altq_subr.c revision 1.33.46.1 1 /* $NetBSD: altq_subr.c,v 1.33.46.1 2023/11/11 13:16:30 thorpej Exp $ */
2 /* $KAME: altq_subr.c,v 1.24 2005/04/13 03:44:25 suz Exp $ */
3
4 /*
5 * Copyright (C) 1997-2003
6 * Sony Computer Science Laboratories Inc. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: altq_subr.c,v 1.33.46.1 2023/11/11 13:16:30 thorpej Exp $");
32
33 #ifdef _KERNEL_OPT
34 #include "opt_altq.h"
35 #include "opt_inet.h"
36 #include "pf.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/kernel.h>
47 #include <sys/kmem.h>
48 #include <sys/errno.h>
49 #include <sys/syslog.h>
50 #include <sys/sysctl.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_types.h>
56
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #ifdef INET6
61 #include <netinet/ip6.h>
62 #endif
63 #include <netinet/tcp.h>
64 #include <netinet/udp.h>
65
66 #if NPF > 0
67 #include <net/pfvar.h>
68 #endif
69 #include <altq/altq.h>
70 #ifdef ALTQ3_COMPAT
71 #include <altq/altq_conf.h>
72 #endif
73
74 /*
75 * internal function prototypes
76 */
77 static void tbr_timeout(void *);
78 int (*altq_input)(struct mbuf *, int) = NULL;
79 static int tbr_timer = 0; /* token bucket regulator timer */
80 static struct callout tbr_callout;
81
82 #ifdef ALTQ3_CLFIER_COMPAT
83 static int extract_ports4(struct mbuf *, struct ip *, struct flowinfo_in *);
84 #ifdef INET6
85 static int extract_ports6(struct mbuf *, struct ip6_hdr *,
86 struct flowinfo_in6 *);
87 #endif
88 static int apply_filter4(u_int32_t, struct flow_filter *,
89 struct flowinfo_in *);
90 static int apply_ppfilter4(u_int32_t, struct flow_filter *,
91 struct flowinfo_in *);
92 #ifdef INET6
93 static int apply_filter6(u_int32_t, struct flow_filter6 *,
94 struct flowinfo_in6 *);
95 #endif
96 static int apply_tosfilter4(u_int32_t, struct flow_filter *,
97 struct flowinfo_in *);
98 static u_long get_filt_handle(struct acc_classifier *, int);
99 static struct acc_filter *filth_to_filtp(struct acc_classifier *, u_long);
100 static u_int32_t filt2fibmask(struct flow_filter *);
101
102 static void ip4f_cache(struct ip *, struct flowinfo_in *);
103 static int ip4f_lookup(struct ip *, struct flowinfo_in *);
104 static int ip4f_init(void);
105 static struct ip4_frag *ip4f_alloc(void);
106 static void ip4f_free(struct ip4_frag *);
107 #endif /* ALTQ3_CLFIER_COMPAT */
108
109 /*
110 * alternate queueing support routines
111 */
112
113 /*
114 * Allocate an ifaltq and associate it with the specified ifqueue and
115 * ifnet.
116 */
117 void
118 altq_alloc(struct ifqueue *ifq, struct ifnet *ifp)
119 {
120 if (ifq->ifq_altq == NULL) {
121 ifq->ifq_altq = kmem_zalloc(sizeof(*ifq->ifq_altq), KM_SLEEP);
122 ifq->ifq_altq->altq_ifq = ifq;
123
124 /*
125 * This allows the ALTQ_*() mcaros to work with either
126 * an ifqueue or an ifaltq argument. Yes, it's a hack,
127 * but it results in less code churn.
128 */
129 ifq->ifq_altq->ifq_altq = ifq->ifq_altq;
130 }
131 if (ifp != NULL) {
132 ifq->ifq_altq->altq_ifp = ifp;
133 }
134 }
135
136 /*
137 * Free the ifaltq structure associated with an ifqueue.
138 */
139 void
140 altq_free(struct ifqueue *ifq)
141 {
142 if (ifq->ifq_altq != NULL) {
143 ifq->ifq_altq->altq_ifp = NULL;
144 kmem_free(ifq->ifq_altq, sizeof(*ifq->ifq_altq));
145 ifq->ifq_altq = NULL;
146 }
147 }
148
149 /*
150 * Mark's a device's send queue as being ready for (as in
151 * "knowledgeable about") ALTQ processing.
152 */
153 void
154 altq_set_ready(struct ifqueue *ifq)
155 {
156 altq_alloc(ifq, NULL);
157 ifq->ifq_altq->altq_flags = ALTQF_READY;
158 }
159
160 /* look up the queue state by the interface name and the queueing type. */
161 void *
162 altq_lookup(char *name, int type)
163 {
164 struct ifnet *ifp;
165
166 if ((ifp = ifunit(name)) != NULL) {
167 struct ifaltq *altq = ifp->if_snd.ifq_altq;
168 if (type != ALTQT_NONE && altq->altq_type == type)
169 return (altq->altq_disc);
170 }
171
172 return NULL;
173 }
174
175 int
176 altq_attach(struct ifaltq *ifq, int type, void *discipline,
177 int (*enqueue)(struct ifaltq *, struct mbuf *),
178 struct mbuf *(*dequeue)(struct ifaltq *, int),
179 int (*request)(struct ifaltq *, int, void *),
180 void *clfier, void *(*classify)(void *, struct mbuf *, int))
181 {
182 if (!ALTQ_IS_READY(ifq))
183 return ENXIO;
184
185 #ifdef ALTQ3_COMPAT
186 /*
187 * pfaltq can override the existing discipline, but altq3 cannot.
188 * check these if clfier is not NULL (which implies altq3).
189 */
190 if (clfier != NULL) {
191 if (ALTQ_IS_ENABLED(ifq))
192 return EBUSY;
193 if (ALTQ_IS_ATTACHED(ifq))
194 return EEXIST;
195 }
196 #endif
197 ifq->altq_type = type;
198 ifq->altq_disc = discipline;
199 ifq->altq_enqueue = enqueue;
200 ifq->altq_dequeue = dequeue;
201 ifq->altq_request = request;
202 ifq->altq_clfier = clfier;
203 ifq->altq_classify = classify;
204 ifq->altq_flags &= (ALTQF_CANTCHANGE|ALTQF_ENABLED);
205 #ifdef ALTQ3_COMPAT
206 #ifdef ALTQ_KLD
207 altq_module_incref(type);
208 #endif
209 #endif
210 return 0;
211 }
212
213 int
214 altq_detach(struct ifaltq *ifq)
215 {
216 if (!ALTQ_IS_READY(ifq))
217 return ENXIO;
218 if (ALTQ_IS_ENABLED(ifq))
219 return EBUSY;
220 if (!ALTQ_IS_ATTACHED(ifq))
221 return (0);
222 #ifdef ALTQ3_COMPAT
223 #ifdef ALTQ_KLD
224 altq_module_declref(ifq->altq_type);
225 #endif
226 #endif
227
228 ifq->altq_type = ALTQT_NONE;
229 ifq->altq_disc = NULL;
230 ifq->altq_enqueue = NULL;
231 ifq->altq_dequeue = NULL;
232 ifq->altq_request = NULL;
233 ifq->altq_clfier = NULL;
234 ifq->altq_classify = NULL;
235 ifq->altq_flags &= ALTQF_CANTCHANGE;
236 return 0;
237 }
238
239 int
240 altq_enable(struct ifaltq *ifq)
241 {
242 int s;
243
244 if (!ALTQ_IS_READY(ifq))
245 return ENXIO;
246 if (ALTQ_IS_ENABLED(ifq))
247 return 0;
248
249 s = splnet();
250 IFQ_PURGE(ifq->altq_ifq);
251 ASSERT(ALTQ_GET_LEN(ifq) == 0);
252 ifq->altq_flags |= ALTQF_ENABLED;
253 if (ifq->altq_clfier != NULL)
254 ifq->altq_flags |= ALTQF_CLASSIFY;
255 splx(s);
256
257 return 0;
258 }
259
260 int
261 altq_disable(struct ifaltq *ifq)
262 {
263 int s;
264
265 if (!ALTQ_IS_ENABLED(ifq))
266 return 0;
267
268 s = splnet();
269 IFQ_PURGE(ifq->altq_ifq);
270 ASSERT(ALTQ_GET_LEN(ifq) == 0);
271 ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
272 splx(s);
273 return 0;
274 }
275
276 #ifdef ALTQ_DEBUG
277 void
278 altq_assert(const char *file, int line, const char *failedexpr)
279 {
280 (void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
281 failedexpr, file, line);
282 panic("altq assertion");
283 /* NOTREACHED */
284 }
285 #endif
286
287 /*
288 * internal representation of token bucket parameters
289 * rate: byte_per_unittime << 32
290 * (((bits_per_sec) / 8) << 32) / machclk_freq
291 * depth: byte << 32
292 *
293 */
294 #define TBR_SHIFT 32
295 #define TBR_SCALE(x) ((int64_t)(x) << TBR_SHIFT)
296 #define TBR_UNSCALE(x) ((x) >> TBR_SHIFT)
297
298 struct mbuf *
299 tbr_dequeue(struct ifaltq *ifq, int op)
300 {
301 struct tb_regulator *tbr;
302 struct mbuf *m;
303 int64_t interval;
304 u_int64_t now;
305
306 tbr = ifq->altq_tbr;
307 if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
308 /* if this is a remove after poll, bypass tbr check */
309 } else {
310 /* update token only when it is negative */
311 if (tbr->tbr_token <= 0) {
312 now = read_machclk();
313 interval = now - tbr->tbr_last;
314 if (interval >= tbr->tbr_filluptime)
315 tbr->tbr_token = tbr->tbr_depth;
316 else {
317 tbr->tbr_token += interval * tbr->tbr_rate;
318 if (tbr->tbr_token > tbr->tbr_depth)
319 tbr->tbr_token = tbr->tbr_depth;
320 }
321 tbr->tbr_last = now;
322 }
323 /* if token is still negative, don't allow dequeue */
324 if (tbr->tbr_token <= 0)
325 return (NULL);
326 }
327
328 if (ALTQ_IS_ENABLED(ifq))
329 m = (*ifq->altq_dequeue)(ifq, op);
330 else {
331 if (op == ALTDQ_POLL)
332 IF_POLL(ifq->altq_ifq, m);
333 else
334 IF_DEQUEUE(ifq->altq_ifq, m);
335 }
336
337 if (m != NULL && op == ALTDQ_REMOVE)
338 tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
339 tbr->tbr_lastop = op;
340 return (m);
341 }
342
343 /*
344 * set a token bucket regulator.
345 * if the specified rate is zero, the token bucket regulator is deleted.
346 */
347 int
348 tbr_set(struct ifaltq *ifq, struct tb_profile *profile)
349 {
350 struct tb_regulator *tbr, *otbr;
351
352 if (machclk_freq == 0)
353 init_machclk();
354 if (machclk_freq == 0) {
355 printf("tbr_set: no CPU clock available!\n");
356 return (ENXIO);
357 }
358
359 if (profile->rate == 0) {
360 /* delete this tbr */
361 if ((tbr = ifq->altq_tbr) == NULL)
362 return (ENOENT);
363 ifq->altq_tbr = NULL;
364 free(tbr, M_DEVBUF);
365 return (0);
366 }
367
368 tbr = malloc(sizeof(struct tb_regulator), M_DEVBUF, M_WAITOK|M_ZERO);
369 if (tbr == NULL)
370 return (ENOMEM);
371
372 tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
373 tbr->tbr_depth = TBR_SCALE(profile->depth);
374 if (tbr->tbr_rate > 0)
375 tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
376 else
377 tbr->tbr_filluptime = 0xffffffffffffffffLL;
378 tbr->tbr_token = tbr->tbr_depth;
379 tbr->tbr_last = read_machclk();
380 tbr->tbr_lastop = ALTDQ_REMOVE;
381
382 otbr = ifq->altq_tbr;
383 ifq->altq_tbr = tbr; /* set the new tbr */
384
385 if (otbr != NULL) {
386 free(otbr, M_DEVBUF);
387 } else {
388 if (tbr_timer == 0) {
389 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
390 tbr_timer = 1;
391 }
392 }
393 return (0);
394 }
395
396 /*
397 * tbr_timeout goes through the interface list, and kicks the drivers
398 * if necessary.
399 */
400 static void
401 tbr_timeout(void *arg)
402 {
403 struct ifnet *ifp;
404 int active, s;
405
406 active = 0;
407 s = pserialize_read_enter();
408 IFNET_READER_FOREACH(ifp) {
409 struct psref psref;
410 if (!TBR_IS_ENABLED(&ifp->if_snd))
411 continue;
412 if_acquire(ifp, &psref);
413 pserialize_read_exit(s);
414
415 active++;
416 if (!IFQ_IS_EMPTY(&ifp->if_snd) && ifp->if_start != NULL) {
417 int _s = splnet();
418 if_start_lock(ifp);
419 splx(_s);
420 }
421
422 s = pserialize_read_enter();
423 if_release(ifp, &psref);
424 }
425 pserialize_read_exit(s);
426
427 if (active > 0)
428 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
429 else
430 tbr_timer = 0; /* don't need tbr_timer anymore */
431 }
432
433 /*
434 * get token bucket regulator profile
435 */
436 int
437 tbr_get(struct ifaltq *ifq, struct tb_profile *profile)
438 {
439 struct tb_regulator *tbr;
440
441 if ((tbr = ifq->altq_tbr) == NULL) {
442 profile->rate = 0;
443 profile->depth = 0;
444 } else {
445 profile->rate =
446 (u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq);
447 profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth);
448 }
449 return (0);
450 }
451
452 #if NPF > 0
453 /*
454 * attach a discipline to the interface. if one already exists, it is
455 * overridden.
456 */
457 int
458 altq_pfattach(struct pf_altq *a)
459 {
460 int error = 0;
461
462 switch (a->scheduler) {
463 case ALTQT_NONE:
464 break;
465 #ifdef ALTQ_CBQ
466 case ALTQT_CBQ:
467 error = cbq_pfattach(a);
468 break;
469 #endif
470 #ifdef ALTQ_PRIQ
471 case ALTQT_PRIQ:
472 error = priq_pfattach(a);
473 break;
474 #endif
475 #ifdef ALTQ_HFSC
476 case ALTQT_HFSC:
477 error = hfsc_pfattach(a);
478 break;
479 #endif
480 default:
481 error = ENXIO;
482 }
483
484 return (error);
485 }
486
487 /*
488 * detach a discipline from the interface.
489 * it is possible that the discipline was already overridden by another
490 * discipline.
491 */
492 int
493 altq_pfdetach(struct pf_altq *a)
494 {
495 struct ifnet *ifp;
496 int s, error = 0;
497
498 if ((ifp = ifunit(a->ifname)) == NULL)
499 return (EINVAL);
500
501 /* if this discipline is no longer referenced, just return */
502 if (a->altq_disc == NULL || a->altq_disc != ifp->if_snd.altq_disc)
503 return (0);
504
505 s = splnet();
506 if (ALTQ_IS_ENABLED(&ifp->if_snd))
507 error = altq_disable(&ifp->if_snd);
508 if (error == 0)
509 error = altq_detach(&ifp->if_snd);
510 splx(s);
511
512 return (error);
513 }
514
515 /*
516 * add a discipline or a queue
517 */
518 int
519 altq_add(struct pf_altq *a)
520 {
521 int error = 0;
522
523 if (a->qname[0] != 0)
524 return (altq_add_queue(a));
525
526 if (machclk_freq == 0)
527 init_machclk();
528 if (machclk_freq == 0)
529 panic("altq_add: no CPU clock");
530
531 switch (a->scheduler) {
532 #ifdef ALTQ_CBQ
533 case ALTQT_CBQ:
534 error = cbq_add_altq(a);
535 break;
536 #endif
537 #ifdef ALTQ_PRIQ
538 case ALTQT_PRIQ:
539 error = priq_add_altq(a);
540 break;
541 #endif
542 #ifdef ALTQ_HFSC
543 case ALTQT_HFSC:
544 error = hfsc_add_altq(a);
545 break;
546 #endif
547 default:
548 error = ENXIO;
549 }
550
551 return (error);
552 }
553
554 /*
555 * remove a discipline or a queue
556 */
557 int
558 altq_remove(struct pf_altq *a)
559 {
560 int error = 0;
561
562 if (a->qname[0] != 0)
563 return (altq_remove_queue(a));
564
565 switch (a->scheduler) {
566 #ifdef ALTQ_CBQ
567 case ALTQT_CBQ:
568 error = cbq_remove_altq(a);
569 break;
570 #endif
571 #ifdef ALTQ_PRIQ
572 case ALTQT_PRIQ:
573 error = priq_remove_altq(a);
574 break;
575 #endif
576 #ifdef ALTQ_HFSC
577 case ALTQT_HFSC:
578 error = hfsc_remove_altq(a);
579 break;
580 #endif
581 default:
582 error = ENXIO;
583 }
584
585 return (error);
586 }
587
588 /*
589 * add a queue to the discipline
590 */
591 int
592 altq_add_queue(struct pf_altq *a)
593 {
594 int error = 0;
595
596 switch (a->scheduler) {
597 #ifdef ALTQ_CBQ
598 case ALTQT_CBQ:
599 error = cbq_add_queue(a);
600 break;
601 #endif
602 #ifdef ALTQ_PRIQ
603 case ALTQT_PRIQ:
604 error = priq_add_queue(a);
605 break;
606 #endif
607 #ifdef ALTQ_HFSC
608 case ALTQT_HFSC:
609 error = hfsc_add_queue(a);
610 break;
611 #endif
612 default:
613 error = ENXIO;
614 }
615
616 return (error);
617 }
618
619 /*
620 * remove a queue from the discipline
621 */
622 int
623 altq_remove_queue(struct pf_altq *a)
624 {
625 int error = 0;
626
627 switch (a->scheduler) {
628 #ifdef ALTQ_CBQ
629 case ALTQT_CBQ:
630 error = cbq_remove_queue(a);
631 break;
632 #endif
633 #ifdef ALTQ_PRIQ
634 case ALTQT_PRIQ:
635 error = priq_remove_queue(a);
636 break;
637 #endif
638 #ifdef ALTQ_HFSC
639 case ALTQT_HFSC:
640 error = hfsc_remove_queue(a);
641 break;
642 #endif
643 default:
644 error = ENXIO;
645 }
646
647 return (error);
648 }
649
650 /*
651 * get queue statistics
652 */
653 int
654 altq_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
655 {
656 int error = 0;
657
658 switch (a->scheduler) {
659 #ifdef ALTQ_CBQ
660 case ALTQT_CBQ:
661 error = cbq_getqstats(a, ubuf, nbytes);
662 break;
663 #endif
664 #ifdef ALTQ_PRIQ
665 case ALTQT_PRIQ:
666 error = priq_getqstats(a, ubuf, nbytes);
667 break;
668 #endif
669 #ifdef ALTQ_HFSC
670 case ALTQT_HFSC:
671 error = hfsc_getqstats(a, ubuf, nbytes);
672 break;
673 #endif
674 default:
675 error = ENXIO;
676 }
677
678 return (error);
679 }
680 #endif /* NPF > 0 */
681
682 /*
683 * read and write diffserv field in IPv4 or IPv6 header
684 */
685 u_int8_t
686 read_dsfield(struct mbuf *m, struct altq_pktattr *pktattr)
687 {
688 struct mbuf *m0;
689 u_int8_t ds_field = 0;
690
691 if (pktattr == NULL ||
692 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
693 return ((u_int8_t)0);
694
695 /* verify that pattr_hdr is within the mbuf data */
696 for (m0 = m; m0 != NULL; m0 = m0->m_next)
697 if (((char *)pktattr->pattr_hdr >= m0->m_data) &&
698 ((char *)pktattr->pattr_hdr < m0->m_data + m0->m_len))
699 break;
700 if (m0 == NULL) {
701 /* ick, pattr_hdr is stale */
702 pktattr->pattr_af = AF_UNSPEC;
703 #ifdef ALTQ_DEBUG
704 printf("read_dsfield: can't locate header!\n");
705 #endif
706 return ((u_int8_t)0);
707 }
708
709 if (pktattr->pattr_af == AF_INET) {
710 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
711
712 if (ip->ip_v != 4)
713 return ((u_int8_t)0); /* version mismatch! */
714 ds_field = ip->ip_tos;
715 }
716 #ifdef INET6
717 else if (pktattr->pattr_af == AF_INET6) {
718 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
719 u_int32_t flowlabel;
720
721 flowlabel = ntohl(ip6->ip6_flow);
722 if ((flowlabel >> 28) != 6)
723 return ((u_int8_t)0); /* version mismatch! */
724 ds_field = (flowlabel >> 20) & 0xff;
725 }
726 #endif
727 return (ds_field);
728 }
729
730 void
731 write_dsfield(struct mbuf *m, struct altq_pktattr *pktattr, u_int8_t dsfield)
732 {
733 struct mbuf *m0;
734
735 if (pktattr == NULL ||
736 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
737 return;
738
739 /* verify that pattr_hdr is within the mbuf data */
740 for (m0 = m; m0 != NULL; m0 = m0->m_next)
741 if (((char *)pktattr->pattr_hdr >= m0->m_data) &&
742 ((char *)pktattr->pattr_hdr < m0->m_data + m0->m_len))
743 break;
744 if (m0 == NULL) {
745 /* ick, pattr_hdr is stale */
746 pktattr->pattr_af = AF_UNSPEC;
747 #ifdef ALTQ_DEBUG
748 printf("write_dsfield: can't locate header!\n");
749 #endif
750 return;
751 }
752
753 if (pktattr->pattr_af == AF_INET) {
754 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
755 u_int8_t old;
756 int32_t sum;
757
758 if (ip->ip_v != 4)
759 return; /* version mismatch! */
760 old = ip->ip_tos;
761 dsfield |= old & 3; /* leave CU bits */
762 if (old == dsfield)
763 return;
764 ip->ip_tos = dsfield;
765 /*
766 * update checksum (from RFC1624)
767 * HC' = ~(~HC + ~m + m')
768 */
769 sum = ~ntohs(ip->ip_sum) & 0xffff;
770 sum += 0xff00 + (~old & 0xff) + dsfield;
771 sum = (sum >> 16) + (sum & 0xffff);
772 sum += (sum >> 16); /* add carry */
773
774 ip->ip_sum = htons(~sum & 0xffff);
775 }
776 #ifdef INET6
777 else if (pktattr->pattr_af == AF_INET6) {
778 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
779 u_int32_t flowlabel;
780
781 flowlabel = ntohl(ip6->ip6_flow);
782 if ((flowlabel >> 28) != 6)
783 return; /* version mismatch! */
784 flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
785 ip6->ip6_flow = htonl(flowlabel);
786 }
787 #endif
788 return;
789 }
790
791 #define BINTIME_SHIFT 2
792
793 u_int32_t machclk_freq = 0;
794 u_int32_t machclk_per_tick = 0;
795
796 void
797 init_machclk(void)
798 {
799
800 callout_init(&tbr_callout, 0);
801
802 /*
803 * Always emulate 1GiHz counter using bintime(9)
804 * since it has enough resolution via timecounter(9).
805 * Using machine dependent cpu_counter() is not MP safe
806 * and it won't work even on UP with Speedstep etc.
807 */
808 machclk_freq = 1024 * 1024 * 1024; /* 2^30 to emulate ~1GHz */
809 machclk_per_tick = machclk_freq / hz;
810 #ifdef ALTQ_DEBUG
811 printf("altq: emulate %uHz CPU clock\n", machclk_freq);
812 #endif
813 }
814
815 u_int64_t
816 read_machclk(void)
817 {
818 struct bintime bt;
819 u_int64_t val;
820
821 binuptime(&bt);
822 val = (((u_int64_t)bt.sec << 32) + (bt.frac >> 32)) >> BINTIME_SHIFT;
823 return (val);
824 }
825
826 #ifdef ALTQ3_CLFIER_COMPAT
827
828 #ifndef IPPROTO_ESP
829 #define IPPROTO_ESP 50 /* encapsulating security payload */
830 #endif
831 #ifndef IPPROTO_AH
832 #define IPPROTO_AH 51 /* authentication header */
833 #endif
834
835 /*
836 * extract flow information from a given packet.
837 * filt_mask shows flowinfo fields required.
838 * we assume the ip header is in one mbuf, and addresses and ports are
839 * in network byte order.
840 */
841 int
842 altq_extractflow(struct mbuf *m, int af, struct flowinfo *flow,
843 u_int32_t filt_bmask)
844 {
845
846 switch (af) {
847 case PF_INET: {
848 struct flowinfo_in *fin;
849 struct ip *ip;
850
851 ip = mtod(m, struct ip *);
852
853 if (ip->ip_v != 4)
854 break;
855
856 fin = (struct flowinfo_in *)flow;
857 fin->fi_len = sizeof(struct flowinfo_in);
858 fin->fi_family = AF_INET;
859
860 fin->fi_proto = ip->ip_p;
861 fin->fi_tos = ip->ip_tos;
862
863 fin->fi_src.s_addr = ip->ip_src.s_addr;
864 fin->fi_dst.s_addr = ip->ip_dst.s_addr;
865
866 if (filt_bmask & FIMB4_PORTS)
867 /* if port info is required, extract port numbers */
868 extract_ports4(m, ip, fin);
869 else {
870 fin->fi_sport = 0;
871 fin->fi_dport = 0;
872 fin->fi_gpi = 0;
873 }
874 return (1);
875 }
876
877 #ifdef INET6
878 case PF_INET6: {
879 struct flowinfo_in6 *fin6;
880 struct ip6_hdr *ip6;
881
882 ip6 = mtod(m, struct ip6_hdr *);
883 /* should we check the ip version? */
884
885 fin6 = (struct flowinfo_in6 *)flow;
886 fin6->fi6_len = sizeof(struct flowinfo_in6);
887 fin6->fi6_family = AF_INET6;
888
889 fin6->fi6_proto = ip6->ip6_nxt;
890 fin6->fi6_tclass = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
891
892 fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
893 fin6->fi6_src = ip6->ip6_src;
894 fin6->fi6_dst = ip6->ip6_dst;
895
896 if ((filt_bmask & FIMB6_PORTS) ||
897 ((filt_bmask & FIMB6_PROTO)
898 && ip6->ip6_nxt > IPPROTO_IPV6))
899 /*
900 * if port info is required, or proto is required
901 * but there are option headers, extract port
902 * and protocol numbers.
903 */
904 extract_ports6(m, ip6, fin6);
905 else {
906 fin6->fi6_sport = 0;
907 fin6->fi6_dport = 0;
908 fin6->fi6_gpi = 0;
909 }
910 return (1);
911 }
912 #endif /* INET6 */
913
914 default:
915 break;
916 }
917
918 /* failed */
919 flow->fi_len = sizeof(struct flowinfo);
920 flow->fi_family = AF_UNSPEC;
921 return (0);
922 }
923
924 /*
925 * helper routine to extract port numbers
926 */
927 /* structure for ipsec and ipv6 option header template */
928 struct _opt6 {
929 u_int8_t opt6_nxt; /* next header */
930 u_int8_t opt6_hlen; /* header extension length */
931 u_int16_t _pad;
932 u_int32_t ah_spi; /* security parameter index
933 for authentication header */
934 };
935
936 /*
937 * extract port numbers from a ipv4 packet.
938 */
939 static int
940 extract_ports4(struct mbuf *m, struct ip *ip, struct flowinfo_in *fin)
941 {
942 struct mbuf *m0;
943 u_short ip_off;
944 u_int8_t proto;
945 int off;
946
947 fin->fi_sport = 0;
948 fin->fi_dport = 0;
949 fin->fi_gpi = 0;
950
951 ip_off = ntohs(ip->ip_off);
952 /* if it is a fragment, try cached fragment info */
953 if (ip_off & IP_OFFMASK) {
954 ip4f_lookup(ip, fin);
955 return (1);
956 }
957
958 /* locate the mbuf containing the protocol header */
959 for (m0 = m; m0 != NULL; m0 = m0->m_next)
960 if (((char *)ip >= m0->m_data) &&
961 ((char *)ip < m0->m_data + m0->m_len))
962 break;
963 if (m0 == NULL) {
964 #ifdef ALTQ_DEBUG
965 printf("extract_ports4: can't locate header! ip=%p\n", ip);
966 #endif
967 return (0);
968 }
969 off = ((char *)ip - m0->m_data) + (ip->ip_hl << 2);
970 proto = ip->ip_p;
971
972 #ifdef ALTQ_IPSEC
973 again:
974 #endif
975 while (off >= m0->m_len) {
976 off -= m0->m_len;
977 m0 = m0->m_next;
978 if (m0 == NULL)
979 return (0); /* bogus ip_hl! */
980 }
981 if (m0->m_len < off + 4)
982 return (0);
983
984 switch (proto) {
985 case IPPROTO_TCP:
986 case IPPROTO_UDP: {
987 struct udphdr *udp;
988
989 udp = (struct udphdr *)(mtod(m0, char *) + off);
990 fin->fi_sport = udp->uh_sport;
991 fin->fi_dport = udp->uh_dport;
992 fin->fi_proto = proto;
993 }
994 break;
995
996 #ifdef ALTQ_IPSEC
997 case IPPROTO_ESP:
998 if (fin->fi_gpi == 0){
999 u_int32_t *gpi;
1000
1001 gpi = (u_int32_t *)(mtod(m0, char *) + off);
1002 fin->fi_gpi = *gpi;
1003 }
1004 fin->fi_proto = proto;
1005 break;
1006
1007 case IPPROTO_AH: {
1008 /* get next header and header length */
1009 struct _opt6 *opt6;
1010
1011 opt6 = (struct _opt6 *)(mtod(m0, char *) + off);
1012 proto = opt6->opt6_nxt;
1013 off += 8 + (opt6->opt6_hlen * 4);
1014 if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
1015 fin->fi_gpi = opt6->ah_spi;
1016 }
1017 /* goto the next header */
1018 goto again;
1019 #endif /* ALTQ_IPSEC */
1020
1021 default:
1022 fin->fi_proto = proto;
1023 return (0);
1024 }
1025
1026 /* if this is a first fragment, cache it. */
1027 if (ip_off & IP_MF)
1028 ip4f_cache(ip, fin);
1029
1030 return (1);
1031 }
1032
1033 #ifdef INET6
1034 static int
1035 extract_ports6(struct mbuf *m, struct ip6_hdr *ip6, struct flowinfo_in6 *fin6)
1036 {
1037 struct mbuf *m0;
1038 int off;
1039 u_int8_t proto;
1040
1041 fin6->fi6_gpi = 0;
1042 fin6->fi6_sport = 0;
1043 fin6->fi6_dport = 0;
1044
1045 /* locate the mbuf containing the protocol header */
1046 for (m0 = m; m0 != NULL; m0 = m0->m_next)
1047 if (((char *)ip6 >= m0->m_data) &&
1048 ((char *)ip6 < m0->m_data + m0->m_len))
1049 break;
1050 if (m0 == NULL) {
1051 #ifdef ALTQ_DEBUG
1052 printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
1053 #endif
1054 return (0);
1055 }
1056 off = ((char *)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
1057
1058 proto = ip6->ip6_nxt;
1059 do {
1060 while (off >= m0->m_len) {
1061 off -= m0->m_len;
1062 m0 = m0->m_next;
1063 if (m0 == NULL)
1064 return (0);
1065 }
1066 if (m0->m_len < off + 4)
1067 return (0);
1068
1069 switch (proto) {
1070 case IPPROTO_TCP:
1071 case IPPROTO_UDP: {
1072 struct udphdr *udp;
1073
1074 udp = (struct udphdr *)(mtod(m0, char *) + off);
1075 fin6->fi6_sport = udp->uh_sport;
1076 fin6->fi6_dport = udp->uh_dport;
1077 fin6->fi6_proto = proto;
1078 }
1079 return (1);
1080
1081 case IPPROTO_ESP:
1082 if (fin6->fi6_gpi == 0) {
1083 u_int32_t *gpi;
1084
1085 gpi = (u_int32_t *)(mtod(m0, char *) + off);
1086 fin6->fi6_gpi = *gpi;
1087 }
1088 fin6->fi6_proto = proto;
1089 return (1);
1090
1091 case IPPROTO_AH: {
1092 /* get next header and header length */
1093 struct _opt6 *opt6;
1094
1095 opt6 = (struct _opt6 *)(mtod(m0, char *) + off);
1096 if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
1097 fin6->fi6_gpi = opt6->ah_spi;
1098 proto = opt6->opt6_nxt;
1099 off += 8 + (opt6->opt6_hlen * 4);
1100 /* goto the next header */
1101 break;
1102 }
1103
1104 case IPPROTO_HOPOPTS:
1105 case IPPROTO_ROUTING:
1106 case IPPROTO_DSTOPTS: {
1107 /* get next header and header length */
1108 struct _opt6 *opt6;
1109
1110 opt6 = (struct _opt6 *)(mtod(m0, char *) + off);
1111 proto = opt6->opt6_nxt;
1112 off += (opt6->opt6_hlen + 1) * 8;
1113 /* goto the next header */
1114 break;
1115 }
1116
1117 case IPPROTO_FRAGMENT:
1118 /* ipv6 fragmentations are not supported yet */
1119 default:
1120 fin6->fi6_proto = proto;
1121 return (0);
1122 }
1123 } while (1);
1124 /*NOTREACHED*/
1125 }
1126 #endif /* INET6 */
1127
1128 /*
1129 * altq common classifier
1130 */
1131 int
1132 acc_add_filter(struct acc_classifier *classifier, struct flow_filter *filter,
1133 void *class, u_long *phandle)
1134 {
1135 struct acc_filter *afp, *prev, *tmp;
1136 int i, s;
1137
1138 #ifdef INET6
1139 if (filter->ff_flow.fi_family != AF_INET &&
1140 filter->ff_flow.fi_family != AF_INET6)
1141 return (EINVAL);
1142 #else
1143 if (filter->ff_flow.fi_family != AF_INET)
1144 return (EINVAL);
1145 #endif
1146
1147 afp = malloc(sizeof(struct acc_filter), M_DEVBUF, M_WAITOK|M_ZERO);
1148 if (afp == NULL)
1149 return (ENOMEM);
1150
1151 afp->f_filter = *filter;
1152 afp->f_class = class;
1153
1154 i = ACC_WILDCARD_INDEX;
1155 if (filter->ff_flow.fi_family == AF_INET) {
1156 struct flow_filter *filter4 = &afp->f_filter;
1157
1158 /*
1159 * if address is 0, it's a wildcard. if address mask
1160 * isn't set, use full mask.
1161 */
1162 if (filter4->ff_flow.fi_dst.s_addr == 0)
1163 filter4->ff_mask.mask_dst.s_addr = 0;
1164 else if (filter4->ff_mask.mask_dst.s_addr == 0)
1165 filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
1166 if (filter4->ff_flow.fi_src.s_addr == 0)
1167 filter4->ff_mask.mask_src.s_addr = 0;
1168 else if (filter4->ff_mask.mask_src.s_addr == 0)
1169 filter4->ff_mask.mask_src.s_addr = 0xffffffff;
1170
1171 /* clear extra bits in addresses */
1172 filter4->ff_flow.fi_dst.s_addr &=
1173 filter4->ff_mask.mask_dst.s_addr;
1174 filter4->ff_flow.fi_src.s_addr &=
1175 filter4->ff_mask.mask_src.s_addr;
1176
1177 /*
1178 * if dst address is a wildcard, use hash-entry
1179 * ACC_WILDCARD_INDEX.
1180 */
1181 if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
1182 i = ACC_WILDCARD_INDEX;
1183 else
1184 i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
1185 }
1186 #ifdef INET6
1187 else if (filter->ff_flow.fi_family == AF_INET6) {
1188 struct flow_filter6 *filter6 =
1189 (struct flow_filter6 *)&afp->f_filter;
1190 #ifndef IN6MASK0 /* taken from kame ipv6 */
1191 #define IN6MASK0 {{{ 0, 0, 0, 0 }}}
1192 #define IN6MASK128 {{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
1193 const struct in6_addr in6mask0 = IN6MASK0;
1194 const struct in6_addr in6mask128 = IN6MASK128;
1195 #endif
1196
1197 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
1198 filter6->ff_mask6.mask6_dst = in6mask0;
1199 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
1200 filter6->ff_mask6.mask6_dst = in6mask128;
1201 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
1202 filter6->ff_mask6.mask6_src = in6mask0;
1203 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
1204 filter6->ff_mask6.mask6_src = in6mask128;
1205
1206 /* clear extra bits in addresses */
1207 for (i = 0; i < 16; i++)
1208 filter6->ff_flow6.fi6_dst.s6_addr[i] &=
1209 filter6->ff_mask6.mask6_dst.s6_addr[i];
1210 for (i = 0; i < 16; i++)
1211 filter6->ff_flow6.fi6_src.s6_addr[i] &=
1212 filter6->ff_mask6.mask6_src.s6_addr[i];
1213
1214 if (filter6->ff_flow6.fi6_flowlabel == 0)
1215 i = ACC_WILDCARD_INDEX;
1216 else
1217 i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
1218 }
1219 #endif /* INET6 */
1220
1221 afp->f_handle = get_filt_handle(classifier, i);
1222
1223 /* update filter bitmask */
1224 afp->f_fbmask = filt2fibmask(filter);
1225 classifier->acc_fbmask |= afp->f_fbmask;
1226
1227 /*
1228 * add this filter to the filter list.
1229 * filters are ordered from the highest rule number.
1230 */
1231 s = splnet();
1232 prev = NULL;
1233 LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
1234 if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
1235 prev = tmp;
1236 else
1237 break;
1238 }
1239 if (prev == NULL)
1240 LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
1241 else
1242 LIST_INSERT_AFTER(prev, afp, f_chain);
1243 splx(s);
1244
1245 *phandle = afp->f_handle;
1246 return (0);
1247 }
1248
1249 int
1250 acc_delete_filter(struct acc_classifier *classifier, u_long handle)
1251 {
1252 struct acc_filter *afp;
1253 int s;
1254
1255 if ((afp = filth_to_filtp(classifier, handle)) == NULL)
1256 return (EINVAL);
1257
1258 s = splnet();
1259 LIST_REMOVE(afp, f_chain);
1260 splx(s);
1261
1262 free(afp, M_DEVBUF);
1263
1264 /* todo: update filt_bmask */
1265
1266 return (0);
1267 }
1268
1269 /*
1270 * delete filters referencing to the specified class.
1271 * if the all flag is not 0, delete all the filters.
1272 */
1273 int
1274 acc_discard_filters(struct acc_classifier *classifier, void *class, int all)
1275 {
1276 struct acc_filter *afp;
1277 int i, s;
1278
1279 s = splnet();
1280 for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
1281 do {
1282 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1283 if (all || afp->f_class == class) {
1284 LIST_REMOVE(afp, f_chain);
1285 free(afp, M_DEVBUF);
1286 /* start again from the head */
1287 break;
1288 }
1289 } while (afp != NULL);
1290 }
1291 splx(s);
1292
1293 if (all)
1294 classifier->acc_fbmask = 0;
1295
1296 return (0);
1297 }
1298
1299 void *
1300 acc_classify(void *clfier, struct mbuf *m, int af)
1301 {
1302 struct acc_classifier *classifier;
1303 struct flowinfo flow;
1304 struct acc_filter *afp;
1305 int i;
1306
1307 classifier = (struct acc_classifier *)clfier;
1308 altq_extractflow(m, af, &flow, classifier->acc_fbmask);
1309
1310 if (flow.fi_family == AF_INET) {
1311 struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
1312
1313 if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
1314 /* only tos is used */
1315 LIST_FOREACH(afp,
1316 &classifier->acc_filters[ACC_WILDCARD_INDEX],
1317 f_chain)
1318 if (apply_tosfilter4(afp->f_fbmask,
1319 &afp->f_filter, fp))
1320 /* filter matched */
1321 return (afp->f_class);
1322 } else if ((classifier->acc_fbmask &
1323 (~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
1324 == 0) {
1325 /* only proto and ports are used */
1326 LIST_FOREACH(afp,
1327 &classifier->acc_filters[ACC_WILDCARD_INDEX],
1328 f_chain)
1329 if (apply_ppfilter4(afp->f_fbmask,
1330 &afp->f_filter, fp))
1331 /* filter matched */
1332 return (afp->f_class);
1333 } else {
1334 /* get the filter hash entry from its dest address */
1335 i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
1336 do {
1337 /*
1338 * go through this loop twice. first for dst
1339 * hash, second for wildcards.
1340 */
1341 LIST_FOREACH(afp, &classifier->acc_filters[i],
1342 f_chain)
1343 if (apply_filter4(afp->f_fbmask,
1344 &afp->f_filter, fp))
1345 /* filter matched */
1346 return (afp->f_class);
1347
1348 /*
1349 * check again for filters with a dst addr
1350 * wildcard.
1351 * (daddr == 0 || dmask != 0xffffffff).
1352 */
1353 if (i != ACC_WILDCARD_INDEX)
1354 i = ACC_WILDCARD_INDEX;
1355 else
1356 break;
1357 } while (1);
1358 }
1359 }
1360 #ifdef INET6
1361 else if (flow.fi_family == AF_INET6) {
1362 struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
1363
1364 /* get the filter hash entry from its flow ID */
1365 if (fp6->fi6_flowlabel != 0)
1366 i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
1367 else
1368 /* flowlable can be zero */
1369 i = ACC_WILDCARD_INDEX;
1370
1371 /* go through this loop twice. first for flow hash, second
1372 for wildcards. */
1373 do {
1374 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1375 if (apply_filter6(afp->f_fbmask,
1376 (struct flow_filter6 *)&afp->f_filter,
1377 fp6))
1378 /* filter matched */
1379 return (afp->f_class);
1380
1381 /*
1382 * check again for filters with a wildcard.
1383 */
1384 if (i != ACC_WILDCARD_INDEX)
1385 i = ACC_WILDCARD_INDEX;
1386 else
1387 break;
1388 } while (1);
1389 }
1390 #endif /* INET6 */
1391
1392 /* no filter matched */
1393 return (NULL);
1394 }
1395
1396 static int
1397 apply_filter4(u_int32_t fbmask, struct flow_filter *filt,
1398 struct flowinfo_in *pkt)
1399 {
1400 if (filt->ff_flow.fi_family != AF_INET)
1401 return (0);
1402 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1403 return (0);
1404 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1405 return (0);
1406 if ((fbmask & FIMB4_DADDR) &&
1407 filt->ff_flow.fi_dst.s_addr !=
1408 (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
1409 return (0);
1410 if ((fbmask & FIMB4_SADDR) &&
1411 filt->ff_flow.fi_src.s_addr !=
1412 (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
1413 return (0);
1414 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1415 return (0);
1416 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1417 (pkt->fi_tos & filt->ff_mask.mask_tos))
1418 return (0);
1419 if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
1420 return (0);
1421 /* match */
1422 return (1);
1423 }
1424
1425 /*
1426 * filter matching function optimized for a common case that checks
1427 * only protocol and port numbers
1428 */
1429 static int
1430 apply_ppfilter4(u_int32_t fbmask, struct flow_filter *filt,
1431 struct flowinfo_in *pkt)
1432 {
1433 if (filt->ff_flow.fi_family != AF_INET)
1434 return (0);
1435 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1436 return (0);
1437 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1438 return (0);
1439 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1440 return (0);
1441 /* match */
1442 return (1);
1443 }
1444
1445 /*
1446 * filter matching function only for tos field.
1447 */
1448 static int
1449 apply_tosfilter4(u_int32_t fbmask, struct flow_filter *filt,
1450 struct flowinfo_in *pkt)
1451 {
1452 if (filt->ff_flow.fi_family != AF_INET)
1453 return (0);
1454 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1455 (pkt->fi_tos & filt->ff_mask.mask_tos))
1456 return (0);
1457 /* match */
1458 return (1);
1459 }
1460
1461 #ifdef INET6
1462 static int
1463 apply_filter6(u_int32_t fbmask, struct flow_filter6 *filt,
1464 struct flowinfo_in6 *pkt)
1465 {
1466 int i;
1467
1468 if (filt->ff_flow6.fi6_family != AF_INET6)
1469 return (0);
1470 if ((fbmask & FIMB6_FLABEL) &&
1471 filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
1472 return (0);
1473 if ((fbmask & FIMB6_PROTO) &&
1474 filt->ff_flow6.fi6_proto != pkt->fi6_proto)
1475 return (0);
1476 if ((fbmask & FIMB6_SPORT) &&
1477 filt->ff_flow6.fi6_sport != pkt->fi6_sport)
1478 return (0);
1479 if ((fbmask & FIMB6_DPORT) &&
1480 filt->ff_flow6.fi6_dport != pkt->fi6_dport)
1481 return (0);
1482 if (fbmask & FIMB6_SADDR) {
1483 for (i = 0; i < 4; i++)
1484 if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
1485 (pkt->fi6_src.s6_addr32[i] &
1486 filt->ff_mask6.mask6_src.s6_addr32[i]))
1487 return (0);
1488 }
1489 if (fbmask & FIMB6_DADDR) {
1490 for (i = 0; i < 4; i++)
1491 if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
1492 (pkt->fi6_dst.s6_addr32[i] &
1493 filt->ff_mask6.mask6_dst.s6_addr32[i]))
1494 return (0);
1495 }
1496 if ((fbmask & FIMB6_TCLASS) &&
1497 filt->ff_flow6.fi6_tclass !=
1498 (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
1499 return (0);
1500 if ((fbmask & FIMB6_GPI) &&
1501 filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
1502 return (0);
1503 /* match */
1504 return (1);
1505 }
1506 #endif /* INET6 */
1507
1508 /*
1509 * filter handle:
1510 * bit 20-28: index to the filter hash table
1511 * bit 0-19: unique id in the hash bucket.
1512 */
1513 static u_long
1514 get_filt_handle(struct acc_classifier *classifier, int i)
1515 {
1516 static u_long handle_number = 1;
1517 u_long handle;
1518 struct acc_filter *afp;
1519
1520 while (1) {
1521 handle = handle_number++ & 0x000fffff;
1522
1523 if (LIST_EMPTY(&classifier->acc_filters[i]))
1524 break;
1525
1526 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1527 if ((afp->f_handle & 0x000fffff) == handle)
1528 break;
1529 if (afp == NULL)
1530 break;
1531 /* this handle is already used, try again */
1532 }
1533
1534 return ((i << 20) | handle);
1535 }
1536
1537 /* convert filter handle to filter pointer */
1538 static struct acc_filter *
1539 filth_to_filtp(struct acc_classifier *classifier, u_long handle)
1540 {
1541 struct acc_filter *afp;
1542 int i;
1543
1544 i = ACC_GET_HINDEX(handle);
1545
1546 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1547 if (afp->f_handle == handle)
1548 return (afp);
1549
1550 return (NULL);
1551 }
1552
1553 /* create flowinfo bitmask */
1554 static u_int32_t
1555 filt2fibmask(struct flow_filter *filt)
1556 {
1557 u_int32_t mask = 0;
1558 #ifdef INET6
1559 struct flow_filter6 *filt6;
1560 #endif
1561
1562 switch (filt->ff_flow.fi_family) {
1563 case AF_INET:
1564 if (filt->ff_flow.fi_proto != 0)
1565 mask |= FIMB4_PROTO;
1566 if (filt->ff_flow.fi_tos != 0)
1567 mask |= FIMB4_TOS;
1568 if (filt->ff_flow.fi_dst.s_addr != 0)
1569 mask |= FIMB4_DADDR;
1570 if (filt->ff_flow.fi_src.s_addr != 0)
1571 mask |= FIMB4_SADDR;
1572 if (filt->ff_flow.fi_sport != 0)
1573 mask |= FIMB4_SPORT;
1574 if (filt->ff_flow.fi_dport != 0)
1575 mask |= FIMB4_DPORT;
1576 if (filt->ff_flow.fi_gpi != 0)
1577 mask |= FIMB4_GPI;
1578 break;
1579 #ifdef INET6
1580 case AF_INET6:
1581 filt6 = (struct flow_filter6 *)filt;
1582
1583 if (filt6->ff_flow6.fi6_proto != 0)
1584 mask |= FIMB6_PROTO;
1585 if (filt6->ff_flow6.fi6_tclass != 0)
1586 mask |= FIMB6_TCLASS;
1587 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
1588 mask |= FIMB6_DADDR;
1589 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
1590 mask |= FIMB6_SADDR;
1591 if (filt6->ff_flow6.fi6_sport != 0)
1592 mask |= FIMB6_SPORT;
1593 if (filt6->ff_flow6.fi6_dport != 0)
1594 mask |= FIMB6_DPORT;
1595 if (filt6->ff_flow6.fi6_gpi != 0)
1596 mask |= FIMB6_GPI;
1597 if (filt6->ff_flow6.fi6_flowlabel != 0)
1598 mask |= FIMB6_FLABEL;
1599 break;
1600 #endif /* INET6 */
1601 }
1602 return (mask);
1603 }
1604
1605
1606 /*
1607 * helper functions to handle IPv4 fragments.
1608 * currently only in-sequence fragments are handled.
1609 * - fragment info is cached in a LRU list.
1610 * - when a first fragment is found, cache its flow info.
1611 * - when a non-first fragment is found, lookup the cache.
1612 */
1613
1614 struct ip4_frag {
1615 TAILQ_ENTRY(ip4_frag) ip4f_chain;
1616 char ip4f_valid;
1617 u_short ip4f_id;
1618 struct flowinfo_in ip4f_info;
1619 };
1620
1621 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
1622
1623 #define IP4F_TABSIZE 16 /* IPv4 fragment cache size */
1624
1625
1626 static void
1627 ip4f_cache(struct ip *ip, struct flowinfo_in *fin)
1628 {
1629 struct ip4_frag *fp;
1630
1631 if (TAILQ_EMPTY(&ip4f_list)) {
1632 /* first time call, allocate fragment cache entries. */
1633 if (ip4f_init() < 0)
1634 /* allocation failed! */
1635 return;
1636 }
1637
1638 fp = ip4f_alloc();
1639 fp->ip4f_id = ip->ip_id;
1640 fp->ip4f_info.fi_proto = ip->ip_p;
1641 fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
1642 fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
1643
1644 /* save port numbers */
1645 fp->ip4f_info.fi_sport = fin->fi_sport;
1646 fp->ip4f_info.fi_dport = fin->fi_dport;
1647 fp->ip4f_info.fi_gpi = fin->fi_gpi;
1648 }
1649
1650 static int
1651 ip4f_lookup(struct ip *ip, struct flowinfo_in *fin)
1652 {
1653 struct ip4_frag *fp;
1654
1655 for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
1656 fp = TAILQ_NEXT(fp, ip4f_chain))
1657 if (ip->ip_id == fp->ip4f_id &&
1658 ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
1659 ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
1660 ip->ip_p == fp->ip4f_info.fi_proto) {
1661
1662 /* found the matching entry */
1663 fin->fi_sport = fp->ip4f_info.fi_sport;
1664 fin->fi_dport = fp->ip4f_info.fi_dport;
1665 fin->fi_gpi = fp->ip4f_info.fi_gpi;
1666
1667 if ((ntohs(ip->ip_off) & IP_MF) == 0)
1668 /* this is the last fragment,
1669 release the entry. */
1670 ip4f_free(fp);
1671
1672 return (1);
1673 }
1674
1675 /* no matching entry found */
1676 return (0);
1677 }
1678
1679 static int
1680 ip4f_init(void)
1681 {
1682 struct ip4_frag *fp;
1683 int i;
1684
1685 TAILQ_INIT(&ip4f_list);
1686 for (i=0; i<IP4F_TABSIZE; i++) {
1687 fp = malloc(sizeof(struct ip4_frag), M_DEVBUF, M_NOWAIT);
1688 if (fp == NULL) {
1689 printf("ip4f_init: can't alloc %dth entry!\n", i);
1690 if (i == 0)
1691 return (-1);
1692 return (0);
1693 }
1694 fp->ip4f_valid = 0;
1695 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1696 }
1697 return (0);
1698 }
1699
1700 static struct ip4_frag *
1701 ip4f_alloc(void)
1702 {
1703 struct ip4_frag *fp;
1704
1705 /* reclaim an entry at the tail, put it at the head */
1706 fp = TAILQ_LAST(&ip4f_list, ip4f_list);
1707 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1708 fp->ip4f_valid = 1;
1709 TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
1710 return (fp);
1711 }
1712
1713 static void
1714 ip4f_free(struct ip4_frag *fp)
1715 {
1716 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1717 fp->ip4f_valid = 0;
1718 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1719 }
1720
1721 #endif /* ALTQ3_CLFIER_COMPAT */
1722