    897 	struct acc_classifier *classifier;
    898 	void	*class;
    899 	int	all;
    900 {
    901 	struct acc_filter *afp;
    902 	int	i, s;
    903 
    904 	s = splnet();
    905 	for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
    906 		do {
    907 			LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
    908 				if (all || afp->f_class == class) {
    909 					LIST_REMOVE(afp, f_chain);
    910 					FREE(afp, M_DEVBUF);
    911 					/* start again from the head */
    912 					break;
    913 				}
    914 		} while (afp != NULL);
    915 	}
    916 	splx(s);
    917 
    918 	if (all)
    919 		classifier->acc_fbmask = 0;
    920 
    921 	return (0);
    922 }
    923 
    924 void *
    925 acc_classify(clfier, m, af)
    926 	void *clfier;
    927 	struct mbuf *m;
    928 	int af;
    929 {
    930 	struct acc_classifier *classifier;
    931 	struct flowinfo flow;
    932 	struct acc_filter *afp;
    933 	int	i;
    934 
    935 	classifier = (struct acc_classifier *)clfier;
    936 	altq_extractflow(m, af, &flow, classifier->acc_fbmask);
    937 
    938 	if (flow.fi_family == AF_INET) {
    939 		struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
    940 
    941 		if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
    942 			/* only tos is used */
    943 			LIST_FOREACH(afp,
    944 				 &classifier->acc_filters[ACC_WILDCARD_INDEX],
    945 				 f_chain)
    946 				if (apply_tosfilter4(afp->f_fbmask,
    947 						     &afp->f_filter, fp))
    948 					/* filter matched */
    949 					return (afp->f_class);
    950 		} else if ((classifier->acc_fbmask &
    951 			(~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
    952 		    == 0) {
    953 			/* only proto and ports are used */
    954 			LIST_FOREACH(afp,
    955 				 &classifier->acc_filters[ACC_WILDCARD_INDEX],
    956 				 f_chain)
    957 				if (apply_ppfilter4(afp->f_fbmask,
    958 						    &afp->f_filter, fp))
    959 					/* filter matched */
    960 					return (afp->f_class);
    961 		} else {
    962 			/* get the filter hash entry from its dest address */
    963 			i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
    964 			do {
    965 				/*
    966 				 * go through this loop twice.  first for dst
    967 				 * hash, second for wildcards.
    968 				 */
    969 				LIST_FOREACH(afp, &classifier->acc_filters[i],
    970 					     f_chain)
    971 					if (apply_filter4(afp->f_fbmask,
    972 							  &afp->f_filter, fp))
    973 						/* filter matched */
    974 						return (afp->f_class);
    975 
    976 				/*
    977 				 * check again for filters with a dst addr
    978 				 * wildcard.
    979 				 * (daddr == 0 || dmask != 0xffffffff).
    980 				 */
    981 				if (i != ACC_WILDCARD_INDEX)
    982 					i = ACC_WILDCARD_INDEX;
    983 				else
    984 					break;
    985 			} while (1);
    986 		}
    987 	}
    988 #ifdef INET6
    989 	else if (flow.fi_family == AF_INET6) {
    990 		struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
    991 
    992 		/* get the filter hash entry from its flow ID */
    993 		if (fp6->fi6_flowlabel != 0)
    994 			i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
    995 		else
    996 			/* flowlable can be zero */
    997 			i = ACC_WILDCARD_INDEX;
    998 
    999 		/* go through this loop twice.  first for flow hash, second
   1000 		   for wildcards. */
   1001 		do {
   1002 			LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
   1003 				if (apply_filter6(afp->f_fbmask,
   1004 					(struct flow_filter6 *)&afp->f_filter,
   1005 					fp6))
   1006 					/* filter matched */
   1007 					return (afp->f_class);
   1008 
   1009 			/*
   1010 			 * check again for filters with a wildcard.
   1011 			 */
   1012 			if (i != ACC_WILDCARD_INDEX)
   1013 				i = ACC_WILDCARD_INDEX;
   1014 			else
   1015 				break;
   1016 		} while (1);
   1017 	}
   1018 #endif /* INET6 */
   1019 
   1020 	/* no filter matched */
   1021 	return (NULL);
   1022 }
   1023 
   1024 static int
   1025 apply_filter4(fbmask, filt, pkt)
   1026 	u_int32_t	fbmask;
   1027 	struct flow_filter *filt;
   1028 	struct flowinfo_in *pkt;
   1029 {
   1030 	if (filt->ff_flow.fi_family != AF_INET)
   1031 		return (0);
   1032 	if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
   1033 		return (0);
   1034 	if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
   1035 		return (0);
   1036 	if ((fbmask & FIMB4_DADDR) &&
   1037 	    filt->ff_flow.fi_dst.s_addr !=
   1038 	    (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
   1039 		return (0);
   1040 	if ((fbmask & FIMB4_SADDR) &&
   1041 	    filt->ff_flow.fi_src.s_addr !=
   1042 	    (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
   1043 		return (0);
   1044 	if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
   1045 		return (0);
   1046 	if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
   1047 	    (pkt->fi_tos & filt->ff_mask.mask_tos))
   1048 		return (0);
   1049 	if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
   1050 		return (0);
   1051 	/* match */
   1052 	return (1);
   1053 }
   1054 
   1055 /*
   1056  * filter matching function optimized for a common case that checks
   1057  * only protocol and port numbers
   1058  */
   1059 static int
   1060 apply_ppfilter4(fbmask, filt, pkt)
   1061 	u_int32_t	fbmask;
   1062 	struct flow_filter *filt;
   1063 	struct flowinfo_in *pkt;
   1064 {
   1065 	if (filt->ff_flow.fi_family != AF_INET)
   1066 		return (0);
   1067 	if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
   1068 		return (0);
   1069 	if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
   1070 		return (0);
   1071 	if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
   1072 		return (0);
   1073 	/* match */
   1074 	return (1);
   1075 }
   1076 
   1077 /*
   1078  * filter matching function only for tos field.
   1079  */
   1080 static int
   1081 apply_tosfilter4(fbmask, filt, pkt)
   1082 	u_int32_t	fbmask;
   1083 	struct flow_filter *filt;
   1084 	struct flowinfo_in *pkt;
   1085 {
   1086 	if (filt->ff_flow.fi_family != AF_INET)
   1087 		return (0);
   1088 	if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
   1089 	    (pkt->fi_tos & filt->ff_mask.mask_tos))
   1090 		return (0);
   1091 	/* match */
   1092 	return (1);
   1093 }
   1094 
   1095 #ifdef INET6
   1096 static int
   1097 apply_filter6(fbmask, filt, pkt)
   1098 	u_int32_t	fbmask;
   1099 	struct flow_filter6 *filt;
   1100 	struct flowinfo_in6 *pkt;
   1101 {
   1102 	int i;
   1103 
   1104 	if (filt->ff_flow6.fi6_family != AF_INET6)
   1105 		return (0);
   1106 	if ((fbmask & FIMB6_FLABEL) &&
   1107 	    filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
   1108 		return (0);
   1109 	if ((fbmask & FIMB6_PROTO) &&
   1110 	    filt->ff_flow6.fi6_proto != pkt->fi6_proto)
   1111 		return (0);
   1112 	if ((fbmask & FIMB6_SPORT) &&
   1113 	    filt->ff_flow6.fi6_sport != pkt->fi6_sport)
   1114 		return (0);
   1115 	if ((fbmask & FIMB6_DPORT) &&
   1116 	    filt->ff_flow6.fi6_dport != pkt->fi6_dport)
   1117 		return (0);
   1118 	if (fbmask & FIMB6_SADDR) {
   1119 		for (i = 0; i < 4; i++)
   1120 			if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
   1121 			    (pkt->fi6_src.s6_addr32[i] &
   1122 			     filt->ff_mask6.mask6_src.s6_addr32[i]))
   1123 				return (0);
   1124 	}
   1125 	if (fbmask & FIMB6_DADDR) {
   1126 		for (i = 0; i < 4; i++)
   1127 			if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
   1128 			    (pkt->fi6_dst.s6_addr32[i] &
   1129 			     filt->ff_mask6.mask6_dst.s6_addr32[i]))
   1130 				return (0);
   1131 	}
   1132 	if ((fbmask & FIMB6_TCLASS) &&
   1133 	    filt->ff_flow6.fi6_tclass !=
   1134 	    (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
   1135 		return (0);
   1136 	if ((fbmask & FIMB6_GPI) &&
   1137 	    filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
   1138 		return (0);
   1139 	/* match */
   1140 	return (1);
   1141 }
   1142 #endif /* INET6 */
   1143 
   1144 /*
   1145  *  filter handle:
   1146  *	bit 20-28: index to the filter hash table
   1147  *	bit  0-19: unique id in the hash bucket.
   1148  */
   1149 static u_long
   1150 get_filt_handle(classifier, i)
   1151 	struct acc_classifier *classifier;
   1152 	int	i;
   1153 {
   1154 	static u_long handle_number = 1;
   1155 	u_long 	handle;
   1156 	struct acc_filter *afp;
   1157 
   1158 	while (1) {
   1159 		handle = handle_number++ & 0x000fffff;
   1160 
   1161 		if (LIST_EMPTY(&classifier->acc_filters[i]))
   1162 			break;
   1163 
   1164 		LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
   1165 			if ((afp->f_handle & 0x000fffff) == handle)
   1166 				break;
   1167 		if (afp == NULL)
   1168 			break;
   1169 		/* this handle is already used, try again */
   1170 	}
   1171 
   1172 	return ((i << 20) | handle);
   1173 }
   1174 
   1175 /* convert filter handle to filter pointer */
   1176 static struct acc_filter *
   1177 filth_to_filtp(classifier, handle)
   1178 	struct acc_classifier *classifier;
   1179 	u_long handle;
   1180 {
   1181 	struct acc_filter *afp;
   1182 	int	i;
   1183 
   1184 	i = ACC_GET_HINDEX(handle);
   1185 
   1186 	LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
   1187 		if (afp->f_handle == handle)
   1188 			return (afp);
   1189 
   1190 	return (NULL);
   1191 }
   1192 
   1193 /* create flowinfo bitmask */
   1194 static u_int32_t
   1195 filt2fibmask(filt)
   1196 	struct flow_filter *filt;
   1197 {
   1198 	u_int32_t mask = 0;
   1199 #ifdef INET6
   1200 	struct flow_filter6 *filt6;
   1201 #endif
   1202 
   1203 	switch (filt->ff_flow.fi_family) {
   1204 	case AF_INET:
   1205 		if (filt->ff_flow.fi_proto != 0)
   1206 			mask |= FIMB4_PROTO;
   1207 		if (filt->ff_flow.fi_tos != 0)
   1208 			mask |= FIMB4_TOS;
   1209 		if (filt->ff_flow.fi_dst.s_addr != 0)
   1210 			mask |= FIMB4_DADDR;
   1211 		if (filt->ff_flow.fi_src.s_addr != 0)
   1212 			mask |= FIMB4_SADDR;
   1213 		if (filt->ff_flow.fi_sport != 0)
   1214 			mask |= FIMB4_SPORT;
   1215 		if (filt->ff_flow.fi_dport != 0)
   1216 			mask |= FIMB4_DPORT;
   1217 		if (filt->ff_flow.fi_gpi != 0)
   1218 			mask |= FIMB4_GPI;
   1219 		break;
   1220 #ifdef INET6
   1221 	case AF_INET6:
   1222 		filt6 = (struct flow_filter6 *)filt;
   1223 
   1224 		if (filt6->ff_flow6.fi6_proto != 0)
   1225 			mask |= FIMB6_PROTO;
   1226 		if (filt6->ff_flow6.fi6_tclass != 0)
   1227 			mask |= FIMB6_TCLASS;
   1228 		if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
   1229 			mask |= FIMB6_DADDR;
   1230 		if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
   1231 			mask |= FIMB6_SADDR;
   1232 		if (filt6->ff_flow6.fi6_sport != 0)
   1233 			mask |= FIMB6_SPORT;
   1234 		if (filt6->ff_flow6.fi6_dport != 0)
   1235 			mask |= FIMB6_DPORT;
   1236 		if (filt6->ff_flow6.fi6_gpi != 0)
   1237 			mask |= FIMB6_GPI;
   1238 		if (filt6->ff_flow6.fi6_flowlabel != 0)
   1239 			mask |= FIMB6_FLABEL;
   1240 		break;
   1241 #endif /* INET6 */
   1242 	}
   1243 	return (mask);
   1244 }
   1245 
   1246 
   1247 /*
   1248  * helper functions to handle IPv4 fragments.
   1249  * currently only in-sequence fragments are handled.
   1250  *	- fragment info is cached in a LRU list.
   1251  *	- when a first fragment is found, cache its flow info.
   1252  *	- when a non-first fragment is found, lookup the cache.
   1253  */
   1254 
   1255 struct ip4_frag {
   1256     TAILQ_ENTRY(ip4_frag) ip4f_chain;
   1257     char    ip4f_valid;
   1258     u_short ip4f_id;
   1259     struct flowinfo_in ip4f_info;
   1260 };
   1261 
   1262 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
   1263 
   1264 #define	IP4F_TABSIZE		16	/* IPv4 fragment cache size */
   1265 
   1266 
   1267 static void
   1268 ip4f_cache(ip, fin)
   1269 	struct ip *ip;
   1270 	struct flowinfo_in *fin;
   1271 {
   1272 	struct ip4_frag *fp;
   1273 
   1274 	if (TAILQ_EMPTY(&ip4f_list)) {
   1275 		/* first time call, allocate fragment cache entries. */
   1276 		if (ip4f_init() < 0)
   1277 			/* allocation failed! */
   1278 			return;
   1279 	}
   1280 
   1281 	fp = ip4f_alloc();
   1282 	fp->ip4f_id = ip->ip_id;
   1283 	fp->ip4f_info.fi_proto = ip->ip_p;
   1284 	fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
   1285 	fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
   1286 
   1287 	/* save port numbers */
   1288 	fp->ip4f_info.fi_sport = fin->fi_sport;
   1289 	fp->ip4f_info.fi_dport = fin->fi_dport;
   1290 	fp->ip4f_info.fi_gpi   = fin->fi_gpi;
   1291 }
   1292 
   1293 static int
   1294 ip4f_lookup(ip, fin)
   1295 	struct ip *ip;
   1296 	struct flowinfo_in *fin;
   1297 {
   1298 	struct ip4_frag *fp;
   1299 
   1300 	for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
   1301 	     fp = TAILQ_NEXT(fp, ip4f_chain))
   1302 		if (ip->ip_id == fp->ip4f_id &&
   1303 		    ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
   1304 		    ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
   1305 		    ip->ip_p == fp->ip4f_info.fi_proto) {
   1306 
   1307 			/* found the matching entry */
   1308 			fin->fi_sport = fp->ip4f_info.fi_sport;
   1309 			fin->fi_dport = fp->ip4f_info.fi_dport;
   1310 			fin->fi_gpi   = fp->ip4f_info.fi_gpi;
   1311 
   1312 			if ((ntohs(ip->ip_off) & IP_MF) == 0)
   1313 				/* this is the last fragment,
   1314 				   release the entry. */
   1315 				ip4f_free(fp);
   1316 
   1317 			return (1);
   1318 		}
   1319 
   1320 	/* no matching entry found */
   1321 	return (0);
   1322 }
   1323 
   1324 static int
   1325 ip4f_init(void)
   1326 {
   1327 	struct ip4_frag *fp;
   1328 	int i;
   1329 
   1330 	TAILQ_INIT(&ip4f_list);
   1331 	for (i=0; i<IP4F_TABSIZE; i++) {
   1332 		MALLOC(fp, struct ip4_frag *, sizeof(struct ip4_frag),
   1333 		       M_DEVBUF, M_NOWAIT);
   1334 		if (fp == NULL) {
   1335 			printf("ip4f_init: can't alloc %dth entry!\n", i);
   1336 			if (i == 0)
   1337 				return (-1);
   1338 			return (0);
   1339 		}
   1340 		fp->ip4f_valid = 0;
   1341 		TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
   1342 	}
   1343 	return (0);
   1344 }
   1345 
   1346 static struct ip4_frag *
   1347 ip4f_alloc(void)
   1348 {
   1349 	struct ip4_frag *fp;
   1350 
   1351 	/* reclaim an entry at the tail, put it at the head */
   1352 	fp = TAILQ_LAST(&ip4f_list, ip4f_list);
   1353 	TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
   1354 	fp->ip4f_valid = 1;
   1355 	TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
   1356 	return (fp);
   1357 }
   1358 
   1359 static void
   1360 ip4f_free(fp)
   1361 	struct ip4_frag *fp;
   1362 {
   1363 	TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
   1364 	fp->ip4f_valid = 0;
   1365 	TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
   1366 }
   1367 
   1368 /*
   1369  * read and write diffserv field in IPv4 or IPv6 header
   1370  */
   1371 u_int8_t
   1372 read_dsfield(m, pktattr)
   1373 	struct mbuf *m;
   1374 	struct altq_pktattr *pktattr;
   1375 {
   1376 	struct mbuf *m0;
   1377 	u_int8_t ds_field = 0;
   1378 
   1379 	if (pktattr == NULL ||
   1380 	    (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
   1381 		return ((u_int8_t)0);
   1382 
   1383 	/* verify that pattr_hdr is within the mbuf data */
   1384 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
   1385 		if ((pktattr->pattr_hdr >= m0->m_data) &&
   1386 		    (pktattr->pattr_hdr < m0->m_data + m0->m_len))
   1387 			break;
   1388 	if (m0 == NULL) {
   1389 		/* ick, pattr_hdr is stale */
   1390 		pktattr->pattr_af = AF_UNSPEC;
   1391 #ifdef ALTQ_DEBUG
   1392 		printf("read_dsfield: can't locate header!\n");
   1393 #endif
   1394 		return ((u_int8_t)0);
   1395 	}
   1396 
   1397 	if (pktattr->pattr_af == AF_INET) {
   1398 		struct ip *ip = (struct ip *)pktattr->pattr_hdr;
   1399 
   1400 		if (ip->ip_v != 4)
   1401 			return ((u_int8_t)0);	/* version mismatch! */
   1402 		ds_field = ip->ip_tos;
   1403 	}
   1404 #ifdef INET6
   1405 	else if (pktattr->pattr_af == AF_INET6) {
   1406 		struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
   1407 		u_int32_t flowlabel;
   1408 
   1409 		flowlabel = ntohl(ip6->ip6_flow);
   1410 		if ((flowlabel >> 28) != 6)
   1411 			return ((u_int8_t)0);	/* version mismatch! */
   1412 		ds_field = (flowlabel >> 20) & 0xff;
   1413 	}
   1414 #endif
   1415 	return (ds_field);
   1416 }
   1417 
   1418 void
   1419 write_dsfield(m, pktattr, dsfield)
   1420 	struct mbuf *m;
   1421 	struct altq_pktattr *pktattr;
   1422 	u_int8_t dsfield;
   1423 {
   1424 	struct mbuf *m0;
   1425 
   1426 	if (pktattr == NULL ||
   1427 	    (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
   1428 		return;
   1429 
   1430 	/* verify that pattr_hdr is within the mbuf data */
   1431 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
   1432 		if ((pktattr->pattr_hdr >= m0->m_data) &&
   1433 		    (pktattr->pattr_hdr < m0->m_data + m0->m_len))
   1434 			break;
   1435 	if (m0 == NULL) {
   1436 		/* ick, pattr_hdr is stale */
   1437 		pktattr->pattr_af = AF_UNSPEC;
   1438 #ifdef ALTQ_DEBUG
   1439 		printf("write_dsfield: can't locate header!\n");
   1440 #endif
   1441 		return;
   1442 	}
   1443 
   1444 	if (pktattr->pattr_af == AF_INET) {
   1445 		struct ip *ip = (struct ip *)pktattr->pattr_hdr;
   1446 		u_int8_t old;
   1447 		int32_t sum;
   1448 
   1449 		if (ip->ip_v != 4)
   1450 			return;		/* version mismatch! */
   1451 		old = ip->ip_tos;
   1452 		dsfield |= old & 3;	/* leave CU bits */
   1453 		if (old == dsfield)
   1454 			return;
   1455 		ip->ip_tos = dsfield;
   1456 		/*
   1457 		 * update checksum (from RFC1624)
   1458 		 *	   HC' = ~(~HC + ~m + m')
   1459 		 */
   1460 		sum = ~ntohs(ip->ip_sum) & 0xffff;
   1461 		sum += 0xff00 + (~old & 0xff) + dsfield;
   1462 		sum = (sum >> 16) + (sum & 0xffff);
   1463 		sum += (sum >> 16);  /* add carry */
   1464 
   1465 		ip->ip_sum = htons(~sum & 0xffff);
   1466 	}
   1467 #ifdef INET6
   1468 	else if (pktattr->pattr_af == AF_INET6) {
   1469 		struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
   1470 		u_int32_t flowlabel;
   1471 
   1472 		flowlabel = ntohl(ip6->ip6_flow);
   1473 		if ((flowlabel >> 28) != 6)
   1474 			return;		/* version mismatch! */
   1475 		flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
   1476 		ip6->ip6_flow = htonl(flowlabel);
   1477 	}
   1478 #endif
   1479 	return;
   1480 }
   1481 
   1482 
   1483 /*
   1484  * high resolution clock support taking advantage of a machine dependent
   1485  * high resolution time counter (e.g., timestamp counter of intel pentium).
   1486  * we assume
   1487  *  - 64-bit-long monotonically-increasing counter
   1488  *  - frequency range is 100M-4GHz (CPU speed)
   1489  */
   1490 u_int32_t machclk_freq = 0;
   1491 u_int32_t machclk_per_tick = 0;
   1492 
   1493 #if (defined(__i386__) || defined(__alpha__)) && !defined(ALTQ_NOPCC)
   1494 
   1495 #if defined(__FreeBSD__) && defined(SMP)
   1496 #error SMP system!  use ALTQ_NOPCC option.
   1497 #endif
   1498 
   1499 #ifdef __alpha__
   1500 #ifdef __FreeBSD__
   1501 extern u_int32_t cycles_per_sec;	/* alpha CPU clock frequency */
   1502 #elif defined(__NetBSD__) || defined(__OpenBSD__)
   1503 extern u_int64_t cycles_per_usec;	/* alpha CPU clock frequency */
   1504 #endif
   1505 #endif /* __alpha__ */
   1506 
   1507 void
   1508 init_machclk(void)
   1509 {
   1510 	/* sanity check */
   1511 #ifdef __i386__
   1512 	/* check if TSC is available */
   1513 	if ((cpu_feature & CPUID_TSC) == 0) {
   1514 		printf("altq: TSC isn't available! use ALTQ_NOPCC option.\n");
   1515 		return;
   1516 	}
   1517 #endif
   1518 
   1519 	/*
   1520 	 * if the clock frequency (of Pentium TSC or Alpha PCC) is
   1521 	 * accessible, just use it.
   1522 	 */
   1523 #ifdef __i386__
   1524 #ifdef __FreeBSD__
   1525 #if (__FreeBSD_version > 300000)
   1526 	machclk_freq = tsc_freq;
   1527 #else
   1528 	machclk_freq = i586_ctr_freq;
   1529 #endif
   1530 #elif defined(__NetBSD__)
   1531 	machclk_freq = (u_int32_t)curcpu()->ci_tsc_freq;
   1532 #elif defined(__OpenBSD__)
   1533 	machclk_freq = pentium_mhz * 1000000;
   1534 #endif
   1535 #elif defined(__alpha__)
   1536 #ifdef __FreeBSD__
   1537 	machclk_freq = cycles_per_sec;
   1538 #elif defined(__NetBSD__) || defined(__OpenBSD__)
   1539 	machclk_freq = (u_int32_t)(cycles_per_usec * 1000000);
   1540 #endif
   1541 #endif /* __alpha__ */
   1542 
   1543 	/*
   1544 	 * if we don't know the clock frequency, measure it.
   1545 	 */
   1546 	if (machclk_freq == 0) {
   1547 		static int	wait;
   1548 		struct timeval	tv_start, tv_end;
   1549 		u_int64_t	start, end, diff;
   1550 		int		timo;
   1551 
   1552 		microtime(&tv_start);
   1553 		start = read_machclk();
   1554 		timo = hz;	/* 1 sec */
   1555 		(void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
   1556 		microtime(&tv_end);
   1557 		end = read_machclk();
   1558 		diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
   1559 		    + tv_end.tv_usec - tv_start.tv_usec;
   1560 		if (diff != 0)
   1561 			machclk_freq = (u_int)((end - start) * 1000000 / diff);
   1562 	}
   1563 
   1564 	machclk_per_tick = machclk_freq / hz;
   1565 
   1566 #ifdef ALTQ_DEBUG
   1567 	printf("altq: CPU clock: %uHz\n", machclk_freq);
   1568 #endif
   1569 }
   1570 
   1571 #ifdef __alpha__
   1572 /*
   1573  * make a 64bit counter value out of the 32bit alpha processor cycle counter.
   1574  * read_machclk must be called within a half of its wrap-around cycle
   1575  * (about 5 sec for 400MHz CPU) to properly detect a counter wrap-around.
   1576  * tbr_timeout calls read_machclk once a second.
   1577  */
   1578 u_int64_t
   1579 read_machclk(void)
   1580 {
   1581 	static u_int32_t last_pcc, upper;
   1582 	u_int32_t pcc;
   1583 
   1584 	pcc = (u_int32_t)alpha_rpcc();
   1585 	if (pcc <= last_pcc)
   1586 		upper++;
   1587 	last_pcc = pcc;
   1588 	return (((u_int64_t)upper << 32) + pcc);
   1589 }
   1590 #endif /* __alpha__ */
   1591 #else /* !i386  && !alpha */
   1592 /* use microtime() for now */
   1593 void
   1594 init_machclk(void)
   1595 {
   1596 	machclk_freq = 1000000 << MACHCLK_SHIFT;
   1597 	machclk_per_tick = machclk_freq / hz;
   1598 	printf("altq: emulate %uHz CPU clock\n", machclk_freq);
   1599 }
   1600 #endif /* !i386 && !alpha */
   1601