altq_subr.c revision 1.24.18.1 1 /* $NetBSD: altq_subr.c,v 1.24.18.1 2008/05/18 12:31:18 yamt Exp $ */
2 /* $KAME: altq_subr.c,v 1.24 2005/04/13 03:44:25 suz Exp $ */
3
4 /*
5 * Copyright (C) 1997-2003
6 * Sony Computer Science Laboratories Inc. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: altq_subr.c,v 1.24.18.1 2008/05/18 12:31:18 yamt Exp $");
32
33 #ifdef _KERNEL_OPT
34 #include "opt_altq.h"
35 #include "opt_inet.h"
36 #include "pf.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/kernel.h>
47 #include <sys/errno.h>
48 #include <sys/syslog.h>
49 #include <sys/sysctl.h>
50 #include <sys/queue.h>
51
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/ip.h>
59 #ifdef INET6
60 #include <netinet/ip6.h>
61 #endif
62 #include <netinet/tcp.h>
63 #include <netinet/udp.h>
64
65 #if NPF > 0
66 #include <net/pfvar.h>
67 #endif
68 #include <altq/altq.h>
69 #ifdef ALTQ3_COMPAT
70 #include <altq/altq_conf.h>
71 #endif
72
73 /* machine dependent clock related includes */
74 #ifdef __HAVE_CPU_COUNTER
75 #include <machine/cpu_counter.h> /* for pentium tsc */
76 #endif
77
78 /*
79 * internal function prototypes
80 */
81 static void tbr_timeout(void *);
82 int (*altq_input)(struct mbuf *, int) = NULL;
83 static int tbr_timer = 0; /* token bucket regulator timer */
84 static struct callout tbr_callout;
85
86 #ifdef ALTQ3_CLFIER_COMPAT
87 static int extract_ports4(struct mbuf *, struct ip *, struct flowinfo_in *);
88 #ifdef INET6
89 static int extract_ports6(struct mbuf *, struct ip6_hdr *,
90 struct flowinfo_in6 *);
91 #endif
92 static int apply_filter4(u_int32_t, struct flow_filter *,
93 struct flowinfo_in *);
94 static int apply_ppfilter4(u_int32_t, struct flow_filter *,
95 struct flowinfo_in *);
96 #ifdef INET6
97 static int apply_filter6(u_int32_t, struct flow_filter6 *,
98 struct flowinfo_in6 *);
99 #endif
100 static int apply_tosfilter4(u_int32_t, struct flow_filter *,
101 struct flowinfo_in *);
102 static u_long get_filt_handle(struct acc_classifier *, int);
103 static struct acc_filter *filth_to_filtp(struct acc_classifier *, u_long);
104 static u_int32_t filt2fibmask(struct flow_filter *);
105
106 static void ip4f_cache(struct ip *, struct flowinfo_in *);
107 static int ip4f_lookup(struct ip *, struct flowinfo_in *);
108 static int ip4f_init(void);
109 static struct ip4_frag *ip4f_alloc(void);
110 static void ip4f_free(struct ip4_frag *);
111 #endif /* ALTQ3_CLFIER_COMPAT */
112
113 /*
114 * alternate queueing support routines
115 */
116
117 /* look up the queue state by the interface name and the queueing type. */
118 void *
119 altq_lookup(char *name, int type)
120 {
121 struct ifnet *ifp;
122
123 if ((ifp = ifunit(name)) != NULL) {
124 if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
125 return (ifp->if_snd.altq_disc);
126 }
127
128 return NULL;
129 }
130
131 int
132 altq_attach(struct ifaltq *ifq, int type, void *discipline,
133 int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *),
134 struct mbuf *(*dequeue)(struct ifaltq *, int),
135 int (*request)(struct ifaltq *, int, void *),
136 void *clfier, void *(*classify)(void *, struct mbuf *, int))
137 {
138 if (!ALTQ_IS_READY(ifq))
139 return ENXIO;
140
141 #ifdef ALTQ3_COMPAT
142 /*
143 * pfaltq can override the existing discipline, but altq3 cannot.
144 * check these if clfier is not NULL (which implies altq3).
145 */
146 if (clfier != NULL) {
147 if (ALTQ_IS_ENABLED(ifq))
148 return EBUSY;
149 if (ALTQ_IS_ATTACHED(ifq))
150 return EEXIST;
151 }
152 #endif
153 ifq->altq_type = type;
154 ifq->altq_disc = discipline;
155 ifq->altq_enqueue = enqueue;
156 ifq->altq_dequeue = dequeue;
157 ifq->altq_request = request;
158 ifq->altq_clfier = clfier;
159 ifq->altq_classify = classify;
160 ifq->altq_flags &= (ALTQF_CANTCHANGE|ALTQF_ENABLED);
161 #ifdef ALTQ3_COMPAT
162 #ifdef ALTQ_KLD
163 altq_module_incref(type);
164 #endif
165 #endif
166 return 0;
167 }
168
169 int
170 altq_detach(struct ifaltq *ifq)
171 {
172 if (!ALTQ_IS_READY(ifq))
173 return ENXIO;
174 if (ALTQ_IS_ENABLED(ifq))
175 return EBUSY;
176 if (!ALTQ_IS_ATTACHED(ifq))
177 return (0);
178 #ifdef ALTQ3_COMPAT
179 #ifdef ALTQ_KLD
180 altq_module_declref(ifq->altq_type);
181 #endif
182 #endif
183
184 ifq->altq_type = ALTQT_NONE;
185 ifq->altq_disc = NULL;
186 ifq->altq_enqueue = NULL;
187 ifq->altq_dequeue = NULL;
188 ifq->altq_request = NULL;
189 ifq->altq_clfier = NULL;
190 ifq->altq_classify = NULL;
191 ifq->altq_flags &= ALTQF_CANTCHANGE;
192 return 0;
193 }
194
195 int
196 altq_enable(struct ifaltq *ifq)
197 {
198 int s;
199
200 if (!ALTQ_IS_READY(ifq))
201 return ENXIO;
202 if (ALTQ_IS_ENABLED(ifq))
203 return 0;
204
205 s = splnet();
206 IFQ_PURGE(ifq);
207 ASSERT(ifq->ifq_len == 0);
208 ifq->altq_flags |= ALTQF_ENABLED;
209 if (ifq->altq_clfier != NULL)
210 ifq->altq_flags |= ALTQF_CLASSIFY;
211 splx(s);
212
213 return 0;
214 }
215
216 int
217 altq_disable(struct ifaltq *ifq)
218 {
219 int s;
220
221 if (!ALTQ_IS_ENABLED(ifq))
222 return 0;
223
224 s = splnet();
225 IFQ_PURGE(ifq);
226 ASSERT(ifq->ifq_len == 0);
227 ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
228 splx(s);
229 return 0;
230 }
231
232 #ifdef ALTQ_DEBUG
233 void
234 altq_assert(const char *file, int line, const char *failedexpr)
235 {
236 (void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
237 failedexpr, file, line);
238 panic("altq assertion");
239 /* NOTREACHED */
240 }
241 #endif
242
243 /*
244 * internal representation of token bucket parameters
245 * rate: byte_per_unittime << 32
246 * (((bits_per_sec) / 8) << 32) / machclk_freq
247 * depth: byte << 32
248 *
249 */
250 #define TBR_SHIFT 32
251 #define TBR_SCALE(x) ((int64_t)(x) << TBR_SHIFT)
252 #define TBR_UNSCALE(x) ((x) >> TBR_SHIFT)
253
254 struct mbuf *
255 tbr_dequeue(struct ifaltq *ifq, int op)
256 {
257 struct tb_regulator *tbr;
258 struct mbuf *m;
259 int64_t interval;
260 u_int64_t now;
261
262 tbr = ifq->altq_tbr;
263 if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
264 /* if this is a remove after poll, bypass tbr check */
265 } else {
266 /* update token only when it is negative */
267 if (tbr->tbr_token <= 0) {
268 now = read_machclk();
269 interval = now - tbr->tbr_last;
270 if (interval >= tbr->tbr_filluptime)
271 tbr->tbr_token = tbr->tbr_depth;
272 else {
273 tbr->tbr_token += interval * tbr->tbr_rate;
274 if (tbr->tbr_token > tbr->tbr_depth)
275 tbr->tbr_token = tbr->tbr_depth;
276 }
277 tbr->tbr_last = now;
278 }
279 /* if token is still negative, don't allow dequeue */
280 if (tbr->tbr_token <= 0)
281 return (NULL);
282 }
283
284 if (ALTQ_IS_ENABLED(ifq))
285 m = (*ifq->altq_dequeue)(ifq, op);
286 else {
287 if (op == ALTDQ_POLL)
288 IF_POLL(ifq, m);
289 else
290 IF_DEQUEUE(ifq, m);
291 }
292
293 if (m != NULL && op == ALTDQ_REMOVE)
294 tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
295 tbr->tbr_lastop = op;
296 return (m);
297 }
298
299 /*
300 * set a token bucket regulator.
301 * if the specified rate is zero, the token bucket regulator is deleted.
302 */
303 int
304 tbr_set(struct ifaltq *ifq, struct tb_profile *profile)
305 {
306 struct tb_regulator *tbr, *otbr;
307
308 if (machclk_freq == 0)
309 init_machclk();
310 if (machclk_freq == 0) {
311 printf("tbr_set: no CPU clock available!\n");
312 return (ENXIO);
313 }
314
315 if (profile->rate == 0) {
316 /* delete this tbr */
317 if ((tbr = ifq->altq_tbr) == NULL)
318 return (ENOENT);
319 ifq->altq_tbr = NULL;
320 free(tbr, M_DEVBUF);
321 return (0);
322 }
323
324 tbr = malloc(sizeof(struct tb_regulator), M_DEVBUF, M_WAITOK|M_ZERO);
325 if (tbr == NULL)
326 return (ENOMEM);
327
328 tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
329 tbr->tbr_depth = TBR_SCALE(profile->depth);
330 if (tbr->tbr_rate > 0)
331 tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
332 else
333 tbr->tbr_filluptime = 0xffffffffffffffffLL;
334 tbr->tbr_token = tbr->tbr_depth;
335 tbr->tbr_last = read_machclk();
336 tbr->tbr_lastop = ALTDQ_REMOVE;
337
338 otbr = ifq->altq_tbr;
339 ifq->altq_tbr = tbr; /* set the new tbr */
340
341 if (otbr != NULL)
342 free(otbr, M_DEVBUF);
343 else {
344 if (tbr_timer == 0) {
345 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
346 tbr_timer = 1;
347 }
348 }
349 return (0);
350 }
351
352 /*
353 * tbr_timeout goes through the interface list, and kicks the drivers
354 * if necessary.
355 */
356 static void
357 tbr_timeout(void *arg)
358 {
359 struct ifnet *ifp;
360 int active, s;
361
362 active = 0;
363 s = splnet();
364 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
365 if (!TBR_IS_ENABLED(&ifp->if_snd))
366 continue;
367 active++;
368 if (!IFQ_IS_EMPTY(&ifp->if_snd) && ifp->if_start != NULL)
369 (*ifp->if_start)(ifp);
370 }
371 splx(s);
372 if (active > 0)
373 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
374 else
375 tbr_timer = 0; /* don't need tbr_timer anymore */
376 #if defined(__alpha__) && !defined(ALTQ_NOPCC)
377 {
378 /*
379 * XXX read out the machine dependent clock once a second
380 * to detect counter wrap-around.
381 */
382 static u_int cnt;
383
384 if (++cnt >= hz) {
385 (void)read_machclk();
386 cnt = 0;
387 }
388 }
389 #endif /* __alpha__ && !ALTQ_NOPCC */
390 }
391
392 /*
393 * get token bucket regulator profile
394 */
395 int
396 tbr_get(struct ifaltq *ifq, struct tb_profile *profile)
397 {
398 struct tb_regulator *tbr;
399
400 if ((tbr = ifq->altq_tbr) == NULL) {
401 profile->rate = 0;
402 profile->depth = 0;
403 } else {
404 profile->rate =
405 (u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq);
406 profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth);
407 }
408 return (0);
409 }
410
411 #if NPF > 0
412 /*
413 * attach a discipline to the interface. if one already exists, it is
414 * overridden.
415 */
416 int
417 altq_pfattach(struct pf_altq *a)
418 {
419 int error = 0;
420
421 switch (a->scheduler) {
422 case ALTQT_NONE:
423 break;
424 #ifdef ALTQ_CBQ
425 case ALTQT_CBQ:
426 error = cbq_pfattach(a);
427 break;
428 #endif
429 #ifdef ALTQ_PRIQ
430 case ALTQT_PRIQ:
431 error = priq_pfattach(a);
432 break;
433 #endif
434 #ifdef ALTQ_HFSC
435 case ALTQT_HFSC:
436 error = hfsc_pfattach(a);
437 break;
438 #endif
439 default:
440 error = ENXIO;
441 }
442
443 return (error);
444 }
445
446 /*
447 * detach a discipline from the interface.
448 * it is possible that the discipline was already overridden by another
449 * discipline.
450 */
451 int
452 altq_pfdetach(struct pf_altq *a)
453 {
454 struct ifnet *ifp;
455 int s, error = 0;
456
457 if ((ifp = ifunit(a->ifname)) == NULL)
458 return (EINVAL);
459
460 /* if this discipline is no longer referenced, just return */
461 if (a->altq_disc == NULL || a->altq_disc != ifp->if_snd.altq_disc)
462 return (0);
463
464 s = splnet();
465 if (ALTQ_IS_ENABLED(&ifp->if_snd))
466 error = altq_disable(&ifp->if_snd);
467 if (error == 0)
468 error = altq_detach(&ifp->if_snd);
469 splx(s);
470
471 return (error);
472 }
473
474 /*
475 * add a discipline or a queue
476 */
477 int
478 altq_add(struct pf_altq *a)
479 {
480 int error = 0;
481
482 if (a->qname[0] != 0)
483 return (altq_add_queue(a));
484
485 if (machclk_freq == 0)
486 init_machclk();
487 if (machclk_freq == 0)
488 panic("altq_add: no CPU clock");
489
490 switch (a->scheduler) {
491 #ifdef ALTQ_CBQ
492 case ALTQT_CBQ:
493 error = cbq_add_altq(a);
494 break;
495 #endif
496 #ifdef ALTQ_PRIQ
497 case ALTQT_PRIQ:
498 error = priq_add_altq(a);
499 break;
500 #endif
501 #ifdef ALTQ_HFSC
502 case ALTQT_HFSC:
503 error = hfsc_add_altq(a);
504 break;
505 #endif
506 default:
507 error = ENXIO;
508 }
509
510 return (error);
511 }
512
513 /*
514 * remove a discipline or a queue
515 */
516 int
517 altq_remove(struct pf_altq *a)
518 {
519 int error = 0;
520
521 if (a->qname[0] != 0)
522 return (altq_remove_queue(a));
523
524 switch (a->scheduler) {
525 #ifdef ALTQ_CBQ
526 case ALTQT_CBQ:
527 error = cbq_remove_altq(a);
528 break;
529 #endif
530 #ifdef ALTQ_PRIQ
531 case ALTQT_PRIQ:
532 error = priq_remove_altq(a);
533 break;
534 #endif
535 #ifdef ALTQ_HFSC
536 case ALTQT_HFSC:
537 error = hfsc_remove_altq(a);
538 break;
539 #endif
540 default:
541 error = ENXIO;
542 }
543
544 return (error);
545 }
546
547 /*
548 * add a queue to the discipline
549 */
550 int
551 altq_add_queue(struct pf_altq *a)
552 {
553 int error = 0;
554
555 switch (a->scheduler) {
556 #ifdef ALTQ_CBQ
557 case ALTQT_CBQ:
558 error = cbq_add_queue(a);
559 break;
560 #endif
561 #ifdef ALTQ_PRIQ
562 case ALTQT_PRIQ:
563 error = priq_add_queue(a);
564 break;
565 #endif
566 #ifdef ALTQ_HFSC
567 case ALTQT_HFSC:
568 error = hfsc_add_queue(a);
569 break;
570 #endif
571 default:
572 error = ENXIO;
573 }
574
575 return (error);
576 }
577
578 /*
579 * remove a queue from the discipline
580 */
581 int
582 altq_remove_queue(struct pf_altq *a)
583 {
584 int error = 0;
585
586 switch (a->scheduler) {
587 #ifdef ALTQ_CBQ
588 case ALTQT_CBQ:
589 error = cbq_remove_queue(a);
590 break;
591 #endif
592 #ifdef ALTQ_PRIQ
593 case ALTQT_PRIQ:
594 error = priq_remove_queue(a);
595 break;
596 #endif
597 #ifdef ALTQ_HFSC
598 case ALTQT_HFSC:
599 error = hfsc_remove_queue(a);
600 break;
601 #endif
602 default:
603 error = ENXIO;
604 }
605
606 return (error);
607 }
608
609 /*
610 * get queue statistics
611 */
612 int
613 altq_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
614 {
615 int error = 0;
616
617 switch (a->scheduler) {
618 #ifdef ALTQ_CBQ
619 case ALTQT_CBQ:
620 error = cbq_getqstats(a, ubuf, nbytes);
621 break;
622 #endif
623 #ifdef ALTQ_PRIQ
624 case ALTQT_PRIQ:
625 error = priq_getqstats(a, ubuf, nbytes);
626 break;
627 #endif
628 #ifdef ALTQ_HFSC
629 case ALTQT_HFSC:
630 error = hfsc_getqstats(a, ubuf, nbytes);
631 break;
632 #endif
633 default:
634 error = ENXIO;
635 }
636
637 return (error);
638 }
639 #endif /* NPF > 0 */
640
641 /*
642 * read and write diffserv field in IPv4 or IPv6 header
643 */
644 u_int8_t
645 read_dsfield(struct mbuf *m, struct altq_pktattr *pktattr)
646 {
647 struct mbuf *m0;
648 u_int8_t ds_field = 0;
649
650 if (pktattr == NULL ||
651 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
652 return ((u_int8_t)0);
653
654 /* verify that pattr_hdr is within the mbuf data */
655 for (m0 = m; m0 != NULL; m0 = m0->m_next)
656 if (((char *)pktattr->pattr_hdr >= m0->m_data) &&
657 ((char *)pktattr->pattr_hdr < m0->m_data + m0->m_len))
658 break;
659 if (m0 == NULL) {
660 /* ick, pattr_hdr is stale */
661 pktattr->pattr_af = AF_UNSPEC;
662 #ifdef ALTQ_DEBUG
663 printf("read_dsfield: can't locate header!\n");
664 #endif
665 return ((u_int8_t)0);
666 }
667
668 if (pktattr->pattr_af == AF_INET) {
669 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
670
671 if (ip->ip_v != 4)
672 return ((u_int8_t)0); /* version mismatch! */
673 ds_field = ip->ip_tos;
674 }
675 #ifdef INET6
676 else if (pktattr->pattr_af == AF_INET6) {
677 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
678 u_int32_t flowlabel;
679
680 flowlabel = ntohl(ip6->ip6_flow);
681 if ((flowlabel >> 28) != 6)
682 return ((u_int8_t)0); /* version mismatch! */
683 ds_field = (flowlabel >> 20) & 0xff;
684 }
685 #endif
686 return (ds_field);
687 }
688
689 void
690 write_dsfield(struct mbuf *m, struct altq_pktattr *pktattr, u_int8_t dsfield)
691 {
692 struct mbuf *m0;
693
694 if (pktattr == NULL ||
695 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
696 return;
697
698 /* verify that pattr_hdr is within the mbuf data */
699 for (m0 = m; m0 != NULL; m0 = m0->m_next)
700 if (((char *)pktattr->pattr_hdr >= m0->m_data) &&
701 ((char *)pktattr->pattr_hdr < m0->m_data + m0->m_len))
702 break;
703 if (m0 == NULL) {
704 /* ick, pattr_hdr is stale */
705 pktattr->pattr_af = AF_UNSPEC;
706 #ifdef ALTQ_DEBUG
707 printf("write_dsfield: can't locate header!\n");
708 #endif
709 return;
710 }
711
712 if (pktattr->pattr_af == AF_INET) {
713 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
714 u_int8_t old;
715 int32_t sum;
716
717 if (ip->ip_v != 4)
718 return; /* version mismatch! */
719 old = ip->ip_tos;
720 dsfield |= old & 3; /* leave CU bits */
721 if (old == dsfield)
722 return;
723 ip->ip_tos = dsfield;
724 /*
725 * update checksum (from RFC1624)
726 * HC' = ~(~HC + ~m + m')
727 */
728 sum = ~ntohs(ip->ip_sum) & 0xffff;
729 sum += 0xff00 + (~old & 0xff) + dsfield;
730 sum = (sum >> 16) + (sum & 0xffff);
731 sum += (sum >> 16); /* add carry */
732
733 ip->ip_sum = htons(~sum & 0xffff);
734 }
735 #ifdef INET6
736 else if (pktattr->pattr_af == AF_INET6) {
737 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
738 u_int32_t flowlabel;
739
740 flowlabel = ntohl(ip6->ip6_flow);
741 if ((flowlabel >> 28) != 6)
742 return; /* version mismatch! */
743 flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
744 ip6->ip6_flow = htonl(flowlabel);
745 }
746 #endif
747 return;
748 }
749
750
751 /*
752 * high resolution clock support taking advantage of a machine dependent
753 * high resolution time counter (e.g., timestamp counter of intel pentium).
754 * we assume
755 * - 64-bit-long monotonically-increasing counter
756 * - frequency range is 100M-4GHz (CPU speed)
757 */
758 /* if pcc is not available or disabled, emulate 256MHz using microtime() */
759 #define MACHCLK_SHIFT 8
760
761 int machclk_usepcc;
762 u_int32_t machclk_freq = 0;
763 u_int32_t machclk_per_tick = 0;
764
765 #ifdef __alpha__
766 #ifdef __FreeBSD__
767 extern u_int32_t cycles_per_sec; /* alpha cpu clock frequency */
768 #elif defined(__NetBSD__) || defined(__OpenBSD__)
769 extern u_int64_t cycles_per_usec; /* alpha cpu clock frequency */
770 #endif
771 #endif /* __alpha__ */
772
773 void
774 init_machclk(void)
775 {
776
777 callout_init(&tbr_callout, 0);
778
779 #ifdef __HAVE_CPU_COUNTER
780 /* check if TSC is available */
781 machclk_usepcc = cpu_hascounter();
782 machclk_freq = cpu_frequency(curcpu());
783 #endif
784
785 if (machclk_usepcc == 0) {
786 /* emulate 256MHz using microtime() */
787 machclk_freq = 1000000 << MACHCLK_SHIFT;
788 machclk_per_tick = machclk_freq / hz;
789 #ifdef ALTQ_DEBUG
790 printf("altq: emulate %uHz CPU clock\n", machclk_freq);
791 #endif
792 return;
793 }
794
795 /*
796 * if we don't know the clock frequency, measure it.
797 */
798 if (machclk_freq == 0) {
799 static int wait;
800 struct timeval tv_start, tv_end;
801 u_int64_t start, end, diff;
802 int timo;
803
804 microtime(&tv_start);
805 start = read_machclk();
806 timo = hz; /* 1 sec */
807 (void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
808 microtime(&tv_end);
809 end = read_machclk();
810 diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
811 + tv_end.tv_usec - tv_start.tv_usec;
812 if (diff != 0)
813 machclk_freq = (u_int)((end - start) * 1000000 / diff);
814 }
815
816 machclk_per_tick = machclk_freq / hz;
817
818 #ifdef ALTQ_DEBUG
819 printf("altq: CPU clock: %uHz\n", machclk_freq);
820 #endif
821 }
822
823 u_int64_t
824 read_machclk(void)
825 {
826 u_int64_t val;
827
828 if (machclk_usepcc) {
829 #ifdef __HAVE_CPU_COUNTER
830 return cpu_counter();
831 #endif
832 } else {
833 struct timeval tv;
834
835 microtime(&tv);
836 val = (((u_int64_t)(tv.tv_sec - boottime.tv_sec) * 1000000
837 + tv.tv_usec) << MACHCLK_SHIFT);
838 }
839 return (val);
840 }
841
842 #ifdef ALTQ3_CLFIER_COMPAT
843
844 #ifndef IPPROTO_ESP
845 #define IPPROTO_ESP 50 /* encapsulating security payload */
846 #endif
847 #ifndef IPPROTO_AH
848 #define IPPROTO_AH 51 /* authentication header */
849 #endif
850
851 /*
852 * extract flow information from a given packet.
853 * filt_mask shows flowinfo fields required.
854 * we assume the ip header is in one mbuf, and addresses and ports are
855 * in network byte order.
856 */
857 int
858 altq_extractflow(struct mbuf *m, int af, struct flowinfo *flow,
859 u_int32_t filt_bmask)
860 {
861
862 switch (af) {
863 case PF_INET: {
864 struct flowinfo_in *fin;
865 struct ip *ip;
866
867 ip = mtod(m, struct ip *);
868
869 if (ip->ip_v != 4)
870 break;
871
872 fin = (struct flowinfo_in *)flow;
873 fin->fi_len = sizeof(struct flowinfo_in);
874 fin->fi_family = AF_INET;
875
876 fin->fi_proto = ip->ip_p;
877 fin->fi_tos = ip->ip_tos;
878
879 fin->fi_src.s_addr = ip->ip_src.s_addr;
880 fin->fi_dst.s_addr = ip->ip_dst.s_addr;
881
882 if (filt_bmask & FIMB4_PORTS)
883 /* if port info is required, extract port numbers */
884 extract_ports4(m, ip, fin);
885 else {
886 fin->fi_sport = 0;
887 fin->fi_dport = 0;
888 fin->fi_gpi = 0;
889 }
890 return (1);
891 }
892
893 #ifdef INET6
894 case PF_INET6: {
895 struct flowinfo_in6 *fin6;
896 struct ip6_hdr *ip6;
897
898 ip6 = mtod(m, struct ip6_hdr *);
899 /* should we check the ip version? */
900
901 fin6 = (struct flowinfo_in6 *)flow;
902 fin6->fi6_len = sizeof(struct flowinfo_in6);
903 fin6->fi6_family = AF_INET6;
904
905 fin6->fi6_proto = ip6->ip6_nxt;
906 fin6->fi6_tclass = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
907
908 fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
909 fin6->fi6_src = ip6->ip6_src;
910 fin6->fi6_dst = ip6->ip6_dst;
911
912 if ((filt_bmask & FIMB6_PORTS) ||
913 ((filt_bmask & FIMB6_PROTO)
914 && ip6->ip6_nxt > IPPROTO_IPV6))
915 /*
916 * if port info is required, or proto is required
917 * but there are option headers, extract port
918 * and protocol numbers.
919 */
920 extract_ports6(m, ip6, fin6);
921 else {
922 fin6->fi6_sport = 0;
923 fin6->fi6_dport = 0;
924 fin6->fi6_gpi = 0;
925 }
926 return (1);
927 }
928 #endif /* INET6 */
929
930 default:
931 break;
932 }
933
934 /* failed */
935 flow->fi_len = sizeof(struct flowinfo);
936 flow->fi_family = AF_UNSPEC;
937 return (0);
938 }
939
940 /*
941 * helper routine to extract port numbers
942 */
943 /* structure for ipsec and ipv6 option header template */
944 struct _opt6 {
945 u_int8_t opt6_nxt; /* next header */
946 u_int8_t opt6_hlen; /* header extension length */
947 u_int16_t _pad;
948 u_int32_t ah_spi; /* security parameter index
949 for authentication header */
950 };
951
952 /*
953 * extract port numbers from a ipv4 packet.
954 */
955 static int
956 extract_ports4(struct mbuf *m, struct ip *ip, struct flowinfo_in *fin)
957 {
958 struct mbuf *m0;
959 u_short ip_off;
960 u_int8_t proto;
961 int off;
962
963 fin->fi_sport = 0;
964 fin->fi_dport = 0;
965 fin->fi_gpi = 0;
966
967 ip_off = ntohs(ip->ip_off);
968 /* if it is a fragment, try cached fragment info */
969 if (ip_off & IP_OFFMASK) {
970 ip4f_lookup(ip, fin);
971 return (1);
972 }
973
974 /* locate the mbuf containing the protocol header */
975 for (m0 = m; m0 != NULL; m0 = m0->m_next)
976 if (((char *)ip >= m0->m_data) &&
977 ((char *)ip < m0->m_data + m0->m_len))
978 break;
979 if (m0 == NULL) {
980 #ifdef ALTQ_DEBUG
981 printf("extract_ports4: can't locate header! ip=%p\n", ip);
982 #endif
983 return (0);
984 }
985 off = ((char *)ip - m0->m_data) + (ip->ip_hl << 2);
986 proto = ip->ip_p;
987
988 #ifdef ALTQ_IPSEC
989 again:
990 #endif
991 while (off >= m0->m_len) {
992 off -= m0->m_len;
993 m0 = m0->m_next;
994 if (m0 == NULL)
995 return (0); /* bogus ip_hl! */
996 }
997 if (m0->m_len < off + 4)
998 return (0);
999
1000 switch (proto) {
1001 case IPPROTO_TCP:
1002 case IPPROTO_UDP: {
1003 struct udphdr *udp;
1004
1005 udp = (struct udphdr *)(mtod(m0, char *) + off);
1006 fin->fi_sport = udp->uh_sport;
1007 fin->fi_dport = udp->uh_dport;
1008 fin->fi_proto = proto;
1009 }
1010 break;
1011
1012 #ifdef ALTQ_IPSEC
1013 case IPPROTO_ESP:
1014 if (fin->fi_gpi == 0){
1015 u_int32_t *gpi;
1016
1017 gpi = (u_int32_t *)(mtod(m0, char *) + off);
1018 fin->fi_gpi = *gpi;
1019 }
1020 fin->fi_proto = proto;
1021 break;
1022
1023 case IPPROTO_AH: {
1024 /* get next header and header length */
1025 struct _opt6 *opt6;
1026
1027 opt6 = (struct _opt6 *)(mtod(m0, char *) + off);
1028 proto = opt6->opt6_nxt;
1029 off += 8 + (opt6->opt6_hlen * 4);
1030 if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
1031 fin->fi_gpi = opt6->ah_spi;
1032 }
1033 /* goto the next header */
1034 goto again;
1035 #endif /* ALTQ_IPSEC */
1036
1037 default:
1038 fin->fi_proto = proto;
1039 return (0);
1040 }
1041
1042 /* if this is a first fragment, cache it. */
1043 if (ip_off & IP_MF)
1044 ip4f_cache(ip, fin);
1045
1046 return (1);
1047 }
1048
1049 #ifdef INET6
1050 static int
1051 extract_ports6(struct mbuf *m, struct ip6_hdr *ip6, struct flowinfo_in6 *fin6)
1052 {
1053 struct mbuf *m0;
1054 int off;
1055 u_int8_t proto;
1056
1057 fin6->fi6_gpi = 0;
1058 fin6->fi6_sport = 0;
1059 fin6->fi6_dport = 0;
1060
1061 /* locate the mbuf containing the protocol header */
1062 for (m0 = m; m0 != NULL; m0 = m0->m_next)
1063 if (((char *)ip6 >= m0->m_data) &&
1064 ((char *)ip6 < m0->m_data + m0->m_len))
1065 break;
1066 if (m0 == NULL) {
1067 #ifdef ALTQ_DEBUG
1068 printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
1069 #endif
1070 return (0);
1071 }
1072 off = ((char *)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
1073
1074 proto = ip6->ip6_nxt;
1075 do {
1076 while (off >= m0->m_len) {
1077 off -= m0->m_len;
1078 m0 = m0->m_next;
1079 if (m0 == NULL)
1080 return (0);
1081 }
1082 if (m0->m_len < off + 4)
1083 return (0);
1084
1085 switch (proto) {
1086 case IPPROTO_TCP:
1087 case IPPROTO_UDP: {
1088 struct udphdr *udp;
1089
1090 udp = (struct udphdr *)(mtod(m0, char *) + off);
1091 fin6->fi6_sport = udp->uh_sport;
1092 fin6->fi6_dport = udp->uh_dport;
1093 fin6->fi6_proto = proto;
1094 }
1095 return (1);
1096
1097 case IPPROTO_ESP:
1098 if (fin6->fi6_gpi == 0) {
1099 u_int32_t *gpi;
1100
1101 gpi = (u_int32_t *)(mtod(m0, char *) + off);
1102 fin6->fi6_gpi = *gpi;
1103 }
1104 fin6->fi6_proto = proto;
1105 return (1);
1106
1107 case IPPROTO_AH: {
1108 /* get next header and header length */
1109 struct _opt6 *opt6;
1110
1111 opt6 = (struct _opt6 *)(mtod(m0, char *) + off);
1112 if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
1113 fin6->fi6_gpi = opt6->ah_spi;
1114 proto = opt6->opt6_nxt;
1115 off += 8 + (opt6->opt6_hlen * 4);
1116 /* goto the next header */
1117 break;
1118 }
1119
1120 case IPPROTO_HOPOPTS:
1121 case IPPROTO_ROUTING:
1122 case IPPROTO_DSTOPTS: {
1123 /* get next header and header length */
1124 struct _opt6 *opt6;
1125
1126 opt6 = (struct _opt6 *)(mtod(m0, char *) + off);
1127 proto = opt6->opt6_nxt;
1128 off += (opt6->opt6_hlen + 1) * 8;
1129 /* goto the next header */
1130 break;
1131 }
1132
1133 case IPPROTO_FRAGMENT:
1134 /* ipv6 fragmentations are not supported yet */
1135 default:
1136 fin6->fi6_proto = proto;
1137 return (0);
1138 }
1139 } while (1);
1140 /*NOTREACHED*/
1141 }
1142 #endif /* INET6 */
1143
1144 /*
1145 * altq common classifier
1146 */
1147 int
1148 acc_add_filter(struct acc_classifier *classifier, struct flow_filter *filter,
1149 void *class, u_long *phandle)
1150 {
1151 struct acc_filter *afp, *prev, *tmp;
1152 int i, s;
1153
1154 #ifdef INET6
1155 if (filter->ff_flow.fi_family != AF_INET &&
1156 filter->ff_flow.fi_family != AF_INET6)
1157 return (EINVAL);
1158 #else
1159 if (filter->ff_flow.fi_family != AF_INET)
1160 return (EINVAL);
1161 #endif
1162
1163 afp = malloc(sizeof(struct acc_filter), M_DEVBUF, M_WAITOK|M_ZERO);
1164 if (afp == NULL)
1165 return (ENOMEM);
1166
1167 afp->f_filter = *filter;
1168 afp->f_class = class;
1169
1170 i = ACC_WILDCARD_INDEX;
1171 if (filter->ff_flow.fi_family == AF_INET) {
1172 struct flow_filter *filter4 = &afp->f_filter;
1173
1174 /*
1175 * if address is 0, it's a wildcard. if address mask
1176 * isn't set, use full mask.
1177 */
1178 if (filter4->ff_flow.fi_dst.s_addr == 0)
1179 filter4->ff_mask.mask_dst.s_addr = 0;
1180 else if (filter4->ff_mask.mask_dst.s_addr == 0)
1181 filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
1182 if (filter4->ff_flow.fi_src.s_addr == 0)
1183 filter4->ff_mask.mask_src.s_addr = 0;
1184 else if (filter4->ff_mask.mask_src.s_addr == 0)
1185 filter4->ff_mask.mask_src.s_addr = 0xffffffff;
1186
1187 /* clear extra bits in addresses */
1188 filter4->ff_flow.fi_dst.s_addr &=
1189 filter4->ff_mask.mask_dst.s_addr;
1190 filter4->ff_flow.fi_src.s_addr &=
1191 filter4->ff_mask.mask_src.s_addr;
1192
1193 /*
1194 * if dst address is a wildcard, use hash-entry
1195 * ACC_WILDCARD_INDEX.
1196 */
1197 if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
1198 i = ACC_WILDCARD_INDEX;
1199 else
1200 i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
1201 }
1202 #ifdef INET6
1203 else if (filter->ff_flow.fi_family == AF_INET6) {
1204 struct flow_filter6 *filter6 =
1205 (struct flow_filter6 *)&afp->f_filter;
1206 #ifndef IN6MASK0 /* taken from kame ipv6 */
1207 #define IN6MASK0 {{{ 0, 0, 0, 0 }}}
1208 #define IN6MASK128 {{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
1209 const struct in6_addr in6mask0 = IN6MASK0;
1210 const struct in6_addr in6mask128 = IN6MASK128;
1211 #endif
1212
1213 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
1214 filter6->ff_mask6.mask6_dst = in6mask0;
1215 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
1216 filter6->ff_mask6.mask6_dst = in6mask128;
1217 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
1218 filter6->ff_mask6.mask6_src = in6mask0;
1219 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
1220 filter6->ff_mask6.mask6_src = in6mask128;
1221
1222 /* clear extra bits in addresses */
1223 for (i = 0; i < 16; i++)
1224 filter6->ff_flow6.fi6_dst.s6_addr[i] &=
1225 filter6->ff_mask6.mask6_dst.s6_addr[i];
1226 for (i = 0; i < 16; i++)
1227 filter6->ff_flow6.fi6_src.s6_addr[i] &=
1228 filter6->ff_mask6.mask6_src.s6_addr[i];
1229
1230 if (filter6->ff_flow6.fi6_flowlabel == 0)
1231 i = ACC_WILDCARD_INDEX;
1232 else
1233 i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
1234 }
1235 #endif /* INET6 */
1236
1237 afp->f_handle = get_filt_handle(classifier, i);
1238
1239 /* update filter bitmask */
1240 afp->f_fbmask = filt2fibmask(filter);
1241 classifier->acc_fbmask |= afp->f_fbmask;
1242
1243 /*
1244 * add this filter to the filter list.
1245 * filters are ordered from the highest rule number.
1246 */
1247 s = splnet();
1248 prev = NULL;
1249 LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
1250 if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
1251 prev = tmp;
1252 else
1253 break;
1254 }
1255 if (prev == NULL)
1256 LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
1257 else
1258 LIST_INSERT_AFTER(prev, afp, f_chain);
1259 splx(s);
1260
1261 *phandle = afp->f_handle;
1262 return (0);
1263 }
1264
1265 int
1266 acc_delete_filter(struct acc_classifier *classifier, u_long handle)
1267 {
1268 struct acc_filter *afp;
1269 int s;
1270
1271 if ((afp = filth_to_filtp(classifier, handle)) == NULL)
1272 return (EINVAL);
1273
1274 s = splnet();
1275 LIST_REMOVE(afp, f_chain);
1276 splx(s);
1277
1278 free(afp, M_DEVBUF);
1279
1280 /* todo: update filt_bmask */
1281
1282 return (0);
1283 }
1284
1285 /*
1286 * delete filters referencing to the specified class.
1287 * if the all flag is not 0, delete all the filters.
1288 */
1289 int
1290 acc_discard_filters(struct acc_classifier *classifier, void *class, int all)
1291 {
1292 struct acc_filter *afp;
1293 int i, s;
1294
1295 s = splnet();
1296 for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
1297 do {
1298 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1299 if (all || afp->f_class == class) {
1300 LIST_REMOVE(afp, f_chain);
1301 free(afp, M_DEVBUF);
1302 /* start again from the head */
1303 break;
1304 }
1305 } while (afp != NULL);
1306 }
1307 splx(s);
1308
1309 if (all)
1310 classifier->acc_fbmask = 0;
1311
1312 return (0);
1313 }
1314
1315 void *
1316 acc_classify(void *clfier, struct mbuf *m, int af)
1317 {
1318 struct acc_classifier *classifier;
1319 struct flowinfo flow;
1320 struct acc_filter *afp;
1321 int i;
1322
1323 classifier = (struct acc_classifier *)clfier;
1324 altq_extractflow(m, af, &flow, classifier->acc_fbmask);
1325
1326 if (flow.fi_family == AF_INET) {
1327 struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
1328
1329 if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
1330 /* only tos is used */
1331 LIST_FOREACH(afp,
1332 &classifier->acc_filters[ACC_WILDCARD_INDEX],
1333 f_chain)
1334 if (apply_tosfilter4(afp->f_fbmask,
1335 &afp->f_filter, fp))
1336 /* filter matched */
1337 return (afp->f_class);
1338 } else if ((classifier->acc_fbmask &
1339 (~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
1340 == 0) {
1341 /* only proto and ports are used */
1342 LIST_FOREACH(afp,
1343 &classifier->acc_filters[ACC_WILDCARD_INDEX],
1344 f_chain)
1345 if (apply_ppfilter4(afp->f_fbmask,
1346 &afp->f_filter, fp))
1347 /* filter matched */
1348 return (afp->f_class);
1349 } else {
1350 /* get the filter hash entry from its dest address */
1351 i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
1352 do {
1353 /*
1354 * go through this loop twice. first for dst
1355 * hash, second for wildcards.
1356 */
1357 LIST_FOREACH(afp, &classifier->acc_filters[i],
1358 f_chain)
1359 if (apply_filter4(afp->f_fbmask,
1360 &afp->f_filter, fp))
1361 /* filter matched */
1362 return (afp->f_class);
1363
1364 /*
1365 * check again for filters with a dst addr
1366 * wildcard.
1367 * (daddr == 0 || dmask != 0xffffffff).
1368 */
1369 if (i != ACC_WILDCARD_INDEX)
1370 i = ACC_WILDCARD_INDEX;
1371 else
1372 break;
1373 } while (1);
1374 }
1375 }
1376 #ifdef INET6
1377 else if (flow.fi_family == AF_INET6) {
1378 struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
1379
1380 /* get the filter hash entry from its flow ID */
1381 if (fp6->fi6_flowlabel != 0)
1382 i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
1383 else
1384 /* flowlable can be zero */
1385 i = ACC_WILDCARD_INDEX;
1386
1387 /* go through this loop twice. first for flow hash, second
1388 for wildcards. */
1389 do {
1390 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1391 if (apply_filter6(afp->f_fbmask,
1392 (struct flow_filter6 *)&afp->f_filter,
1393 fp6))
1394 /* filter matched */
1395 return (afp->f_class);
1396
1397 /*
1398 * check again for filters with a wildcard.
1399 */
1400 if (i != ACC_WILDCARD_INDEX)
1401 i = ACC_WILDCARD_INDEX;
1402 else
1403 break;
1404 } while (1);
1405 }
1406 #endif /* INET6 */
1407
1408 /* no filter matched */
1409 return (NULL);
1410 }
1411
1412 static int
1413 apply_filter4(u_int32_t fbmask, struct flow_filter *filt,
1414 struct flowinfo_in *pkt)
1415 {
1416 if (filt->ff_flow.fi_family != AF_INET)
1417 return (0);
1418 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1419 return (0);
1420 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1421 return (0);
1422 if ((fbmask & FIMB4_DADDR) &&
1423 filt->ff_flow.fi_dst.s_addr !=
1424 (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
1425 return (0);
1426 if ((fbmask & FIMB4_SADDR) &&
1427 filt->ff_flow.fi_src.s_addr !=
1428 (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
1429 return (0);
1430 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1431 return (0);
1432 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1433 (pkt->fi_tos & filt->ff_mask.mask_tos))
1434 return (0);
1435 if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
1436 return (0);
1437 /* match */
1438 return (1);
1439 }
1440
1441 /*
1442 * filter matching function optimized for a common case that checks
1443 * only protocol and port numbers
1444 */
1445 static int
1446 apply_ppfilter4(u_int32_t fbmask, struct flow_filter *filt,
1447 struct flowinfo_in *pkt)
1448 {
1449 if (filt->ff_flow.fi_family != AF_INET)
1450 return (0);
1451 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1452 return (0);
1453 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1454 return (0);
1455 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1456 return (0);
1457 /* match */
1458 return (1);
1459 }
1460
1461 /*
1462 * filter matching function only for tos field.
1463 */
1464 static int
1465 apply_tosfilter4(u_int32_t fbmask, struct flow_filter *filt,
1466 struct flowinfo_in *pkt)
1467 {
1468 if (filt->ff_flow.fi_family != AF_INET)
1469 return (0);
1470 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1471 (pkt->fi_tos & filt->ff_mask.mask_tos))
1472 return (0);
1473 /* match */
1474 return (1);
1475 }
1476
1477 #ifdef INET6
1478 static int
1479 apply_filter6(u_int32_t fbmask, struct flow_filter6 *filt,
1480 struct flowinfo_in6 *pkt)
1481 {
1482 int i;
1483
1484 if (filt->ff_flow6.fi6_family != AF_INET6)
1485 return (0);
1486 if ((fbmask & FIMB6_FLABEL) &&
1487 filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
1488 return (0);
1489 if ((fbmask & FIMB6_PROTO) &&
1490 filt->ff_flow6.fi6_proto != pkt->fi6_proto)
1491 return (0);
1492 if ((fbmask & FIMB6_SPORT) &&
1493 filt->ff_flow6.fi6_sport != pkt->fi6_sport)
1494 return (0);
1495 if ((fbmask & FIMB6_DPORT) &&
1496 filt->ff_flow6.fi6_dport != pkt->fi6_dport)
1497 return (0);
1498 if (fbmask & FIMB6_SADDR) {
1499 for (i = 0; i < 4; i++)
1500 if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
1501 (pkt->fi6_src.s6_addr32[i] &
1502 filt->ff_mask6.mask6_src.s6_addr32[i]))
1503 return (0);
1504 }
1505 if (fbmask & FIMB6_DADDR) {
1506 for (i = 0; i < 4; i++)
1507 if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
1508 (pkt->fi6_dst.s6_addr32[i] &
1509 filt->ff_mask6.mask6_dst.s6_addr32[i]))
1510 return (0);
1511 }
1512 if ((fbmask & FIMB6_TCLASS) &&
1513 filt->ff_flow6.fi6_tclass !=
1514 (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
1515 return (0);
1516 if ((fbmask & FIMB6_GPI) &&
1517 filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
1518 return (0);
1519 /* match */
1520 return (1);
1521 }
1522 #endif /* INET6 */
1523
1524 /*
1525 * filter handle:
1526 * bit 20-28: index to the filter hash table
1527 * bit 0-19: unique id in the hash bucket.
1528 */
1529 static u_long
1530 get_filt_handle(struct acc_classifier *classifier, int i)
1531 {
1532 static u_long handle_number = 1;
1533 u_long handle;
1534 struct acc_filter *afp;
1535
1536 while (1) {
1537 handle = handle_number++ & 0x000fffff;
1538
1539 if (LIST_EMPTY(&classifier->acc_filters[i]))
1540 break;
1541
1542 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1543 if ((afp->f_handle & 0x000fffff) == handle)
1544 break;
1545 if (afp == NULL)
1546 break;
1547 /* this handle is already used, try again */
1548 }
1549
1550 return ((i << 20) | handle);
1551 }
1552
1553 /* convert filter handle to filter pointer */
1554 static struct acc_filter *
1555 filth_to_filtp(struct acc_classifier *classifier, u_long handle)
1556 {
1557 struct acc_filter *afp;
1558 int i;
1559
1560 i = ACC_GET_HINDEX(handle);
1561
1562 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1563 if (afp->f_handle == handle)
1564 return (afp);
1565
1566 return (NULL);
1567 }
1568
1569 /* create flowinfo bitmask */
1570 static u_int32_t
1571 filt2fibmask(struct flow_filter *filt)
1572 {
1573 u_int32_t mask = 0;
1574 #ifdef INET6
1575 struct flow_filter6 *filt6;
1576 #endif
1577
1578 switch (filt->ff_flow.fi_family) {
1579 case AF_INET:
1580 if (filt->ff_flow.fi_proto != 0)
1581 mask |= FIMB4_PROTO;
1582 if (filt->ff_flow.fi_tos != 0)
1583 mask |= FIMB4_TOS;
1584 if (filt->ff_flow.fi_dst.s_addr != 0)
1585 mask |= FIMB4_DADDR;
1586 if (filt->ff_flow.fi_src.s_addr != 0)
1587 mask |= FIMB4_SADDR;
1588 if (filt->ff_flow.fi_sport != 0)
1589 mask |= FIMB4_SPORT;
1590 if (filt->ff_flow.fi_dport != 0)
1591 mask |= FIMB4_DPORT;
1592 if (filt->ff_flow.fi_gpi != 0)
1593 mask |= FIMB4_GPI;
1594 break;
1595 #ifdef INET6
1596 case AF_INET6:
1597 filt6 = (struct flow_filter6 *)filt;
1598
1599 if (filt6->ff_flow6.fi6_proto != 0)
1600 mask |= FIMB6_PROTO;
1601 if (filt6->ff_flow6.fi6_tclass != 0)
1602 mask |= FIMB6_TCLASS;
1603 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
1604 mask |= FIMB6_DADDR;
1605 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
1606 mask |= FIMB6_SADDR;
1607 if (filt6->ff_flow6.fi6_sport != 0)
1608 mask |= FIMB6_SPORT;
1609 if (filt6->ff_flow6.fi6_dport != 0)
1610 mask |= FIMB6_DPORT;
1611 if (filt6->ff_flow6.fi6_gpi != 0)
1612 mask |= FIMB6_GPI;
1613 if (filt6->ff_flow6.fi6_flowlabel != 0)
1614 mask |= FIMB6_FLABEL;
1615 break;
1616 #endif /* INET6 */
1617 }
1618 return (mask);
1619 }
1620
1621
1622 /*
1623 * helper functions to handle IPv4 fragments.
1624 * currently only in-sequence fragments are handled.
1625 * - fragment info is cached in a LRU list.
1626 * - when a first fragment is found, cache its flow info.
1627 * - when a non-first fragment is found, lookup the cache.
1628 */
1629
1630 struct ip4_frag {
1631 TAILQ_ENTRY(ip4_frag) ip4f_chain;
1632 char ip4f_valid;
1633 u_short ip4f_id;
1634 struct flowinfo_in ip4f_info;
1635 };
1636
1637 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
1638
1639 #define IP4F_TABSIZE 16 /* IPv4 fragment cache size */
1640
1641
1642 static void
1643 ip4f_cache(struct ip *ip, struct flowinfo_in *fin)
1644 {
1645 struct ip4_frag *fp;
1646
1647 if (TAILQ_EMPTY(&ip4f_list)) {
1648 /* first time call, allocate fragment cache entries. */
1649 if (ip4f_init() < 0)
1650 /* allocation failed! */
1651 return;
1652 }
1653
1654 fp = ip4f_alloc();
1655 fp->ip4f_id = ip->ip_id;
1656 fp->ip4f_info.fi_proto = ip->ip_p;
1657 fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
1658 fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
1659
1660 /* save port numbers */
1661 fp->ip4f_info.fi_sport = fin->fi_sport;
1662 fp->ip4f_info.fi_dport = fin->fi_dport;
1663 fp->ip4f_info.fi_gpi = fin->fi_gpi;
1664 }
1665
1666 static int
1667 ip4f_lookup(struct ip *ip, struct flowinfo_in *fin)
1668 {
1669 struct ip4_frag *fp;
1670
1671 for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
1672 fp = TAILQ_NEXT(fp, ip4f_chain))
1673 if (ip->ip_id == fp->ip4f_id &&
1674 ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
1675 ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
1676 ip->ip_p == fp->ip4f_info.fi_proto) {
1677
1678 /* found the matching entry */
1679 fin->fi_sport = fp->ip4f_info.fi_sport;
1680 fin->fi_dport = fp->ip4f_info.fi_dport;
1681 fin->fi_gpi = fp->ip4f_info.fi_gpi;
1682
1683 if ((ntohs(ip->ip_off) & IP_MF) == 0)
1684 /* this is the last fragment,
1685 release the entry. */
1686 ip4f_free(fp);
1687
1688 return (1);
1689 }
1690
1691 /* no matching entry found */
1692 return (0);
1693 }
1694
1695 static int
1696 ip4f_init(void)
1697 {
1698 struct ip4_frag *fp;
1699 int i;
1700
1701 TAILQ_INIT(&ip4f_list);
1702 for (i=0; i<IP4F_TABSIZE; i++) {
1703 fp = malloc(sizeof(struct ip4_frag), M_DEVBUF, M_NOWAIT);
1704 if (fp == NULL) {
1705 printf("ip4f_init: can't alloc %dth entry!\n", i);
1706 if (i == 0)
1707 return (-1);
1708 return (0);
1709 }
1710 fp->ip4f_valid = 0;
1711 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1712 }
1713 return (0);
1714 }
1715
1716 static struct ip4_frag *
1717 ip4f_alloc(void)
1718 {
1719 struct ip4_frag *fp;
1720
1721 /* reclaim an entry at the tail, put it at the head */
1722 fp = TAILQ_LAST(&ip4f_list, ip4f_list);
1723 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1724 fp->ip4f_valid = 1;
1725 TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
1726 return (fp);
1727 }
1728
1729 static void
1730 ip4f_free(struct ip4_frag *fp)
1731 {
1732 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1733 fp->ip4f_valid = 0;
1734 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1735 }
1736
1737 #endif /* ALTQ3_CLFIER_COMPAT */
1738