altq_subr.c revision 1.13.4.1 1 /* $NetBSD: altq_subr.c,v 1.13.4.1 2006/09/09 02:36:40 rpaulo Exp $ */
2 /* $KAME: altq_subr.c,v 1.11 2002/01/11 08:11:49 kjc Exp $ */
3
4 /*
5 * Copyright (C) 1997-2002
6 * Sony Computer Science Laboratories Inc. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: altq_subr.c,v 1.13.4.1 2006/09/09 02:36:40 rpaulo Exp $");
32
33 #if defined(__FreeBSD__) || defined(__NetBSD__)
34 #include "opt_altq.h"
35 #if (__FreeBSD__ != 2)
36 #include "opt_inet.h"
37 #ifdef __FreeBSD__
38 #include "opt_inet6.h"
39 #endif
40 #endif
41 #endif /* __FreeBSD__ || __NetBSD__ */
42
43 #include <sys/param.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/kernel.h>
51 #include <sys/errno.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/queue.h>
55
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_types.h>
59
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #ifdef INET6
64 #include <netinet/ip6.h>
65 #endif
66 #include <netinet/tcp.h>
67 #include <netinet/udp.h>
68
69 #include <altq/altq.h>
70 #include <altq/altq_conf.h>
71
72 /* machine dependent clock related includes */
73 #ifdef __FreeBSD__
74 #include "opt_cpu.h" /* for FreeBSD-2.2.8 to get i586_ctr_freq */
75 #include <machine/clock.h>
76 #endif
77 #if defined(__i386__)
78 #include <machine/specialreg.h> /* for CPUID_TSC */
79 #ifdef __FreeBSD__
80 #include <machine/md_var.h> /* for cpu_feature */
81 #elif defined(__NetBSD__) || defined(__OpenBSD__)
82 #include <machine/cpu.h> /* for cpu_feature */
83 #endif
84 #endif /* __i386__ */
85
86 /*
87 * internal function prototypes
88 */
89 static void tbr_timeout __P((void *));
90 static int extract_ports4 __P((struct mbuf *, struct ip *,
91 struct flowinfo_in *));
92 #ifdef INET6
93 static int extract_ports6 __P((struct mbuf *, struct ip6_hdr *,
94 struct flowinfo_in6 *));
95 #endif
96 static int apply_filter4 __P((u_int32_t, struct flow_filter *,
97 struct flowinfo_in *));
98 static int apply_ppfilter4 __P((u_int32_t, struct flow_filter *,
99 struct flowinfo_in *));
100 #ifdef INET6
101 static int apply_filter6 __P((u_int32_t, struct flow_filter6 *,
102 struct flowinfo_in6 *));
103 #endif
104 static int apply_tosfilter4 __P((u_int32_t, struct flow_filter *,
105 struct flowinfo_in *));
106 static u_long get_filt_handle __P((struct acc_classifier *, int));
107 static struct acc_filter *filth_to_filtp __P((struct acc_classifier *,
108 u_long));
109 static u_int32_t filt2fibmask __P((struct flow_filter *));
110
111 static void ip4f_cache __P((struct ip *, struct flowinfo_in *));
112 static int ip4f_lookup __P((struct ip *, struct flowinfo_in *));
113 static int ip4f_init __P((void));
114 static struct ip4_frag *ip4f_alloc __P((void));
115 static void ip4f_free __P((struct ip4_frag *));
116
117 int (*altq_input) __P((struct mbuf *, int)) = NULL;
118 static int tbr_timer = 0; /* token bucket regulator timer */
119 static struct callout tbr_callout = CALLOUT_INITIALIZER;
120
121 /*
122 * alternate queueing support routines
123 */
124
125 /* look up the queue state by the interface name and the queuing type. */
126 void *
127 altq_lookup(name, type)
128 char *name;
129 int type;
130 {
131 struct ifnet *ifp;
132
133 if ((ifp = ifunit(name)) != NULL) {
134 if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
135 return (ifp->if_snd.altq_disc);
136 }
137
138 return NULL;
139 }
140
141 int
142 altq_attach(ifq, type, discipline, enqueue, dequeue, request, clfier, classify)
143 struct ifaltq *ifq;
144 int type;
145 void *discipline;
146 int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *);
147 struct mbuf *(*dequeue)(struct ifaltq *, int);
148 int (*request)(struct ifaltq *, int, void *);
149 void *clfier;
150 void *(*classify)(void *, struct mbuf *, int);
151 {
152 if (!ALTQ_IS_READY(ifq))
153 return ENXIO;
154 if (ALTQ_IS_ENABLED(ifq))
155 return EBUSY;
156 if (ALTQ_IS_ATTACHED(ifq))
157 return EEXIST;
158 ifq->altq_type = type;
159 ifq->altq_disc = discipline;
160 ifq->altq_enqueue = enqueue;
161 ifq->altq_dequeue = dequeue;
162 ifq->altq_request = request;
163 ifq->altq_clfier = clfier;
164 ifq->altq_classify = classify;
165 ifq->altq_flags &= ALTQF_CANTCHANGE;
166 #ifdef ALTQ_KLD
167 altq_module_incref(type);
168 #endif
169 return 0;
170 }
171
172 int
173 altq_detach(ifq)
174 struct ifaltq *ifq;
175 {
176 if (!ALTQ_IS_READY(ifq))
177 return ENXIO;
178 if (ALTQ_IS_ENABLED(ifq))
179 return EBUSY;
180 if (!ALTQ_IS_ATTACHED(ifq))
181 return (0);
182
183 #ifdef ALTQ_KLD
184 altq_module_declref(ifq->altq_type);
185 #endif
186 ifq->altq_type = ALTQT_NONE;
187 ifq->altq_disc = NULL;
188 ifq->altq_enqueue = NULL;
189 ifq->altq_dequeue = NULL;
190 ifq->altq_request = NULL;
191 ifq->altq_clfier = NULL;
192 ifq->altq_classify = NULL;
193 ifq->altq_flags &= ALTQF_CANTCHANGE;
194 return 0;
195 }
196
197 int
198 altq_enable(ifq)
199 struct ifaltq *ifq;
200 {
201 int s;
202
203 if (!ALTQ_IS_READY(ifq))
204 return ENXIO;
205 if (ALTQ_IS_ENABLED(ifq))
206 return 0;
207
208 s = splnet();
209 IFQ_PURGE(ifq);
210 ASSERT(ifq->ifq_len == 0);
211 ifq->altq_flags |= ALTQF_ENABLED;
212 if (ifq->altq_clfier != NULL)
213 ifq->altq_flags |= ALTQF_CLASSIFY;
214 splx(s);
215
216 return 0;
217 }
218
219 int
220 altq_disable(ifq)
221 struct ifaltq *ifq;
222 {
223 int s;
224
225 if (!ALTQ_IS_ENABLED(ifq))
226 return 0;
227
228 s = splnet();
229 IFQ_PURGE(ifq);
230 ASSERT(ifq->ifq_len == 0);
231 ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
232 splx(s);
233 return 0;
234 }
235
236 void
237 altq_assert(file, line, failedexpr)
238 const char *file, *failedexpr;
239 int line;
240 {
241 (void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
242 failedexpr, file, line);
243 panic("altq assertion");
244 /* NOTREACHED */
245 }
246
247 /*
248 * internal representation of token bucket parameters
249 * rate: byte_per_unittime << 32
250 * (((bits_per_sec) / 8) << 32) / machclk_freq
251 * depth: byte << 32
252 *
253 */
254 #define TBR_SHIFT 32
255 #define TBR_SCALE(x) ((int64_t)(x) << TBR_SHIFT)
256 #define TBR_UNSCALE(x) ((x) >> TBR_SHIFT)
257
258 struct mbuf *
259 tbr_dequeue(ifq, op)
260 struct ifaltq *ifq;
261 int op;
262 {
263 struct tb_regulator *tbr;
264 struct mbuf *m;
265 int64_t interval;
266 u_int64_t now;
267
268 tbr = ifq->altq_tbr;
269 if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
270 /* if this is a remove after poll, bypass tbr check */
271 } else {
272 /* update token only when it is negative */
273 if (tbr->tbr_token <= 0) {
274 now = read_machclk();
275 interval = now - tbr->tbr_last;
276 if (interval >= tbr->tbr_filluptime)
277 tbr->tbr_token = tbr->tbr_depth;
278 else {
279 tbr->tbr_token += interval * tbr->tbr_rate;
280 if (tbr->tbr_token > tbr->tbr_depth)
281 tbr->tbr_token = tbr->tbr_depth;
282 }
283 tbr->tbr_last = now;
284 }
285 /* if token is still negative, don't allow dequeue */
286 if (tbr->tbr_token <= 0)
287 return (NULL);
288 }
289
290 if (ALTQ_IS_ENABLED(ifq))
291 m = (*ifq->altq_dequeue)(ifq, op);
292 else {
293 if (op == ALTDQ_POLL)
294 IF_POLL(ifq, m);
295 else
296 IF_DEQUEUE(ifq, m);
297 }
298
299 if (m != NULL && op == ALTDQ_REMOVE)
300 tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
301 tbr->tbr_lastop = op;
302 return (m);
303 }
304
305 /*
306 * set a token bucket regulator.
307 * if the specified rate is zero, the token bucket regulator is deleted.
308 */
309 int
310 tbr_set(ifq, profile)
311 struct ifaltq *ifq;
312 struct tb_profile *profile;
313 {
314 struct tb_regulator *tbr, *otbr;
315
316 if (machclk_freq == 0)
317 init_machclk();
318 if (machclk_freq == 0) {
319 printf("tbr_set: no CPU clock available!\n");
320 return (ENXIO);
321 }
322
323 if (profile->rate == 0) {
324 /* delete this tbr */
325 if ((tbr = ifq->altq_tbr) == NULL)
326 return (ENOENT);
327 ifq->altq_tbr = NULL;
328 free(tbr, M_DEVBUF);
329 return (0);
330 }
331
332 tbr = malloc(sizeof(struct tb_regulator), M_DEVBUF, M_WAITOK|M_ZERO);
333 if (tbr == NULL)
334 return (ENOMEM);
335
336 tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
337 tbr->tbr_depth = TBR_SCALE(profile->depth);
338 if (tbr->tbr_rate > 0)
339 tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
340 else
341 tbr->tbr_filluptime = 0xffffffffffffffffLL;
342 tbr->tbr_token = tbr->tbr_depth;
343 tbr->tbr_last = read_machclk();
344 tbr->tbr_lastop = ALTDQ_REMOVE;
345
346 otbr = ifq->altq_tbr;
347 ifq->altq_tbr = tbr; /* set the new tbr */
348
349 if (otbr != NULL)
350 free(otbr, M_DEVBUF);
351 else {
352 if (tbr_timer == 0) {
353 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
354 tbr_timer = 1;
355 }
356 }
357 return (0);
358 }
359
360 /*
361 * tbr_timeout goes through the interface list, and kicks the drivers
362 * if necessary.
363 */
364 static void
365 tbr_timeout(arg)
366 void *arg;
367 {
368 struct ifnet *ifp;
369 int active, s;
370
371 active = 0;
372 s = splnet();
373 #ifdef __FreeBSD__
374 #if (__FreeBSD_version < 300000)
375 for (ifp = ifnet; ifp; ifp = ifp->if_next)
376 #else
377 for (ifp = ifnet.tqh_first; ifp != NULL; ifp = ifp->if_link.tqe_next)
378 #endif
379 #else /* !FreeBSD */
380 for (ifp = ifnet.tqh_first; ifp != NULL; ifp = ifp->if_list.tqe_next)
381 #endif
382 {
383 if (!TBR_IS_ENABLED(&ifp->if_snd))
384 continue;
385 active++;
386 if (!IFQ_IS_EMPTY(&ifp->if_snd) && ifp->if_start != NULL)
387 (*ifp->if_start)(ifp);
388 }
389 splx(s);
390 if (active > 0)
391 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
392 else
393 tbr_timer = 0; /* don't need tbr_timer anymore */
394 #if defined(__alpha__) && !defined(ALTQ_NOPCC)
395 {
396 /*
397 * XXX read out the machine dependent clock once a second
398 * to detect counter wrap-around.
399 */
400 static u_int cnt;
401
402 if (++cnt >= hz) {
403 (void)read_machclk();
404 cnt = 0;
405 }
406 }
407 #endif /* __alpha__ && !ALTQ_NOPCC */
408 }
409
410 /*
411 * get token bucket regulator profile
412 */
413 int
414 tbr_get(ifq, profile)
415 struct ifaltq *ifq;
416 struct tb_profile *profile;
417 {
418 struct tb_regulator *tbr;
419
420 if ((tbr = ifq->altq_tbr) == NULL) {
421 profile->rate = 0;
422 profile->depth = 0;
423 } else {
424 profile->rate =
425 (u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq);
426 profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth);
427 }
428 return (0);
429 }
430
431
432 #ifndef IPPROTO_ESP
433 #define IPPROTO_ESP 50 /* encapsulating security payload */
434 #endif
435 #ifndef IPPROTO_AH
436 #define IPPROTO_AH 51 /* authentication header */
437 #endif
438
439 /*
440 * extract flow information from a given packet.
441 * filt_mask shows flowinfo fields required.
442 * we assume the ip header is in one mbuf, and addresses and ports are
443 * in network byte order.
444 */
445 int
446 altq_extractflow(m, af, flow, filt_bmask)
447 struct mbuf *m;
448 int af;
449 struct flowinfo *flow;
450 u_int32_t filt_bmask;
451 {
452
453 switch (af) {
454 case PF_INET: {
455 struct flowinfo_in *fin;
456 struct ip *ip;
457
458 ip = mtod(m, struct ip *);
459
460 if (ip->ip_v != 4)
461 break;
462
463 fin = (struct flowinfo_in *)flow;
464 fin->fi_len = sizeof(struct flowinfo_in);
465 fin->fi_family = AF_INET;
466
467 fin->fi_proto = ip->ip_p;
468 fin->fi_tos = ip->ip_tos;
469
470 fin->fi_src.s_addr = ip->ip_src.s_addr;
471 fin->fi_dst.s_addr = ip->ip_dst.s_addr;
472
473 if (filt_bmask & FIMB4_PORTS)
474 /* if port info is required, extract port numbers */
475 extract_ports4(m, ip, fin);
476 else {
477 fin->fi_sport = 0;
478 fin->fi_dport = 0;
479 fin->fi_gpi = 0;
480 }
481 return (1);
482 }
483
484 #ifdef INET6
485 case PF_INET6: {
486 struct flowinfo_in6 *fin6;
487 struct ip6_hdr *ip6;
488
489 ip6 = mtod(m, struct ip6_hdr *);
490 /* should we check the ip version? */
491
492 fin6 = (struct flowinfo_in6 *)flow;
493 fin6->fi6_len = sizeof(struct flowinfo_in6);
494 fin6->fi6_family = AF_INET6;
495
496 fin6->fi6_proto = ip6->ip6_nxt;
497 fin6->fi6_tclass = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
498
499 fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
500 fin6->fi6_src = ip6->ip6_src;
501 fin6->fi6_dst = ip6->ip6_dst;
502
503 if ((filt_bmask & FIMB6_PORTS) ||
504 ((filt_bmask & FIMB6_PROTO)
505 && ip6->ip6_nxt > IPPROTO_IPV6))
506 /*
507 * if port info is required, or proto is required
508 * but there are option headers, extract port
509 * and protocol numbers.
510 */
511 extract_ports6(m, ip6, fin6);
512 else {
513 fin6->fi6_sport = 0;
514 fin6->fi6_dport = 0;
515 fin6->fi6_gpi = 0;
516 }
517 return (1);
518 }
519 #endif /* INET6 */
520
521 default:
522 break;
523 }
524
525 /* failed */
526 flow->fi_len = sizeof(struct flowinfo);
527 flow->fi_family = AF_UNSPEC;
528 return (0);
529 }
530
531 /*
532 * helper routine to extract port numbers
533 */
534 /* structure for ipsec and ipv6 option header template */
535 struct _opt6 {
536 u_int8_t opt6_nxt; /* next header */
537 u_int8_t opt6_hlen; /* header extension length */
538 u_int16_t _pad;
539 u_int32_t ah_spi; /* security parameter index
540 for authentication header */
541 };
542
543 /*
544 * extract port numbers from a ipv4 packet.
545 */
546 static int
547 extract_ports4(m, ip, fin)
548 struct mbuf *m;
549 struct ip *ip;
550 struct flowinfo_in *fin;
551 {
552 struct mbuf *m0;
553 u_short ip_off;
554 u_int8_t proto;
555 int off;
556
557 fin->fi_sport = 0;
558 fin->fi_dport = 0;
559 fin->fi_gpi = 0;
560
561 ip_off = ntohs(ip->ip_off);
562 /* if it is a fragment, try cached fragment info */
563 if (ip_off & IP_OFFMASK) {
564 ip4f_lookup(ip, fin);
565 return (1);
566 }
567
568 /* locate the mbuf containing the protocol header */
569 for (m0 = m; m0 != NULL; m0 = m0->m_next)
570 if (((caddr_t)ip >= m0->m_data) &&
571 ((caddr_t)ip < m0->m_data + m0->m_len))
572 break;
573 if (m0 == NULL) {
574 #ifdef ALTQ_DEBUG
575 printf("extract_ports4: can't locate header! ip=%p\n", ip);
576 #endif
577 return (0);
578 }
579 off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
580 proto = ip->ip_p;
581
582 #ifdef ALTQ_IPSEC
583 again:
584 #endif
585 while (off >= m0->m_len) {
586 off -= m0->m_len;
587 m0 = m0->m_next;
588 if (m0 == NULL)
589 return (0); /* bogus ip_hl! */
590 }
591 if (m0->m_len < off + 4)
592 return (0);
593
594 switch (proto) {
595 case IPPROTO_TCP:
596 case IPPROTO_UDP: {
597 struct udphdr *udp;
598
599 udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
600 fin->fi_sport = udp->uh_sport;
601 fin->fi_dport = udp->uh_dport;
602 fin->fi_proto = proto;
603 }
604 break;
605
606 #ifdef ALTQ_IPSEC
607 case IPPROTO_ESP:
608 if (fin->fi_gpi == 0){
609 u_int32_t *gpi;
610
611 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
612 fin->fi_gpi = *gpi;
613 }
614 fin->fi_proto = proto;
615 break;
616
617 case IPPROTO_AH: {
618 /* get next header and header length */
619 struct _opt6 *opt6;
620
621 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
622 proto = opt6->opt6_nxt;
623 off += 8 + (opt6->opt6_hlen * 4);
624 if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
625 fin->fi_gpi = opt6->ah_spi;
626 }
627 /* goto the next header */
628 goto again;
629 #endif /* ALTQ_IPSEC */
630
631 default:
632 fin->fi_proto = proto;
633 return (0);
634 }
635
636 /* if this is a first fragment, cache it. */
637 if (ip_off & IP_MF)
638 ip4f_cache(ip, fin);
639
640 return (1);
641 }
642
643 #ifdef INET6
644 static int
645 extract_ports6(m, ip6, fin6)
646 struct mbuf *m;
647 struct ip6_hdr *ip6;
648 struct flowinfo_in6 *fin6;
649 {
650 struct mbuf *m0;
651 int off;
652 u_int8_t proto;
653
654 fin6->fi6_gpi = 0;
655 fin6->fi6_sport = 0;
656 fin6->fi6_dport = 0;
657
658 /* locate the mbuf containing the protocol header */
659 for (m0 = m; m0 != NULL; m0 = m0->m_next)
660 if (((caddr_t)ip6 >= m0->m_data) &&
661 ((caddr_t)ip6 < m0->m_data + m0->m_len))
662 break;
663 if (m0 == NULL) {
664 #ifdef ALTQ_DEBUG
665 printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
666 #endif
667 return (0);
668 }
669 off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
670
671 proto = ip6->ip6_nxt;
672 do {
673 while (off >= m0->m_len) {
674 off -= m0->m_len;
675 m0 = m0->m_next;
676 if (m0 == NULL)
677 return (0);
678 }
679 if (m0->m_len < off + 4)
680 return (0);
681
682 switch (proto) {
683 case IPPROTO_TCP:
684 case IPPROTO_UDP: {
685 struct udphdr *udp;
686
687 udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
688 fin6->fi6_sport = udp->uh_sport;
689 fin6->fi6_dport = udp->uh_dport;
690 fin6->fi6_proto = proto;
691 }
692 return (1);
693
694 case IPPROTO_ESP:
695 if (fin6->fi6_gpi == 0) {
696 u_int32_t *gpi;
697
698 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
699 fin6->fi6_gpi = *gpi;
700 }
701 fin6->fi6_proto = proto;
702 return (1);
703
704 case IPPROTO_AH: {
705 /* get next header and header length */
706 struct _opt6 *opt6;
707
708 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
709 if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
710 fin6->fi6_gpi = opt6->ah_spi;
711 proto = opt6->opt6_nxt;
712 off += 8 + (opt6->opt6_hlen * 4);
713 /* goto the next header */
714 break;
715 }
716
717 case IPPROTO_HOPOPTS:
718 case IPPROTO_ROUTING:
719 case IPPROTO_DSTOPTS: {
720 /* get next header and header length */
721 struct _opt6 *opt6;
722
723 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
724 proto = opt6->opt6_nxt;
725 off += (opt6->opt6_hlen + 1) * 8;
726 /* goto the next header */
727 break;
728 }
729
730 case IPPROTO_FRAGMENT:
731 /* ipv6 fragmentations are not supported yet */
732 default:
733 fin6->fi6_proto = proto;
734 return (0);
735 }
736 } while (1);
737 /*NOTREACHED*/
738 }
739 #endif /* INET6 */
740
741 /*
742 * altq common classifier
743 */
744 int
745 acc_add_filter(classifier, filter, class, phandle)
746 struct acc_classifier *classifier;
747 struct flow_filter *filter;
748 void *class;
749 u_long *phandle;
750 {
751 struct acc_filter *afp, *prev, *tmp;
752 int i, s;
753
754 #ifdef INET6
755 if (filter->ff_flow.fi_family != AF_INET &&
756 filter->ff_flow.fi_family != AF_INET6)
757 return (EINVAL);
758 #else
759 if (filter->ff_flow.fi_family != AF_INET)
760 return (EINVAL);
761 #endif
762
763 afp = malloc(sizeof(struct acc_filter), M_DEVBUF, M_WAITOK|M_ZERO);
764 if (afp == NULL)
765 return (ENOMEM);
766
767 afp->f_filter = *filter;
768 afp->f_class = class;
769
770 i = ACC_WILDCARD_INDEX;
771 if (filter->ff_flow.fi_family == AF_INET) {
772 struct flow_filter *filter4 = &afp->f_filter;
773
774 /*
775 * if address is 0, it's a wildcard. if address mask
776 * isn't set, use full mask.
777 */
778 if (filter4->ff_flow.fi_dst.s_addr == 0)
779 filter4->ff_mask.mask_dst.s_addr = 0;
780 else if (filter4->ff_mask.mask_dst.s_addr == 0)
781 filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
782 if (filter4->ff_flow.fi_src.s_addr == 0)
783 filter4->ff_mask.mask_src.s_addr = 0;
784 else if (filter4->ff_mask.mask_src.s_addr == 0)
785 filter4->ff_mask.mask_src.s_addr = 0xffffffff;
786
787 /* clear extra bits in addresses */
788 filter4->ff_flow.fi_dst.s_addr &=
789 filter4->ff_mask.mask_dst.s_addr;
790 filter4->ff_flow.fi_src.s_addr &=
791 filter4->ff_mask.mask_src.s_addr;
792
793 /*
794 * if dst address is a wildcard, use hash-entry
795 * ACC_WILDCARD_INDEX.
796 */
797 if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
798 i = ACC_WILDCARD_INDEX;
799 else
800 i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
801 }
802 #ifdef INET6
803 else if (filter->ff_flow.fi_family == AF_INET6) {
804 struct flow_filter6 *filter6 =
805 (struct flow_filter6 *)&afp->f_filter;
806 #ifndef IN6MASK0 /* taken from kame ipv6 */
807 #define IN6MASK0 {{{ 0, 0, 0, 0 }}}
808 #define IN6MASK128 {{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
809 const struct in6_addr in6mask0 = IN6MASK0;
810 const struct in6_addr in6mask128 = IN6MASK128;
811 #endif
812
813 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
814 filter6->ff_mask6.mask6_dst = in6mask0;
815 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
816 filter6->ff_mask6.mask6_dst = in6mask128;
817 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
818 filter6->ff_mask6.mask6_src = in6mask0;
819 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
820 filter6->ff_mask6.mask6_src = in6mask128;
821
822 /* clear extra bits in addresses */
823 for (i = 0; i < 16; i++)
824 filter6->ff_flow6.fi6_dst.s6_addr[i] &=
825 filter6->ff_mask6.mask6_dst.s6_addr[i];
826 for (i = 0; i < 16; i++)
827 filter6->ff_flow6.fi6_src.s6_addr[i] &=
828 filter6->ff_mask6.mask6_src.s6_addr[i];
829
830 if (filter6->ff_flow6.fi6_flowlabel == 0)
831 i = ACC_WILDCARD_INDEX;
832 else
833 i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
834 }
835 #endif /* INET6 */
836
837 afp->f_handle = get_filt_handle(classifier, i);
838
839 /* update filter bitmask */
840 afp->f_fbmask = filt2fibmask(filter);
841 classifier->acc_fbmask |= afp->f_fbmask;
842
843 /*
844 * add this filter to the filter list.
845 * filters are ordered from the highest rule number.
846 */
847 s = splnet();
848 prev = NULL;
849 LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
850 if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
851 prev = tmp;
852 else
853 break;
854 }
855 if (prev == NULL)
856 LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
857 else
858 LIST_INSERT_AFTER(prev, afp, f_chain);
859 splx(s);
860
861 *phandle = afp->f_handle;
862 return (0);
863 }
864
865 int
866 acc_delete_filter(classifier, handle)
867 struct acc_classifier *classifier;
868 u_long handle;
869 {
870 struct acc_filter *afp;
871 int s;
872
873 if ((afp = filth_to_filtp(classifier, handle)) == NULL)
874 return (EINVAL);
875
876 s = splnet();
877 LIST_REMOVE(afp, f_chain);
878 splx(s);
879
880 free(afp, M_DEVBUF);
881
882 /* todo: update filt_bmask */
883
884 return (0);
885 }
886
887 /*
888 * delete filters referencing to the specified class.
889 * if the all flag is not 0, delete all the filters.
890 */
891 int
892 acc_discard_filters(classifier, class, all)
893 struct acc_classifier *classifier;
894 void *class;
895 int all;
896 {
897 struct acc_filter *afp;
898 int i, s;
899
900 s = splnet();
901 for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
902 do {
903 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
904 if (all || afp->f_class == class) {
905 LIST_REMOVE(afp, f_chain);
906 free(afp, M_DEVBUF);
907 /* start again from the head */
908 break;
909 }
910 } while (afp != NULL);
911 }
912 splx(s);
913
914 if (all)
915 classifier->acc_fbmask = 0;
916
917 return (0);
918 }
919
920 void *
921 acc_classify(clfier, m, af)
922 void *clfier;
923 struct mbuf *m;
924 int af;
925 {
926 struct acc_classifier *classifier;
927 struct flowinfo flow;
928 struct acc_filter *afp;
929 int i;
930
931 classifier = (struct acc_classifier *)clfier;
932 altq_extractflow(m, af, &flow, classifier->acc_fbmask);
933
934 if (flow.fi_family == AF_INET) {
935 struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
936
937 if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
938 /* only tos is used */
939 LIST_FOREACH(afp,
940 &classifier->acc_filters[ACC_WILDCARD_INDEX],
941 f_chain)
942 if (apply_tosfilter4(afp->f_fbmask,
943 &afp->f_filter, fp))
944 /* filter matched */
945 return (afp->f_class);
946 } else if ((classifier->acc_fbmask &
947 (~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
948 == 0) {
949 /* only proto and ports are used */
950 LIST_FOREACH(afp,
951 &classifier->acc_filters[ACC_WILDCARD_INDEX],
952 f_chain)
953 if (apply_ppfilter4(afp->f_fbmask,
954 &afp->f_filter, fp))
955 /* filter matched */
956 return (afp->f_class);
957 } else {
958 /* get the filter hash entry from its dest address */
959 i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
960 do {
961 /*
962 * go through this loop twice. first for dst
963 * hash, second for wildcards.
964 */
965 LIST_FOREACH(afp, &classifier->acc_filters[i],
966 f_chain)
967 if (apply_filter4(afp->f_fbmask,
968 &afp->f_filter, fp))
969 /* filter matched */
970 return (afp->f_class);
971
972 /*
973 * check again for filters with a dst addr
974 * wildcard.
975 * (daddr == 0 || dmask != 0xffffffff).
976 */
977 if (i != ACC_WILDCARD_INDEX)
978 i = ACC_WILDCARD_INDEX;
979 else
980 break;
981 } while (1);
982 }
983 }
984 #ifdef INET6
985 else if (flow.fi_family == AF_INET6) {
986 struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
987
988 /* get the filter hash entry from its flow ID */
989 if (fp6->fi6_flowlabel != 0)
990 i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
991 else
992 /* flowlable can be zero */
993 i = ACC_WILDCARD_INDEX;
994
995 /* go through this loop twice. first for flow hash, second
996 for wildcards. */
997 do {
998 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
999 if (apply_filter6(afp->f_fbmask,
1000 (struct flow_filter6 *)&afp->f_filter,
1001 fp6))
1002 /* filter matched */
1003 return (afp->f_class);
1004
1005 /*
1006 * check again for filters with a wildcard.
1007 */
1008 if (i != ACC_WILDCARD_INDEX)
1009 i = ACC_WILDCARD_INDEX;
1010 else
1011 break;
1012 } while (1);
1013 }
1014 #endif /* INET6 */
1015
1016 /* no filter matched */
1017 return (NULL);
1018 }
1019
1020 static int
1021 apply_filter4(fbmask, filt, pkt)
1022 u_int32_t fbmask;
1023 struct flow_filter *filt;
1024 struct flowinfo_in *pkt;
1025 {
1026 if (filt->ff_flow.fi_family != AF_INET)
1027 return (0);
1028 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1029 return (0);
1030 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1031 return (0);
1032 if ((fbmask & FIMB4_DADDR) &&
1033 filt->ff_flow.fi_dst.s_addr !=
1034 (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
1035 return (0);
1036 if ((fbmask & FIMB4_SADDR) &&
1037 filt->ff_flow.fi_src.s_addr !=
1038 (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
1039 return (0);
1040 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1041 return (0);
1042 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1043 (pkt->fi_tos & filt->ff_mask.mask_tos))
1044 return (0);
1045 if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
1046 return (0);
1047 /* match */
1048 return (1);
1049 }
1050
1051 /*
1052 * filter matching function optimized for a common case that checks
1053 * only protocol and port numbers
1054 */
1055 static int
1056 apply_ppfilter4(fbmask, filt, pkt)
1057 u_int32_t fbmask;
1058 struct flow_filter *filt;
1059 struct flowinfo_in *pkt;
1060 {
1061 if (filt->ff_flow.fi_family != AF_INET)
1062 return (0);
1063 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1064 return (0);
1065 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1066 return (0);
1067 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1068 return (0);
1069 /* match */
1070 return (1);
1071 }
1072
1073 /*
1074 * filter matching function only for tos field.
1075 */
1076 static int
1077 apply_tosfilter4(fbmask, filt, pkt)
1078 u_int32_t fbmask;
1079 struct flow_filter *filt;
1080 struct flowinfo_in *pkt;
1081 {
1082 if (filt->ff_flow.fi_family != AF_INET)
1083 return (0);
1084 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1085 (pkt->fi_tos & filt->ff_mask.mask_tos))
1086 return (0);
1087 /* match */
1088 return (1);
1089 }
1090
1091 #ifdef INET6
1092 static int
1093 apply_filter6(fbmask, filt, pkt)
1094 u_int32_t fbmask;
1095 struct flow_filter6 *filt;
1096 struct flowinfo_in6 *pkt;
1097 {
1098 int i;
1099
1100 if (filt->ff_flow6.fi6_family != AF_INET6)
1101 return (0);
1102 if ((fbmask & FIMB6_FLABEL) &&
1103 filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
1104 return (0);
1105 if ((fbmask & FIMB6_PROTO) &&
1106 filt->ff_flow6.fi6_proto != pkt->fi6_proto)
1107 return (0);
1108 if ((fbmask & FIMB6_SPORT) &&
1109 filt->ff_flow6.fi6_sport != pkt->fi6_sport)
1110 return (0);
1111 if ((fbmask & FIMB6_DPORT) &&
1112 filt->ff_flow6.fi6_dport != pkt->fi6_dport)
1113 return (0);
1114 if (fbmask & FIMB6_SADDR) {
1115 for (i = 0; i < 4; i++)
1116 if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
1117 (pkt->fi6_src.s6_addr32[i] &
1118 filt->ff_mask6.mask6_src.s6_addr32[i]))
1119 return (0);
1120 }
1121 if (fbmask & FIMB6_DADDR) {
1122 for (i = 0; i < 4; i++)
1123 if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
1124 (pkt->fi6_dst.s6_addr32[i] &
1125 filt->ff_mask6.mask6_dst.s6_addr32[i]))
1126 return (0);
1127 }
1128 if ((fbmask & FIMB6_TCLASS) &&
1129 filt->ff_flow6.fi6_tclass !=
1130 (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
1131 return (0);
1132 if ((fbmask & FIMB6_GPI) &&
1133 filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
1134 return (0);
1135 /* match */
1136 return (1);
1137 }
1138 #endif /* INET6 */
1139
1140 /*
1141 * filter handle:
1142 * bit 20-28: index to the filter hash table
1143 * bit 0-19: unique id in the hash bucket.
1144 */
1145 static u_long
1146 get_filt_handle(classifier, i)
1147 struct acc_classifier *classifier;
1148 int i;
1149 {
1150 static u_long handle_number = 1;
1151 u_long handle;
1152 struct acc_filter *afp;
1153
1154 while (1) {
1155 handle = handle_number++ & 0x000fffff;
1156
1157 if (LIST_EMPTY(&classifier->acc_filters[i]))
1158 break;
1159
1160 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1161 if ((afp->f_handle & 0x000fffff) == handle)
1162 break;
1163 if (afp == NULL)
1164 break;
1165 /* this handle is already used, try again */
1166 }
1167
1168 return ((i << 20) | handle);
1169 }
1170
1171 /* convert filter handle to filter pointer */
1172 static struct acc_filter *
1173 filth_to_filtp(classifier, handle)
1174 struct acc_classifier *classifier;
1175 u_long handle;
1176 {
1177 struct acc_filter *afp;
1178 int i;
1179
1180 i = ACC_GET_HINDEX(handle);
1181
1182 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1183 if (afp->f_handle == handle)
1184 return (afp);
1185
1186 return (NULL);
1187 }
1188
1189 /* create flowinfo bitmask */
1190 static u_int32_t
1191 filt2fibmask(filt)
1192 struct flow_filter *filt;
1193 {
1194 u_int32_t mask = 0;
1195 #ifdef INET6
1196 struct flow_filter6 *filt6;
1197 #endif
1198
1199 switch (filt->ff_flow.fi_family) {
1200 case AF_INET:
1201 if (filt->ff_flow.fi_proto != 0)
1202 mask |= FIMB4_PROTO;
1203 if (filt->ff_flow.fi_tos != 0)
1204 mask |= FIMB4_TOS;
1205 if (filt->ff_flow.fi_dst.s_addr != 0)
1206 mask |= FIMB4_DADDR;
1207 if (filt->ff_flow.fi_src.s_addr != 0)
1208 mask |= FIMB4_SADDR;
1209 if (filt->ff_flow.fi_sport != 0)
1210 mask |= FIMB4_SPORT;
1211 if (filt->ff_flow.fi_dport != 0)
1212 mask |= FIMB4_DPORT;
1213 if (filt->ff_flow.fi_gpi != 0)
1214 mask |= FIMB4_GPI;
1215 break;
1216 #ifdef INET6
1217 case AF_INET6:
1218 filt6 = (struct flow_filter6 *)filt;
1219
1220 if (filt6->ff_flow6.fi6_proto != 0)
1221 mask |= FIMB6_PROTO;
1222 if (filt6->ff_flow6.fi6_tclass != 0)
1223 mask |= FIMB6_TCLASS;
1224 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
1225 mask |= FIMB6_DADDR;
1226 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
1227 mask |= FIMB6_SADDR;
1228 if (filt6->ff_flow6.fi6_sport != 0)
1229 mask |= FIMB6_SPORT;
1230 if (filt6->ff_flow6.fi6_dport != 0)
1231 mask |= FIMB6_DPORT;
1232 if (filt6->ff_flow6.fi6_gpi != 0)
1233 mask |= FIMB6_GPI;
1234 if (filt6->ff_flow6.fi6_flowlabel != 0)
1235 mask |= FIMB6_FLABEL;
1236 break;
1237 #endif /* INET6 */
1238 }
1239 return (mask);
1240 }
1241
1242
1243 /*
1244 * helper functions to handle IPv4 fragments.
1245 * currently only in-sequence fragments are handled.
1246 * - fragment info is cached in a LRU list.
1247 * - when a first fragment is found, cache its flow info.
1248 * - when a non-first fragment is found, lookup the cache.
1249 */
1250
1251 struct ip4_frag {
1252 TAILQ_ENTRY(ip4_frag) ip4f_chain;
1253 char ip4f_valid;
1254 u_short ip4f_id;
1255 struct flowinfo_in ip4f_info;
1256 };
1257
1258 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
1259
1260 #define IP4F_TABSIZE 16 /* IPv4 fragment cache size */
1261
1262
1263 static void
1264 ip4f_cache(ip, fin)
1265 struct ip *ip;
1266 struct flowinfo_in *fin;
1267 {
1268 struct ip4_frag *fp;
1269
1270 if (TAILQ_EMPTY(&ip4f_list)) {
1271 /* first time call, allocate fragment cache entries. */
1272 if (ip4f_init() < 0)
1273 /* allocation failed! */
1274 return;
1275 }
1276
1277 fp = ip4f_alloc();
1278 fp->ip4f_id = ip->ip_id;
1279 fp->ip4f_info.fi_proto = ip->ip_p;
1280 fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
1281 fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
1282
1283 /* save port numbers */
1284 fp->ip4f_info.fi_sport = fin->fi_sport;
1285 fp->ip4f_info.fi_dport = fin->fi_dport;
1286 fp->ip4f_info.fi_gpi = fin->fi_gpi;
1287 }
1288
1289 static int
1290 ip4f_lookup(ip, fin)
1291 struct ip *ip;
1292 struct flowinfo_in *fin;
1293 {
1294 struct ip4_frag *fp;
1295
1296 for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
1297 fp = TAILQ_NEXT(fp, ip4f_chain))
1298 if (ip->ip_id == fp->ip4f_id &&
1299 ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
1300 ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
1301 ip->ip_p == fp->ip4f_info.fi_proto) {
1302
1303 /* found the matching entry */
1304 fin->fi_sport = fp->ip4f_info.fi_sport;
1305 fin->fi_dport = fp->ip4f_info.fi_dport;
1306 fin->fi_gpi = fp->ip4f_info.fi_gpi;
1307
1308 if ((ntohs(ip->ip_off) & IP_MF) == 0)
1309 /* this is the last fragment,
1310 release the entry. */
1311 ip4f_free(fp);
1312
1313 return (1);
1314 }
1315
1316 /* no matching entry found */
1317 return (0);
1318 }
1319
1320 static int
1321 ip4f_init(void)
1322 {
1323 struct ip4_frag *fp;
1324 int i;
1325
1326 TAILQ_INIT(&ip4f_list);
1327 for (i=0; i<IP4F_TABSIZE; i++) {
1328 fp = malloc(sizeof(struct ip4_frag), M_DEVBUF, M_NOWAIT);
1329 if (fp == NULL) {
1330 printf("ip4f_init: can't alloc %dth entry!\n", i);
1331 if (i == 0)
1332 return (-1);
1333 return (0);
1334 }
1335 fp->ip4f_valid = 0;
1336 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1337 }
1338 return (0);
1339 }
1340
1341 static struct ip4_frag *
1342 ip4f_alloc(void)
1343 {
1344 struct ip4_frag *fp;
1345
1346 /* reclaim an entry at the tail, put it at the head */
1347 fp = TAILQ_LAST(&ip4f_list, ip4f_list);
1348 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1349 fp->ip4f_valid = 1;
1350 TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
1351 return (fp);
1352 }
1353
1354 static void
1355 ip4f_free(fp)
1356 struct ip4_frag *fp;
1357 {
1358 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1359 fp->ip4f_valid = 0;
1360 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1361 }
1362
1363 /*
1364 * read and write diffserv field in IPv4 or IPv6 header
1365 */
1366 u_int8_t
1367 read_dsfield(m, pktattr)
1368 struct mbuf *m;
1369 struct altq_pktattr *pktattr;
1370 {
1371 struct mbuf *m0;
1372 u_int8_t ds_field = 0;
1373
1374 if (pktattr == NULL ||
1375 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
1376 return ((u_int8_t)0);
1377
1378 /* verify that pattr_hdr is within the mbuf data */
1379 for (m0 = m; m0 != NULL; m0 = m0->m_next)
1380 if ((pktattr->pattr_hdr >= m0->m_data) &&
1381 (pktattr->pattr_hdr < m0->m_data + m0->m_len))
1382 break;
1383 if (m0 == NULL) {
1384 /* ick, pattr_hdr is stale */
1385 pktattr->pattr_af = AF_UNSPEC;
1386 #ifdef ALTQ_DEBUG
1387 printf("read_dsfield: can't locate header!\n");
1388 #endif
1389 return ((u_int8_t)0);
1390 }
1391
1392 if (pktattr->pattr_af == AF_INET) {
1393 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
1394
1395 if (ip->ip_v != 4)
1396 return ((u_int8_t)0); /* version mismatch! */
1397 ds_field = ip->ip_tos;
1398 }
1399 #ifdef INET6
1400 else if (pktattr->pattr_af == AF_INET6) {
1401 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
1402 u_int32_t flowlabel;
1403
1404 flowlabel = ntohl(ip6->ip6_flow);
1405 if ((flowlabel >> 28) != 6)
1406 return ((u_int8_t)0); /* version mismatch! */
1407 ds_field = (flowlabel >> 20) & 0xff;
1408 }
1409 #endif
1410 return (ds_field);
1411 }
1412
1413 void
1414 write_dsfield(m, pktattr, dsfield)
1415 struct mbuf *m;
1416 struct altq_pktattr *pktattr;
1417 u_int8_t dsfield;
1418 {
1419 struct mbuf *m0;
1420
1421 if (pktattr == NULL ||
1422 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
1423 return;
1424
1425 /* verify that pattr_hdr is within the mbuf data */
1426 for (m0 = m; m0 != NULL; m0 = m0->m_next)
1427 if ((pktattr->pattr_hdr >= m0->m_data) &&
1428 (pktattr->pattr_hdr < m0->m_data + m0->m_len))
1429 break;
1430 if (m0 == NULL) {
1431 /* ick, pattr_hdr is stale */
1432 pktattr->pattr_af = AF_UNSPEC;
1433 #ifdef ALTQ_DEBUG
1434 printf("write_dsfield: can't locate header!\n");
1435 #endif
1436 return;
1437 }
1438
1439 if (pktattr->pattr_af == AF_INET) {
1440 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
1441 u_int8_t old;
1442 int32_t sum;
1443
1444 if (ip->ip_v != 4)
1445 return; /* version mismatch! */
1446 old = ip->ip_tos;
1447 dsfield |= old & 3; /* leave CU bits */
1448 if (old == dsfield)
1449 return;
1450 ip->ip_tos = dsfield;
1451 /*
1452 * update checksum (from RFC1624)
1453 * HC' = ~(~HC + ~m + m')
1454 */
1455 sum = ~ntohs(ip->ip_sum) & 0xffff;
1456 sum += 0xff00 + (~old & 0xff) + dsfield;
1457 sum = (sum >> 16) + (sum & 0xffff);
1458 sum += (sum >> 16); /* add carry */
1459
1460 ip->ip_sum = htons(~sum & 0xffff);
1461 }
1462 #ifdef INET6
1463 else if (pktattr->pattr_af == AF_INET6) {
1464 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
1465 u_int32_t flowlabel;
1466
1467 flowlabel = ntohl(ip6->ip6_flow);
1468 if ((flowlabel >> 28) != 6)
1469 return; /* version mismatch! */
1470 flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
1471 ip6->ip6_flow = htonl(flowlabel);
1472 }
1473 #endif
1474 return;
1475 }
1476
1477
1478 /*
1479 * high resolution clock support taking advantage of a machine dependent
1480 * high resolution time counter (e.g., timestamp counter of intel pentium).
1481 * we assume
1482 * - 64-bit-long monotonically-increasing counter
1483 * - frequency range is 100M-4GHz (CPU speed)
1484 */
1485 u_int32_t machclk_freq = 0;
1486 u_int32_t machclk_per_tick = 0;
1487
1488 #if (defined(__i386__) || defined(__alpha__)) && !defined(ALTQ_NOPCC)
1489
1490 #if defined(__FreeBSD__) && defined(SMP)
1491 #error SMP system! use ALTQ_NOPCC option.
1492 #endif
1493
1494 #ifdef __alpha__
1495 #ifdef __FreeBSD__
1496 extern u_int32_t cycles_per_sec; /* alpha CPU clock frequency */
1497 #elif defined(__NetBSD__) || defined(__OpenBSD__)
1498 extern u_int64_t cycles_per_usec; /* alpha CPU clock frequency */
1499 #endif
1500 #endif /* __alpha__ */
1501
1502 void
1503 init_machclk(void)
1504 {
1505 /* sanity check */
1506 #ifdef __i386__
1507 /* check if TSC is available */
1508 if ((cpu_feature & CPUID_TSC) == 0) {
1509 printf("altq: TSC isn't available! use ALTQ_NOPCC option.\n");
1510 return;
1511 }
1512 #endif
1513
1514 /*
1515 * if the clock frequency (of Pentium TSC or Alpha PCC) is
1516 * accessible, just use it.
1517 */
1518 #ifdef __i386__
1519 #ifdef __FreeBSD__
1520 #if (__FreeBSD_version > 300000)
1521 machclk_freq = tsc_freq;
1522 #else
1523 machclk_freq = i586_ctr_freq;
1524 #endif
1525 #elif defined(__NetBSD__)
1526 machclk_freq = (u_int32_t)curcpu()->ci_tsc_freq;
1527 #elif defined(__OpenBSD__)
1528 machclk_freq = pentium_mhz * 1000000;
1529 #endif
1530 #elif defined(__alpha__)
1531 #ifdef __FreeBSD__
1532 machclk_freq = cycles_per_sec;
1533 #elif defined(__NetBSD__) || defined(__OpenBSD__)
1534 machclk_freq = (u_int32_t)(cycles_per_usec * 1000000);
1535 #endif
1536 #endif /* __alpha__ */
1537
1538 /*
1539 * if we don't know the clock frequency, measure it.
1540 */
1541 if (machclk_freq == 0) {
1542 static int wait;
1543 struct timeval tv_start, tv_end;
1544 u_int64_t start, end, diff;
1545 int timo;
1546
1547 microtime(&tv_start);
1548 start = read_machclk();
1549 timo = hz; /* 1 sec */
1550 (void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
1551 microtime(&tv_end);
1552 end = read_machclk();
1553 diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
1554 + tv_end.tv_usec - tv_start.tv_usec;
1555 if (diff != 0)
1556 machclk_freq = (u_int)((end - start) * 1000000 / diff);
1557 }
1558
1559 machclk_per_tick = machclk_freq / hz;
1560
1561 #ifdef ALTQ_DEBUG
1562 printf("altq: CPU clock: %uHz\n", machclk_freq);
1563 #endif
1564 }
1565
1566 #ifdef __alpha__
1567 /*
1568 * make a 64bit counter value out of the 32bit alpha processor cycle counter.
1569 * read_machclk must be called within a half of its wrap-around cycle
1570 * (about 5 sec for 400MHz CPU) to properly detect a counter wrap-around.
1571 * tbr_timeout calls read_machclk once a second.
1572 */
1573 u_int64_t
1574 read_machclk(void)
1575 {
1576 static u_int32_t last_pcc, upper;
1577 u_int32_t pcc;
1578
1579 pcc = (u_int32_t)alpha_rpcc();
1580 if (pcc <= last_pcc)
1581 upper++;
1582 last_pcc = pcc;
1583 return (((u_int64_t)upper << 32) + pcc);
1584 }
1585 #endif /* __alpha__ */
1586 #else /* !i386 && !alpha */
1587 /* use microtime() for now */
1588 void
1589 init_machclk(void)
1590 {
1591 machclk_freq = 1000000 << MACHCLK_SHIFT;
1592 machclk_per_tick = machclk_freq / hz;
1593 printf("altq: emulate %uHz CPU clock\n", machclk_freq);
1594 }
1595 #endif /* !i386 && !alpha */
1596