altq_subr.c revision 1.4.2.3 1 /* $NetBSD: altq_subr.c,v 1.4.2.3 2001/04/21 17:46:12 bouyer Exp $ */
2 /* $KAME: altq_subr.c,v 1.8 2000/12/14 08:12:46 thorpej Exp $ */
3
4 /*
5 * Copyright (C) 1997-2000
6 * Sony Computer Science Laboratories Inc. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #if defined(__FreeBSD__) || defined(__NetBSD__)
31 #include "opt_altq.h"
32 #if (__FreeBSD__ != 2)
33 #include "opt_inet.h"
34 #ifdef __FreeBSD__
35 #include "opt_inet6.h"
36 #endif
37 #endif
38 #endif /* __FreeBSD__ || __NetBSD__ */
39
40 #include <sys/param.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/kernel.h>
48 #include <sys/errno.h>
49 #include <sys/syslog.h>
50 #include <sys/sysctl.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_types.h>
56
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #ifdef INET6
61 #include <netinet/ip6.h>
62 #endif
63 #include <netinet/tcp.h>
64 #include <netinet/udp.h>
65
66 #include <altq/altq.h>
67 #include <altq/altq_conf.h>
68
69 #ifdef __FreeBSD__
70 #include "opt_cpu.h" /* for FreeBSD-2.2.8 to get i586_ctr_freq */
71 #include <machine/clock.h>
72 #endif
73
74 /*
75 * internal function prototypes
76 */
77 static void tbr_timeout __P((void *));
78 static int extract_ports4 __P((struct mbuf *, struct ip *,
79 struct flowinfo_in *));
80 #ifdef INET6
81 static int extract_ports6 __P((struct mbuf *, struct ip6_hdr *,
82 struct flowinfo_in6 *));
83 #endif
84 static int apply_filter4 __P((u_int32_t, struct flow_filter *,
85 struct flowinfo_in *));
86 static int apply_ppfilter4 __P((u_int32_t, struct flow_filter *,
87 struct flowinfo_in *));
88 #ifdef INET6
89 static int apply_filter6 __P((u_int32_t, struct flow_filter6 *,
90 struct flowinfo_in6 *));
91 #endif
92 static int apply_tosfilter4 __P((u_int32_t, struct flow_filter *,
93 struct flowinfo_in *));
94 static u_long get_filt_handle __P((struct acc_classifier *, int));
95 static struct acc_filter *filth_to_filtp __P((struct acc_classifier *,
96 u_long));
97 static u_int32_t filt2fibmask __P((struct flow_filter *));
98
99 static void ip4f_cache __P((struct ip *, struct flowinfo_in *));
100 static int ip4f_lookup __P((struct ip *, struct flowinfo_in *));
101 static int ip4f_init __P((void));
102 static struct ip4_frag *ip4f_alloc __P((void));
103 static void ip4f_free __P((struct ip4_frag *));
104
105 int (*altq_input) __P((struct mbuf *, int)) = NULL;
106 static int tbr_timer = 0; /* token bucket regulator timer */
107 static struct callout tbr_callout = CALLOUT_INITIALIZER;
108
109 /*
110 * alternate queueing support routines
111 */
112
113 /* look up the queue state by the interface name and the queuing type. */
114 void *
115 altq_lookup(name, type)
116 char *name;
117 int type;
118 {
119 struct ifnet *ifp;
120
121 if ((ifp = ifunit(name)) != NULL) {
122 if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
123 return (ifp->if_snd.altq_disc);
124 }
125
126 return NULL;
127 }
128
129 int
130 altq_attach(ifq, type, discipline, enqueue, dequeue, request, clfier, classify)
131 struct ifaltq *ifq;
132 int type;
133 void *discipline;
134 int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *);
135 struct mbuf *(*dequeue)(struct ifaltq *, int);
136 int (*request)(struct ifaltq *, int, void *);
137 void *clfier;
138 void *(*classify)(void *, struct mbuf *, int);
139 {
140 if (!ALTQ_IS_READY(ifq))
141 return ENXIO;
142 if (ALTQ_IS_ENABLED(ifq))
143 return EBUSY;
144 if (ALTQ_IS_ATTACHED(ifq))
145 return EEXIST;
146 ifq->altq_type = type;
147 ifq->altq_disc = discipline;
148 ifq->altq_enqueue = enqueue;
149 ifq->altq_dequeue = dequeue;
150 ifq->altq_request = request;
151 ifq->altq_clfier = clfier;
152 ifq->altq_classify = classify;
153 ifq->altq_flags &= ALTQF_CANTCHANGE;
154 #ifdef ALTQ_KLD
155 altq_module_incref(type);
156 #endif
157 return 0;
158 }
159
160 int
161 altq_detach(ifq)
162 struct ifaltq *ifq;
163 {
164 if (!ALTQ_IS_READY(ifq))
165 return ENXIO;
166 if (ALTQ_IS_ENABLED(ifq))
167 return EBUSY;
168 if (!ALTQ_IS_ATTACHED(ifq))
169 return (0);
170
171 #ifdef ALTQ_KLD
172 altq_module_declref(ifq->altq_type);
173 #endif
174 ifq->altq_type = ALTQT_NONE;
175 ifq->altq_disc = NULL;
176 ifq->altq_enqueue = NULL;
177 ifq->altq_dequeue = NULL;
178 ifq->altq_request = NULL;
179 ifq->altq_clfier = NULL;
180 ifq->altq_classify = NULL;
181 ifq->altq_flags &= ALTQF_CANTCHANGE;
182 return 0;
183 }
184
185 int
186 altq_enable(ifq)
187 struct ifaltq *ifq;
188 {
189 int s;
190
191 if (!ALTQ_IS_READY(ifq))
192 return ENXIO;
193 if (ALTQ_IS_ENABLED(ifq))
194 return 0;
195
196 s = splnet();
197 IFQ_PURGE(ifq);
198 ASSERT(ifq->ifq_len == 0);
199 ifq->altq_flags |= ALTQF_ENABLED;
200 if (ifq->altq_clfier != NULL)
201 ifq->altq_flags |= ALTQF_CLASSIFY;
202 splx(s);
203
204 return 0;
205 }
206
207 int
208 altq_disable(ifq)
209 struct ifaltq *ifq;
210 {
211 int s;
212
213 if (!ALTQ_IS_ENABLED(ifq))
214 return 0;
215
216 s = splnet();
217 IFQ_PURGE(ifq);
218 ASSERT(ifq->ifq_len == 0);
219 ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
220 splx(s);
221 return 0;
222 }
223
224 void
225 altq_assert(file, line, failedexpr)
226 const char *file, *failedexpr;
227 int line;
228 {
229 (void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
230 failedexpr, file, line);
231 panic("altq assertion");
232 /* NOTREACHED */
233 }
234
235 /*
236 * internal representation of token bucket parameters
237 * rate: byte_per_unittime << 32
238 * (((bits_per_sec) / 8) << 32) / machclk_freq
239 * depth: byte << 32
240 *
241 */
242 #define TBR_SHIFT 32
243 #define TBR_SCALE(x) ((int64_t)(x) << TBR_SHIFT)
244 #define TBR_UNSCALE(x) ((x) >> TBR_SHIFT)
245
246 struct mbuf *
247 tbr_dequeue(ifq, op)
248 struct ifaltq *ifq;
249 int op;
250 {
251 struct tb_regulator *tbr;
252 struct mbuf *m;
253 int64_t interval;
254 u_int64_t now;
255
256 tbr = ifq->altq_tbr;
257 if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
258 /* if this is a remove after poll, bypass tbr check */
259 } else {
260 /* update token only when it is negative */
261 if (tbr->tbr_token <= 0) {
262 now = read_machclk();
263 interval = now - tbr->tbr_last;
264 if (interval >= tbr->tbr_filluptime)
265 tbr->tbr_token = tbr->tbr_depth;
266 else {
267 tbr->tbr_token += interval * tbr->tbr_rate;
268 if (tbr->tbr_token > tbr->tbr_depth)
269 tbr->tbr_token = tbr->tbr_depth;
270 }
271 tbr->tbr_last = now;
272 }
273 /* if token is still negative, don't allow dequeue */
274 if (tbr->tbr_token <= 0)
275 return (NULL);
276 }
277
278 if (ALTQ_IS_ENABLED(ifq))
279 m = (*ifq->altq_dequeue)(ifq, op);
280 else {
281 if (op == ALTDQ_POLL)
282 IF_POLL(ifq, m);
283 else
284 IF_DEQUEUE(ifq, m);
285 }
286
287 if (m != NULL && op == ALTDQ_REMOVE)
288 tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
289 tbr->tbr_lastop = op;
290 return (m);
291 }
292
293 /*
294 * set a token bucket regulator.
295 * if the specified rate is zero, the token bucket regulator is deleted.
296 */
297 int
298 tbr_set(ifq, profile)
299 struct ifaltq *ifq;
300 struct tb_profile *profile;
301 {
302 struct tb_regulator *tbr, *otbr;
303
304 if (machclk_freq == 0)
305 init_machclk();
306 if (machclk_freq == 0) {
307 printf("tbr_set: no cpu clock available!\n");
308 return (ENXIO);
309 }
310
311 if (profile->rate == 0) {
312 /* delete this tbr */
313 if ((tbr = ifq->altq_tbr) == NULL)
314 return (ENOENT);
315 ifq->altq_tbr = NULL;
316 FREE(tbr, M_DEVBUF);
317 return (0);
318 }
319
320 MALLOC(tbr, struct tb_regulator *, sizeof(struct tb_regulator),
321 M_DEVBUF, M_WAITOK);
322 if (tbr == NULL)
323 return (ENOMEM);
324 bzero(tbr, sizeof(struct tb_regulator));
325
326 tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
327 tbr->tbr_depth = TBR_SCALE(profile->depth);
328 if (tbr->tbr_rate > 0)
329 tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
330 else
331 tbr->tbr_filluptime = 0xffffffffffffffffLL;
332 tbr->tbr_token = tbr->tbr_depth;
333 tbr->tbr_last = read_machclk();
334 tbr->tbr_lastop = ALTDQ_REMOVE;
335
336 otbr = ifq->altq_tbr;
337 ifq->altq_tbr = tbr; /* set the new tbr */
338
339 if (otbr != NULL)
340 FREE(otbr, M_DEVBUF);
341 else {
342 if (tbr_timer == 0) {
343 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
344 tbr_timer = 1;
345 }
346 }
347 return (0);
348 }
349
350 /*
351 * tbr_timeout goes through the interface list, and kicks the drivers
352 * if necessary.
353 */
354 static void
355 tbr_timeout(arg)
356 void *arg;
357 {
358 struct ifnet *ifp;
359 int active, s;
360
361 active = 0;
362 s = splnet();
363 #ifdef __FreeBSD__
364 #if (__FreeBSD_version < 300000)
365 for (ifp = ifnet; ifp; ifp = ifp->if_next)
366 #else
367 for (ifp = ifnet.tqh_first; ifp != NULL; ifp = ifp->if_link.tqe_next)
368 #endif
369 #else /* !FreeBSD */
370 for (ifp = ifnet.tqh_first; ifp != NULL; ifp = ifp->if_list.tqe_next)
371 #endif
372 {
373 if (!TBR_IS_ENABLED(&ifp->if_snd))
374 continue;
375 active++;
376 if (!IFQ_IS_EMPTY(&ifp->if_snd) && ifp->if_start != NULL)
377 (*ifp->if_start)(ifp);
378 }
379 splx(s);
380 if (active > 0)
381 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
382 else
383 tbr_timer = 0; /* don't need tbr_timer anymore */
384 #if defined(__alpha__) && !defined(ALTQ_NOPCC)
385 {
386 /*
387 * XXX read out the machine dependent clock once a second
388 * to detect counter wrap-around.
389 */
390 static u_int cnt;
391
392 if (++cnt >= hz) {
393 (void)read_machclk();
394 cnt = 0;
395 }
396 }
397 #endif /* __alpha__ && !ALTQ_NOPCC */
398 }
399
400 /*
401 * get token bucket regulator profile
402 */
403 int
404 tbr_get(ifq, profile)
405 struct ifaltq *ifq;
406 struct tb_profile *profile;
407 {
408 struct tb_regulator *tbr;
409
410 if ((tbr = ifq->altq_tbr) == NULL) {
411 profile->rate = 0;
412 profile->depth = 0;
413 } else {
414 profile->rate =
415 (u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq);
416 profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth);
417 }
418 return (0);
419 }
420
421
422 #ifndef IPPROTO_ESP
423 #define IPPROTO_ESP 50 /* encapsulating security payload */
424 #endif
425 #ifndef IPPROTO_AH
426 #define IPPROTO_AH 51 /* authentication header */
427 #endif
428
429 /*
430 * extract flow information from a given packet.
431 * filt_mask shows flowinfo fields required.
432 * we assume the ip header is in one mbuf, and addresses and ports are
433 * in network byte order.
434 */
435 int
436 altq_extractflow(m, af, flow, filt_bmask)
437 struct mbuf *m;
438 int af;
439 struct flowinfo *flow;
440 u_int32_t filt_bmask;
441 {
442
443 switch (af) {
444 case PF_INET: {
445 struct flowinfo_in *fin;
446 struct ip *ip;
447
448 ip = mtod(m, struct ip *);
449
450 if (ip->ip_v != 4)
451 break;
452
453 fin = (struct flowinfo_in *)flow;
454 fin->fi_len = sizeof(struct flowinfo_in);
455 fin->fi_family = AF_INET;
456
457 fin->fi_proto = ip->ip_p;
458 fin->fi_tos = ip->ip_tos;
459
460 fin->fi_src.s_addr = ip->ip_src.s_addr;
461 fin->fi_dst.s_addr = ip->ip_dst.s_addr;
462
463 if (filt_bmask & FIMB4_PORTS)
464 /* if port info is required, extract port numbers */
465 extract_ports4(m, ip, fin);
466 else {
467 fin->fi_sport = 0;
468 fin->fi_dport = 0;
469 fin->fi_gpi = 0;
470 }
471 return (1);
472 }
473
474 #ifdef INET6
475 case PF_INET6: {
476 struct flowinfo_in6 *fin6;
477 struct ip6_hdr *ip6;
478
479 ip6 = mtod(m, struct ip6_hdr *);
480 /* should we check the ip version? */
481
482 fin6 = (struct flowinfo_in6 *)flow;
483 fin6->fi6_len = sizeof(struct flowinfo_in6);
484 fin6->fi6_family = AF_INET6;
485
486 fin6->fi6_proto = ip6->ip6_nxt;
487 fin6->fi6_tclass = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
488
489 fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
490 fin6->fi6_src = ip6->ip6_src;
491 fin6->fi6_dst = ip6->ip6_dst;
492
493 if ((filt_bmask & FIMB6_PORTS) ||
494 ((filt_bmask & FIMB6_PROTO)
495 && ip6->ip6_nxt > IPPROTO_IPV6))
496 /*
497 * if port info is required, or proto is required
498 * but there are option headers, extract port
499 * and protocol numbers.
500 */
501 extract_ports6(m, ip6, fin6);
502 else {
503 fin6->fi6_sport = 0;
504 fin6->fi6_dport = 0;
505 fin6->fi6_gpi = 0;
506 }
507 return (1);
508 }
509 #endif /* INET6 */
510
511 default:
512 break;
513 }
514
515 /* failed */
516 flow->fi_len = sizeof(struct flowinfo);
517 flow->fi_family = AF_UNSPEC;
518 return (0);
519 }
520
521 /*
522 * helper routine to extract port numbers
523 */
524 /* structure for ipsec and ipv6 option header template */
525 struct _opt6 {
526 u_int8_t opt6_nxt; /* next header */
527 u_int8_t opt6_hlen; /* header extension length */
528 u_int16_t _pad;
529 u_int32_t ah_spi; /* security parameter index
530 for authentication header */
531 };
532
533 /*
534 * extract port numbers from a ipv4 packet.
535 */
536 static int
537 extract_ports4(m, ip, fin)
538 struct mbuf *m;
539 struct ip *ip;
540 struct flowinfo_in *fin;
541 {
542 struct mbuf *m0;
543 u_short ip_off;
544 u_int8_t proto;
545 int off;
546
547 fin->fi_sport = 0;
548 fin->fi_dport = 0;
549 fin->fi_gpi = 0;
550
551 ip_off = ntohs(ip->ip_off);
552 /* if it is a fragment, try cached fragment info */
553 if (ip_off & IP_OFFMASK) {
554 ip4f_lookup(ip, fin);
555 return (1);
556 }
557
558 /* locate the mbuf containing the protocol header */
559 for (m0 = m; m0 != NULL; m0 = m0->m_next)
560 if (((caddr_t)ip >= m0->m_data) &&
561 ((caddr_t)ip < m0->m_data + m0->m_len))
562 break;
563 if (m0 == NULL) {
564 #ifdef ALTQ_DEBUG
565 printf("extract_ports4: can't locate header! ip=%p\n", ip);
566 #endif
567 return (0);
568 }
569 off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
570 proto = ip->ip_p;
571
572 #ifdef ALTQ_IPSEC
573 again:
574 #endif
575 while (off >= m0->m_len) {
576 off -= m0->m_len;
577 m0 = m0->m_next;
578 }
579 ASSERT(m0->m_len >= off + 4);
580
581 switch (proto) {
582 case IPPROTO_TCP:
583 case IPPROTO_UDP: {
584 struct udphdr *udp;
585
586 udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
587 fin->fi_sport = udp->uh_sport;
588 fin->fi_dport = udp->uh_dport;
589 fin->fi_proto = proto;
590 }
591 break;
592
593 #ifdef ALTQ_IPSEC
594 case IPPROTO_ESP:
595 if (fin->fi_gpi == 0){
596 u_int32_t *gpi;
597
598 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
599 fin->fi_gpi = *gpi;
600 }
601 fin->fi_proto = proto;
602 break;
603
604 case IPPROTO_AH: {
605 /* get next header and header length */
606 struct _opt6 *opt6;
607
608 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
609 proto = opt6->opt6_nxt;
610 off += 8 + (opt6->opt6_hlen * 4);
611 if (fin->fi_gpi == 0)
612 fin->fi_gpi = opt6->ah_spi;
613 }
614 /* goto the next header */
615 goto again;
616 #endif /* ALTQ_IPSEC */
617
618 default:
619 fin->fi_proto = proto;
620 return (0);
621 }
622
623 /* if this is a first fragment, cache it. */
624 if (ip_off & IP_MF)
625 ip4f_cache(ip, fin);
626
627 return (1);
628 }
629
630 #ifdef INET6
631 static int
632 extract_ports6(m, ip6, fin6)
633 struct mbuf *m;
634 struct ip6_hdr *ip6;
635 struct flowinfo_in6 *fin6;
636 {
637 struct mbuf *m0;
638 int off;
639 u_int8_t proto;
640
641 fin6->fi6_gpi = 0;
642 fin6->fi6_sport = 0;
643 fin6->fi6_dport = 0;
644
645 /* locate the mbuf containing the protocol header */
646 for (m0 = m; m0 != NULL; m0 = m0->m_next)
647 if (((caddr_t)ip6 >= m0->m_data) &&
648 ((caddr_t)ip6 < m0->m_data + m0->m_len))
649 break;
650 if (m0 == NULL) {
651 #ifdef ALTQ_DEBUG
652 printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
653 #endif
654 return (0);
655 }
656 off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
657
658 proto = ip6->ip6_nxt;
659 do {
660 while (off >= m0->m_len) {
661 off -= m0->m_len;
662 m0 = m0->m_next;
663 }
664 ASSERT(m0->m_len >= off + 4);
665
666 switch (proto) {
667 case IPPROTO_TCP:
668 case IPPROTO_UDP: {
669 struct udphdr *udp;
670
671 udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
672 fin6->fi6_sport = udp->uh_sport;
673 fin6->fi6_dport = udp->uh_dport;
674 fin6->fi6_proto = proto;
675 }
676 return (1);
677
678 case IPPROTO_ESP:
679 if (fin6->fi6_gpi == 0) {
680 u_int32_t *gpi;
681
682 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
683 fin6->fi6_gpi = *gpi;
684 }
685 fin6->fi6_proto = proto;
686 return (1);
687
688 case IPPROTO_AH: {
689 /* get next header and header length */
690 struct _opt6 *opt6;
691
692 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
693 if (fin6->fi6_gpi == 0)
694 fin6->fi6_gpi = opt6->ah_spi;
695 proto = opt6->opt6_nxt;
696 off += 8 + (opt6->opt6_hlen * 4);
697 /* goto the next header */
698 break;
699 }
700
701 case IPPROTO_HOPOPTS:
702 case IPPROTO_ROUTING:
703 case IPPROTO_DSTOPTS: {
704 /* get next header and header length */
705 struct _opt6 *opt6;
706
707 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
708 proto = opt6->opt6_nxt;
709 off += (opt6->opt6_hlen + 1) * 8;
710 /* goto the next header */
711 break;
712 }
713
714 case IPPROTO_FRAGMENT:
715 /* ipv6 fragmentations are not supported yet */
716 default:
717 fin6->fi6_proto = proto;
718 return (0);
719 }
720 } while (1);
721 /*NOTREACHED*/
722 }
723 #endif /* INET6 */
724
725 /*
726 * altq common classifier
727 */
728 int
729 acc_add_filter(classifier, filter, class, phandle)
730 struct acc_classifier *classifier;
731 struct flow_filter *filter;
732 void *class;
733 u_long *phandle;
734 {
735 struct acc_filter *afp, *prev, *tmp;
736 int i, s;
737
738 #ifdef INET6
739 if (filter->ff_flow.fi_family != AF_INET &&
740 filter->ff_flow.fi_family != AF_INET6)
741 return (EINVAL);
742 #else
743 if (filter->ff_flow.fi_family != AF_INET)
744 return (EINVAL);
745 #endif
746
747 MALLOC(afp, struct acc_filter *, sizeof(struct acc_filter),
748 M_DEVBUF, M_WAITOK);
749 if (afp == NULL)
750 return (ENOMEM);
751 bzero(afp, sizeof(struct acc_filter));
752
753 afp->f_filter = *filter;
754 afp->f_class = class;
755
756 i = ACC_WILDCARD_INDEX;
757 if (filter->ff_flow.fi_family == AF_INET) {
758 struct flow_filter *filter4 = &afp->f_filter;
759
760 /*
761 * if address is 0, it's a wildcard. if address mask
762 * isn't set, use full mask.
763 */
764 if (filter4->ff_flow.fi_dst.s_addr == 0)
765 filter4->ff_mask.mask_dst.s_addr = 0;
766 else if (filter4->ff_mask.mask_dst.s_addr == 0)
767 filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
768 if (filter4->ff_flow.fi_src.s_addr == 0)
769 filter4->ff_mask.mask_src.s_addr = 0;
770 else if (filter4->ff_mask.mask_src.s_addr == 0)
771 filter4->ff_mask.mask_src.s_addr = 0xffffffff;
772
773 /* clear extra bits in addresses */
774 filter4->ff_flow.fi_dst.s_addr &=
775 filter4->ff_mask.mask_dst.s_addr;
776 filter4->ff_flow.fi_src.s_addr &=
777 filter4->ff_mask.mask_src.s_addr;
778
779 /*
780 * if dst address is a wildcard, use hash-entry
781 * ACC_WILDCARD_INDEX.
782 */
783 if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
784 i = ACC_WILDCARD_INDEX;
785 else
786 i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
787 }
788 #ifdef INET6
789 else if (filter->ff_flow.fi_family == AF_INET6) {
790 struct flow_filter6 *filter6 =
791 (struct flow_filter6 *)&afp->f_filter;
792 #ifndef IN6MASK0 /* taken from kame ipv6 */
793 #define IN6MASK0 {{{ 0, 0, 0, 0 }}}
794 #define IN6MASK128 {{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
795 const struct in6_addr in6mask0 = IN6MASK0;
796 const struct in6_addr in6mask128 = IN6MASK128;
797 #endif
798
799 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
800 filter6->ff_mask6.mask6_dst = in6mask0;
801 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
802 filter6->ff_mask6.mask6_dst = in6mask128;
803 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
804 filter6->ff_mask6.mask6_src = in6mask0;
805 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
806 filter6->ff_mask6.mask6_src = in6mask128;
807
808 /* clear extra bits in addresses */
809 for (i = 0; i < 16; i++)
810 filter6->ff_flow6.fi6_dst.s6_addr[i] &=
811 filter6->ff_mask6.mask6_dst.s6_addr[i];
812 for (i = 0; i < 16; i++)
813 filter6->ff_flow6.fi6_src.s6_addr[i] &=
814 filter6->ff_mask6.mask6_src.s6_addr[i];
815
816 if (filter6->ff_flow6.fi6_flowlabel == 0)
817 i = ACC_WILDCARD_INDEX;
818 else
819 i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
820 }
821 #endif /* INET6 */
822
823 afp->f_handle = get_filt_handle(classifier, i);
824
825 /* update filter bitmask */
826 afp->f_fbmask = filt2fibmask(filter);
827 classifier->acc_fbmask |= afp->f_fbmask;
828
829 /*
830 * add this filter to the filter list.
831 * filters are ordered from the highest rule number.
832 */
833 s = splnet();
834 prev = NULL;
835 LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
836 if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
837 prev = tmp;
838 else
839 break;
840 }
841 if (prev == NULL)
842 LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
843 else
844 LIST_INSERT_AFTER(prev, afp, f_chain);
845 splx(s);
846
847 *phandle = afp->f_handle;
848 return (0);
849 }
850
851 int
852 acc_delete_filter(classifier, handle)
853 struct acc_classifier *classifier;
854 u_long handle;
855 {
856 struct acc_filter *afp;
857 int s;
858
859 if ((afp = filth_to_filtp(classifier, handle)) == NULL)
860 return (EINVAL);
861
862 s = splnet();
863 LIST_REMOVE(afp, f_chain);
864 splx(s);
865
866 FREE(afp, M_DEVBUF);
867
868 /* todo: update filt_bmask */
869
870 return (0);
871 }
872
873 /*
874 * delete filters referencing to the specified class.
875 * if the all flag is not 0, delete all the filters.
876 */
877 int
878 acc_discard_filters(classifier, class, all)
879 struct acc_classifier *classifier;
880 void *class;
881 int all;
882 {
883 struct acc_filter *afp;
884 int i, s;
885
886 s = splnet();
887 for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
888 do {
889 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
890 if (all || afp->f_class == class) {
891 LIST_REMOVE(afp, f_chain);
892 FREE(afp, M_DEVBUF);
893 /* start again from the head */
894 break;
895 }
896 } while (afp != NULL);
897 }
898 splx(s);
899
900 if (all)
901 classifier->acc_fbmask = 0;
902
903 return (0);
904 }
905
906 void *
907 acc_classify(clfier, m, af)
908 void *clfier;
909 struct mbuf *m;
910 int af;
911 {
912 struct acc_classifier *classifier;
913 struct flowinfo flow;
914 struct acc_filter *afp;
915 int i;
916
917 classifier = (struct acc_classifier *)clfier;
918 altq_extractflow(m, af, &flow, classifier->acc_fbmask);
919
920 if (flow.fi_family == AF_INET) {
921 struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
922
923 if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
924 /* only tos is used */
925 LIST_FOREACH(afp,
926 &classifier->acc_filters[ACC_WILDCARD_INDEX],
927 f_chain)
928 if (apply_tosfilter4(afp->f_fbmask,
929 &afp->f_filter, fp))
930 /* filter matched */
931 return (afp->f_class);
932 } else if ((classifier->acc_fbmask &
933 (~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
934 == 0) {
935 /* only proto and ports are used */
936 LIST_FOREACH(afp,
937 &classifier->acc_filters[ACC_WILDCARD_INDEX],
938 f_chain)
939 if (apply_ppfilter4(afp->f_fbmask,
940 &afp->f_filter, fp))
941 /* filter matched */
942 return (afp->f_class);
943 } else {
944 /* get the filter hash entry from its dest address */
945 i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
946 do {
947 /*
948 * go through this loop twice. first for dst
949 * hash, second for wildcards.
950 */
951 LIST_FOREACH(afp, &classifier->acc_filters[i],
952 f_chain)
953 if (apply_filter4(afp->f_fbmask,
954 &afp->f_filter, fp))
955 /* filter matched */
956 return (afp->f_class);
957
958 /*
959 * check again for filters with a dst addr
960 * wildcard.
961 * (daddr == 0 || dmask != 0xffffffff).
962 */
963 if (i != ACC_WILDCARD_INDEX)
964 i = ACC_WILDCARD_INDEX;
965 else
966 break;
967 } while (1);
968 }
969 }
970 #ifdef INET6
971 else if (flow.fi_family == AF_INET6) {
972 struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
973
974 /* get the filter hash entry from its flow ID */
975 if (fp6->fi6_flowlabel != 0)
976 i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
977 else
978 /* flowlable can be zero */
979 i = ACC_WILDCARD_INDEX;
980
981 /* go through this loop twice. first for flow hash, second
982 for wildcards. */
983 do {
984 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
985 if (apply_filter6(afp->f_fbmask,
986 (struct flow_filter6 *)&afp->f_filter,
987 fp6))
988 /* filter matched */
989 return (afp->f_class);
990
991 /*
992 * check again for filters with a wildcard.
993 */
994 if (i != ACC_WILDCARD_INDEX)
995 i = ACC_WILDCARD_INDEX;
996 else
997 break;
998 } while (1);
999 }
1000 #endif /* INET6 */
1001
1002 /* no filter matched */
1003 return (NULL);
1004 }
1005
1006 static int
1007 apply_filter4(fbmask, filt, pkt)
1008 u_int32_t fbmask;
1009 struct flow_filter *filt;
1010 struct flowinfo_in *pkt;
1011 {
1012 if (filt->ff_flow.fi_family != AF_INET)
1013 return (0);
1014 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1015 return (0);
1016 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1017 return (0);
1018 if ((fbmask & FIMB4_DADDR) &&
1019 filt->ff_flow.fi_dst.s_addr !=
1020 (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
1021 return (0);
1022 if ((fbmask & FIMB4_SADDR) &&
1023 filt->ff_flow.fi_src.s_addr !=
1024 (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
1025 return (0);
1026 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1027 return (0);
1028 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1029 (pkt->fi_tos & filt->ff_mask.mask_tos))
1030 return (0);
1031 if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
1032 return (0);
1033 /* match */
1034 return (1);
1035 }
1036
1037 /*
1038 * filter matching function optimized for a common case that checks
1039 * only protocol and port numbers
1040 */
1041 static int
1042 apply_ppfilter4(fbmask, filt, pkt)
1043 u_int32_t fbmask;
1044 struct flow_filter *filt;
1045 struct flowinfo_in *pkt;
1046 {
1047 if (filt->ff_flow.fi_family != AF_INET)
1048 return (0);
1049 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1050 return (0);
1051 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1052 return (0);
1053 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1054 return (0);
1055 /* match */
1056 return (1);
1057 }
1058
1059 /*
1060 * filter matching function only for tos field.
1061 */
1062 static int
1063 apply_tosfilter4(fbmask, filt, pkt)
1064 u_int32_t fbmask;
1065 struct flow_filter *filt;
1066 struct flowinfo_in *pkt;
1067 {
1068 if (filt->ff_flow.fi_family != AF_INET)
1069 return (0);
1070 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1071 (pkt->fi_tos & filt->ff_mask.mask_tos))
1072 return (0);
1073 /* match */
1074 return (1);
1075 }
1076
1077 #ifdef INET6
1078 static int
1079 apply_filter6(fbmask, filt, pkt)
1080 u_int32_t fbmask;
1081 struct flow_filter6 *filt;
1082 struct flowinfo_in6 *pkt;
1083 {
1084 int i;
1085
1086 if (filt->ff_flow6.fi6_family != AF_INET6)
1087 return (0);
1088 if ((fbmask & FIMB6_FLABEL) &&
1089 filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
1090 return (0);
1091 if ((fbmask & FIMB6_PROTO) &&
1092 filt->ff_flow6.fi6_proto != pkt->fi6_proto)
1093 return (0);
1094 if ((fbmask & FIMB6_SPORT) &&
1095 filt->ff_flow6.fi6_sport != pkt->fi6_sport)
1096 return (0);
1097 if ((fbmask & FIMB6_DPORT) &&
1098 filt->ff_flow6.fi6_dport != pkt->fi6_dport)
1099 return (0);
1100 if (fbmask & FIMB6_SADDR) {
1101 for (i = 0; i < 4; i++)
1102 if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
1103 (pkt->fi6_src.s6_addr32[i] &
1104 filt->ff_mask6.mask6_src.s6_addr32[i]))
1105 return (0);
1106 }
1107 if (fbmask & FIMB6_DADDR) {
1108 for (i = 0; i < 4; i++)
1109 if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
1110 (pkt->fi6_dst.s6_addr32[i] &
1111 filt->ff_mask6.mask6_dst.s6_addr32[i]))
1112 return (0);
1113 }
1114 if ((fbmask & FIMB6_TCLASS) &&
1115 filt->ff_flow6.fi6_tclass !=
1116 (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
1117 return (0);
1118 if ((fbmask & FIMB6_GPI) &&
1119 filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
1120 return (0);
1121 /* match */
1122 return (1);
1123 }
1124 #endif /* INET6 */
1125
1126 /*
1127 * filter handle:
1128 * bit 20-28: index to the filter hash table
1129 * bit 0-19: unique id in the hash bucket.
1130 */
1131 static u_long
1132 get_filt_handle(classifier, i)
1133 struct acc_classifier *classifier;
1134 int i;
1135 {
1136 static u_long handle_number = 1;
1137 u_long handle;
1138 struct acc_filter *afp;
1139
1140 while (1) {
1141 handle = handle_number++ & 0x000fffff;
1142
1143 if (LIST_EMPTY(&classifier->acc_filters[i]))
1144 break;
1145
1146 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1147 if ((afp->f_handle & 0x000fffff) == handle)
1148 break;
1149 if (afp == NULL)
1150 break;
1151 /* this handle is already used, try again */
1152 }
1153
1154 return ((i << 20) | handle);
1155 }
1156
1157 /* convert filter handle to filter pointer */
1158 static struct acc_filter *
1159 filth_to_filtp(classifier, handle)
1160 struct acc_classifier *classifier;
1161 u_long handle;
1162 {
1163 struct acc_filter *afp;
1164 int i;
1165
1166 i = ACC_GET_HINDEX(handle);
1167
1168 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1169 if (afp->f_handle == handle)
1170 return (afp);
1171
1172 return (NULL);
1173 }
1174
1175 /* create flowinfo bitmask */
1176 static u_int32_t
1177 filt2fibmask(filt)
1178 struct flow_filter *filt;
1179 {
1180 u_int32_t mask = 0;
1181 #ifdef INET6
1182 struct flow_filter6 *filt6;
1183 #endif
1184
1185 switch (filt->ff_flow.fi_family) {
1186 case AF_INET:
1187 if (filt->ff_flow.fi_proto != 0)
1188 mask |= FIMB4_PROTO;
1189 if (filt->ff_flow.fi_tos != 0)
1190 mask |= FIMB4_TOS;
1191 if (filt->ff_flow.fi_dst.s_addr != 0)
1192 mask |= FIMB4_DADDR;
1193 if (filt->ff_flow.fi_src.s_addr != 0)
1194 mask |= FIMB4_SADDR;
1195 if (filt->ff_flow.fi_sport != 0)
1196 mask |= FIMB4_SPORT;
1197 if (filt->ff_flow.fi_dport != 0)
1198 mask |= FIMB4_DPORT;
1199 if (filt->ff_flow.fi_gpi != 0)
1200 mask |= FIMB4_GPI;
1201 break;
1202 #ifdef INET6
1203 case AF_INET6:
1204 filt6 = (struct flow_filter6 *)filt;
1205
1206 if (filt6->ff_flow6.fi6_proto != 0)
1207 mask |= FIMB6_PROTO;
1208 if (filt6->ff_flow6.fi6_tclass != 0)
1209 mask |= FIMB6_TCLASS;
1210 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
1211 mask |= FIMB6_DADDR;
1212 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
1213 mask |= FIMB6_SADDR;
1214 if (filt6->ff_flow6.fi6_sport != 0)
1215 mask |= FIMB6_SPORT;
1216 if (filt6->ff_flow6.fi6_dport != 0)
1217 mask |= FIMB6_DPORT;
1218 if (filt6->ff_flow6.fi6_gpi != 0)
1219 mask |= FIMB6_GPI;
1220 if (filt6->ff_flow6.fi6_flowlabel != 0)
1221 mask |= FIMB6_FLABEL;
1222 break;
1223 #endif /* INET6 */
1224 }
1225 return (mask);
1226 }
1227
1228
1229 /*
1230 * helper functions to handle IPv4 fragments.
1231 * currently only in-sequence fragments are handled.
1232 * - fragment info is cached in a LRU list.
1233 * - when a first fragment is found, cache its flow info.
1234 * - when a non-first fragment is found, lookup the cache.
1235 */
1236
1237 struct ip4_frag {
1238 TAILQ_ENTRY(ip4_frag) ip4f_chain;
1239 char ip4f_valid;
1240 u_short ip4f_id;
1241 struct flowinfo_in ip4f_info;
1242 };
1243
1244 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
1245
1246 #define IP4F_TABSIZE 16 /* IPv4 fragment cache size */
1247
1248
1249 static void
1250 ip4f_cache(ip, fin)
1251 struct ip *ip;
1252 struct flowinfo_in *fin;
1253 {
1254 struct ip4_frag *fp;
1255
1256 if (TAILQ_EMPTY(&ip4f_list)) {
1257 /* first time call, allocate fragment cache entries. */
1258 if (ip4f_init() < 0)
1259 /* allocation failed! */
1260 return;
1261 }
1262
1263 fp = ip4f_alloc();
1264 fp->ip4f_id = ip->ip_id;
1265
1266 /* save port numbers */
1267 fp->ip4f_info.fi_sport = fin->fi_sport;
1268 fp->ip4f_info.fi_dport = fin->fi_dport;
1269 fp->ip4f_info.fi_gpi = fin->fi_gpi;
1270 }
1271
1272 static int
1273 ip4f_lookup(ip, fin)
1274 struct ip *ip;
1275 struct flowinfo_in *fin;
1276 {
1277 struct ip4_frag *fp;
1278
1279 for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
1280 fp = TAILQ_NEXT(fp, ip4f_chain))
1281 if (ip->ip_id == fp->ip4f_id &&
1282 ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
1283 ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
1284 ip->ip_p == fp->ip4f_info.fi_proto) {
1285
1286 /* found the matching entry */
1287 fin->fi_sport = fp->ip4f_info.fi_sport;
1288 fin->fi_dport = fp->ip4f_info.fi_dport;
1289 fin->fi_gpi = fp->ip4f_info.fi_gpi;
1290
1291 if ((ntohs(ip->ip_off) & IP_MF) == 0)
1292 /* this is the last fragment,
1293 release the entry. */
1294 ip4f_free(fp);
1295
1296 return (1);
1297 }
1298
1299 /* no matching entry found */
1300 return (0);
1301 }
1302
1303 static int
1304 ip4f_init(void)
1305 {
1306 struct ip4_frag *fp;
1307 int i;
1308
1309 TAILQ_INIT(&ip4f_list);
1310 for (i=0; i<IP4F_TABSIZE; i++) {
1311 MALLOC(fp, struct ip4_frag *, sizeof(struct ip4_frag),
1312 M_DEVBUF, M_NOWAIT);
1313 if (fp == NULL) {
1314 printf("ip4f_init: can't alloc %dth entry!\n", i);
1315 if (i == 0)
1316 return (-1);
1317 return (0);
1318 }
1319 fp->ip4f_valid = 0;
1320 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1321 }
1322 return (0);
1323 }
1324
1325 static struct ip4_frag *
1326 ip4f_alloc(void)
1327 {
1328 struct ip4_frag *fp;
1329
1330 /* reclaim an entry at the tail, put it at the head */
1331 fp = TAILQ_LAST(&ip4f_list, ip4f_list);
1332 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1333 fp->ip4f_valid = 1;
1334 TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
1335 return (fp);
1336 }
1337
1338 static void
1339 ip4f_free(fp)
1340 struct ip4_frag *fp;
1341 {
1342 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1343 fp->ip4f_valid = 0;
1344 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1345 }
1346
1347 /*
1348 * read and write diffserv field in IPv4 or IPv6 header
1349 */
1350 u_int8_t
1351 read_dsfield(m, pktattr)
1352 struct mbuf *m;
1353 struct altq_pktattr *pktattr;
1354 {
1355 struct mbuf *m0;
1356 u_int8_t ds_field = 0;
1357
1358 if (pktattr == NULL ||
1359 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
1360 return ((u_int8_t)0);
1361
1362 /* verify that pattr_hdr is within the mbuf data */
1363 for (m0 = m; m0 != NULL; m0 = m0->m_next)
1364 if ((pktattr->pattr_hdr >= m0->m_data) &&
1365 (pktattr->pattr_hdr < m0->m_data + m0->m_len))
1366 break;
1367 if (m0 == NULL) {
1368 /* ick, pattr_hdr is stale */
1369 pktattr->pattr_af = AF_UNSPEC;
1370 #ifdef ALTQ_DEBUG
1371 printf("read_dsfield: can't locate header!\n");
1372 #endif
1373 return ((u_int8_t)0);
1374 }
1375
1376 if (pktattr->pattr_af == AF_INET) {
1377 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
1378
1379 if (ip->ip_v != 4)
1380 return ((u_int8_t)0); /* version mismatch! */
1381 ds_field = ip->ip_tos;
1382 }
1383 #ifdef INET6
1384 else if (pktattr->pattr_af == AF_INET6) {
1385 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
1386 u_int32_t flowlabel;
1387
1388 flowlabel = ntohl(ip6->ip6_flow);
1389 if ((flowlabel >> 28) != 6)
1390 return ((u_int8_t)0); /* version mismatch! */
1391 ds_field = (flowlabel >> 20) & 0xff;
1392 }
1393 #endif
1394 return (ds_field);
1395 }
1396
1397 void
1398 write_dsfield(m, pktattr, dsfield)
1399 struct mbuf *m;
1400 struct altq_pktattr *pktattr;
1401 u_int8_t dsfield;
1402 {
1403 struct mbuf *m0;
1404
1405 if (pktattr == NULL ||
1406 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
1407 return;
1408
1409 /* verify that pattr_hdr is within the mbuf data */
1410 for (m0 = m; m0 != NULL; m0 = m0->m_next)
1411 if ((pktattr->pattr_hdr >= m0->m_data) &&
1412 (pktattr->pattr_hdr < m0->m_data + m0->m_len))
1413 break;
1414 if (m0 == NULL) {
1415 /* ick, pattr_hdr is stale */
1416 pktattr->pattr_af = AF_UNSPEC;
1417 #ifdef ALTQ_DEBUG
1418 printf("write_dsfield: can't locate header!\n");
1419 #endif
1420 return;
1421 }
1422
1423 if (pktattr->pattr_af == AF_INET) {
1424 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
1425 u_int8_t old;
1426 int32_t sum;
1427
1428 if (ip->ip_v != 4)
1429 return; /* version mismatch! */
1430 old = ip->ip_tos;
1431 dsfield |= old & 3; /* leave CU bits */
1432 if (old == dsfield)
1433 return;
1434 ip->ip_tos = dsfield;
1435 /*
1436 * update checksum (from RFC1624)
1437 * HC' = ~(~HC + ~m + m')
1438 */
1439 sum = ~ntohs(ip->ip_sum) & 0xffff;
1440 sum += 0xff00 + (~old & 0xff) + dsfield;
1441 sum = (sum >> 16) + (sum & 0xffff);
1442 sum += (sum >> 16); /* add carry */
1443
1444 ip->ip_sum = htons(~sum & 0xffff);
1445 }
1446 #ifdef INET6
1447 else if (pktattr->pattr_af == AF_INET6) {
1448 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
1449 u_int32_t flowlabel;
1450
1451 flowlabel = ntohl(ip6->ip6_flow);
1452 if ((flowlabel >> 28) != 6)
1453 return; /* version mismatch! */
1454 flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
1455 ip6->ip6_flow = htonl(flowlabel);
1456 }
1457 #endif
1458 return;
1459 }
1460
1461
1462 /*
1463 * high resolution clock support taking advantage of a machine dependent
1464 * high resolution time counter (e.g., timestamp counter of intel pentium).
1465 * we assume
1466 * - 64-bit-long monotonically-increasing counter
1467 * - frequency range is 100M-4GHz (CPU speed)
1468 */
1469 u_int32_t machclk_freq = 0;
1470 u_int32_t machclk_per_tick = 0;
1471
1472 #if (defined(__i386__) || defined(__alpha__)) && !defined(ALTQ_NOPCC)
1473 #ifdef __FreeBSD__
1474 /* freebsd makes clock frequency accessible */
1475 #ifdef __alpha__
1476 extern u_int32_t cycles_per_sec; /* alpha cpu clock frequency */
1477 #endif
1478 void
1479 init_machclk(void)
1480 {
1481 #if defined(__i386__)
1482 #if (__FreeBSD_version > 300000)
1483 machclk_freq = tsc_freq;
1484 #else
1485 machclk_freq = i586_ctr_freq;
1486 #endif
1487 #elif defined(__alpha__)
1488 machclk_freq = cycles_per_sec;
1489 #endif /* __alpha__ */
1490 machclk_per_tick = machclk_freq / hz;
1491 }
1492 #else /* !__FreeBSD__ */
1493 /*
1494 * measure Pentium TSC or Alpha PCC clock frequency
1495 */
1496 void
1497 init_machclk(void)
1498 {
1499 static int wait;
1500 struct timeval tv_start, tv_end;
1501 u_int64_t start, end, diff;
1502 int timo;
1503
1504 microtime(&tv_start);
1505 start = read_machclk();
1506 timo = hz; /* 1 sec */
1507 (void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
1508 microtime(&tv_end);
1509 end = read_machclk();
1510 diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
1511 + tv_end.tv_usec - tv_start.tv_usec;
1512 if (diff != 0)
1513 machclk_freq = (u_int)((end - start) * 1000000 / diff);
1514 machclk_per_tick = machclk_freq / hz;
1515
1516 printf("altq: CPU clock: %uHz\n", machclk_freq);
1517 }
1518 #endif /* !__FreeBSD__ */
1519 #ifdef __alpha__
1520 /*
1521 * make a 64bit counter value out of the 32bit alpha processor cycle counter.
1522 * read_machclk must be called within a half of its wrap-around cycle
1523 * (about 5 sec for 400MHz cpu) to properly detect a counter wrap-around.
1524 * tbr_timeout calls read_machclk once a second.
1525 */
1526 u_int64_t
1527 read_machclk(void)
1528 {
1529 static u_int32_t last_pcc, upper;
1530 u_int32_t pcc;
1531
1532 pcc = (u_int32_t)alpha_rpcc();
1533 if (pcc <= last_pcc)
1534 upper++;
1535 last_pcc = pcc;
1536 return (((u_int64_t)upper << 32) + pcc);
1537 }
1538 #endif /* __alpha__ */
1539 #else /* !i386 && !alpha */
1540 /* use microtime() for now */
1541 void
1542 init_machclk(void)
1543 {
1544 machclk_freq = 1000000 << MACHCLK_SHIFT;
1545 machclk_per_tick = machclk_freq / hz;
1546 printf("altq: emulate %uHz cpu clock\n", machclk_freq);
1547 }
1548 #endif /* !i386 && !alpha */
1549